
ar
X

iv
:2

20
4.

05
94

0v
2 

 [
qu

an
t-

ph
] 

 2
9 

Ju
n 

20
22

Matrix product operator algebras I: representations of weak Hopf

algebras and projected entangled pair states

Andras Molnar1, Alberto Ruiz de Alarcón2,3, José Garre-Rubio1, Norbert Schuch1,4,
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Abstract

Matrix Product Operators (MPOs) are tensor networks representing operators acting on 1D systems.
They model a wide variety of situations, including communication channels with memory effects, quantum
cellular automata, mixed states in 1D quantum systems, or holographic boundary models associated to
2D quantum systems. A scenario where MPOs have proven particularly useful is to represent algebras of
non-trivial symmetries. Concretely, the boundary of both symmetry protected and topologically ordered
phases in 2D quantum systems exhibit symmetries in the form of MPOs.

In this paper, we develop a theory of MPOs as representations of algebraic structures. We establish
a dictionary between algebra and MPO properties which allows to transfer results between both setups,
covering the cases of pre-bialgebras, weak bialgebras, and weak Hopf algebras. We define the notion
of pulling-through algebras, which abstracts the minimal requirements needed to define topologically
ordered 2D tensor networks from MPO algebras. We show, as one of our main results, that any semisimple
pivotal weak Hopf algebra is a pulling-trough algebra. We demonstrate the power of this framework by
showing that they can be used to construct Kitaev’s quantum double models for Hopf algebras solely
from an MPO representation of the Hopf algebra, in the exact same way as MPO symmetries obtained
from fusion categories can be used to construct Levin-Wen string-net models, and to explain all their
topological features; it thus allows to describe both Kitaev and string-net models on the same formal
footing.
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1 Introduction

1.1 Context

Tensor Networks [ONU22; CPSV21; Hac19] allow to express certain high-dimensional tensors Ti1,...,iN –
that is, tensors with a large number N of indices – efficiently as a network of simple few-index tensors.
Those elementary tensors are arranged on a graph (“network”), and their “auxiliary” indices are contracted
(i.e., identified and summed over) with those of the adjacent tensor, as prescribed by the edges of the
graph. The resulting object describes a multi-dimensional tensor whose indices are given by the remaining
uncontracted indices of the original network. This allows to express the original tensor Ti1,...,iN with its
exponential number dN of parameters (for simplicity, ik = 1, . . . , d for all k) through a much smaller number
of parameters (typically scaling linearly in N), while retaining highly non-trivial correlations between the
different indices of T . Surprisingly, in a remarkably broad range of applications, this exponential saving in
the number of parameters effectively does not restrict the expressive power of the ansatz.

A particularly successful instance of tensor networks is given by one-dimensional (1D) tensor networks,
most commonly known by the names of Matrix Product States (MPS) [PVWC08; FNW92] or Tensor Trains
(TT) [Ose11], among others. These ansatzes have been independently (re-)discovered in different fields and
have found applications in a multitude of areas throughout data science and physics. This includes, for
instance, their use in modeling and compressing high-dimensional data, such as for image compression or the
simulation of PDEs, as well as in the design of deep learning algorithms, such as for hidden Markov mod-
els or Born machines [SS17; NTO17; CLO+16; CPZ+17; Lat05; ME22; IOL07; Gar21; BSU16; CCC+19;
GSP+19]. In physics, Tensor Networks – both one-dimensional MPS and their higher-dimensional gener-
alization, termed Projected Entangled Pair States (PEPS) – have proven to be a powerful ansatz for the
simulation and modeling of quantum many-body systems in a wide range of scenarios in condensed matter,
atomic, and high energy physics, as well as in quantum chemistry [Sch11; SC12; MG02; DM16; PKS+19;
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ZCC+17; Oru19; VCM03; SSV+05; BC20; PYHP06; JE21; SPM+15; OHN+15]. Notably, their suitability
for faithfully approximating low-energy states of local Hamiltonians can be rigorously proven in a broad
range of settings [Has07b; Has07a; CPSV21], providing a formal justification of their success in the study
of such systems; and the fact that MPS allow to represent physical symmetries locally [PWS+08] – that is,
as acting on the auxiliary degrees of freedom – has enabled a comprehensive classification of unconventional
phases under symmetries [CGW11; SPC10; CPSV21].

A generalization of MPS which is natural in many contexts are Matrix Product Operators (MPOs)
[ZV04]. MPOs describe operators acting on a multi-dimensional tensor which themselves can be expressed
as 1D tensor networks and thus possess – and preserve – the underlying 1D locality structure. On the one
hand, such MPOs can encode operations or transformations which themselves have a 1D structure; they thus
form natural generalization of strictly local operations, in that they preserve the local correlation structure
when acting on an MPS [MCPV10; HV17; CPSV17; ŞSBC18]. On the other hand, MPOs can characterize
symmetries acting on a system which have an intrinsic 1D correlation structure [RVHB19; CLV22], or by
implication projections onto subspaces invariant under the symmetry which can exhibit highly non-trivial
structures [GLM22]. Notably, in both cases, despite their local form the structure of such operators can be
fundamentally different from what can be achieved by low-depth local circuits alone.

MPOs appear most naturally in the context of quantum many-body problems. They can, for instance,
describe evolutions with a local structure (but not necessarily locally generated) such as in driven quantum
systems, i.e., Floquet physics [PFM+16]; and they can describe the symmetries of chains of particles with
anyonic statistics [FTL+07; GAT+13; GLM22]. However, the use of MPOs in many-body physics goes far
beyond this and extends deeply into the study of 2D systems: Boundaries – and in particular the correlations
across those boundaries, i.e., the entangement spectrum – play a key role in understanding the physics of
strongly correlated quantum matter [LH08; Laf16]. The boundary of a 2D quantum system has, yet again,
a natural 1D structure, which can be made explicit by cutting a 2D tensor network description of the bulk
system at the boundary [CPSV06]. The density matrix which carries the entanglement spectrum can then
be described by an MPO at the boundary. On the other hand, just as physical symmetries in MPS can be
represented as acting at the auxiliary indices, symmetries in 2D PEPS can be understood as acting as MPOs
at the 1D boundary [CLW11; WBM+16; MGSC18], in which case they naturally form a representation of
the symmetry group; indeed, the classification of MPO representations of groups enabled the classification of
symmetry protected phases in 2D. However, there is another way in which such symmetries can act: Rather
than acting as faithful representations both on the physical and the auxiliary degree of freedom, MPO
symmetries can also appear as symmetries of the auxiliary degrees of freedom on their own, that is, as pure
entanglement symmetries. These entanglement symmetries are precisely what underlies topological order
in 2D, and they allow to comprehensively understand topologically ordered systems, encompassing their
ground space structure as well as anyons and their braiding [SCP10; BMW+17; CPSV21] (see Section 1.3
for a detailed discussion).

In many of these cases, MPOs naturally form algebraic structures, such as group representations in the
case of symmetries or evolutions. A particularly strong structure arises in the case where the MPO on its own
describes a symmetry, such as the entanglement symmetries which appear in topologically ordered systems:
As both products and linear combinations of symmetries are again symmetries, the MPOs which appear in
topologically ordered systems naturally form MPO algebras. Given the widespread use of MPS and MPOs,
the importance of understanding topologically ordered systems, and the key role played by MPO algebras
in this context, it is thus highly desirable to formalize the representation theory of MPO algebras and their
underlying algebraic structure, and to understand the way in which additional conditions imposed on the
corresponding algebraic structures are reflected in properties of their MPO representation, and vice versa
[BMW+17; Kaw20; Kaw21a; Kaw21b].

1.2 Main results of this work

In this paper, we lay out a framework for describing MPOs as (faithful) representations of algebraic structures
A which are both algebras and co-algebras (i.e. duals of an algebra), with certain compatibility conditions:
pre-bialgebras, weak bialgebras, weak Hopf algebras, and variants thereof, and we establish a dictionary
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between the properties of those algebraic structures A and those of their MPO representations. This frame-
work allows one to use the algebraic structure of A to reason about MPOs, and conversely to use MPOs to
derive statements about A. We then show that under suitable conditions, those structures – and thus their
MPO representations – satisfy a condition which we use to define a new algebraic structure: pulling-through
algebras ; those algebras play a key role in the construction and study of topologically ordered models from
weak Hopf algebras. We conclude by demonstrating how pulling-through algebras show up in the construc-
tion of a large class of topological models; the study of further applications in topological order is left for
future work.

Let us describe more specifically the key results of the work. We start by showing that MPS naturally
appear as representations of coalgebras (i.e. duals of algebras) in Section 3. MPOs are then representations
of pre-bialgebras A – coalgebras which are also algebras, with a minimal compatibility condition (Section 4).
In both cases, the coalgebra element a ∈ A is encoded in the boundary condition of the MPO or MPS.
We then show that semisimplicity of A∗, the dual of A, amounts to an MPS/MPO which decomposes into
irreducible (i.e., normal/injective) blocks corresponding to the irreps of A∗ – importantly, for MPOs these
irreducible blocks give rise to a notion of sectors and their fusion, which links to topological order – and that
cocentral elements are represented by translational invariant MPOs.

We then study the effect of introducing the additional conditions which make A a weak bialgebra (WBA)
or weak Hopf algebra (WHA), respectively (Section 5). We show how those conditions give rise to additional
properties of the sectors of the MPO and their fusion, giving them the structure of a monoidal category
in the case of a WBA and multi-fusion category in the case of a WHA. In particular, we show how to
construct a “vaccum” sector, as well as an integral whose representation is a special projector (used later to
construct the topological models). By further restricting to pivotal, spherical, and C∗ weak Hopf algebras,
we then use said integral to show the existence of a “pulling through structure” satisfying a sequence of
increasingly strong conditions. This motivates the definition of pulling-through algebras in Section 6, whose
MPO representation possesses such a pulling through structure which satisfies the corresponding conditions.
In Section 7, we construct PEPS based on pulling-through algebras, show that their symmetry structure is
scale invariant – central for follow-up work – and demonstrate that in the case of C∗ Hopf algebras, the
resulting models are equivalent to the class of generalized Kitaev models, discussed in Section 1.3 below.

This work is the first of a series of papers in which we utilize MPO algebras to understand and classify
topological phases of matter in quantum many body systems. The second paper is concerned with classifying
phases in 1D open quantum systems as equivalence classes of shallow circuits. At the heart of this problem
is the classification of renormalization fixed point density operators, and the present work provides the tools
required to build examples for fixed point MPOs, as well as channels that map between such states. The
third paper of the series studies the structure of PEPS representations of topological models constructed
from pulling-through algebras, as explained above. This is in particular relevant for characterizing the
representation of physical symmetries on the auxiliary degrees of freedom, and thus the classification of
symmetry-enriched topological phases.

1.3 Connection to topological order

As mentioned before, MPO algebras are especially important in the study of topologically ordered phases
in 2D tensor networks, i.e., PEPS. In particular, the definition of pulling-through algebras in this work is
directly motivated by the study of topological order in PEPS. In the following, we explain this context, and
the way in which our results fit in, in more detail.

Topologically ordered phases are phases which exhibit order which cannot be detected by any local
order parameter. Instead, they are characterized by a global ordering in their quantum correlations, also
known as entanglement. Characteristic to these systems are their degenerate ground states, which are locally
indistinguishable and whose number depends on the topology of the surface on which the system is defined
– both incompatible with local order parameters – as well as the presence of excitations with non-trivial
statistics in the system, termed “anyons”.

In a seminal work, Kitaev [Kit03] first proposed a Hamiltonian model for a spin system with the afore-
mentioned properties, the Toric Code model, as well as its generalization to finite groups G, the quantum
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double models. An alternative construction was provided by the string-net models of Levin and Wen [LW05].
While string-net models can be understood as another way of generalizing the Toric Code model, they are in
fact motivated by topological quantum field theories. Hence, they use a category theoretical language (the
construction utilizes unitary fusion categories with some additional restrictions – the so-called tetrahedral
symmetry of the F -symbols), as opposed to the algebraic approach used for the quantum double models
(which are constructed as representations of the quantum double D(G)). Over the years, generalizations
of both classes of models have been devised. Kitaev already noted in his original work [Kit03] that the
same construction also works for semisimple Hopf algebras. This has later been worked out in detail [BK12;
BMCA13], and further generalized to C∗-weak Hopf algebras [Cha14]. For string-net models, it has been
shown that the requirement of tetrahedral symmetry can be dropped [HW20], and thus string-net models
can be built from arbitrary unitary fusion categories; further, the construction has been generalized to build
on bimodule categories instead of fusion categories [LFH+20].

Both Kitaev models and string-net models admit tensor network descriptions. Such a description has been
developed first for Kitaev’s Toric Code model [VWPC06] and later generalized to Kitaev models based on
finite groups [SCP10] and Hopf algebras [BMCA13], and separately for string-net models [BAV09; GLSW09].
A characteristic feature of the PEPS description both of Kitaev models based on finite groups and of string-
net models is that the tensors which define the state possess symmetries which act solely on the auxiliary
degrees of freedom of the tensor. This symmetry is intimately tied to the topological features of the system,
as it allows to explain both its ground space degeneracy and the presence of anyonic excitations [SCP10;
ŞWB+14; BMW+17], whereas breaking it even slightly leads to an immediate breakdown of topological
order in 2D [CZG+10] (but not in 3D [WDVS21; DS21]). A crucial property of these symmetries is their
size-independence: They are given either by tensor powers of a local symmetry generator (for the double
models) or, more generally, by homogenous MPOs (for string-net models), such that every region in the
PEPS possesses the same MPO symmetries. The specific properties of the underlying topological phase can
then be inferred by studying the algebraic properties of the corresponding MPO algebra. Remarkably, it is
even possible to build topological models in this very phase from nothing but the MPO symmetry itself: the
PEPS tensor is then constructed from the MPO by placing it on a fixed-size ring with suitable boundaries
[SCP10; BMW+17; CPSV21].

Despite the success of MPO symmetries in understanding, characterizing, and simulating topological order
in the phases of the Kitaev double models of finite groups and of the string-net models [SCP10; BWV+18;
LCSV21; DIH+17], the picture is unfortunately not complete. First off, for the Kitaev model based on Hopf
algebras the known tensor network constructions [BMCA13] do not evidently display any such symmetries;
and moving to an even broader setting, for the Kitaev models constructed from weak Hopf algebras not even
a tensor network description is known – which, in turn, should be possible to construct once the underlying
MPO symmetries have been identified. This lack of knowledge is the more surprising given that weak Hopf
algebras correspond to multi-fusion categories [ENO02], and thus, they exhibit the same type of topological
order as the corresponding string-net models. A key reason why, despite this connection, an understanding
of the MPO symmetries underlying Kitaev models for (weak) Hopf algebras is missing is the fact that the
MPO symmetries for string-net models are constructed in a category theoretical language. To understand
the MPO symmetries relevant for describing Kitaev models, however, an algebraic language is clearly more
natural. This is precisely what we achieve in this work: We show that weak Hopf algebras correspond to
MPO algebras with specific properties, most importantly the pulling-through structure. Using these MPO
algebras, we can then construct a PEPS representation for Kitaev models based on any weak Hopf algebra;
we explicitly show the connection between both representations for the case where the MPOs are built from
a C∗-Hopf algebra.

On a more abstract level, the relation between the MPO symmetries of the string-net models and the
MPOs representations of semisimple weak Hopf algebras is as follows. The MPOs constructed in this work are
representations of semisimple weak Hopf algebras. In turn, representations of semisimple weak Hopf algebras
are known to be exactly multi-fusion categories [ENO02]. Vice versa, every (multi-)fusion category arises as
the category of representations of some weak Hopf algebra. The MPO symmetries of the string-net model
based on any given fusion category will thus form a representation of the corresponding weak Hopf algebra.
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In fact, that weak Hopf algebra can be constructed from the MPO symmetries themselves, when closed with
arbitrary boundary conditions. It is important to note that while (ordinary) string-net models are built on a
single fusion category, general representations of weak Hopf algebras involve two different fusion categories:
one is the representation category of the weak Hopf algebra, the other is the category (or a subcategory) of
the representations of the dual weak Hopf algebra. The correspondence between fusion categories, MPOs,
and weak Hopf algebras then suggests that string-net models based on bimodule categories [LFH+20] and
PEPS constructed from weak Hopf algebras are actually the same. The exact details on how to map these
models to each other is left for future work.

1.4 Structure of the paper

This paper is structured as follows. First, in Section 2 we introduce the graphical notation of tensor calculus
used throughout the paper. In Section 3 we introduce coalgebras and matrix product states (MPS), and es-
tablish the relation between them: one can think of an MPS as a representation of a coalgebra. We specialize
to the case where the coalgebra is cosemisimple; in this case the representing MPS is in canonical form, i.e.
it is a sum of smaller bond dimensional injective MPS. In Section 4 we investigate pre-bialgebras: coalgebras
that are algebras as well such that the two structures satisfy a compatibility condition. Correspondingly,
the previously defined MPS representations of pre-bialgebras will become MPOs and these MPOs are closed
under multiplication. In Section 5 we introduce weak bialgebras (pre-bialgebras such that their unit and
counit satisfy certain properties) and weak Hopf algebras (weak bialgebras with an extra operation called
the antipode). The main result of this section is Theorem 5.1, which proves the above mentioned special
integral in cosemisimple WHAs over C. In Section 5.3 we specialize to pivotal WHAs, which, as mentioned
above, allows us to define a “pulling-through” structure on the WHA. In Section 5.5 we further specialize
to C∗-WHAs, which guarantees extra properties of this pulling-through structure. In Section 6 we investi-
gate pulling-through algebras independently from the previous weak Hopf algebra properties. We develop a
graphical language suited for these algebras that we then use in Section 7 to define PEPS that have stable
entanglement symmetries described by this pulling-through algebra, and which we show to precisely describe
Kitaev’s quantum double models in the case of Hopf algebras.

2 Graphical notation of tensor calculus

In this section we introduce the graphical notation of tensor calculus that we use throughout the paper. This
graphical notation is especially useful to visualize equations that involve the contraction of many higher rank
tensors (i.e. tensors with more than two indices) and it is standard in the field of tensor networks. In this
paper, however, we face extra challenges as we use the graphical language parallel to an algebraic one,
and thus we have to modify the usual graphical language in order to be able to translate between the two
languages.

From a computational point of view, tensors are just multi-dimensional arrays. In the usual graphical
notation of tensor calculus, one denotes tensors by dots (and various shapes) with lines connected to them.
The number of lines connected to the dot (or other shape) is the rank of the tensor, and each line corresponds
to one of the vector spaces in the tensor product. For example, the following diagrams represent a scalar, a
vector and a matrix, respectively:

s =
s
, v =

v
, A =

A
.

Tensor contraction is denoted by joining the lines corresponding to the contracted indices of the two tensors.
For example the scalar product of two vectors, a matrix acting on a vector and the product of two matrices
are denoted by the following diagrams, respectively:

∑

i

wivi =
w v

,
∑

j

Aijvj =
A v

,
∑

j

AijBjk =
A B

.
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Here we have made the implicit assumption that the first index is the left line, the second one is the right
one. For higher rank tensors and more complicated contraction schemes one has to keep track of which index
belongs to which line (by e.g. fixing a convention such as in the previous figure). In the following we outline a
notation that allows us to distinguish the different indices of the tensor without requiring them to be always
at the same position. This notation is thus suitable to depict more complicated tensor constructions such as
the definition of a PEPS.

To introduce our modification of the graphical notation, let us first formalize what tensors and tensor
contractions are. Rank-n tensors are elements of the tensor product V1⊗· · ·⊗Vn for some finite dimensional
vector spaces V1 . . . Vn. One can naturally take tensor products of tensors: for example, if V1, V2 and V3
are vector spaces and r = v1 ⊗ v2 ∈ V1 ⊗ V2 and s = v3 ⊗ f ∈ V3 ⊗ V ∗

2 , where V
∗
2 denotes the space of

linear functionals on V2, then their tensor product t = r ⊗ s is t = v1 ⊗ v2 ⊗ v3 ⊗ f . Tensor contraction
(without introducing a scalar product) is then the following operation: if amongst the n components of the
tensor product both a vector space V and its dual V ∗ appears, then one can form a rank-(n− 2) tensor by
acting with the linear functional in V ∗ on the vector in V . For example, the tensor t = v1 ⊗ v2 ⊗ v3 ⊗ f
defined above is an element of the space V1 ⊗ V2 ⊗ V3 ⊗V ∗

2 , and thus one can contract its second and fourth
components to obtain a rank-two tensor C24(t) = f(v2) · v1 ⊗ v3 ∈ V1 ⊗ V3.

As we have seen, to make sense of tensor contraction without a scalar product, it is important to
differentiate between vector spaces and linear functionals. We will denote indices corresponding to vectors
by outgoing arrows, while indices corresponding to linear functionals by incoming arrows. Moreover, to
distinguish between the different indices ot the tensor, we will label the lines with vector spaces. For
outgoing arrow, the label is the corresponding tensor component. For incoming arrow, the label is the vector
space the given tensor component is the dual of. For example, a vector v ∈ V , a linear functional f ∈ V ∗

and a rank-two tensor A ∈ V ⊗ V ∗ is denoted by

v =
v

V
, f =

f

V
, A =

A

V V
.

Tensor contraction is still denoted by joining lines. Note, however, that now only lines with the same label
can be joined that also point in the same direction. For example,

f(v) =
f v

V
, A · v =

A v

VV
, f(A · v) =

Af v

V V
.

The vector space V is canonically isomorphic to V ∗∗, and thus one can equally think of V as the space of
linear functionals on V ∗. Correspondingly, in our graphical notation every arrow can be reversed by changing
the label from V to V ∗. For example, there are four different ways to depict a rank-two tensor A ∈ V ⊗ V ∗:

A

V V
=

A

V ∗ V
=

A

V V ∗

=
A

V ∗ V ∗

.

The first depiction of A suggests to interpret it as a linear map Â : V → V , while the last equation suggests
to interpret it as a linear map V ∗ → V ∗; this linear map is ÂT . Such rank-two tensors are sometimes labeled
by the linear map Â; when this is the case, we will try to be consistent and label the vector spaces by V and
not by V ∗.

As we will depict tensor networks in two dimensions, sometimes it will be convenient to rotate tensors.
This means that vectors don’t always point to the left, and thus we actually need the arrows to distinguish
between the two indices of a rank-two tensor. Such a rotation is, for example, the following:

A

V V
=

A

VV .
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In the rest of the paper we will often deal with rank-three and rank-four tensors of the form A ∈
V ⊗W ⊗W ∗ and O ∈ V ⊗ V ∗ ⊗W ⊗W ∗. These tensors are denoted by

A =
WW

V

and O =
WW

V

V

.

For better visual distinction, we have introduced colors: the red colored edges are labeled by W and the
black colored edges by V . In fact, in cases where the vector spaces V and W are fixed and we only need to
distinguish between V, V ∗,W and W ∗, we will drop the labels and keep the colors only, denoting A and O
by

A = and O = .

3 Coalgebras and matrix product states

In this section we define coalgebras and matrix product states and show that MPS can be thought of
as representations of coalgebras. We also show that this correspondence holds the other way around as
well: given an MPS tensor, one can construct a coalgebra such that the MPS forms a representation of
the constructed coalgebra. This observation makes thus MPS and coalgebras completely equivalent. We
elaborate on a special case: when the coalgebra is cosemisimple, the corresponding MPS tensor is a sum of
injective tensors (see Definition 3.3), and vice versa, given an MPS that is a sum of injective tensors, the
constructed coalgebra is cosemisimple. We also define the notion of cocentral and non-degenerate coalgebra
elements and show how these properties are reflected in the MPS representation.

We start by defining coalgebras.

Definition 3.1 (Coalgebra). The triple (C,∆, ǫ) is a coalgebra if C is a finite dimensional vector space over
C, ∆ : C → C ⊗ C is a linear map called comultiplication such that it is associative:

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆,

and ǫ ∈ C∗ is a linear functional called counit, such that

(ǫ ⊗ Id) ◦∆ = (Id⊗ ǫ) ◦∆ = Id.

Coalgebras emerge as the dual of algebras: Given a finite dimensional algebra A with product µA :
A ⊗A → A and unit 1, we can define a coproduct on A∗ by defining ∆A∗ : A∗ → A∗ ⊗ A∗ as ∆A∗ = µTA,
that is, by

∆A∗(f)(x ⊗ y) = f(xy),

where x, y ∈ A and f ∈ A∗: Associativity of ∆A∗ = µTA is equivalent to the associativity of µA, and the map
given by f 7→ f(1) defines the counit of A∗. Vice versa, if C is a coalgebra with coproduct ∆C and counit ǫ,
then we can naturally give C∗ an algebra structure by defining the product via µC∗ = ∆T

C , i.e. by

(fg)(x) = (f ⊗ g) ◦∆C(x),

where f, g ∈ C∗ and x ∈ C; the unit of C∗ is then ǫ.
Associativity of the coproduct allows us to write ∆2(x) instead of (∆⊗ Id)◦∆, and ∆n(x) for n repeated

application of ∆ on x. In the following we will use Sweedler’s notation of the coproduct and write

∆n(x) =
∑

(x)

x(1) ⊗ x(2) ⊗ · · · ⊗ x(n+1).

We will show below that this shorthand notation actually hides a more complicated sum that has a special
structure called matrix product state.
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Definition 3.2 (Matrix product states). Let (Vi)
n
i=1 and (Wj)

n
j=0 be two collections of finite dimensional

vector spaces over C. An MPS is given by tensors Ai ∈ Vi ⊗Wi−1 ⊗W ∗
i (i = 1, . . . , n), Ai =

∑

k |k〉 ⊗ Aki
and a matrix X ∈ Wn ⊗W ∗

0 ; the state generated by the MPS is given by

|Ψ〉 =
∑

k

Tr
(

X ·Ak11 · · ·Aknn
)

|k1 . . . kn〉 =
X A1 A2 An

. . . .

We say that the MPS is translation invariant with open boundary condition if V1 = · · · = Vn, W0 = · · · =Wn

and A1 = · · · = An.

Let us now show that in any coalgebra C the repeated coproduct of an element x ∈ C, ∆n−1(x), can be
represented as an MPS on n sites.

Theorem 3.1 (MPS representation of coalgebras). Let C be a coalgebra, Vi be finite dimensional vector
spaces over C and φi : C → Vi linear maps (i = 1, . . . , n). Let W be a vector space and ψ : C∗ → End(W ) be
an injective representation of the algebra C∗. Let Ai ∈ Vi ⊗ End(W ) be defined by

Ai

=
∑

x∈B

φi(x)⊗ ψ(δx),

where B is a basis of C, and δx denotes the dual basis elements (i.e. δx ∈ C∗ and δx(y) = δx,y for any
x, y ∈ B). Then for all x ∈ C there exists a matrix b(x) ∈ End(W ) such that for all n > 0,

(φ1 ⊗ · · · ⊗ φn) ◦∆n−1(x) =
b(x) A1 A2 An

. . . .

Let us remark that the tensor Ai is independent of the concrete choice of the basis B of C, as the
expression

∑

x∈B x ⊗ δx is independent of B. Let us also remark that might be many different choices for
the matrix b(x) satisfying the required equation.

Proof. Notice that

∑

x,y

f(x) · g(y) · δxδy = fg =
∑

z∈B

fg(z) · δz =
∑

z∈B

∑

(z)

f(z(1)) · g(z(2)) · δz,

where in both equations we have used that for any f ∈ C∗, f =
∑

x∈B f(x) · δx. As this is true for all
f, g ∈ C∗, we conclude that

∑

x,y∈B

x⊗ y ⊗ δxδy =
∑

z∈B

∑

(z)

z(1) ⊗ z(2) ⊗ δz =
∑

z∈B

∆(z)⊗ δz.

This means that

A1 A2

=
∑

x,y∈B

φ1(x)⊗ φ2(y)⊗ ψ(δxδy) =
∑

z∈B

(φ1 ⊗ φ2) ◦∆(z)⊗ ψ(δz).

A similar equation holds for any number of consecutive tensors, i.e.

A1 A2 An

. . . =
∑

x∈B

(φ1 ⊗ · · · ⊗ φn) ◦∆n−1(x) ⊗ ψ(δx).

As ψ is an injective representation of C∗, there exists a matrix b(x) for all x ∈ C such that f(x) =
Tr (b(x) · ψ(f)) holds for all f ∈ C∗. Note that this equation does not uniquely determine b(x); there
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may be many different choices of b(x) satisfying this equation. Using any such choice of b(x), the following
holds:

b(x) Ai

=
∑

y∈B

Tr (b(x) · ψ(δy)) · φi(y) =
∑

y∈B

δy(x) · φi(y) = φi(x).

Finally, combining this statement with the previous one results in the desired equation

(φ1 ⊗ · · · ⊗ φn) ◦∆n−1(x) =
b(x) A1 A2 An

. . . .

From now on, unless otherwise specified, we only consider translation invariant representations of coal-
gebras. This restriction is not essential and most statements obviously generalize to non-TI representations,
but it eases the notation. For example, as all tensors are the same, we will drop the label A denoting the
MPS tensor and simply write

(φ⊗ · · · ⊗ φ) ◦∆n−1(x) =
b(x)

. . . .

Let us now show that the construction of Theorem 3.1 can be reversed in the translation invariant case:
given a translation invariant MPS with open boundary condition, one can construct a coalgebra C such that
the MPS becomes a representing MPS of C: Indeed, let A ∈ V ⊗W ⊗W ∗ be an MPS tensor and let us write
A =

∑

i |i〉 ⊗Ai (i = 1, . . . , d with d = dim(V )) with Ai ∈ End(W ). Let us define the algebra A as

A = Span
⋃

n∈N

{

Ai1Ai2 · · ·Ain
∣

∣(i1, . . . , in) ∈ {1, . . . , d}×n
}

,

and let C = A∗. Let us fix now a basis B of C; elements of this basis are denoted by x, y, . . .. This basis then
also fixes a basis (the dual basis) on C∗ = A. Elements of this basis are denoted by δx, δy, . . .. By definition
the matrices Ai are elements of A, and thus one can expand them in this (dual) basis. One can thus write
A =

∑

x∈B |vx〉 ⊗ δx for some vectors |vx〉 ∈ V . This tensor then can be interpreted as a map φ : C → V
by φ(x) =

∑

y∈B δy(x)|vy〉. Note that – by the definition of the dual basis – for any x ∈ B, φ(x) = |vx〉.
This implies that the following equation also holds: A =

∑

x∈B φ(x) ⊗ ψ(δx), with ψ = Id. Finally, as any
element x ∈ C is a linear functional on A (C = A∗), one can find a matrix b(x) such that x(m) = Tr(b(x)m)
for all matrices m ∈ A. With this, we have obtained that for any x ∈ C,

φ⊗n ◦∆n−1(x) =
b(x) A A A

. . . ,

i.e. the MPS defined above forms a representation of C with the properties listed in Theorem 3.1.

3.1 Cosemisimplicity and injectivity of the representing MPS

In this section we introduce cosemisimple coalgebras as well as injective MPS and examine the connection
between these two properties: the MPS representation of a cosemisimple coalgebra decomposes into a sum
of injective MPS, and conversely, given an MPS that decomposes into a direct sum of injective MPS, the
corresponding coalgebra is cosemisimple.

Let C be a coalgebra (finite dimensional, over C). As we have seen in the previous section, C∗ has a
natural algebra structure. In the following we will talk about representations of this algebra C∗, as the MPS
construction in the previous section uses the representations of that algebra. Recall that two representations
ψ1 : C∗ → End(W1) and ψ2 : C∗ → End(W2) are called equivalent if there is an invertible linear map
Z : W1 → W2 such that ψ1(f) = Z−1 · ψ2(f) · Z for all f ∈ C∗. In particular, the dimension of the
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two equivalent representations coincide, dim(W1) = dim(W2). The set of irreducible representation (irrep)
equivalence classes of the algebra C∗ is denoted by Irr(C∗), and the elements of this set (i.e. the different irrep
equivalence classes) will be denoted by small Roman letters a, b, c, . . .. The dimension of (all) irreps from
the class a will be denoted by Da. For convenience, let us fix a concrete representation ψa on vector space
Wa from each irrep class a. Recall that by the density theorem [EGH+], ψa(C∗) = End(Wa) ≃ MDa

for all
irreps ψa, where MDa

denotes the set of Da×Da matrices over C; in fact φ(C∗) =
⊕

a∈I⊆Irr(C∗) MDa
⊗ Idma

for all representations of the form φ(x) =
⊕

a∈I⊆Irr(C∗) φa(x)⊗ Idma
.

We say that the coalgebra C is cosemisimple if the algebra C∗ is semisimple, i.e. if C∗ ≃⊕a∈Irr(C∗) MDa
.

In particular, C∗ has finitely many irrep classes. If C∗ is semisimple, then any representation ψ of it, up to
a basis transformation, is of the form

ψ(x) ≃
⊕

a∈I⊆Irr(C∗)

ψa(x)⊗ Idma
,

where a runs over a subset I of the equivalence classes of irreps of C∗ and ψa are the previously fixed
representatives from the class a, and the numbers ma denote the multiplicity of the irrep ψa in the de-
composition of ψ. The representation ψ is injective if and only if all irrep classes are present in this de-
composition1, i.e. if I = Irr(C∗). As ψ is a direct sum of irreps, the density theorem applies and thus
ψ(C∗) =

⊕

a∈I⊆Irr(C∗) MDa
⊗ Idma

.
The MPS tensor A in Theorem 3.1 is constructed using a representation ψ of C∗ that is assumed to be

injective. Therefore, if C is cosemisimple, A decomposes as

A ≃
∑

x∈B

φ(x) ⊗
⊕

a∈Irr(C∗)

ψa(δx)⊗ Idma
.

As the defining property of b(x) is that Tr (b(x)ψ(f)) = f(x), the matrix b(x) can also be chosen w.l.o.g. in
this form, i.e. such that in the same basis as ψ, it reads

b(x) ≃
⊕

a∈Irr(C∗)

ba(x) ⊗ Idma
.

If b(x) is in this form, then it is uniquely defined by the equation Tr (b(x)ψ(f)) = f(x) and the map x 7→ b(x)
is linear and a bijection between C and

⊕

a∈Irr(C∗) MDa
.

We have thus obtained that the MPS representing a cosemisimple coalgebra decomposes into a sum of
MPSs with smaller bond dimension,

b(x)

. . . =
∑

a∈Irr(C∗)

ma ·
ba(x)

. . .
Wa Wa Wa Wa ,

where

WaWa =
∑

x∈B

φ(x) ⊗ ψa(δx),

for the previously fixed irrep representatives ψa in the irrep class a. In the following, we will choose the
representation ψ such that it contains exactly one irrep from each irrep class (i.e. such that ma = 1). The
previously fixed irrep representatives ψa determine the vector spaces Wa for each a, and thus from now on,
we do not display the labels Wa in graphical representation, only the label a. Therefore we will write

b(x)

. . . =
∑

a∈Irr(C∗)

ma ·
ba(x)

. . .a a a a ,

1Note that even if C∗ arises as the group algebra C[G] of some finite group G, we are talking about the representation of the
group algebra, and not the representation of the group; that is, we require the map φ : C[G] → End(V ) to be injective, not the
map φ|G : G→ End(V ).
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with

aa =
∑

x∈B

φ(x) ⊗ ψa(δx). (3.1)

The MPS tensors in Eq. (3.1), provided that φ has certain properties, are special:

Definition 3.3 (Injective and normal MPS tensor). An MPS tensor A ∈ V ⊗ End(W ), A =
∑

i |i〉 ⊗Ai is
normal if there is an n ∈ N such that

Span
{

Ai1 · · ·Ain
∣

∣(i1, . . . , in) ∈ {1, . . . , dim(V )}×n
}

= End(W ).

The tensor is called injective if it is normal with n = 1.

It is immediate to see that the MPS tensors defined in Eq. (3.1) are injective if and only if φ is injective
and they are normal if and only if there is an n such that φ⊗n ◦∆n−1 is injective. We will call such a linear
map normal.

We have thus obtained that if C is a cosemisimple coalgebra and φ is a C → V linear map such that
φ⊗n ◦∆n−1 is injective for some n, then the coproduct of an element x has a special MPS representation of
the form

φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a ,

where each MPS tensor is normal. This statement now can be reversed: let us consider a set S of injective
MPS tensors A ∈ V ⊗ End(WA) for each A ∈ S such that no two of them are related to each other with a
basis transformation. One then can construct a cosemisimple coalgebra C (using the construction from the
previous section), a map φ : C → V and a bijection B :

⊕

End(WA) → C, the inverse of the map x 7→ b(x),
such that

∑

A∈S
XA A A A

. . . = φ⊗n ◦∆n−1 ◦B(⊕AXA).

3.2 Cocentral and non-degenerate elements

In this section we define the co-center of a coalgebra and show that in a cosemisimple coalgebra the set
of cocentral elements have special MPS representations – they are translation invariant MPS with periodic
boundary condition.

Let C be a coalgebra with coproduct ∆. Then the map ∆op : C → C⊗C, x 7→ ∆op(x) defined by swapping
the two components of the tensor product in ∆(x),

∆op(x) =
∑

(x)

x(2) ⊗ x(1),

is also a coproduct. Using the opposite coproduct, we can define cocentral elements as:

Definition 3.4. An element x ∈ C is called cocentral or trace-like if it satisfies ∆op(x) = ∆(x).

Due to the definition of the product in C∗, if x ∈ C is cocentral, then for all f, g ∈ C∗,

(fg)(x) = (f ⊗ g) ◦∆(x) = (g ⊗ f) ◦∆op(x) = (g ⊗ f) ◦∆(x) = (gf)(x).

This means thus that x : f 7→ f(x) is a trace-like (cyclic) linear functional on C∗, i.e. the set of cocentral
elements of C is exactly the set of trace-like linear functionals of C∗. Due to their cyclicity, repeated coproducts
of these elements are translation invariant:

∑

(x)

x(n)⊗x(1)⊗· · ·⊗x(n−1) = (Id⊗∆n−2)◦∆op(x) = (Id⊗∆n−2)◦∆(x) = ∆n−1(x) =
∑

(x)

x(1)⊗x(2)⊗· · ·⊗x(n).
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The corresponding MPS representation is also translation invariant, i.e. b(x) is such that

b(x)

. . . =
b(x)

. . . .

Let us assume now that C is cosemisimple. In this case, cocentral elements of C have very simple MPS
representations: if x ∈ C is cocentral and φ is normal, then

φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a =
∑

a∈Irr(C∗)

λa · . . .a a a ;

indeed, the boundary matrix b(x) = ⊕aba(x) is defined by Tr(b(x)ψ(f)) = f(x) for all x, and as x is trace-
like, Tr(ba(x)ψa(f)ψa(g)) = Tr(ψa(f)ba(x)ψa(g)) for all f, g ∈ C∗ and a ∈ Irr(C∗). As ψa is an irrep, both
ψa(f) and ψa(g) span the full matrix algebra and thus ba(x) is necessarily proportional to the identity.

Let τa denote the character of the irrep class a. As τa is a linear functional on C∗, it can also be
viewed as an element of the coalgebra C. By definition, τa(f) = Tr(ψa(f)), and thus it can be written as
τa(x) = Tr(b(τa)ψ(f)) with bb(τa) = δab · Ida. That is, the MPS representation of τa is

φ⊗n ◦∆n−1(τa) = . . .a a a ;

Another set of special elements in the coalgebra are those that have full-rank coproduct:

Definition 3.5. An element x ∈ C is called non-degenerate if its coproduct ∆(x) is full rank.

Equivalently, x is non-degenerate if and only if

(Id⊗ C∗) ◦∆(x) = (C∗ ⊗ Id) ◦∆(x) = C,
or, with other words, if for all y ∈ A there exist linear functionals f and g such that

y = (Id⊗ f) ◦∆(x) = (g ⊗ Id) ◦∆(x).

Let us now show that if C is cosemisimple, then x is non-degenerate if and only if its MPS representation is
of the form

φ⊗n ◦∆n−1(x) =
∑

a∈Irr(C∗)
ba(x)

. . .a a a a ,

where all ba(x) are invertible. To prove this, note first that for any linear functional f ∈ C∗ the element
y = (f ⊗ Id) ◦∆(x) is described by the MPS

φ⊗n ◦∆n−1(y) =
∑

a∈Irr(C∗)
ba(x) · ψa(f)

. . .a a a a ,

i.e. the boundary describing y = (f ⊗ Id) ◦∆(x) is given by ba(y) = ba(x) ·ψa(f) in every sector a ∈ Irr(C∗).
Similarly, the boundary describing y = (Id ⊗ g) ◦ ∆(x) is given by ba(y) = ψa(g) · ba(x). Therefore x is
non-degenerate if and only if for all y ∈ C there are f, g ∈ C∗ such that

ba(y) = ψa(g) · ba(x) = ba(x) · ψa(f).
As ψa(f) can be any matrix, this is equivalent with the invertibility of ba(x).

As a particular case of the previous statement, let us consider a cocentral coalgebra element x =
∑

a λaτa,
where τa ∈ C are the irrep characters of C∗. Then, x is non-degenerate if and only if λa 6= 0 for all a ∈ Irr(C∗).
For example, the cocentral element Θ =

∑

a τa with MPS representation

φ⊗n ◦∆n−1(Θ) =
∑

a∈Irr(C∗)

. . .a a a ,

is a non-degenerate cocentral element. Using this element Θ, one can interpret b(x) (more precisely,
ψ−1(b(x))) as the linear functional that satisfies (ψ−1(b(x)) ⊗ Id) ◦∆(Θ) = x.
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4 Pre-bialgebras and their matrix product operator representa-

tions

In this section we define pre-bialgebras (bialgebras without any property imposed on the unit and counit)
as well as matrix product operators. We show that the MPS representations of coalgebras from the previ-
ous section naturally generalize to pre-bialgebras providing an MPO representation for them. We further
investigate this MPO representation for cosemisimple pre-bialgebras.

Definition 4.1 (Pre-bialgebra). A is a pre-bialgebra if it is both an algebra and a coalgebra such that the
coproduct ∆ is multiplicative, i.e. for all x, y ∈ A

∆(xy) = ∆(x)∆(y).

In this equation the multiplication in A ⊗A is taken component-wise, i.e. (x ⊗ y) · (z ⊗ w) = xz ⊗ yw.
If A is a pre-bialgebra with product µA and coproduct ∆A, then A∗ is also a pre-bialgebra with product
µA∗ = ∆T

A and coproduct ∆A∗ = µTA. It is clear from context whether we refer to the coproduct of A or
that of A∗, and thus in the following we drop the subscript A and A∗, and simply write ∆ for both ∆A and
∆A∗ . That is, the product and coproduct in A∗ are such that for all f, g ∈ A∗ and x, y ∈ A,

(fg)(x) = (f ⊗ g) ◦∆(x) and [∆(f)] (x⊗ y) = f(xy).

The unit of A∗ is the counit of A and the counit of A∗ is the unit of A.
In the following, we will talk about representations of the pre-bialgebra A. These representations should

be understood as representations of the algebraic structure of A (i.e. disregarding the coalgebra structure).
The extra structure given by the coproduct allows us to define the tensor product of representations. Let
φ1 : A → End(V1) and φ2 : A → End(V2) be two representations of A. Then, as the coproduct ∆ is
multiplicative, (φ1 ⊗ φ2) ◦∆ : A → End(V1 ⊗ V2) is also multiplicative. This map is not a representation on
V1⊗V2, however, since (φ1⊗φ2)◦∆(1) is not the identity, unless ∆(1) = 1⊗1. The element (φ1⊗φ2)◦∆(1)
is a projector and is absorbed by any element from (φ1 ⊗ φ2) ◦∆(A), as a1 = 1a = a for all a ∈ A. This
means that all operators in (φ1 ⊗ φ2) ◦∆(A) can be restricted to the range of (φ1 ⊗ φ2) ◦∆(1). Let V1 ⊠ V2
denote this subspace of V1 ⊗V2. By definition, (φ1 ⊗φ2) ◦∆(1) restricted to V1 ⊠V2, (φ1 ⊗φ2) ◦∆(1)|V1⊠V2

,
is the identity, and thus the map defined by (φ1 ⊠ φ2)(x) = (φ1 ⊗ φ2) ◦∆(x)|V1⊠V2

is a representation of A.
This representation is then called the tensor product of the representations φ1 and φ2. Using associativity
of the coproduct, one can define the n-fold tensor product of representations for any n > 2 integer as well:
given φi : A → End(Vi) representation for i = 1 . . . n, the tensor product representation φ1 ⊠ · · · ⊠ φn is
given by the restriction of (φ1 ⊗ · · ·⊗φn) ◦∆n−1(x) onto the range of (φ1 ⊗ · · ·⊗φn) ◦∆n−1(1) in the vector
space V1 ⊗ · · · ⊗ Vn.

Just as in the previous section, using the coalgebra structure of A, one can form MPS representations of
A. As A has an algebra structure as well, it is natural to choose the linear map φ used at the construction
of the MPS to be a representation of the algebra. The resulting MPS is then interpreted as an operator, and
in fact, this structure is called a matrix product operator (MPO):

Definition 4.2 (Matrix product operators). Let (Vi)
n
i=1 and (Wj)

n
j=0 be two collections of finite dimensional

vector spaces over C. An MPO is given by tensors Ai ∈ Vi ⊗ V ∗
i ⊗ Wi−1 ⊗ W ∗

i (i = 1, . . . , n), Ai =
∑

kl |k〉〈l| ⊗Akli and a matrix X ∈Wn ⊗W ∗
0 ; the operator generated by the MPO is given by

O =
∑

kl

Tr
(

X ·Ak1l11 · · ·Aknlnn

)

|k1 . . . kn〉〈l1 . . . ln| =
X A1 A2 An

. . . .

Fixing a representation φ : A → End(V ) of A and an injective representation ψ : A∗ → End(W ) of A∗,
one can repeat the procedure described in the previous section to form MPOs representing the coalgebra
structure of A:

φ⊗n ◦∆n−1(x) =
b(x)

. . . with =
∑

x∈B

φ(x) ⊗ ψ(δx),
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where B is a basis of A, and φ is a representation of A, and the matrices b(x) are such that Tr (b(x)ψ(f)) =
f(x). As described above, the map φ⊗n ◦∆n−1, in general, is not a representation of A as 1 is not mapped
to the identity operator on the space V ⊗n:

φ⊗n ◦∆n−1(1) =
b(1)

. . . 6= Id⊗nV .

These MPOs, nevertheless, are multiplicative as φ⊗n ◦∆n−1 is multiplicative:

b(y)

b(x)
. . .

. . .

=
b(xy)

. . . . (4.1)

In particular, these MPOs are invariant under multiplying with φ⊗n ◦∆n−1(1) from either side,

b(1)

b(x)
. . .

. . .

=
b(x)

b(1)
. . .

. . .

=
b(x)

. . . .

One can thus restrict V ⊗n to the range of φ⊗n ◦∆n−1(1) (notice that this is a projector as 1 · 1 = 1), and
on this space the MPOs form a representation of A. Note that this restriction is only necessary for n > 1;
for n = 1 the representing MPOs are simply x 7→ φ(x):

φ(x) =
b(x)

.

In particular, on a single site, unlike for n > 1 sites, the unit is represented by the identity operator:

Id = φ(1) =
b(1)

.

4.1 Cosemisimplicity

Let A be a pre-bialgebra, then A∗ is a pre-bialgebra as well. As such, one can form tensor products of
its representations, i.e. if ψ1 : A∗ → End(W1) and ψ2 : A∗ → End(W2) are representations of A∗, then
(ψ1 ⊗ψ2) ◦∆A∗ restricted to the range of (ψ1 ⊗ψ2) ◦∆A∗(ǫ) is a representation2 of A∗ denoted by ψ1 ⊠ψ2.

Just as for coalgebras, we say that a pre-bialgebra A is cosemisimple if the algebra A∗ is semisimple,
i.e. if every representation of it decomposes into a direct sum of irreps. In particular, let us fix irreps
ψa : A∗ → End(Wa) for each irrep class a ∈ Irr(A∗); then given two of these irreps, ψa and ψb, their tensor
product ψa ⊠ ψb decomposes into a direct sum of irreps as follows:

ψa ⊠ ψb ≃
⊕

c∈Irr(A∗)

ψc ⊗ IdNc
ab
,

i.e. in the decomposition of ψa ⊠ ψb the irrep ψc appears N c
ab times. These N c

ab non-negative integers are
called fusion multiplicities. Note that N c

ab might be 0; in that case the irrep ψc does not appear in the
decomposition. The above equation holds up to a basis transformation, i.e. for all a, b, c ∈ Irr(A∗) there are
invertible operators Zab :

⊕

cWc ⊗ CN
c
ab →Wa ⊠Wb such that for all f ∈ A∗

(ψa ⊠ ψb) (f) = Zab





⊕

c∈Irr(A∗)

ψc(f)⊗ IdNc
ab



 (Zab)
−1
, (4.2)

2Remember that the unit of A∗ is ǫ
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or equivalently, for all a, b, c ∈ Irr(A∗) there are N c
ab operators Zcµab : Vc → Va ⊠ Vb and Y cµab : Va ⊠ Vb → Vc

(here µ = 1 . . .N c
ab are integers) such that

(ψa ⊠ ψb) (f) =
∑

c∈Irr(A∗)

Nc
ab
∑

µ=1

Zcµab · ψc(f) · Y
cµ
ab and Y cµab · Zdνab = δcd · δµν · IdVc

.

These operators then can be extended3 to map from (and to) Wa ⊗Wb instead of Wa ⊠Wb, i.e. there are
linear maps V cµab :Wc →Wa ⊗Wb and W

cµ
ab :Wa ⊗Wb →Wc, called fusion tensors, such that

(ψa ⊗ ψb) ◦∆(f) =
∑

c

Nc
ab
∑

µ=1

V cµab · ψc(f) ·W cµ
ab and W cµ

ab · V dνab = δcd · δµν · IdWc
, (4.3)

for all a, b, c ∈ Irr(A∗) and f ∈ A∗. The fusion tensors are rank-four tensors; the index µ, however, plays
a very different role than the rest of its indices. This allows us to think of the fusion tensors as a set for
rank-three tensors instead, and write

V cµab =

µ
a

b

c
and W cµ

ab =

µ
a

b

c
.

Using this notation, the graphical representation of Eq. (4.3) is the following:

(ψa ⊗ ψb) ◦∆(f) =
∑

cµ

µ µ

f

c c

a

b

a

b and

µ ν
a

b

c d = δcd · δµν · Idc . (4.4)

Let us stress again that the fusion tensors V cµab (andW cµ
ab ) do not map to (and from) the whole spaceWa⊗Wb,

instead only to (and from) the subspaceWa⊠Wb. A projector onto this subspace is (ψa⊗ψb)◦∆(ǫ) 6= Ida⊗Idb,
that has the graphical representation

(ψa ⊗ ψb) ◦∆(ǫ) =
∑

cµ

µ µ

c

a

b

a

b . (4.5)

The operators V cµab and W cµ
ab are not unique, instead only their tensor product

∑

µ V
cµ
ab ⊗W cµ

ab is fixed.

This allows for a basis change:
∑

µ V
cµ
ab ⊗W cµ

ab =
∑

µ V̂
cµ
ab ⊗Ŵ cµ

ab if and only if V̂ cµab =
∑

ν KµνV
cν
ab and Ŵ cµ

ab =
∑

ν(K
−1)νµW

cν
ab for some N c

ab×N c
ab complex invertible matrix K. Note as well that the value of

∑

µ V
cµ
ab ⊗

W cµ
ab depends on the choices of the irrep representatives ψa that we have made at the beginning of this

section; different choices will lead to a gauge transformation of V cµab and W cµ
ab , i.e. if the irrep representatives

are chosen to be ψ̂a = UaψaU
−1
a instead of ψa for each a ∈ Irr(A∗) (here Ua are general invertible matrices),

then the corresponding V̂ cµab and Ŵ cµ
ab are given by

V̂ cµab = (Ua ⊗ Ub) · V cµab · U−1
c and Ŵ cµ

ab = Uc ·W cµ
ab · (U−1

a ⊗ U−1
b ).

Let us now show using this graphical language how the so-called F -symbols of the representation category
of A∗ emerge. Using Eq. (4.4), associativity of the coproduct of A∗ implies that for all f ∈ A∗ and
a, b, c, e ∈ Irr(A∗),

∑

dµν

µµ
νν

f

d

a

b

c

d

a

b

c

e e =
∑

dµν
µµ

νν

f
d

c

b

a

d

c

b

a

e e

.

3Note that as ǫ is a projector, Va ⊗ Vb = Ker{(ψa ⊠ ψb)(ǫ)} ⊕ Im(ψa ⊠ ψb)(ǫ). The extension of the operators Y cµ
ab

is such
that they act as zero on the space Ker{(ψa ⊠ ψb)(ǫ)}.
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As this equation holds for all f ∈ A∗, and ψe(A∗) = MDe
for each irrep block e, i.e. the matrix ψe(f) can

take any value, we conclude that

∑

dµν

µµ
νν

d

a

b

c

d

a

b

c

e e
=
∑

dµν
µµ

νν

d

c

b

a

d

c

b

a

e e

, (4.6)

or equivalently, that there is an invertible (square) matrix F abce of dimension
∑

dN
d
abN

e
dc =

∑

dN
d
bcN

e
ad such

that

µ
ν

d

a

b

c

e
=
∑

dµν

(

F abce

)dµν

fηρ η
ρ

f

c

b

a

e

and
µ

ν

d

a

b

c

e
=
∑

dµν

[

(

F abce

)−1
]fηρ

dµν η
ρ

f

c

b

a

e

.

Standard arguments show that these F -symbols satisfy a consistency condition called the pentagon equation.
Let us now investigate the MPO representations of a cosemisimple pre-bialgebra A. Just as in the MPS

case, the MPOs representing A decompose into a sum of MPOs with smaller bond dimension corresponding
to the irreps of A∗. We denote these MPOs by writing the label a ∈ Irr(A∗) on the virtual indices of the
tensor:

φ⊗n ◦∆n−1(x) =
∑

a∈Irr(A∗)
ba(x)

. . .a a a a

with aa =
∑

x∈B

φ(x) ⊗ ψa(δx).

If φ is injective, then each smaller MPO tensor is injective and if there is a positive integer n such that
φ⊗n◦∆n−1 is injective, then they are normal. The above decomposition is thus nothing but the decomposition
of the MPO into its normal components.

Let us now consider the product of two MPOs each representing an element of A, such as in Eq. (4.1).
The l.h.s. of this equation then decomposes to injective blocks as described above. On the r.h.s. both MPOs
can be decomposed into injective blocks, therefore their product can also be decomposed into a sum:

b(y)

b(x)
. . .

. . .

=
∑

a,b∈Irr(A∗) bb(y)

ba(x)
. . .

. . .

b b b b

a a a a

. (4.7)

It turns out, however, that these MPOs are still not injective, i.e. they can be further decomposed. To
understand why, let us investigate the tensor describing such an MPO:

ba
=
∑

x,y∈B

φ(x) · φ(y)⊗ (ψa(δx)⊗ ψb(δy)) =
∑

x∈B

φ(x) ⊗ (ψa ⊗ ψb) ◦∆(δx),

where the last equality, analogous to the proof of Theorem 3.1, holds because for every f ∈ A∗,
∑

x,y∈B

f(xy) · δx ⊗ δy =
∑

x,y∈B,(f)

f(1)(x) · f(2)(y) · δx ⊗ δy =
∑

(f)

f(1) ⊗ f(2) =
∑

x∈B

f(x) ·∆(δx),

and thus
∑

x,y∈B xy ⊗ δx ⊗ δy =
∑

x∈B x⊗∆(δx).
This form of the MPO tensor involves thus the tensor product of the irreps ψa and ψb. In Eq. (4.4) we

have seen how to decompose such a representation into irreps. Using that equation, the product of the MPO
tensors satisfy

bb

aa

=
∑

c∈Irr(A∗)

Nc
ab
∑

µ=1

µ µ

cc

a

b

a

b and

µ ν
a

b

c d = δcd · δµν · Idc . (4.8)
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Using Eq. (4.8) in Eq. (4.7), we can finally decompose the r.h.s. of Eq. (4.1) into the sum of injective MPOs:

∑

a,b∈Irr(A∗) bb(y)

ba(x)
. . .

. . .

b b b b

a a a a

=
∑

abcµ

ba(x)

bb(y)

. . .

a

b

a

b

c c c . (4.9)

We have thus obtained that the product of two algebra elements x and y is described by the boundary

bc(xy) =
∑

abµ

ba(x)

bb(y)

a

b

a

b

cc . (4.10)

Let us note here that so far we have not investigated how the unit of the pre-bialgebra is represented. The
existence of the unit in A, in fact, imposes further restrictions on the structure of the MPOs representing
pre-bialgebras. Remember that φ⊗n ◦∆n−1(1) is a non-trivial projector that is represented by:

φ⊗n ◦∆n−1(1) =
∑

a∈Irr(A∗)
ba(1)

. . .a a a a 6= Id⊗n.

The relation 1x = x1 = x, using Eq. (4.10), then implies that the matrices ba(1) have the following property:

bc(x) =
∑

abµ

ba(x)

bb(1)

a

b

a

b

cc =
∑

abµ

ba(1)

bb(x)

a

b

a

b

cc , (4.11)

or equivalently,

δac · Ida ⊗ Ida =
∑

bµ bb(1)

a

b

a

b

cc
=
∑

bµ

bb(1)
b

a

b

a

cc
. (4.12)

4.2 Cocentral elements and the Grothendieck ring

Let us consider a cosemisimple pre-bialgebra A. Then the cocenter of A, as we have seen in Section 3.2,
consists of elements x of the form

φ⊗n ◦∆n−1(x) =
∑

a∈Irr(A∗)

λa · . . .a a a
.

Let τa ∈ A be the character of the irrep class a ∈ Irr(A∗), i.e. the cocentral element with MPO representation

φ⊗n ◦∆n−1(τa) = . . .a a a
.

Let us evaluate the product of two irrep characters τa and τb. Using the previously derived results, it is
immediate to see from their MPO representations that

. . .

. . .

b b b

a a a

=
∑

cµ

. . .

a

b

c c c

=
∑

c

N c
ab

. . .a a a
,
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where the first equation is Eq. (4.9) using that ba(τc) = δacIdc for all a, c ∈ Irr(A∗), and the second is just
the orthogonality relations from Eq. (4.8) together with the fact that µ runs from 1 to N c

ab. This equation
then reads as

φ⊗n ◦∆n−1(τa) · φ⊗n ◦∆n−1(τa) =
∑

c

N c
ab · φ⊗n ◦∆n−1(τc),

and thus it implies, as φ⊗n ◦∆n−1 is a homomorphism and it is w.l.o.g. injective, that

τa · τb =
∑

c

N c
ab · τc. (4.13)

Let us remark here that to obtain this well-known result, one does not have to consider MPO representations.
Instead, the same result can be obtained directly from the decomposition of the tensor product representation
into irreps: let ψa be an irrep on a vector space Va such that it is from the irrep class a (and thus its character
is τa), and ψb an irrep on a vector space Vb such that it is from the irrep class b (and thus its character is
τb). Then, by definition of the product in A∗,

(τa · τb)(f) = (τa ⊗ τb) ◦∆(f) = (TrVa
⊗TrVb

) ◦ (ψa ⊗ ψb) ◦∆(f) = Tr ((ψa ⊗ ψb) ◦∆(f)) .

In this last trace the operator (ψa ⊗ ψb) ◦∆(f) is supported on Va ⊠ Vb instead of the whole tensor product
space Va ⊗ Vb, and thus restricting (ψa ⊗ ψb) ◦∆(f) to Va ⊠ Vb does not change its trace:

(τa · τb)(f) = Tr(ψa ⊗ ψb) ◦∆(f) = Tr(ψa ⊠ ψb)(f).

Finally, this representation decomposes into irreps (see Eq. (4.2)), and thus the trace can be evaluated:

(τa · τb)(f) = Tr(ψa ⊠ ψb)(f) =
∑

c

N c
ab · Trψc(f) =

∑

c

N c
ab · τc(f),

that is equivalent to Eq. (4.13). We have thus seen that

Proposition 4.1. In a finite dimensional cosemisimple pre-bialgebra A over C the irrep characters of A∗

correspond to the injective blocks in the MPO representation of A. For a ∈ Irr(A∗), the irrep character
τa ∈ A has the following MPO representation:

φ⊗n ◦∆n−1(τa) = . . .a a a
.

These MPOs form a closed ring4 over Z, i.e. for all a, b, c there are non-negative integer numbers N c
ab such

that τaτb =
∑

cN
c
abτc, or graphically,

. . .

. . .

b b b

a a a

=
∑

c

N c
ab

. . .a a a
.

This ring is then called the Grothendieck ring of A.

4.3 Duality

As we have seen before, the dual A∗ of a pre-bialgebra A is a pre-bialgebra as well. As such, it also has
MPO representations. Let us fix a representation ψ of A∗ on a vector space W , and a representation φ of
A∗∗ = A on a vector space V . Then the previous construction leads to the following MPO representation:

ψ⊗n ◦∆n−1(f) =
c(f)

. . . with =
∑

x∈B

ψ(δx)⊗ φ(x), (4.14)

4Not necessarily unital; note that the unit of the algebra 1 ∈ A might have a non-trivial boundary, and thus, in general, it
is not in the Grothendieck ring
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where B is a basis of A. Notice that this MPO tensor is exactly 90 degree rotation of the MPO tensor
describing the coproduct of elements in A. As above, these MPOs form a representation of A∗,

c(fg) A A A

. . . =
c(g)

c(f)

A

A

A

A

A

A
. . .

. . .

.

If A is semisimple (in general this does not follow from semisimplicity of A∗), then this MPO representation
of A∗ decomposes into a sum of smaller bond dimensional MPOs corresponding to the characters of A:

ψ⊗n ◦∆n−1(f) =
∑

α∈Irr(A)
cα(f)

. . .α α α α

with αα =
∑

x∈B

ψ(δx)⊗ φα(x),

where B, as above, is a basis of A. We will denote irrep classes of A with Greek letters, and irrep classes of
A∗ with Latin letters. Just as above, there are linear maps V̂ γmαβ and Ŵ γm

αβ (m = 1 . . . N̂γ
αβ), such that

ββ

αα

=
∑

γ∈Irr(A)

N̂
γ
αβ
∑

µ=1

m m

γγ

α

β

α

β and

m n
α

β

γ δ
= δγδ · δmn · Idγ .

These linear maps give rise to a set of F -symbols (also satisfying the pentagon equations) that are, in general,
different from the ones in the previous sections.

5 Weak bialgebras and weak Hopf algebras

In this section we introduce weak bialgebras, weak Hopf algebras, pivotal weak Hopf algebras, spherical
weak Hopf algebras and C∗-weak Hopf algebras. All these structures are all special pre-bialgebras, and
as such, we use their MPO representations to reason about the structure of these objects; this is possible
as the MPO representations are w.l.o.g. injective. Our main result is Theorem 5.1, where we construct a
special normalized integral Λ in any cosemisimple weak Hopf algebra over C. This integral Λ is then used to
prove that in a cosemisimple co-pivotal weak Hopf algebra over C, there is a cocommutative projector with
a property reminiscent to the definition of an integral that will allow us to define MPO-injective PEPS. We
then further specialize these results to spherical- and C∗-weak Hopf algebras.

5.1 Weak bialgebras

In this section we define weak bialgebras (WBA) and show that the MPO representation of the unit of
a cosemisimple WBA A has the following property: for all irreps a of A∗, ba(1) is either 0 or rank-one.
We show, moreover, that the Grothendieck ring of A has a unit. This unit can be written in the form
τE :=

∑

e∈E τe, where E ⊆ Irr(A∗) consists of the irreps a for which ba(1) 6= 0.

Definition 5.1 (Weak bialgebra). A weak bialgebra (WBA) is a pre-bialgebra A such that the unit 1 ∈ A
and counit ǫ ∈ A∗ satisfy

∑

(1)

1(1) ⊗ 1(2) ⊗ 1(3) =
∑

(1)(1′)

1(1) ⊗ 1(2)1
′
(1) ⊗ 1′(2) =

∑

(1)(1′)

1(1) ⊗ 1′(1)1(2) ⊗ 1′(2), (5.1)

∑

(ǫ)

ǫ(1) ⊗ ǫ(2) ⊗ ǫ(3) =
∑

(ǫ)(ǫ′)

ǫ(1) ⊗ ǫ(2)ǫ
′
(1) ⊗ ǫ′(2) =

∑

(ǫ)(ǫ′)

ǫ(1) ⊗ ǫ′(1)ǫ(2) ⊗ ǫ′(2). (5.2)

We will refer to Eq. (5.1) as the unit axiom and to Eq. (5.2) as the counit axiom.
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In the equations above 1 and ǫ appears twice in the same Sweedler notation. To distinguish between the
two appearances, we added a prime to one of them. One can also write the unit axiom, Eq. (5.1), as

∆2(1) = (1⊗∆(1)) · (∆(1)⊗ 1) = (∆(1)⊗ 1) · (1⊗∆(1)),

while the counit axiom, Eq. (5.2), is more convenient to think of as

ǫ(xyz) =
∑

(y)

ǫ(xy(1))ǫ(y(2)z) =
∑

(y)

ǫ(xy(2))ǫ(y(1)z).

As pre-bialgebras are self-dual and the above two axioms are the dual of one another, weak bialgebras are
also self-dual: if A is a WBA, then A∗ is also a WBA.

Let A be a cosemisimple WBA. The graphical representation of the unit axiom, Eq. (5.1), is

∑

c
bc(1)

=
∑

ab

ba(1)

bb(1)

=
∑

ab bb(1)

ba(1) .

Decomposing the product of the two MPO tensors using the fusion tensors (Eq. (4.8)), we arrive at

∑

c
bc(1)

=
∑

abcµ

c

bb(1)

ba(1) µµ

=
∑

abcµ

c

ba(1)

bb(1)

µµ

.

Applying linear functionals f, g and h on the three components, we arrive at the equations

∑

c

fc gc hc

bc(1)

ccc

=
∑

abcµ

gc
fa

bb(1)

ba(1)

hb

µµ

=
∑

abcµ

gc
ba(1)

fb

ha

bb(1)

µµ

,

where fc denotes the part of f supported on the irrep sector c, i.e. fc = pcf = fpc, where pc ∈ Z(A∗) is the
irrep projector onto the irrep sector c. This equation is true for all f, g and h, and thus, since ψc(A∗) is the
full matrix algebra MDc

for all irrep sectors, we obtain

δa,cδb,c
bc(1)

=
∑

µ
bb(1)

a

b

ba(1)

c c

µµ

, (5.3)

δa,cδb,c

bc(1)

=
∑

µ

ba(1)

b

a

bb(1)

c c

µµ

. (5.4)

Combining these two equations, we arrive at

∑

µ
bb(1)

ba(1)

bb(1)

ba(1)

c c

µµ

= δa,cδb,c

bc(1)

bc(1)bc(1)

= δa,cδb,c

bc(1)

bc(1)

bc(1)

.

Comparing the last two expressions, we obtain that bc(1) is rank-1 for all c where it is non-zero, i.e. there is
a vector c ∈ Vc and a linear functional c ∈ V ∗

c such that

bc(1) =
c c

. (5.5)
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Let E be the set of irreps such that bc(1) 6= 0. Let us now consider Eqs. (5.3) and (5.4) such that the irreps
a and b are from this set E, while c is an arbitrary irrep. Using Eq. (5.5), we obtain

∑

µ

b

a

b

a

c c

µµ

=
∑

µ

a

b

a

b

c c

µµ

= δa,c · δb,c · (Idc ⊗ Idc). (5.6)

In particular, N c
ab 6= 0 for a, b ∈ E and c ∈ Irr(A∗) if and only if a = b = c. As b(1) is rank-one in every

sector where it is non-zero, the MPO representation of 1 ∈ A can be written as

φ⊗n ◦∆n−1(1) =
∑

e∈E

. . . eeeee . (5.7)

Note that the fact that 1 ∈ A is the unit of the algebra implies, using Eq. (4.12), that for all a, c ∈ IrrA∗,

∑

e∈E,µ

a

e

a

e

c c

µµ

=
∑

e∈E,µ

a

e

a

e

c c

µµ

= δa,c · (Idc ⊗ Idc). (5.8)

Let us now consider the element
∑

(1) 1(1)1(2). The MPS representation of this element is given by

∑

(1)

φ(1(1)1(2)) =
∑

(1)

φ(1(1)) · φ(1(2)) =
∑

e∈E

e

e

e

=
∑

e∈E,fµ

e

e

e

ff

µµ

=
∑

e∈E e

=
∑

e

φ(τe),

where in the fourth equality we have used Eq. (5.6). As φ is injective w.l.o.g., this implies that
∑

(1) 1(1)1(2) =
∑

e∈E τe. Let us denote this element of the algebra as τE . Notice now that ∆(1) ·∆op(1) is represented by
the product

∑

ef∈E

ee e

fff f =
∑

ef∈E
cdµν

µµ νν

f f

e ee

cc dd

ff =
∑

e∈E

e

,

where in the last equation we have used Eq. (5.6). Again, as φ ⊗ φ is w.l.o.g. injective, we conclude that
∆(1) · ∆op(1) = ∆(τE). Similar calculation shows that ∆op(1) · ∆(1) = ∆(τE) as well, and thus we have
proven5 that

∆(τE) = ∆(1) ·∆op(1) = ∆op(1) ·∆(1).

This, in fact, implies that τE is the unit of the Grothendieck ring of A∗ (and of the character algebra as
well), as for any co-central τ ∈ A,

∆(τE · τ) = ∆op(1) ·∆(1) ·∆(τ) = ∆op(1) ·∆(τ) = ∆op(1) ·∆op(τ) = ∆op(τ) = ∆(τ),

i.e. τE · τ = τ , and similarly τ · τE = τ as well. Notice that as τE decomposes into a sum of irrep characters,
given any irrep character τa (a ∈ Irr(A∗)) the following equations hold:

τa = τEτa =
∑

e∈E,b

N b
eaτb and τa = τaτE =

∑

e∈E,b

N b
aeτb.

5The same result can be obtained by direct calculation as well [Nik03]: using the unit axiom Eq. (5.1) twice, ∆(τE) =∑
(1) 1(1)1(3)⊗1(2)1(4) =

∑
(1) ∆(1)·(1(2)⊗1(1)1(3)) = ∆(1)·∆op(1)·∆(1). Finally, again due to the unit axiom, ∆(1)·∆op(1) =

∆op(1) ·∆(1), that leads to the desired result.

22



Here both N b
ea ≥ 0 and N b

ae ≥ 0 are integers, and thus, as the equations above are equivalent to
∑

e∈E N
b
ea =

δab and
∑

e∈E N
b
ae = δab, there are unique labels la, ra ∈ E such that for all e ∈ E and a, b ∈ Irr(A∗)

N b
ea =

{

0 if e 6= la,

δab if e = la,
and N b

ae =

{

0 if e 6= ra,

δab if e = ra.
(5.9)

Using this property of the fusion multiplicities N c
ab, we notice that in Eq. (5.8) in the sum over e ∈ E the

summand is non-zero only for e = la on the l.h.s. and e = ra on the r.h.s. and in these cases the sum over µ
is trivial (because N c

laa
= N c

ara
= δac). We can thus simplify Eq. (5.8) to

a

e

a

e

c c = δe,laδa,c · (Idc ⊗ Idc) and
a

e

a

e

c c = δe,raδa,c · (Idc ⊗ Idc), (5.10)

that hold for all e ∈ E, and a, c ∈ Irr(A∗). Let us note that Eq. (5.10) together with Eq. (5.9) implies
Eq. (5.6), and thus it is easy to check that the element defined by Eq. (5.7) is indeed the unit of A and that
it satisfies the unit axiom. We have thus seen that

Proposition 5.1. In a finite dimensional cosemisimple pre-bialgebra A over C the unit axiom Eq. (5.1) is
equivalent to the following:

• there is a set E ⊆ Irr(A∗) such that τE =
∑

e∈E τe is the unit of the Grothendieck ring of A∗, or
equivalently, for all a ∈ A there are unique labels la, ra ∈ E such that for all e ∈ E and b ∈ Irr(A∗)

N b
ea =

{

0 if e 6= la,

δab if e = la,
and N b

ae =

{

0 if e 6= ra,

δab if e = ra,

• and for all e ∈ E there are vectors e ∈ Ve and linear functionals e ∈ V ∗
e such that for all e ∈ E

and a, c ∈ Irr(A∗),

a

e

a

e

c c
= δe,laδa,c · (Idc ⊗ Idc) and

a

e

a

e

c c
= δe,raδa,c · (Idc ⊗ Idc).

We will refer to the subset E of Irr(A∗) as vacuum and the irreps in E as vacuum irrep.
Let us now apply Eq. (5.9) for the case that a ∈ E. As in this case both equations in Eq. (5.9) apply, we

obtain that for all a ∈ Irr(A) and e, f ∈ E,

Na
ef =

{

1 if e = f = a,

0 otherwise.
(5.11)

Stating otherwise, we have obtained that for any e ∈ E, le = re = e holds. Note the difference between the
MPO representation of the unit of the algebra and the element τE . The MPO representation of the unit of
the algebra 1 ∈ A is

φ⊗n ◦∆n−1(1) =
∑

e∈E

. . . eeeee ,

and the MPO representation of the unit of the Grothendieck ring, τE , is

φ⊗n ◦∆n−1(τE) =
∑

e∈E

. . . eeeee
.

These two MPOs coincide if and only if the irrep e is one-dimensional for all e ∈ E.
Until now, we have only used the unit axiom, and not the counit axiom: the unit τE ∈ A of the

Grothendieck ring exists and the MPO representation of the unit 1 ∈ A is rank-one in each injective block
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even for pre-bialgebras that satisfy the unit axiom but not the counit axiom. Let us now derive a consequence
of the counit axiom that we will use later on. First, note that the counit axiom can equally be written as

∆2(ǫ) = (1⊗∆(ǫ)) · (∆(ǫ)⊗ ǫ) = (∆(ǫ) ⊗ ǫ) · (ǫ⊗∆(ǫ)),

and therefore the graphical representation of the counit axiom is

∑

edµν

µµ
νν

d

a

b

c

d

a

b

c

e
=
∑

deµν

µµ

νν

bb

a a

c c

b

e

d

=
∑

dµν

µµ

νν

b b

a a

c c

b

e

d

.

Using now the orthogonality relations in the first equation, we conclude that the following equation holds:

∑

eµν

µµ

ν κ

b b

dd

a

c c

e

=















δνκ ·
∑

eµ

µµ

d

c

d

c

e , if Nd
ab 6= 0,

0, if Nd
ab = 0.

(5.12)

This equation, however, is not a sufficient condition for the unit of the pre-bialgebra to satisfy the counit
axiom Eq. (5.2).

5.2 Weak Hopf algebras

In this section we define weak Hopf algebras. In these algebras we define as set of elements called integrals,
and show that a cosemisimple weak Hopf algebra over C has a special integral Λ such that is a projector and
is such that Λ(fg) = Λ(S2(g)f) holds for all f, g ∈ A∗.

Definition 5.2 (Weak Hopf algebra). A weak Hopf algebra (WHA) is a WBA A together with a linear map
S : A → A, called antipode, such that

∑

(x)

S(x(1))x(2) =
∑

(1)

1(1)ǫ(x1(2)),

∑

(x)

x(1)S(x(2)) =
∑

(1)

ǫ(1(1)x)1(2),

∑

(x)

S(x(1))x(2)S(x(3)) = S(x).

Given a WHA A with antipode SA, it is easy to check that the map SA∗ : A∗ → A∗ defined by

SA∗(f) = f ◦ SA, (5.13)

for all f ∈ A∗ (i.e. SA∗ = STA), satisfies the antipode axioms as well, and thus A∗ is a WHA too. From now
on, we do not differentiate between the antipode of A and that of A∗, and denote both by S. The antipode S
of a WHA is an anti-homomorphism (S(xy) = S(y)S(x)), an anti-cohomomorphism (∆ ◦S = (S⊗S) ◦∆op)
and a bijection (see [BNS99] for a proof). In fact, an equivalent characterization of the antipode (of A∗) is
that it is a bijective anti-homomorphism of A∗ such that for every f ∈ A∗

∑

(f)

S(f(1))f(2) ⊗ f(3) = ǫ(1) ⊗ fǫ(2), (5.14)

∑

(f)

f(1) ⊗ f(2)S(f(3)) = ǫ(1)f ⊗ ǫ(2). (5.15)
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Let A be a cosemisimple WHA and ψ : A∗ → End(W ) be a representation of A∗ on a vector space W .
The antipode S of A∗ is an anti-homomorphism, and thus the linear map ψ̄ : A∗ → End(W ∗) defined by

ψ̄(f) = (ψ ◦ S(f))T

is a representation ofA∗ on the vector spaceW ∗. As S is a bijection, ψ̄ is an irrep if ψ is an irrep. Let Irr(A∗),
as above, denote the irrep equivalence classes of A∗ and for every a ∈ Irr(A∗) let us fix a representation ψa
on the vector space Va from the irrep class a. For each irrep ψa the representation ψ̄a is an irrep in another
class, that we denote by ā (note that ā might coincide with a). As ψ̄a and ψā are in the same irrep class,
they are related to each other by a basis transformation, i.e. there are linear maps Za :Wā →W ∗

a such that

ψa(f) = Za · ψā(f) · Z−1
a .

Let us denote this equation using the graphical notation of tensor networks. We have to be careful with the
notation, as ψa(f) is not one of the representations that we have fixed previously. We thus have to use a
more verbose notation and display the representation itself and that it is a linear map from W ∗

a to W ∗
a :

ψa(f)

W∗
aW∗

a
=

f Z−1
aZa

W∗
aāāW∗

a
.

Let us now reverse the two arrows at the two ends of the figure. This changes W ∗
a to Wa, and thus, as it

is one of the previously fixed vector spaces, we can simply write a on the line. Similarly, ψa(f) changes to
ψa(f)

T = ψa ◦ S(f), and thus, as ψa is one of the previously fixed representations, the rank-two tensor on
the l.h.s. of the equation can simply be labeled by S(f):

S(f)

aa
=

f Z−1
aZa

āāaa
. (5.16)

The indices of S(f) are now oriented in the opposite direction as that of f . Because of this, we often bend
back the indices on the r.h.s. of this equation such that we obtain

S(f)

aa =
f

Z−1
a

Za

āa

ā a

. (5.17)

Let us warn here the reader to the subtleties of our notation. First, Za has two incoming indices, and thus
the only way to differentiate between the two indices is via the labels a and ā. Note that even for irrep labels
for which a = ā, this forces us to write a and ā on the two legs of the tensor. Second, there are two different
operators with very similar graphical representations:

Za

aā and
Zā

aā .

These two tensors should be read in the opposite direction: the first index of Za is the one labeled by ā on
its left, while the first index of Zā is the one labeled by a on its right.

As we have mentioned above, the antipode of A is the transpose of the antipode of A∗, see Eq. (5.13).
Therefore for all f ∈ A∗ and x ∈ A the following holds:

∑

a∈Irr(A∗)
bā(S(x)) f

āāā =
∑

a∈Irr(A∗)
ba(x) S(f)

aaa =
∑

a∈Irr(A∗)
ba(x) Za f Z−1

a

a a ā ā a ,

where in the second equation we have used Eq. (5.16). As this equation holds for all f ∈ A∗, the boundary
condition b(S(x)) describing S(x) can be expressed as

bā(S(x))

ā̄a
=

ba(x) ZaZ−1
a

āaāa
. (5.18)
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This allows us to write the repeated coproduct of S(x) as

φ⊗n ◦∆n−1 ◦ S(x) =
∑

a
ba(x)Z−1

a Za

. . . āāāāaaā
. (5.19)

Let us consider now a new rank-4 tensor, denoted by gray dot, defined by

aa
=
∑

y

φ ◦ S(y)⊗ ψa(δy) =
∑

x

φ(x) ⊗ ψa ◦ S(δx),

where in the second equation we have used that if B is a basis with basis elements y, then the set x =
S(y) (y ∈ B) forms a basis as well and its dual basis is δx = S−1(δy) (y ∈ B). Note that we have oriented
the virtual indices of this tensor in the opposite direction as in the MPO tensor given by black dots. This is
because S is an anti-homomorphism; more precisely, we can relate the two tensors using Eq. (5.16):

aa
=

Z−1
aZa

āāaa
. (5.20)

Using this gray tensor, one can rewrite Eq. (5.19) as

φ⊗n ◦∆n−1 ◦ S(x) =
∑

a

. . .

ba(x)

aaaa

. (5.21)

This MPO, by definition, is φ⊗n ◦ S⊗n ◦∆n−1
op (x) (read from left to right), as the virtual index of the MPO

tensor is written in the opposite direction than as usual. As φ is w.l.o.g. injective, we have obtained the
relation

∆n−1 ◦ S(x) = S⊗n ◦∆n−1
op (x),

that is, in fact, a simple consequence of the fact that S is an anti-cohomomorphism (∆ ◦S = (S⊗S) ◦∆op).
Using the tensors Za that we defined in Eq. (5.16), the antipode axioms of A∗, Eqs. (5.14) and (5.15),

can be expressed as

∑

bµ dν f

Za

Z−1
a

µµ
νν

d

c

āa

b

d

c

a

ā
a

b =
∑

dν f νν

d

a

c

a

cc ,

∑

cµ dν
f

Zb

Z
−1
b

µµ
νν

d

a

b

b̄

b

c

d

a

b

b̄

c

=
∑

dν

f

νν

d

a

b

a

b

a

.

Let us explain briefly how to arrive at these graphical representations of Eq. (5.14) and Eq. (5.15). In
Eq. (5.14), on the l.h.s. we first need to take two repeated coproduct of f : this is achieved by the two pairs
of fusion tensors (see Eq. (4.4)). Then the antipode of the first component is taken (see Eq. (5.17)) and it
is multiplied with the second component of the coproduct. On the r.h.s. of the same equation, we multiply
f with the second component of ∆(ǫ) (see Eq. (4.5)). The second equation is obtained similarly. As these
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equations hold for any f ∈ A∗, we conclude that

∑

dµν

Za

Z−1
a

µµ
νν

d

c

āa

b

d

c

a

ā
a

b = δbc
∑

dν νν

d

a

b

a

bb ,

∑

dµν

Zb

Z
−1
b

µµ
νν

d

a

b

b̄

b

c

d

a

b

b̄

c

= δac
∑

dν νν

d

a

b

a

b

a

.

Using the orthogonality relations of the fusion tensors and multiplying the first equation by Za, and the
second equation by Z−1

b , we obtain

∑

µ

Za

µµ
ν

d

c

a

āa

b

d

ā

b

= δbc

Za

ν

d

a

ā

bb

,

∑

µ
Z

−1
b

µµ
ν

d

b̄

c

d

a

b

b̄

c = δac

Z
−1
b

ν

d

a a

b

b̄
.

In particular, there are complex matrices Cdab of size N
d
ab ×N b

ād and Ĉdab of size N
d
ab ×Na

db̄
such that

∑

µ

(

Cdab
)

νµ

µ

d

ā

b
=

Za

ν

d

a

ā

b and
∑

µ

(

Ĉdab

)

νµ

µ
d

b̄

a
=

Z
−1
b

ν

d

a

b

b̄

. (5.22)

Let us now show that Cdab and Ĉdab are both invertible. In both equations the tensors on both sides are
linearly independent, therefore Nd

ab ≤ N b
ād and Nd

ab ≤ Na
db̄
. Applying these inequalities twice, we obtain

that Nd
ab ≤ N b

ād ≤ Nd
¯̄ab, and that Nd

ab ≤ Nd
db̄

≤ Nd

a¯̄b
. As a 7→ ¯̄a is a permutation of Irr(A∗), repeating these

equations a few6 times we obtain that Nd
ab ≤ Nd

¯̄ab ≤ · · · ≤ Nd
ab and that Nd

ab ≤ Nd

a¯̄b
≤ · · · ≤ Nd

ab, i.e. in all

of the inequalities above equality holds. In particular, for all a, b, c ∈ Irr(A∗), the numbers Nd
ab possess the

following symmetries:
Nd
ab = N b

ād and Nd
ab = Na

db̄
.

This implies that in both equation in Eq. (5.22) we transformNd
ab linearly independent vectors to Nd

ab linearly

independent vectors, i.e. both Cdab and Ĉdab are invertible. It is easy to check that the argument above can
be repeated backwards, i.e. Eq. (5.22) implies the antipode axioms. We have thus seen that

Proposition 5.2. Let A be a finite dimensional cosemisimple WBA. Then the map S : A∗ → A∗ given by

S(f)

aa
=

f Z−1
aZa

āāaa

is an antipode making A∗ a WHA if and only if there are invertible matrices Cdab of size N
d
ab×N b

ād and Ĉdab
of size Nd

ab ×Na
db̄

such that

∑

µ

(

Cdab
)

νµ

µ

d

ā

b
=

Za

ν

d

a

ā

b and
∑

µ

(

Ĉdab

)

νµ

µ
d

b̄

a
=

Z
−1
b

ν

d

a

b

b̄

.

6the order of the permutation a 7→ ¯̄a
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As it is interesting on its own, let us restate here the symmetry properties of the fusion multiplicities N c
ab

together with some of the consequences of these symmetries:

Proposition 5.3. Let A be a finite dimensional cosemisimple weak Hopf algebra, and a, b, c ∈ Irr(A∗). Then

Nd
ab = N b

ād and Nd
ab = Na

db̄
. (5.23)

Moreover, the following equations hold:

• ¯̄a = a for all a ∈ Irr(A∗),

• la = rā and ra = lā for all a ∈ Irr(A∗), where la, ra ∈ E are as in Eq. (5.9),

• e = ē for all e ∈ E.

Proof. We have already proven Eq. (5.23) above. Let us now show that a = ¯̄a for all irrep labels a ∈ Irr(A∗).
Applying the left side of Eq. (5.23) twice with d = a and b = ra, we obtain that

1 = Na
ara

= N ra
āa = Na

¯̄ara .

Using now Eq. (5.9), this latter fusion multiplicity can only be non-zero if a = ¯̄a.
Let us now show that for all a ∈ Irr(A), lā = ra holds. Using the left equation in Eq. (5.23) with b = ra

and d = a, we obtain that
1 = Na

ara
= N ra

āa = N ā
raā
,

where the last equation is the right equation in Eq. (5.23). As ra ∈ E and the above fusion number is
non-zero, Eq. (5.9) implies that for all a ∈ Irr(A), ra = lā. The equation rā = la can be shown in a similar
way.

Let us finally prove that the permutation a 7→ ā leaves the set E invariant, and in fact for every e ∈ E,
ē = e. Let us use Eq. (5.23) with a = b = d = e ∈ E. We obtain that

1 = Ne
ee = Ne

ēe,

and thus, as e ∈ E, using Eq. (5.9), this latter fusion number can only be non-zero if e = ē.

Let us show now that in a cosemisimple WHA the matrices Za can be expressed with the help of the
fusion tensors and the unit of the underlying WBA. Therefore, if in a cosemisimple WBA there exists an
antipode making it a WHA, this antipode is uniquely determined by the WBA structure. This statement, in
fact, is more general than what we show here, and also holds in the non-cosemisimple case (see e.g. [BNS99]).

Let c ∈ Irr(A∗) and let us set ā = c̄, d = c and b = rc ∈ E in the left equation in Eq. (5.22), and d = c̄,
b = c̄ and a = rc ∈ E in the right equation in Eq. (5.22) and use that ¯̄c = c. As N rc

c̄c = 1, we obtain that
there are non-zero complex numbers Cccrc and Ĉ c̄rc c̄ such that

Cccrc c

c̄

rc
=

Zc

c

c

c̄

rc and Ĉ c̄rc c̄

c̄

c

rc
=

Z
−1
c̄

c̄

rc

c̄

c

.

Taking the tensor product of these two equations, applying the vectors describing brc(1) and using Eq. (5.10),
we conclude that there are non-zero numbers wc such that

Zc

c̄

c
Z

−1
c̄

c̄

c
= wc c

c̄

rc

c̄

c

rc
. (5.24)

We have thus obtained that the matrices Zc can be expressed with the help of the fusion tensors and the
vectors describing the unit of the WBA, and thus the antipode of a cosemisimple WHA is unique and
completely determined by the WBA structure.
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Let us now define a linear functional that will play a central role in the rest of the paper. Before the
definition, note that while the number wc defined in Eq. (5.24) depend on the concrete choice7 of the matrices
Zc and Z

−1
c̄ , the number wcwc̄ is independent from this choice, and it is also independent from all the choices

we have made before (the fusion tensors and the vectors describing the unit of the algebra). This is because
all these objects appear in pairs in the following equation:

Zc

c̄

c
Z

−1
c̄

c̄

c
Zc̄

c

c̄
Z−1

c

c

c̄
= wcwc̄ c

c̄

rc

c̄

c

rc

c̄

c

rc̄

c

c̄

rc̄
.

Let da be complex numbers such that d2a = wawā and da = dā. Later we will prove that wawā > 0 and thus
one can choose da to be positive. Until then, da = dā is an arbitrary square root of wawā. Let us now define
the linear functional g ∈ A∗ through

g

aa
=

da
wā ZāZ−1

a

aāa
and

g−1

aa
=

wā
da Z

−1
ā Za

aāa
, (5.25)

where we have used that f for any matrix m of the form
⊕

ama, ma ∈ End(Va), one can find a linear
functional such that ψa(f) = ma. The linear functional g defined in this way is independent of all previous
choices that we have made, except for the choice of the square root da = dā of d2a. The importance of this
linear functional is that the conjugation by it describes the action of S2. Indeed, applying Eq. (5.16) twice,
we obtain that

S2(f)

aa =
S(f) ZaZ−1

a

aāāa =
f Z

−1
ā ZaZāZ−1

a

aāaaāa =
f g−1g

aaaa . (5.26)

Let us now show a few additional properties of g. First, note that wā/da = da/wa = dā/wa, and thus

g−1

āā
=

g ZāZ
−1
ā

āaaā
=

S(g)

āā
,

i.e. g satisfies g−1 = S(g). Second, the traces of ψa(g) and ψa(g
−1) evaluate to the following:

Trψa(g
−1) =

da
wā

Za

ā

a
Z

−1
ā = da a

ā

ra ra
= da · ǫra(1), (5.27)

Trψa(g) =
da
wa

Zā

a

ā
Z−1

a = da ā

a

rā rā = da · ǫrā(1), (5.28)

where ǫra ∈ A∗ is the irrep projector onto the irrep sector ra and ǫrā ∈ A∗ is the irrep projector onto the
irrep sector rā.

In the following we will encounter algebra elements of the form x =
∑

a(Id ⊗ g) ◦∆(τa). These algebra
elements have the following MPO representation:

φ⊗n ◦∆n−1(x) =
∑

a

λa ·
g

. . .a a a a

.

The algebra elements are exactly those that satisfy ∆op(x) = (S−1 ⊗ Id) ◦∆(x). Indeed,

φ⊗2 ◦∆op(x) =
∑

a

λa ·
g

aa

=
∑

a

λa ·
g g−1 g

aaaa

= φ⊗2 ◦ (S−2 ⊗ Id) ◦∆(x). (5.29)

One can easily see that all elements that satisfy the above cocommutation relation are in fact of this form.
Such algebra elements will be called q-traces :

7We could have chosen λZc to describe the antipode instead of Zc, for any λ ∈ C. This is in fact the only freedom that we
have in the choice of Zc.
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Definition 5.3 (Q-trace). Let A be a weak Hopf algebra. The algebra element x ∈ A is called a q-trace if

∆op(x) = (S−2 ⊗ Id) ◦∆(x).

In the following we will construct an algebra element that is not only a q-trace, but it is also a left
integral :

Definition 5.4 (Integrals). A left integral of a WHA A is an element Λ ∈ A such that for all x ∈ A

(1⊗ x) ·∆(Λ) = (S(x)⊗ 1) ·∆(Λ).

The element Λ ∈ A is called a right integral if S(Λ) is a left integral. An integral that is both left and right
is a two-sided integral. A non-degenerate (see Definition 3.5) integral Λ is normalized if Λ2 = Λ. Finally,
an integral is called a Haar integral if it is two-sided, non-degenerate and normalized.

We will now prove the main result of this section: that in a cosemisimple WHA there is a special integral
that is non-degenerate, normalized and a q-trace:

Theorem 5.1. In a finite dimensional cosemisimple WHA A over C the element Λ ∈ A defined8 by

φ⊗n ◦∆n−1(Λ) =
∑

a∈Irr(A∗)

da
∑

x: lx=la
d2x

·
g

. . .a a a a

, (5.30)

is a non-degenerate normalized left integral that is also a q-trace.

In the proof of Theorem 5.1 we will use the following two lemmas that we prove in Appendix A:

Lemma 5.1. Let A be a cosemisimple WHA, and g be the linear functional defined in Eq. (5.25). Then
there exists an N c

ab ×N c
ab matrix Bcab such that the linear functional g ∈ A∗ satisfies

c

g−1

a
g

b

g µ

=
∑

ν

(Bcab)µν · c

a

b

ν

and c

g−1

a
g

b

gν

=
∑

κ

(Bcab)κν
c

a

b

κ

. (5.31)

Moreover, (Bcab)
2
= IdNc

ab
and the following equation holds as well:

∑

µ

wa

ZāZ−1
a

µ µ

āa

c

b b

ā a

c

=
∑

µ

wb̄

Zb̄Z
−1
b

µ µ

b̄

b

c

a a

b̄

b

c

=
dadb
dc

∑

µν

(Bcab)µν b

a

c

a

b

c

µ ν

.

Investigating the trace ofBcab we can prove that the numbers d2a are positive and thus that the denominator
in the r.h.s. of Eq. (5.30) is non-zero. We postpone the proof of this lemma to Appendix A as well.

Lemma 5.2. For all a ∈ Irr(A∗), d2a = wawā > 0. Let moreover T cab be defined by T cab =
∑

µ (B
c
ab)µµ. Then

the following equations hold:

∑

b

T cab · db = da · δlalc · dc and
∑

x:lx=la

d2x =
∑

x:lx=ra

d2x.

With these two lemmas in hand, we can proceed to the proof of Theorem 5.1.

8Remember that φ is w.l.o.g. injective and thus the value of φ⊗n ◦∆n−1(Λ) defines Λ uniquely.
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Proof of Theorem 5.1. Let us define L as

φ⊗n ◦∆n−1(L) =
∑

a∈Irr(A∗)

da ·
g

. . .a a a a

.

We will prove that L a non-degenerate left integral that is related to Λ as follows. Let us define N via

φ⊗n ◦∆n−1(N) =
∑

e∈E

∑

x: lx=e

d2x . . . eeeee . (5.32)

This algebra element N is central, as Nx is described by the MPO

φ⊗n ◦∆n−1(Nx) =
∑

a∈Irr(A∗)

∑

x: lx=la

d2x · b(x)

. . .a a a a

,

while xN is described by the MPO

φ⊗n ◦∆n−1(xN) =
∑

a∈Irr(A∗)

∑

x: lx=ra

d2x · b(x)

. . .a a a a

,

and, by Lemma 5.2,
∑

x:lx=la
d2x =

∑

x:lx=ra
d2x. Note as well that, as d

2
x > 0 for all x (see again Lemma 5.2),

N is invertible with inverse

φ⊗n ◦∆n−1(N−1) =
∑

e∈E

1
∑

x: lx=e
d2x

. . . eeeee .

In fact, Λ = N−1L = LN−1. Therefore, in order to prove that Λ is a normalized left integral, we only have
to prove that L is a left integral, and that L2 = NL. Note here that Λ is of the form Eq. (5.29), and thus it
is a q-trace. It is also non-degenerate as g is invertible and the normalization constant is non-zero.

Let us prove now that L is a left integral. Let us start with the following simple corollary of Lemma 5.1:

∑

µ

dadb
dc

c c

g−1

c

b

g

b

a

g

a

b

a

µ µ

=
∑

µ

wb

Zb̄Z
−1
b

µ µ

b̄b

c

a a

b̄ b

c

.

Let us rearrange this equation to obtain

∑

µ

da
c c

b

a

g

a

b

a

µ µ

=
∑

µ

dc ·
wb
db

Zb̄Z
−1
b

µ µ

b̄b

c

a a

b̄ b
g−1

b

c

g

c

=
∑

µ

dc

ZbZ
−1
b

µ µ

b̄b

c

a a

b̄ b

c

g

c

,

where in the second equality we have used that

wb
db Zb̄ g−1

bbb̄
=

Zb

bb̄
.

This implies that for all x ∈ A,

∑

abcµ

da ·
ga

bb(x)

µ µ

cc

=
∑

abcµ

dc ·

gc

Zb Z
−1
b

bb(x)

µ µ

aa

c c

b̄b̄

.
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We can now use Eq. (4.8) to obtain

∑

a,b

da ·
ga

bb(x) =
∑

a,b

da ·
ga

Zb Z
−1
b

bb(x) ,

or equivalently, using that the representation φ is w.l.o.g. injective, that (1⊗x) ·∆(L) = (S(x)⊗1) ·∆(L), i.e.
that L is a left integral. This integral is automatically non-degenerate (see Section 3.2) as ba(L) = daψa(g)
is invertible for all a ∈ Irr(A∗).

Let us now show that L2 = NL, and thus that Λ is a normalized integral. The matrices bc(L
2) describing

L2 are of the form (see Eq. (4.10))

bc(L
2) =

∑

abµ

dadb ·
g

g

µ µ

bb

aa

cc
=
∑

ab

daT
c
abdb ·

g

cc
=

∑

a: la=lc

d2a ·
gc

cc
= bc(NL) ,

where in the second equality we have used the definition of T cab, and in the third, the last point of Lemma 5.2.

A few remarks are in place. First, it is known that every cosemisimple WHA is finite dimensional (see
[Nik03] and Theorem 3.13 in [BNS99]), and thus the assumption on A being finite dimensional is redundant.
Second, the normalized integral Λ provides a separability element I ∈ A⊗A via I = (S−1 ⊗ Id) ◦∆(Λ) for
the algebra A. Therefore A is separable, and in particular, it is semisimple, i.e. we have obtained Theorem
2.26. of [ENO02]. Finally, let us note that Λ is closely related to the canonical left integral L̂ defined in
[Nik03] (see also [BNS99] and [ENO02]). In [Nik03], the canonical left integral is defined as

L̂(f) =
∑

x∈B

x(fS2(δx)),

where B is a basis of A and δx denotes the dual basis. In a finite dimensional cosemisimple weak Hopf
algebra, this expression can be re-expressed using the matrix b(x):

L̂(f) =
∑

x∈B

∑

a∈Irr(A∗)

Tr{ba(x) · ψa(f) · ψa(S2(δx))}

Using now Eq. (5.26), we can also write

L̂(f) =
∑

a∈Irr(A∗)

∑

x∈B

Tr{ba(x) · ψa(f) · ψa(g) · ψa(δx) · ψa(g−1)}

As we sum over x, the matrix ψa(δx) takes all possible values in End(Wa). Conversely, iterating over elements
of
⊕

a∈Irr(A∗) End(Va) defines a basis in A∗ through the representation ψ =
⊕

a ψa. Let us fix a basis |ai〉
in each Wa (i = 1, . . . , dim(Wa)), and choose the basis B such that for all x, there is a ∈ Irr(A∗) and
i, j = 1, . . . , dim(Wa) such that ψ(δx) = |ai〉〈aj|. It is easy to see that then ba(x) = |aj〉〈ai|. Therefore one
can also write

L̂(f) =
∑

a∈Irr(A∗)

∑

ij

Tr{|aj〉〈ai| ·ψa(fg) · |ai〉〈aj| ·ψa(g−1)} =
∑

a∈Irr(A∗)

∑

i

〈ai|ψa(fg)|ai〉 ·
∑

j

〈aj|ψa(g−1)|aj〉.

Using the trace formula Eq. (5.27), Trψa(g
−1) = daǫra(1), L̂(f) can be further written as

L̂(f) =
∑

a∈Irr(A∗)

daǫra(1) · Tr{ψa(gf)},

i.e. L̂ is described by the boundary ǫra(1) ·daψa(g), or equivalently, the MPO representation of L̂ is given by

φ⊗n ◦∆n−1(L̂) =
∑

a∈Irr(A∗)

da · ǫra(1) · g

. . .a a a a

.
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5.3 Pivotal weak Hopf algebras

In certain WHAs one can define a special cocentral element using the integral Λ defined in the previous
section. This element satisfies an equation reminiscent to the definition of an integral, but here, instead
of the antipode, another operation appears. The WHAs where the construction works are called pivotal
WHAs, and their defining property is that the antipode is special: the square of the antipode is an inner
automorphism of the algebra realized by a group-like element (see the definition below). While such a
structure seems to be restrictive, it is conjectured that any semisimple WHA is actually pivotal [ENO02].

Definition 5.5 (Group-like elements). Let A be a pre-bialgebra. G ∈ A is group-like if it is invertible and

∆(G) = (G⊗G) ·∆(1) = ∆(1) · (G⊗G).

Group-like elements of a WHA A form a group: if G,H ∈ A are group-like, then GH is also group-like;
1 ∈ A is also group-like, and finally, if G ∈ A, then G−1 is group-like as well. In a WHA S(G) = G−1 for
any group-like G [BNS99].

A∗ is a pre-bialgebra if and only if A is a pre-bialgebra; the unit of A∗ is ǫ, and thus a linear functional
k ∈ A∗ is group-like if it is invertible and

∆(k) = (k ⊗ k) ·∆(ǫ) = ∆(ǫ) · (k ⊗ k).

In a cosemisimple WHA A, group-like elements of A∗ have a nice characterization using the graphical
representation of the fusion tensors. An element k ∈ A∗ is group-like if and only if it is invertible and

∑

cµ
k

cc

a

b

a

b

µ µ

=
∑

cµ

c

a

k

a

b

k

b

a

b

µ µ

=
∑

cµ

c

aa

k

a

bb

k

b

µ µ

.

Using now the orthogonality relations of the fusion tensors, we conclude that k is group-like if and only if
for all a, b, c ∈ Irr(A∗) and µ = 1 . . .N c

ab,

c

k

c

a

b

µ

=
c

a

k

a

b

k

b

µ

and
c

k

c

a

b

µ

=
c

a

k

a

b

k

b

µ

.

In the previous section (Lemma 5.2) we have seen a group-like element: the element g2 ∈ A∗ is group-like,
where g is defined by Eq. (5.25). Conjugation by this element describes S4. A pivotal WHA is one where
not only the fourth power, but also the square of the antipode is realized as a conjugation by a group-like
element:

Definition 5.6 (Pivotal WHA). A WHA A is pivotal if there is a group-like element G such that for all
x ∈ A,

S2(x) = G · x ·G−1.

Such a group-like element G is called a pivotal element of A.

If a WHA A is such that A∗ is pivotal, then, as S2 is an inner automorphism of A∗ described by the
linear functional g defined in Eq. (5.25), all pivotal elements k of A∗ are of the form k = ξg for some ξ ∈ A∗

central element. That is, there are numbers ξa such that for all a,

ψa(k) = ξa
g

aa
and ψa(k

−1) =
1

ξa g−1

aa
. (5.33)

As S(g) = g−1 and S(k) = k−1, ξā = 1/ξa. As g2 is group-like (see Lemma 5.1), the numbers ξa satisfy

(ξaξb/ξc)
2
= 1 for all a, b, c such that N c

ab 6= 0.
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Let us consider a WHA A such that A∗ is pivotal and let us fix the numbers ξa such that the element
k ∈ A∗ defined by ka = ξaga is pivotal. In this case, as

c

g−1

c

b
g

b

a

g

a

µ

=
ξc
ξaξb

c

b

a

µ

,

Lemma 5.1 takes the form

∑

µ

da
ξa

· db
ξb

dc
ξc

c c

b

a

b

a

µ µ

=
∑

µ

wb

Zb̄Z
−1
b

µ µ

b̄
b

c

a a

b̄
b

c

. (5.34)

Let us now notice that the matrix Bcab defined in Lemma 5.2 is proportional to the identity, more precisely,
Bcab = ξc/(ξaξb) · IdNc

ab
, and thus that T cab = N c

ab · ξc/(ξaξb). We thus obtain that

∑

b

N c
ab ·

db
ξb

= δlalc ·
dā
ξā

· dc
ξc
. (5.35)

With these statements we can now prove the following theorem:

Theorem 5.2. Let A be a finite dimensional weak Hopf algebra over C such that A∗ is semisimple and
pivotal with pivotal element k ∈ A∗ such that ka = ξaga. Then the element Ω ∈ A defined by

φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1
∑

x: lx=la
d2x

· da
ξa

· . . .a a a

is non-degenerate and cocommutative, it is a projector, and there exists a linear map T : A → A such that

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω).

This9 map T moreover satisfies
∆ ◦ T = (T ⊗ k−1 ⊗ T ) ◦∆2

op.

The number da/ξa is the quantum dimension of the irrep class a. This number depends on the concrete
choice of k (equivalently, on the choice of the numbers ξa). Before proceeding to the proof, note that
Ω = (g−1 ⊗ Id) ◦ ∆(Λ), where Λ is defined in Eq. (5.30). From this, using that g is group-like and the
properties of Λ, simple (but tedious) algebraic calculations show all the desired properties. In particular,
one can obtain that T = (S ⊗ g) ◦∆. Instead of this algebraic calculation, below we provide a proof based
on the graphical notation.

Proof of Theorem 5.2. By definition, Ω is cocommutative and as for all a ∈ Irr(A∗), da 6= 0, it is also non-
degenerate. Let us now show that Ω is a projection. As in the proof of Theorem 5.1, note that Ω can be
written as N−1Ω̂ = Ω̂N−1, where Ω̂ is given by

Ω̂ =
∑

a∈Irr(A∗)

da
ξa

· τa, (5.36)

and N is given by Eq. (5.32). Then Ω is a projector if and only if Ω̂ satisfies Ω̂2 = N Ω̂. Let us calculate Ω̂2:

Ω̂2 =
∑

ab

dadb
ξaξb

· τaτb =
∑

abc

dadb
ξaξb

·N c
abτc =

∑

ac

da
ξa

·
(

∑

b

N c
ab

db
ξb

)

· τc,

9As Ω is non-degenerate, T is uniquely defined, see Section 6.
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and thus using Eq. (5.35), we obtain that

Ω̂2 =
∑

ac

δlalc
dadā
ξaξā

· dc
ξc

· τc =
∑

c

(

∑

a:la=lc

d2a

)

· dc
ξc

· τc = N Ω̂,

where in the second equation we have used that ξā = ξ−1
a and that da = dā. We have thus obtained that

Ω = N−1Ω̂ is a projector.
Let us now check that (1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω) holds. Similar to the proof in Theorem 5.1, we

start with Eq. (5.34):

∑

µ

da/ξa · db/ξb
dc/ξc

c c

b

a

b

a

µ µ

=
∑

µ

wb

Zb̄Z
−1
b

µ µ

b̄
b

c

a a

b̄
b

c

.

This implies that for all x ∈ A,

∑

abcµ

da
ξa

bb(x)

µ µ

cc

=
∑

abcµ

dc
ξc

· ξb ·
wb
db

Zb̄ Z
−1
b

bb(x)

µ µ

aa

c c

b̄b̄

.

We can now use Eq. (4.8) to obtain

∑

a,b

da
ξa

bb(x) =
∑

a,b

da
ξa

· ξb ·
wb
db

Zb̄ Z−1
b

bb(x) ,

or (1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω), where T is defined by the formula

φ(T (x)) =
∑

a

ξa ·
wa
da ba(x)Z−1

a Zā

āaaā
. (5.37)

This means, in particular, that

bā(T (x))

āā
= ξa ·

wa
da

·
ba(x) ZāZ−1

a

aāāa
and ξa ·

wa
da

·
Z−1

aZā

aāāa
=
∑

x

φ ◦ T (x)⊗ ψa(δx) .

Let us now consider the MPO representation of ∆ ◦ T (x) and, using Eq. (5.25), observe that

∑

a

ξa ·
wa
da

·
ba(x)Z−1

a Zā

āaaā ā
=
∑

a

(

ξa ·
wa
da

)2

·
ba(x) Zā Z−1

a k−1 Zā Z−1
a

a ā ā a a ā āa
,

or, as φ is w.l.o.g. injective (notice that on the r.h.s. the arrows on the virtual index are reversed),

T ◦∆(x) = (T ⊗ k−1 ⊗ T ) ◦∆2
op(x).

Note that the graphical representation of the action of T , Eq. (5.37), is very similar to that of S:

φ(T (x)) =
∑

a

ξa
ba(x)Z−1

a Zā

āaaā
and φ(S(x)) =

∑

a
ba(x)Z−1

a Za

āaaā
.
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The difference between T (x) and S(x) is that in T (x) the matrix ξaZā appears instead of Za. As

ξa ·
Zā

aa = ξa
Za g

aāa =
Za k

aāa

we directly obtain that T (x) = (k−1 ⊗ Id) ◦∆(S(x)), or, by using that S is an anti-homomorphism and that
k−1 ◦ S = k, that T (x) = (S ⊗ k) ◦∆(x). The inverse of this relation, as it can be see from Eq. (5.37), is
S(x) = (k−1 ⊗ Id) ◦∆ ◦ T (x), or S(x) = (T ⊗ k−1) ◦∆(x).

5.4 Spherical weak Hopf algebras

In this section we define spherical weak Hopf algebras as pivotal weak Hopf algebras satisfying an additional
property. Semisimple spherical weak Hopf algebras are such that their representation category is a spherical
multi-fusion category. We specialize Theorem 5.2 to the case where A is not only pivotal, but also spherical.

Definition 5.7 (Spherical WHA). A pivotal WHA A is called spherical if the following two conditions hold.
First, that for any irrep δ from the vacuum, ǫ(1δ) 6= 0, where 1δ is the projector onto the irrep sector δ.
Second, it has a pivotal element G such that for all α ∈ Irr(A),

tα(G)

ǫ(1λα
)
=
tα(G

−1)

ǫ(1ρα)
,

where tα is the irrep character of the irrep class α, λα is the unique irrep from the vacuum such that
tλα

tα 6= 0, and ρα is the unique irrep from the vacuum such that tαtρα 6= 0. Such a pivotal element is called
a spherical element of A.

Let us now consider a WHA over C such that A∗ is semisimple and spherical. Let k be a spherical
element of A∗ with

ψa(k) = ξa
ga

aa
and ψa(k

−1) =
1

ξa g−1
a

aa
.

The traces of ψa(k) and ψa(k
−1) can be then evaluated using Eqs. (5.27) and (5.28):

τa(k
−1) = Tr{ψa(k−1)} =

1

ξa
· Tr{ψa(g−1)} =

da
ξa

· ǫra(1),

τa(k) = Tr{ψa(k)} = ξa · Tr{ψa(g)} = ξada · ǫrā(1).
Sphericity of k implies that ξ2a = 1 for all a ∈ Irr(A∗), i.e. that ξa = ±1. Together with the fact that
ξā = 1/ξa, this implies that ξa = ξā.

Let us define now Ω as in Theorem 5.2, assuming that the pivotal element k ∈ A∗ is spherical. Then Ω,
using that ξa = ξā, satisfies additionally that

(T ⊗ k−1) ◦∆(Ω) = S(Ω) = Ω.

We have thus seen that

Theorem 5.3. Let A be a finite dimensional weak Hopf algebra over C such that A∗ is semisimple and
spherical with spherical element k ∈ A∗ such that ψa(k) = ξaψa(g). Then the element Ω ∈ A defined by

φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1
∑

x: lx=la
d2x

· da
ξa

· . . .a a a

is non-degenerate and cocommutative, it is a projector, and there exists a linear map T : A → A such that

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω),

∆ ◦ T = (T ⊗ k−1 ⊗ T ) ◦∆2
op.

Moreover, Ω satisfies
(T ⊗ k−1) ◦∆(Ω) = S(Ω) = Ω.
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5.5 C∗-weak Hopf algebras

In this section we define C∗-weak Hopf algebras. We show how the ∗-operation acts on the representing
MPOs. We then show that a C∗-weak Hopf algebra is spherical, and thus Theorem 5.3 applies.

Definition 5.8 (C∗-WHA). A finite dimensional pre-bialgebra A over C is a ∗-pre-bialgebra if there is an
anti-linear map ∗ : A → A such that it is an involution (x∗∗ = x), anti-homomorphism ((xy)∗ = y∗x∗)
and cohomomorphism (∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆). It is a C∗-pre-bialgebra, if it is a ∗-pre-bialgebra and A has a
faithful ∗-representation. A pre-bialgebra A is a ∗-WHA if it is both a ∗-pre-bialgebra and a WHA, and it is
a C∗-WHA if it is both a C∗-pre-bialgebra and a WHA.

An equivalent characterization of a finite dimensional C∗-WHA is that it is a semisimple ∗-WHA such
that it has a complete set of irreps φα (α ∈ Irr(A)) that are ∗-representations, i.e. φα(x∗) = φα(x)

†. The
dual of a C∗-WHA is also a C∗-WHA with ∗-operation defined by [BNS99]

f∗(x) = f ◦ ∗ ◦ S(x), (5.38)

where λ denotes the complex conjugate of λ for all λ ∈ C. As it is a C∗-WHA, A∗ also possesses a complete
set of ∗-representations. In this section, ψa (a ∈ Irr(A∗)) will always denote such a complete set of irreps.

Let us now observe that the ∗-operation of A brings the character of ψa into the character of ψā:

Proposition 5.4. Let A be a C∗-WHA, and τa ∈ A (a ∈ Irr(A∗)) be the irrep characters of A∗. Then
τ∗a = τā for all a.

Proof. Let us evaluate τ∗a on a linear functional f :

τ∗a (f) = f(τ∗a ) = f∗(S−1(τa)) = f∗(τā) = τā(f∗),

where in the second equation we have used Eq. (5.38) with x = S−1(τa). Finally note that, as ψa is a
∗-representation,

τā(f
∗) = Trψā(f

∗) = Trψā(f)
† = Trψā(f) = τā(f),

and thus for all f ∈ A∗, τ∗a (f) = τā(f).

As the MPO representation of τa is the TI MPO defined by the injective block a of the MPO tensor
representing the C∗-WHA, this proposition states that the injective MPO blocks are permuted under the
∗-operation:





. . .a a a





†

= . . .ā ā ā

.

On the l.h.s. of this equation the dagger can be taken component-wise. More precisely, let us define a gray
MPO tensor as

aa =
∑

x

φ(x∗)⊗ ψa(δ
∗
x) =

∑

x

φ(x)† ⊗ ψa(δx)
†.

Notice that this MPO tensor is oriented in the opposite direction of the original (black) MPO tensor. By
construction, the MPO defined by this MPO tensor is the Hermitian conjugate of the MPO describing τa:

. . .a a a

=





. . .a a a





†

= . . .ā ā ā

.

In fact, this equation holds with arbitrary boundary condition as well, i.e. the MPO representation of x∗ can
be written as

∑

a
ba(x)

†

. . .a a a a

=
∑

a
ba(x

∗)

. . .a a a a

.
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Let us finally note that the gray and the black tensors can be related to each other using Eq. (5.38). First
note that there are two ways of expressing y∗:

∑

x

x · δx(y∗) = y∗ =
∑

x

x∗ · δx(y) =
∑

x

x∗ · δ∗x ◦ S−1(y∗),

where in the last equation we have used the fact that the conjugation can be expressed with the ∗ operation
of A and A∗ as follows:

f(x) = f ◦ ∗ ◦ S ◦ S−1 ◦ ∗(x) = f∗ ◦ S−1(x∗).

As this equation holds for all y, we have obtained that
∑

x

x∗ ⊗ δ∗x =
∑

x

x⊗ S(δx),

or graphically,

aa
=

Z−1
aZa

aāāa
.

Note finally that then b(x) and b(x∗) is also related:

bā(x
∗)

āā
=

ba(x)
† ZaZ−1

a

āaaā
.

Let us now prove the well-known result that a C∗-WHA is pivotal, and in fact, spherical [BNS99; ENO02]:

Proposition 5.5. Let A be a C∗-WHA. Then A∗ is also a C∗-WHA, it is spherical and the linear functional
g ∈ A∗ defined in Eq. (5.25) is a spherical element of it that is also positive.

Proof. As mentioned above, we can fix the irrep representatives ψa of A∗ to be ∗ representations. This
implies, as the ∗ operation of A∗ is a cohomomorphism, ∆ = (∗ ⊗ ∗) ◦∆ ◦ ∗, that

∑

µ





a

b

a

b

c c

µµ




†

=
∑

µ

a

b

a

b

c c

µµ

.

This equation implies that for all a, b, c ∈ Irr(A∗) there exist a matrix Acab such that the dagger of the fusion
tensor, denoted by gray tensors, can be expressed as

a

b

c

µ

=





a

b

c

µ




†

=
∑

ν

(Acab)µν

a

b

c

ν

and
a

b

c

µ

=





a

b

c

µ




†

=
∑

ν

[

(Acab)
−1
]

νµ

a

b

c

ν

.

These matrices Acab are in fact positive, as using the orthogonality relations, they are in the form

(Acab)µν =
1

Dc

·
a

b

c c

µ ν

=
∑

κ

(ocab)κµ (o
c
ab)κν =

∑

κ

(

(ocab)
†
)

µκ
(ocab)κν =

(

(ocab)
†
ocab

)

µν
.

Therefore changing the fusion tensors to

V̂ cµab =
∑

κ

(

(ocab)
−1
)

µν
V cνab and

(

Ŵ c
ab

)

µν
=
∑

κ

(ocab)µκ (V
c
ab)κν ,

we obtain
(

V̂ cµab

)†

= Ŵ cµ
ab . That is, w.l.o.g. we can assume that the fusion tensors are the hermitian

conjugates of each other,





a

b

c

µ




†

=
a

b

c

µ

and





a

b

c

µ




†

=
a

b

c

µ

. (5.39)

38



Let us now investigate what restrictions the C∗ structure of A∗ imposes on the representation of the unit
of the algebra. The unit 1 ∈ A is invariant under both the ∗-operation as well as under the action of the
antipode, therefore

1(f) = 1∗(f) = 1(S(f∗)) = 1(f∗).

Let us write |we〉 = e and 〈ve| = e , then this equation reads
∑

e∈E

〈ve|ψe(f)|we〉 =
∑

e∈E

〈ve|ψe(f∗)|we〉 =
∑

e∈E

〈we|ψe(f∗)†|ve〉 =
∑

e∈E

〈we|ψe(f)|ve〉,

where in the last equation we have used that ψe is a ∗-representation. As this equation holds for all f , we
have obtained that

(

e

)†

=
e
. (5.40)

Using that the fusion tensors and the vectors representing the unit are self-adjoint, we can now prove that

the matrices Za can be chosen such that
(

Z−1
ā

)†
= Za. To see that, let us first take the dagger of Eq. (5.24)

using Eqs. (5.39) and (5.40):

(

Z
−1
ā

)†

ā

a
Z†

a

ā

a
= w̄a a

ā

ra

ā

a

ra
=
w̄a
wa

Za

ā

a
Z

−1
ā

ā

a
.

This implies that there is λa ∈ C such that
(

Z−1
ā

)†
= λaZa and Z†

a = w̄a/(waλa) · Z−1
ā . Changing a to ā in

the first equation, we obtain that
(

Z−1
a

)†
= λāZā, or, after rearranging,

(

Z−1
ā

)†
= λāZa, and thus λa = λā.

This implies that if a is such that ā 6= a, then λa = µaµā can be solved, e.g. by µa = λa and µā = 1. With
this choice, λā = µāµa also holds. If ā = a, one has to be more careful. In this case, λa = λā implies that
λa is real. To solve λa = µaµā = |µa|2, we have to show that λa is not only real, but also positive. To show

that, note that
(

Z−1
a

)†
= λaZa, or Ida = λaZaZ

†
a. As both Ida, and ZaZ

†
a are positive, this implies that λa

is positive, and thus λa = µaµā can be solved as well. Let Ẑa = µaZa, then
(

Ẑ−1
ā

)†

= Ẑa. This means that

we can assume w.l.o.g. that
(

Z−1
ā

)†
= Za.

Let us show now that the linear functional g ∈ A∗ defined in Eq. (5.25) is a pivotal element that is

positive and spherical. First, the equation
(

Z−1
ā

)†
= Za implies that both wa and ψa(g) are positive, and

thus g is positive as well. Let us show now that the matrix Bcab defined in Lemma 5.2 is positive as well.
This matrix can be obtained by

(Bcab)µν · gc = cc

a
g

a

b

g

b

µν

,

i.e. it is a positive matrix. As Bcab is positive and it squares to the identity, it is the identity, and thus g is a
(positive) pivotal element. Note that it is spherical as well, because

Trψa(g) = da · ǫra(1) = da · ǫrā(1) = Trψa(g
−1).

We have thus derived the well-known result that in a C∗-WHA there is a positive spherical element.

Let us now use this positive pivotal element in the construction in Theorem 5.3. With this choice, the
resulting element Ω has MPO representation

φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1
∑

x: lx=la
d2x

· da
ξa

· da · . . .a a a

,

where all da are positive and da = dā. As da are positive, Ω is a positive linear functional on A∗: for
any positive f the representing matrix ψa(f) is positive, and thus Ω(f) =

∑

a da · Trψa(f) ≥ 0. Similarly,
da = dā implies that Ω∗ = Ω, and therefore, as Ω is also a projector, it is a positive element of A.

We have thus seen that the following theorem holds:
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Theorem 5.4. Let A be a finite dimensional C∗-weak Hopf algebra over C. Then A∗ is semisimple and
spherical with positive spherical element g ∈ A∗ defined in Eq. (5.25). Then the element Ω ∈ A defined by

φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

1
∑

x: lx=la
d2x

· da · . . .a a a

is a positive non-degenerate trace-like linear functional on A∗, it is an orthogonal projector, and there exists
a linear map T : A → A such that

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω),

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op.

Moreover, Ω satisfies
(T ⊗ g−1) ◦∆(Ω) = S(Ω) = Ω.

Let us note that the (positive) numbers da satisfy (see Lemma 5.2)
∑

bN
c
abdb = δlalcda ·dc. In particular,

if E consists of a single irrep e, then δlalc is never zero and thus db defines a positive eigenvector for the
matrix Na defined by (Na)

c
b = N c

ab. As Na is a non-negative matrix, this implies that the corresponding
eigenvalue, da, is the spectral radius of Na. This number is also called the Perron-Froebenius dimension of
a ∈ Irr(A∗).

Note finally that if A is a C∗ weak Hopf algebra, then A∗ is also a C∗ weak Hopf algebra. This allows us
to define an element ω ∈ A∗ that is a positive non-degenerate trace-like linear functional on A. Using this
ω then one can define a scalar product on A by

〈x|y〉 = ω(x∗y).

5.6 C∗-Hopf algebras

In this section we further particularize the results obtained in the previous sections to C∗-Hopf algebras. As
a C∗-Hopf algebra is a special C∗-WHA, Theorem 5.4 applies. We will show that the element Ω obtained
from this theorem is in fact the Haar integral of the Hopf algebra.

Before stating the definition of a C∗ Hopf algebra, note that for a WHA A the following statements are
all equivalent [BNS99]:

• ∆A(1) = 1⊗ 1,

• ∆A∗(ǫ) = ǫ⊗ ǫ,

•

∑

(x) S(x(1))x(2) = ǫ(x)1,

•

∑

(x) x(1)S(x(2)) = ǫ(x)1.

Keeping this equivalence in mind, one can define Hopf algebras and C∗ Hopf algebras as follows:

Definition 5.9 (Hopf algebra and C∗ Hopf algebra). A Hopf algebra is a weak Hopf algebra such that
∆(1) = 1⊗ 1. A C∗ Hopf algebra is a C∗ weak Hopf algebra such that ∆(1) = 1⊗ 1.

Any C∗-Hopf algebra A is semisimple, and thus, due to the Larson-Radford theorem, S2 = Id. This
implies that the (unique) positive pivotal element of A∗ is ǫ, and thus the numbers Tr(ψa(g)) = da appearing
in Theorem 5.5 are in fact da = Tr(ψa(ǫ)) = Da, the dimension of the irrep a. Moreover, Ω in Theorem 5.4
and Λ in Theorem 5.1 coincide. In particular, as in a C∗ Hopf algebra the unique normalized integral is the
Haar integral (Larson-Sweedler theorem), Ω is the Haar integral of A. We have thus seen that
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Theorem 5.5. Let A be a finite dimensional C∗ Hopf algebra over C. Then A∗ is semisimple and spherical
and its positive spherical element is ǫ ∈ A∗. The element Ω ∈ A defined by

φ⊗n ◦∆n−1(Ω) =
∑

a∈Irr(A∗)

Da
∑

x∈Irr(A∗)D
2
x

· . . .a a a

,

where Da is the dimension of the irrep a, is the Haar integral of A.

In particular, as g = ǫ, the map T = S and the equations

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω),

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op.

simplify to the definition of the integral and to the fact that S is an anti-cohomomorphism:

(1 ⊗ x) ·∆(Ω) = (S(x)⊗ 1) ·∆(Ω),

∆ ◦ S = (S ⊗ S) ◦∆op.

6 Pulling-through algebras

In the previous sections we have seen (Theorem 5.2, and its variants Theorem 5.3 and Theorem 5.4) that
in a semisimple pivotal WHA over C there is a special non-degenerate cocentral element Ω that behaves
almost like an integral. In this section we abstract this notion and investigate the structure such an element
provides, independent from semisimplicity or weak Hopf algebras. The main reason behind this abstraction
is that this is exactly the structure we need to use in order to define a PEPS with symmetries, see Section 7.

Definition 6.1 (Pulling-through algebra). A finite dimensional pre-bialgebra over C is called a pulling-
through algebra if there is a cocentral, non-degenerate element Ω ∈ A, a linear map T : A → A and a
group-like linear functional g ∈ A∗ such that for all x ∈ A,

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω), (6.1)

∆ ◦ T = (T ⊗ g ⊗ T ) ◦∆2
op. (6.2)

Equation (6.1) will be called pulling-through equation. The rationale behind the name will become clear
when we give a tensor network description in Eq. (6.4) below. In a pulling-through algebra, Ω uniquely
determines T : if there was another map T̂ : A → A also satisfying Eq. (6.1), then

(T (x)⊗ 1) ·∆(Ω) = (1⊗ x) ·∆(Ω) = (T̂ (x)⊗ 1) ·∆(Ω),

and thus by non-degeneracy of Ω, T̂ (x) = T (x). Using that ∆(Ω) = ∆op(Ω), one can show that T is an
involution:

(1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω) = (T (x)⊗ 1) ·∆op(Ω) = (1 ⊗ T 2(x)) ·∆op(Ω) = (1 ⊗ T 2(x)) ·∆(Ω),

where the third equation is the pulling-through equation for y = T (x). As above, due to non-degeneracy
of Ω, x = T 2(x), i.e. T is an involution. In particular, T is invertible, and thus there can be at most one
linear functional g ∈ A∗ satisfying Eq. (6.2). Let us show now that T is an anti-homomorphism by using
the pulling-through equation Eq. (6.1) twice:

(T (xy)⊗ 1)∆(Ω) = (1⊗ xy)∆(Ω) = (T (y)⊗ x)∆(Ω) = (T (y)T (x)⊗ 1)∆(Ω),

and thus non-degeneracy of Ω implies that T (xy) = T (y) · T (x).
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Let us note that in a pre-bialgebra A there might be several different elements Ω that make it a pulling-
through algebra. For example, it is easy to check that given an element Ω ∈ A defining a pulling-through
structure on A and any central group-like element c ∈ A∗ (if there is any), the element Ω̂ = (Id⊗ c) ◦∆(Ω)
defines another pulling-though structure. This is the case if in the construction of Theorem 5.2 we use two
different pivotal elements g and ĝ to arrive at the cocentral elements Ω and Ω̂, respectively.

Let A be a pulling-through algebra. As A is a pre-bialgebra, it has MPO representations: given any
representation φ of A and an injective representation ψ of A∗ on a vector space W , let us define an MPO
tensor by

=
∑

x∈B

φ(x)⊗ ψ(δx),

where B is a basis of A, and δx denotes the dual basis (i.e. δx(y) = δxy). Given this MPO tensor, for all
x ∈ A there is a matrix b(x) ∈ End(W ) such that

φ⊗n ◦∆n−1(x) =
b(x)

. . . .

Notice that in this section we do not assume semisimplicity of A∗. The MPOs, nevertheless, are still
multiplicative,

b(y)

b(x)
. . .

. . .

=
b(xy)

. . . .

Let us introduce a new MPO tensor, denoted by white dot, as

=
∑

x∈B

φ ◦ T (x)⊗ ψ(δx).

Note that as T is an anti-homomorphism, this tensor is flipped upside down w.r.t. the tensor denoted by full
dot, i.e. the input index of φ is on the top of the tensor, not on the bottom. T (x) can be expressed both
with the original tensor and this new tensor:

φ(T (x)) =
b(T (x))

=
b(x)

.

Note that the orientation of the red lines in the second MPO is the opposite of the orientation of the red
lines in the first MPO. This is because to be able to compare the tensor networks on the two sides of the
equation, the white tensor had to be rotated.

With the help of this new tensor, the identity
∑

(xy)(xy)(1)⊗T ((xy)(2)) =
∑

(x)(y) x(1)y(1)⊗T (y(2))T (x(2))
has a particularly nice MPO representation:

b(xy)
=

b(y)

b(x) .

Let small green dot denote the (representation of the) group-like element g; then the tensor network repre-
sentation of the identity ∆ ◦ T (x) = (T ⊗ g ⊗ T ) ◦∆2

op(x) is

∆





b(x)



 =
b(T (x))

=
b(x)

;
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notice here that the third MPO is oriented in the opposite direction as the second one. This is due to the
fact that it is the MPO corresponding to ∆op, and not to ∆. This equation describes the coproduct of the
white tensor:

∆ : 7→ . (6.3)

We will denote the boundary corresponding to the pulling-through element Ω by a small blue dot without
label:

φ⊗n ◦∆n−1(Ω) =
b(Ω)

. . . = . . . .

As Ω is co-central, the corresponding MPO is translation invariant, that is,

. . . = . . . .

Let us now explain how these MPO representations will be used when depicting two-dimensional tensor
networks in the next section. Keeping in mind that the orientation of each MPO tensor has to be kept,
we can draw MPOs in arbitrary form such as on a circle. For example, the fact that Ω is cocentral can be
represented by the equation

φ⊗4 ◦∆3(Ω) = = .

The pulling through equation (1⊗x)·∆(Ω) = (T (x)⊗1)·∆(Ω) is represented by the following tensor network
notation:

b(x) = b(x) .

As this equation holds for all x ∈ A∗, it also holds with open indices:

= . (6.4)

Applying T on the left tensor component of this equation, we obtain

= .

This equation is in fact why (1⊗ x) ·∆(Ω) = (T (x)⊗ 1) ·∆(Ω) is called pulling-through equation: it states
that the MPO described by the black MPO tensors can be pulled through the circular MPO describing
(T ⊗ Id) ◦∆(Ω).
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To familiarize ourselves with the notation, we derive some equations that we will use in the following
section. Taking different coproducts of Eq. (6.4), and using Eq. (6.3), we arrive at, for example,

= or = or = .

Applying T on some of the tensor components reverses the orientation of the lines corresponding to the
physical indices of those tensor components, and changes the black tensors into white ones and vice versa,
that is, for example, the following holds:

= and = and = .

These identities are obtained from the previous ones by applying T on the two tensor components on the
bottom and on the right.

As g ∈ A∗ is group-like, applying g on the product of MPO tensors is the same as applying it on the
individual tensors. For example, applying the linear functional g on the upper left tensor component of the
equation

=

results in the equation

= .

Non-degeneracy of Ω means that the action of the linear functional λ defined by (λ⊗ Id)◦∆(Ω) = 1 removes
closed loops:

c(λ)

= .

Finally note that the above equations also hold for non-translation invariant MPO representations of the
pulling-through algebra.

7 MPO-injective PEPS

In this section we define projected entangled pair states that possess certain symmetries described by a
pulling-through algebra A. Such a PEPS will also be called A-injective PEPS or MPO-injective PEPS.
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As the primary examples for pulling-through algebras are pivotal cosemisimple weak Hopf algebras, and
the representations of such algebras form a pivotal fusion category, our definition can be translated into
a category theoretical language. In fact, when the pulling-through algebra corresponds to a C∗-WHA, we
believe that our definition is equivalent to the formalism presented in [LFH+20]. We expect that the pulling-
through structure is actually more general than cosemisimple weak Hopf algebras; for example, certain non-
semisimple pivotal Hopf algebras will also admit a pulling-through structure. States corresponding to those
models have unusual properties. We show that MPO-injectivity is a topological property in the sense that
it is invariant under the blocking of tensors (and thus under renormalization); in fact, our definition has
been designed to satisfy this property. We also show, in the special case where A is a C∗-Hopf algebra, the
relation between this PEPS and the generalization of Kitaev’s toric code to C∗-Hopf algebras [BMCA13].
Following [BMW+17], we then construct a set of states that we call local excitations and that are states
that differ only locally from the PEPS. We also construct a set of local operators that form a representation
of the Drinfeld double D(A∗) of the Hopf algebra A∗ and show that these local operators transform the
local excitations among each other. We identify the anyons of the model as the irrep sectors of the local
excitations under the action of these local operators.

Let us first recall the definition of two dimensional PEPS. A 2D PEPS is defined on a directed pseudo-
graph10 G = (V , E) that can be drawn on an orientable 2-manifold manifold such that no edges intersect (like
in the case of a planar graph). The figure below shows a local part of such a graph (locally it is a planar
graph). For convenience we have numbered the vertices and we have displayed a circular arrow around vertex
5 depicting the orientation of the 2-manifold:

1

2
3

4

5

.

The areas enclosed by minimal (unoriented) cycles in the graph are called plaquettes. Such a plaquette is
denoted by light gray shading between the vertices 1, 2 and 3. Let Eop denote the set of edges in E with
reversed orientation, and for any e ∈ E or e ∈ Eop let ē denote the edge e with the opposite orientation.

To every edge e ∈ E we assign a finite dimensional complex vector space, Ve. Let us also assign a vector
space Vē to every oppositely oriented edge ē ∈ Eop such that Vē = V ∗

e . Note that this relation is symmetric,
i.e. Ve = V ∗

ē = V¯̄e. To every vertex we assign a (finite dimensional) Hilbert space, Hv. Finally, to each
vertex v we assign a tensor Av ∈ Hv ⊗⊗e∈Nv

Ve, where Nv denotes the set of edges e ∈ E ∪ Eop that
connect v with another vertex such that the orientation of e points away from v. Given all these data, the
state defined by the PEPS is obtained by contracting

⊗

v Av along the edges of the graph; note that this
contraction is possible, because if e is an edge between v and w, then the tensor component corresponding
to e in the tensor Av is Ve, while in the tensor Aw it is Vē = V ∗

e . The state defined by the PEPS can be
represented, using the graphical notation of tensor calculus, as

|Ψ〉 =

A1

A2

A3

A4

A5
.

10by pseudo-graph we mean a graph where multiple edges are allowed between vertices
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Let us now define MPO-injective PEPS. These are PEPS such that the PEPS tensors are invariant
under certain symmetry operations acting on their virtual degrees of freedom, i.e. on the tensor components
⊗

e∈Nv
Ve of the tensor Av. More precisely, a PEPS tensor Av ∈ Hv ⊗

⊗

e∈Nv
Ve is called Ov-injective for

an operator Ov ∈ End(
⊗

e∈Nv
Ve), if there are tensors Bv and Cv such that

Av

=
Bv

and

Av

Cv

= ,

where the red circle denotes the operator Ov. Note that if Ov is a projector, then one can choose Bv = Av.
If, on the other hand, Ov is nilpotent, Bv and Av are different. This is the case when the symmetries
of the tensor form a non-semisimple algebra. In the following we will define the symmetry operators Ov
for each vertex v ∈ V . To do so, we need the following additional data. First, a pulling-through algebra
(A,Ω, T, g), and second, representations φe : A → End(Ve) on the vector spaces Ve such that φē = φ̄e, where
φ̄(x) = [φ ◦ T (x)]T for all x ∈ A. Note that as T is idempotent, this relation is symmetric: if φē = φ̄e, then
φe = φ̄ē as well. Finally, for every plaquette in the graph, we will choose a vertex from the ones surrounding
the plaquette. Below we denote such a choice by putting a black dot close to the vertex chosen inside each
plaquette:

1

2

3

4

5

.

The symmetry operator Ov around each vertex v is an MPO representation of the element Ω of the pulling-
through algebra A. The concrete form of the MPO is designed such that it is a generalization of G-injective
PEPS [SCP10] and such that the PEPS remains MPO-injective even after blocking. Let us explain through
an example what this MPO representation exactly is. The symmetry operator Ov, around the vertex 3,
takes the following form:

= .

As stated above, this MPO is an MPO representation of Ω. The blue dot represents the boundary b(Ω);
remember that as Ω is cocommutative, the placement of the boundary is not relevant. The orientation of
the virtual index of the MPO follows the orientation of the surface, as the arrow on it shows. The MPO
consists of two different MPO tensors. For an outgoing edge e, we use the MPO tensor denoted by black
dots given by

=
∑

x

φe(x) ⊗ ψ(δx),

where x runs over a basis of A and ψ is a representation of A∗ on the virtual vector space denoted by red
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indices. For an incoming edge e, we use the white MPO tensor given by

=
∑

x

φe ◦ T (x)⊗ ψ(δx) =
∑

x

φē(x)
T ⊗ ψ(δx).

Note that this white tensor is constructed the same way as the black tensor, but for the construction we
use the wrong representation: φē instead of φe (in the formula transpose appears because on the l.h.s. we
read the tensor as a linear map from the bottom to the top). Changing the orientation of the edge e (i.e.
replacing it with ē) changes the black tensors to white and white tensors to black. Finally, as the vertex 3
was selected for the plaquette surrounded by vertices 1, 2 and 3, we insert the linear functional g between
the edges connecting the vertex 3 to the vertices 1 and 2.

Using the above definition of an MPO-injective PEPS tensor, an MPO-injective PEPS – after applying
the inverse tensors Cv at each vertex v – can be written as the following tensor network:

.

In general pulling-through algebras (such as a pulling-through algebra that originates from a pivotal WHA
that is not a C∗-WHA) different placements of the group-like elements g lead to different states. In a
pulling-through algebra that originates from a C∗-WHA, however, all these states are related to each other
by local operations, and in fact, one can define MPO-injective PEPS in a more translation invariant way. To
understand why, recall [BNS99] that in a C∗-WHA the positive spherical element g ∈ A∗ can be written as
g = gLg

−1
R = g−1

R gL such that gR = S(gL) and such that there are algebra elements GL, GR ∈ A satisfying
the following relations:

gL
=

GL

and
gL

=

GR

,

gR
=

GL

and
gR

=

GR

.

The equation GL = S(GR) also holds and it is easy to check that GL = T (GR) holds as well. Applying thus
T on the previous relations, we obtain that the white tensors satisfy

gL
=

GR

and
gL

=

GL

,

gR
=

GR

and
gR

=

GL

.

Let us write now g = gLg
−1
R in the definition of the MPO-injective PEPS. Using the relations above, we obtain

then that g−1
R translates to a local operator acting on the vertex which g belongs to, while gL is delocalized
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around the plaquette. Let us illustrate this fact by depicting one of the plaquettes of the previous PEPS:

gLg
−1
R

=

G
−1
R

gL
=

G
−1
R GR

=

G
−1
R

gL

Applying thus GR on the appropriate tensor components, we obtain that the state defined by

,

where the yellow dot now denotes gL instead of g = gLg
−1
R , is also MPO-injective and in this state the yellow

dots move freely around the plaquette:

= .

As we have seen above, the yellow dot does not even have to appear on the virtual index of the MPO, it can
be instead inserted between two PEPS tensors anywhere around the plaquette.

7.1 Scale independence

In this section we introduce an operation on states that we call blocking and show that an MPO-injective
PEPS stays MPO-injective even after blocking. Blocking is the basis of renormalization (there it is followed
by an isometry that gets rid of certain degrees of freedom) and has a natural representation in tensor
networks. Blocking simply means that we treat certain – neighboring – particles together: for example,
given a three-partite state |ψ〉 ∈ H1 ⊗H2 ⊗H3, the blocking of particles 2 and 3 means that we reinterpret
|ψ〉 as a two-partite state in H1 ⊗H23, where H23 = H2 ⊗H3.

In PEPS, blocking is a partial contraction of the tensor network, i.e. that in a given region we replace all
tensors by one tensor that is the result of the contraction of the tensors in that region. The blocked tensor
network is then another, coarser tensor network. For example, in the tensor network below blocking of four
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tensors results in the following new tensor network:

→ .

As the example above shows, sometimes two edges e and f that were distinct edges in the original PEPS
become a single double edge in the blocked tensor network. We can block these two edges together, i.e.
consider Ve ⊗ Vf as a single vector space. Pictorially we express this as writing a single edge instead of the
two distinct ones:

→ .

In fact, every blocking can be broken down into a series of simple steps: in each step we either block two
neighboring tensors that are connected by a singe edge, possibly leading to double edges in the PEPS, or
block two edges together to remove a double edge from the PEPS. Note that in the first case the number
of plaquettes does not change (if there are double edges after blocking, the area enclosed between the two
edges is considered as a plaquette), while in the second case the number of plaquettes decreases by one.

In the following we will show that an MPO-injective PEPS stays MPO-injective even after blocking.
Let us consider a pulling-through algebra A and an A-injective PEPS. We first show that blocking two
neighboring tensors in the A-injective PEPS results in another A-injective PEPS, and then, that removing
double edges does not change the A-injectivity property either.

Let us now consider the blocking of two neighboring A-injective PEPS tensors that are connected to
each other with a single edge. After applying the inverse tensors on the two PEPS tensors and using the
pulling-through property, we obtain

= .

Due to non-degeneracy, applying a suitable linear functional to the inner two indices, the inner MPO disap-
pears leading to a single MPO on the boundary:

= = .
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We have thus constructed an inverse tensor (the inverse tensors of the individual PEPS tensors contracted
with the matrix describing the linear functional used above) for the blocked tensor, and showed that it is
MPO-injective. Let us note that in the process neither the “outgoing arrow is black tensor, incoming arrow
is white tensor” nor the “one green dot per plaquette” property have changed, and thus not only the blocked
tensor is MPO-injective but the whole PEPS remains MPO-injective as well.

Let us now consider the blocking of two neighboring edges e and f . Assume that the edges are oriented
in the opposite direction and that the “one green dot per plaquette” is on the left vertex:

.

Here we did not indicate the other MPO tensors on the two vertices. In order to block these two edges
together, let us first reorient the lower edge, f . The reorientation of the arrow implies that we change the
corresponding vector space Vf to Vf̄ and the representation φf to φf̄ . This also changes the black and white
tensors and thus the tensor network notation becomes:

.

Blocking the edges e and f now simply means replacing the two individual A-modules Ve and Vf by their
tensor product Vf ⊠ Ve. After blocking, we obtain a single edge with two MPO tensors at the two ends:

.

Here the black MPO tensor is built using the representation φfe = φf ⊠ φe, while the white MPO tensor is
built using the transpose of the representation φ̄fe,

φfe ◦ T = (φf ⊗ φe) ◦∆ ◦ T = (φf ◦ T ⊗ g ⊗ φe ◦ T ) ◦∆2
op.

This equation shows that the single (blocked) white tensor is the concatenation of the two white tensors
with the green dot in the middle. The fact that the equation contains ∆op instead of ∆ simply reflects the
fact that as the orientation of the two circles are the same, the arrow on the virtual index (red line) on the
left is oriented in the opposite direction as on the right.

As the blocking leaves the rest of the PEPS invariant, blocking two edges keeps the PEPS MPO-injective.
We have thus shown that MPO-injectivity is invariant both under the blocking of neighboring vertices and
under the blocking of neighboring edges. As blocking any number of tensors in a simply connected region can
be decomposed into a series of such simple blocking steps, we have proven that MPO-injectivity is invariant
under blocking.

7.2 Relation to the Kitaev model

The tensor networks defined above are strongly linked to the generalized Kitaev models defined in [BMCA13].
In this section we show the concrete connection. First, let us consider an MPO-injective PEPS constructed
from a C∗-Hopf algebra A. Based on the construction of this PEPS, we can define another multi-partite
state |Ψ〉 where the individual degrees of freedom are described on the Hilbert space A. Second, we construct
a parent Hamiltonian for |Ψ〉 – the Kitaev Hamiltonian – that is the sum of commuting projectors. Finally,
we define the Drinfeld double D(B) of any Hopf algebra B and construct a set of local operators that form a
representation of D(A∗); we also construct a set of local deformations of |Ψ〉 and show that this set of states
S is invariant under the action of D(A∗). We identify the anyons of the model as the irreps sectors of S
under the action of D(A∗).
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Let us first show how the state |Ψ〉 is defined. For that, consider the PEPS defined by a C∗-Hopf algebra.
The construction of these states is easier to understand than in the general case, because there are no
group-like elements g present in it (as g = ǫ). The PEPS, after applying the inverse tensors, read as

|Φ〉 = .

This vector |Φ〉 lives in the vector space
⊗

v∈V

(
⊗

e∈Nv
Ve
)

, because at every vertex v the degrees of freedom
are

⊗

e∈Nv
Ve. Note that in this tensor product every edge appears exactly twice, once with the orientation

defined by the graph and once with opposite orientation. Let us now rearrange this tensor product and group
together the degrees of freedom corresponding to the two orientations of each edge. After this regrouping,
we can interpret the previous vector space as

⊗

e∈E (Ve ⊗ Vē). Finally note that as Vē = V ∗
e and for every

finite dimensional vector space V , the tensor product V ⊗V ∗ is isomorphic to End(V ), this vector space can
also be interpreted as

⊗

e∈E End(Ve), i.e. one can think of |Φ〉 as

|Φ〉 ∈
⊗

e∈E

End(Ve).

Note that, by construction, |Φ〉 is not supported on the whole Hilbert space
⊗

e∈E End(Ve), but instead only
on the subspace

⊗

e∈E φe(A), where φe is the representation of A used on the edge e. This implies that we
can define another vector, |Ψ〉, as

|Ψ〉 =
(

⊗

e∈E

φ−1
e

)

|Φ〉 ∈
⊗

e∈E

A.

If A is a C∗-Hopf algebra, there is a scalar product on A, and thus the vector space
⊗

e∈E A is a finite
dimensional Hilbert space. Therefore |Ψ〉 can be interpreted as a (possibly unnormalized) state. The maps
φ−1
e act locally, therefore this state is again a PEPS – the virtual legs of the PEPS tensor are the red lines

in the figure above. This PEPS is then the same (up to a choice of orientation of the arrows on both the red
and black lines) as the one described in [BMCA13].

7.2.1 The Kitaev Hamiltonian

Building on the results of [BMCA13], in this section we explicitly construct the Kitaev parent Hamiltonian
for the state |Ψ〉 defined in the previous section. To make the reading easier, we will use a graphical language
to depict the action of the defined Hamiltonian. This graphical language is nothing but the tensor network
representation of the state using the representation

⊗

e∈E φe. For simplicity, let us restrict ourselves to a
square lattice, and fix the orientation of the lattice such that all vertical edges point from bottom to top and
all horizontal ones from right to left (i.e. the product of two elements on the vertical edge reads from top to
bottom and on the horizontal edges from left to right).

The Kitaev Hamiltonian consists of two type of terms, the plaquette terms Bp and vertex terms Av. The
total Hamiltonian is the sum of these terms,

H = −
∑

p∈plaquettes

Bp −
∑

v∈vertices

Av.

Each plaquette term Bp acts on the edges surrounding the plaquette p, while each vertex term Av act on
the edges connected to the vertex v. We will define Bp and Av such that they are orthogonal projectors
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and any two such terms commute. The MPO-injective PEPS |Ψ〉 is a frustration-free ground state of this
Hamiltonian.

Let us now define the operator Av for a given vertex v. As stated above, this operator acts on the edges
surrounding the vertex v. On these four particles, its action is given by:

Av : x⊗ y ⊗ z ⊗ v 7→
∑

(Ω)

x · Ω(1) ⊗ S(Ω(2)) · y ⊗ S(Ω(3)) · z ⊗ v · Ω(4) ,

where Ω is the Haar integral of A, x is the particle above the vertex, y is the one on its right, z is the one
below and v is the one on the left. The concrete form of Av depends on the orientation of the lattice. Using
the graphical representation, it is easier to visualize the action of Av:

Av :
y

x

v

z

7→

b(Ω)

y

x

v

z

,

i.e. it multiplies the four particles by the (translation invariant) MPO ∆3(Ω), each from the side that is
closer to the vertex. As Ω is a projector, it is clear that Av is a projector as well. As both representations
x 7→ (y 7→ yx) and x 7→ (y 7→ S(x)y) of Aop are ∗-representations, Av is also self-adjoint. Note that for any
two different vertices v1 and v2 the Hamiltonian terms Av1 and Av2 clearly commute: if v1 and v2 are not
neighboring vertices, they act on different particles; if v1 and v2 are neighboring, there is a single particle on
which both of them acts, but if Av1 acts from the left, then Av2 acts from the right of the particle.

Let us now define the operator Bp for a given plaquette p. As stated above, this operator acts on the
edges surrounding the plaquette. On these four particles, its action is given by

Bp : x⊗ y ⊗ z ⊗ v 7→
∑

xyzv

ω(S(x(1))S(y(1)z(2)v(2))) · x(2) ⊗ y(2) ⊗ z(1) ⊗ v(1),

where ω is the Haar integral of A∗ and x is the particle on the right of the plaquette, y is the one on top, z is
the one on the left and v is the particle below the plaquette. Again, the action of Bp is easier to understand
using the graphical representation:

Bp : x

y

z

v

=
b(x)

b(y)

b(z)

b(v)

7→
b(x)

b(y)

b(z)

b(v)

c(ω)

,

where the matrix c(ω) is the boundary describing the MPO representation of ω, see Eq. (4.14). Similar to
the vertex terms, the operators Bp are projectors, and as the representations f 7→ (x 7→ x(1)f(x(2))) and
f 7→ (x 7→ f ◦ S(x(1)) · x(2)) are both ∗-representations of A∗, they are also self-adjoint. If p1 and p2 are
plaquettes that are not neighboring, then Bp1 and Bp2 act on different particles, and thus they commute. If
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p1 and p2 are neighboring, then there is one particle both acts on. One of the operators, however, act from
the right, the other from the left, and thus even in this case, Bp1 and Bp2 commute.

Let us now show that the operators Av and Bp commute, i.e. that the Kitaev Hamiltonian is indeed a
sum of commuting orthogonal projectors. If the vertex v is not a vertex on the plaquette p, then Av and
Bp are acting on different particles and thus they trivially commute. If the vertex v is one of the vertices
around the plaquette, we first calculate the graphical representation of the action of AvBp on the six particles
surrounding both the plaquette and the vertex:

Av · Bp :
x

y

z

vu

s

7→
b(x)

b(y)

b(z)

b(v)

c(ω)

u

s

b(Ω)
.

Let us now calculate the action of BpAv.

Bp ·Av :

x

y

z

vu

s

7→
b(x)

b(y)

b(z)

b(v)

c(ω)

u

s

b(Ω) .

The two tensors in the middle – closed by arbitrary boundary condition b(w) on the virtual index and after
straightening the physical index – read as:

b(w)

=
∑

(w)

w(1)S(w(2)) = ǫ(w) · 1 =
b(w)

, or equivalently, = . (7.1)

Using this identity in the expression for BpAv, we obtain that the two loops, the virtual and physical one,
can be untangled, and thus BpAv = AvBp, i.e. the Hamiltonian terms Av and Bp commute.

Let us finally show that the state |Ψ〉 is a ground state of the Hamiltonian H . First, as Ω is a projector,
|Ψ〉 is clearly invariant under each term Av. Let us now show that it is also invariant under all Bp, then this
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will mean that |Ψ〉 is a frustration-free ground state of H . To see that |Ψ〉 is invariant under the action of
Bp, note that the state, locally around a plaquette, looks like

The action of Bp is thus

7→

c(ω)

=

c(ω)

Where in the last equation we have used Eq. (7.1) in each corner. The result is therefore just a multiplication
with the complex number ω(1) = 1, i.e. the state |Ψ〉 is invariant under Bp.

7.2.2 The Drinfeld double and anyons

In this section we define the Drinfeld double D(A) of a finite dimensional Hopf algebra A and, for each
pair of plaquette p and neighboring vertex v, a set of local operators including the Hamiltonian terms Av
and Bp that forms a representation of D(A∗). We also define a set of sates that differ only locally from
the state |Ψ〉. The defined local operators transform these states amongst each other, and thus these states
form a D(A∗)-module. We identify the anyons of the model as the subsets of states that form irreducible
D(A∗)-modules (see also [BMW+17]).

Let us first define the Drinfeld double of a Hopf algebra.

Definition 7.1. Let A be a finite dimensional Hopf algebra. The Drinfeld double D(A) is a Hopf algebra
constructed as follows. As a vector space, it is A∗ ⊗ A. Given f ∈ A∗ and x ∈ A we will write f ⊲⊳ x for
their tensor product. The coproduct in D(A) is given by

∆(f ⊲⊳ x) =
∑

(f),(x)

(f(2) ⊲⊳ x(1))⊗ (f(1) ⊲⊳ x(2)).

The product in D(A) is given by

(f ⊲⊳ x) · (g ⊲⊳ y) =
∑

(g)(x)

g(1) ◦ S−1(x(3)) · g(3)(x(1)) · fg(2) ⊲⊳ x(2)y. (7.2)

One can verify that the above product and coproduct indeed define a Hopf algebra. The unit of D(A)
is ǫ ⊲⊳ 1. Linear functionals on D(A) are of the form x ⊲⊳ f (x ∈ A and f ∈ A∗) and in particular, the
counit is given by 1 ⊲⊳ ǫ. Finally, the antipode in D(A) is given by S(f ⊲⊳ x) = S−1(f) ⊲⊳ S(x). If A is a
C∗-Hopf algebra, then D(A) is also a C∗-Hopf algebra with ∗ operation f ⊲⊳ x 7→ f∗ ⊲⊳ x∗. Note that, as
∑

(ǫ) ǫ(1) ⊗ ǫ(2) ⊗ ǫ(3) = ǫ⊗ ǫ ⊗ ǫ, the map

A → D(A), x 7→ ǫ ⊲⊳ x
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is both a homomorphism and a cohomomorphism. Similarly, as
∑

(1) 1(1) ⊗ 1(2) ⊗ 1(3) = 1⊗ 1⊗ 1, the map

A∗ → D(A), f 7→ f ⊲⊳ 1

is a homomorphism and an anti-cohomomorphism. Using the images of these maps, all elements in the
Drinfeld double can be written as

f ⊲⊳ x = (f ⊲⊳ 1) · (ǫ ⊲⊳ x).
The elements (f ⊲⊳ 1) and (ǫ ⊲⊳ x) satisfy the following commutation relation:

(ǫ ⊲⊳ x) · (f ⊲⊳ 1) =
∑

(f)(x)

f(1) ◦ S−1(x(3)) · f(3)(x(1)) · (f(2) ⊲⊳ 1) · (ǫ ⊲⊳ x(2)).

Let A now be a finite dimensional Hopf algebra and A∗ be its dual Hopf algebra. Let us now construct
the Drinfeld double of A∗. As a vector space, it is A ⊗ A∗, and thus (as a vector space) it is canonically
isomorphic to D(A). Let us make use of this isomorphism and write the elements of D(A∗) as f ⊲⊳ x instead
of x ⊲⊳ f . In this notation, the coproduct of the Drinfeld double D(A∗) is given by

∆(f ⊲⊳ x) =
∑

(f),(x)

(f(1) ⊲⊳ x(2))⊗ (f(2) ⊲⊳ x(1)),

and the product is given by

(f ⊲⊳ x) · (g ⊲⊳ y) =
∑

(f)(y)

f(3) ◦ S−1(y(1)) · f(1)(y(3)) · f(2)g ⊲⊳ xy(2). (7.3)

Again, the maps
A → D(A∗) : x 7→ ǫ ⊲⊳ x and A∗ → D(A∗) : f 7→ f ⊲⊳ 1

are homomorphisms. Similar as above, every element of D(A∗) can be written as

f ⊲⊳ x = (ǫ ⊲⊳ x) · (f ⊲⊳ 1).

The elements (ǫ ⊲⊳ x) and (f ⊲⊳ 1) of D(A∗) satisfy the commutation relation

(f ⊲⊳ 1) · (ǫ ⊲⊳ x) =
∑

(f)(x)

f(3) ◦ S−1(x(1)) · f(1)(x(3)) · (ǫ ⊲⊳ x(2)) · (f(2) ⊲⊳ 1). (7.4)

Let us now define a set of local operators acting on an A-injective PEPS and show that they form a
representation of the Drinfeld double D(A∗). All of these operators will act on the particles surrounding a
neighboring plaquette and vertex pair (p, v). We will define two types of operators. The first type is denoted
by Aw(p,v) for any w ∈ A, it acts only on the particles surrounding the vertex and represents the element

ǫ ⊲⊳ w ∈ D(A∗). The second type is denoted by Bf(p,v) for any f ∈ A∗, it acts only only on the particles

surrounding the plaquette and it represents the element f ⊲⊳ 1 ∈ D(A∗).
Let us first define the operators Aw(p,v) for a given plaquette p, vertex v and algebra element w ∈ A. We

define such an operator by its action on the four particles around the vertex; this action is defined by the
graphical representation, using the injective representations φ(v,w) on each edge. In the figure below, the
plaquette p is in the upper right corner of the vertex. The action of Aw(p,v) is given by

Aw(p,v) :
x

v

z

y

7→
b(w)

x

v

z

y

.
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Note that the MPO representing this operator is oriented in the opposite way as in the definition of the
PEPS and in the definition of the vertex term of the Hamiltonian. This expression reads as

Aw(p,v) : x⊗ y ⊗ z ⊗ v 7→
∑

(w)

w(4) · x⊗ w(3) · y ⊗ z · S(w(2))⊗ v · S(w(1)) .

Here and in what follows we omit the representations φ when translating between the figures and the
algebraic formulas. It is easy to check that the operators Aw(p,v) form a representation of A and that this

representation is a ∗-representation. Notice that the vertex term Av is exactly AΩ
(p,v), because the Haar

integral Ω is invariant under the antipode S:

b(Ω)

=

b(S(Ω))

=

b(Ω)

,

where the last equation is Eq. (5.21). The plaquette term Av is the multiplication with the MPO on the left,
while AΩ

(p,v) is multiplication with the MPO on the right. As Ω is cocommutative, the particular choice of

the plaquette p does not matter, i.e. Av = AΩ
(p,v) holds for any choice of the plaquette p next to the vertex v.

Let us now define the operator Bf(p,v) for the plaquette p, vertex v and linear functional f ∈ A∗. In the

figure below, the vertex v is in the lower left corner of the plaquette p. The action of Bf(p,v) is given by

Bf(p,v) : y

z

v

x

7→
b(y)

b(z)

b(v)

b(x)

c(f)

,

or equivalently, by

Bf(p,v) : x⊗ y ⊗ z ⊗ v 7→
∑

xyzv

f(x(2)S(y(1))S(z(1))v(2)) · x(1) ⊗ y(2) ⊗ z(2) ⊗ v(1).

It is easy to check that these operators form a ∗-representation of A∗. The plaquette term Bp of the Kitaev
Hamiltonian is exactly the operator Bω(p,v), where ω is the Haar integral of A∗. As ω is cocommutative, the
particular choice of v does not matter, i.e. Bp = Bω(p,v) for any vertex v around the plaquette p.

Let us now define a linear map D(A∗) → End(A6) for a given pair of plaquette p and vertex v by

f ⊲⊳ w 7→ Aw(p,v) · Bf(p,v), (7.5)

for all f ∈ A∗ and w ∈ A, and by linear extension, on the whole D(A). Below we show that this map defines
a representation of the Drinfled double D(A) (see also [BMCA13]). As the maps

f ⊲⊳ ǫ 7→ Bf(p,v) and ǫ ⊲⊳ w 7→ Aw(p,v)
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form representations of A∗ and A, respectively, and (f ⊲⊳ w) = (ǫ ⊲⊳ w) · (f ⊲⊳ 1), we only have to check

that the commutation relation Eq. (7.4) holds. Let us therefore compare the action of Aw(p,v) · B
f

(p,v) and

the action of Bf(p,v) · Aw(p,v). The graphical representation of the action of the operator Aw(p,v) · B
f

(p,v) is the

following:

Aw(p1,v1) · B
f

(p2,v2)
:

x

y

z

vu

s

7→ b(x)

b(y)

b(z)

b(v)

c(f)

u

s

b(w)

,

where v is the vertex with all four edges drawn, and p is the plaquette with all four bordering edges drawn.
Let us now depict the action of the operator Bf(p,v) · Aw(p,v). To do that, note that as we act first with the

operator Aw(p,v), the coproduct in the operator Bf(p,v) also applies ot the MPO representation of w. The

graphical representation of this action is thus

Bf(p,v) · Aw(p,v) :
x

y

z

vu

s

7→
b(x)

b(y)

b(z)

b(v)

c(f)

u

s

b(w) .

This operator describes the action of the operator

∑

(f)(w)

f(3) ◦ S(w(1)) · f(1)(w(3)) · A
w(2)

(p,v) ·B
f(2)

(p,v),

and thus, as this commutation relation is the same11 as Eq. (7.4), the map in Eq. (7.5) describes a represen-
tation of the Drinfeld double D(A∗).

11remember that A is a C∗-Hopf algebra, and thus S−1 = S
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Let us now construct a set of states that differ from |Ψ〉 only on a given pair of plaquette p and vertex
v. The states, in the bulk, are given by

,

i.e. at the position defined by the vertex and plaquette we insert a rank-three tensor in W ⊗ ψ(A) ⊂
W ⊗End(W ), where W is the virtual vector space of the MPO and ψ is the corresponding representation of
A∗, and we continue with the MPO starting from the given point. If the state is defined by open boundary,
then the boundary has one more index than the boundary describing the ground state |Ψ〉 of the PEPS. If
the state is defined on closed boundary, then the string has to terminate at some point; at this termination
we will insert another rank-three tensor the same way as above. That is, on closed boundary, we do not
define a state with a single defect in it, instead, only states that differ from |Ψ〉 at least in two different
positions (note, however, that one can construct periodic boundary states with an odd number of defects).

Both operators Bf(p,v) and Aw(p,v) map a state with a defect at the pair of plaquette p and vertex v to

another state with a defect at the same position, but this state might be described by a different rank-three
tensor. The action of the operators Bf(p,v) and A

w
(p,v) on the rank-three tensor can be depicted as

Bf(p,v) : 7→
c(f)

and Aw(p,v) : 7→
∑

µ

b(w)

µµ

Or, by formulas, if the tensor is given by |v〉 ⊗ b(x), then

Bf(p,v) : |v〉 ⊗ b(x) 7→
∑

(f)

ψ(f(2))|v〉 ⊗ f(1)(x(1)) · f(3) ◦ S(x(3)) · b(x(2)),

Aw(p,v) : |v〉 ⊗ b(x) 7→ |v〉 ⊗ b(xw).

These states thus form a D(A∗)-module. We identify the anyons of the model as the irrep sectors of
this module, i.e. an anyon is a set of states, each of which are locally differ from the ground state of the
Hamiltonian and such that the above defined local operators do not mix the different anyons. Note that as
the Hamiltonian, in general, is not in the center of D(A∗), an anyon might not have a definite energy (i.e.
the different states in the anyonic sector might have different energies, see also [KL17]).
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Lemma A.1. In a cosemisimple WHA, the following holds for all a, b, c ∈ Irr(A∗):

∑

µ

Zā

Z
−1
c̄

Z−1
a

Zc

µ µ

āa

b̄

c̄

c

c̄

c

ā a

b̄
=
∑

µ

wc
wa

µ µ

c

b̄

a

b̄

c

a ,

where the constants wc and wa are defined in Eq. (5.24).

Proof. Using Eq. (5.24), one can write

1

wc

∑

µ
Z

−1
c̄Zc

µ µ
ā

b̄

c̄

c

c̄

c

ā

b̄ =
∑

ν

ν ν

c̄

ā

b̄

c

c̄

ā

b̄

c

rcrc
=
∑

dµν

µ µ
ν ν

d

ā

b̄

c

d

ā

b̄

c

rcrc
,

where in the second equality we have used that N rc
dc = Nd

rcc̄
(see Eq. (5.23)) and that rc = lc̄ (see Proposi-

tion 5.3), and thus that the sum over µ on the r.h.s. runs from 1 to N rc
dc = Nd

rcc̄
= Nd

lc̄c̄
= δdc̄, i.e. it is an

empty sum if d 6= c̄ and it consists of a single term if d = c̄. Due to associativity (Eq. (4.6)), the r.h.s. can
be further rewritten as

∑

dµν
µ µ

ν ν

d

c

b̄ā

d

c

b̄ā rcrc

= δrcra
∑

ν ν ν

a

c

b̄ā

a

c

b̄ā rara

= δrcra
1

wa

∑

µ

Z
−1
āZa

µ µ

b̄

c

a

ā

a

ā

b̄

c

,

where in the first equation we have used that Ne
ād = Nd

ae (see Eq. (5.23)), and that it is non-zero for e ∈ E
if and only if e = ra, and in this case it is δda (see Eq. (5.9)); in the second equation we have used again
Eq. (5.24). Finally note that N c̄

āb̄
= Na

b̄c
is non-zero only if rc = ra, and thus one can drop the prefactor

δrcra . Rearranging the resulting equation leads to the desired result.

Let us now restate and prove Lemma 5.1:

Lemma 5.1. Let A be a cosemisimple WHA, and g be the linear functional defined in Eq. (5.25). Then
there exists an N c

ab ×N c
ab matrix Bcab such that the linear functional g ∈ A∗ satisfies

c

g−1

a
g

b

g µ

=
∑

ν

(Bcab)µν · c

a

b

ν

and c

g−1

a
g

b

gν

=
∑

κ

(Bcab)κν
c

a

b

κ

. (5.31)

Moreover, (Bcab)
2
= IdNc

ab
and the following equation holds as well:

∑

µ
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ZāZ−1
a

µ µ

āa

c

b b

ā a

c

=
∑
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a a
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b

c

=
dadb
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c

a

b

c

µ ν

.

Proof. Let us apply Eq. (5.22) three times. The first application yields

Zb̄

µ

c̄

b̄ b

ā =
∑

µ

(

C c̄
b̄ā

)

µν

ν

c̄

b

ā .
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The second application yields

Zb̄
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b̄ b
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Finally, the third application yields
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Ĉ ābc̄

)

νκ

Zā
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We have thus obtained that there exists an invertible matrix Y cab such that

Zb̄

Z
−1
c̄

Zā

µ
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c

b̄

b

ā

a

=
∑

ν

(Y cab)µν
c
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b

ν

,

and in fact, Y cab = C c̄
b̄ā
Ĉ ābc̄C

b
āc. Similarly, by three consecutive applications of the inverse relations of Propo-

sition 5.2,

Z−1
a
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d
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ā
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=
∑
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d

a

b ,

we conclude that there is an invertible matrix Xc
ab such that

Z
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ā

Z
−1

b̄

Zc̄
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ā

b
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.

In fact, Xc
ab = (Cbāc)

−1(Ĉ ābc̄)
−1(C c̄

b̄ā
)−1, i.e. Xc

abY
c
ab = Id. Using similar arguments, we conclude that there

are invertible matrices X̂ and Ŷ such that
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.

64



Just as above, X̂c
abŶ

c
ab = Id. Moreover, by orthogonality of the fusion tensors, Ŷ cab = (Y cab)

T :

(Y cab)µν ·
Zc̄

c̄c
=

Zb̄

Zā

µ

ν

c̄

c

b̄

b

ā

a

=
(

Ŷ cab

)

νµ
·

Zc̄

c̄c
,

where in the first equality we have used the definition of Y cab and the orthogonality of the fusion tensors,

while in the second the definition of Ŷ cab and again the orthogonality of the fusion tensors. By a similar

argument, we obtain X̂c
ab = (Xc

ab)
T as well.

By definition of the linear functional g, we obtain that
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(A.1)
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c a
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κ

. (A.2)

We have thus obtained that Eq. (5.31) holds with

Bcab =
dadb
dc

wc̄
wāwb̄

· Ŷ cabX c̄
b̄ā
. (A.3)

Combining the two equations in Eq. (5.31), we obtain that
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. (A.4)

On the other hand, using Lemma A.1 three times, we obtain that
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,

or equivalently, as (da/wā)
2 = wa/wā, that

∑
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g
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g

c

a
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b
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c c
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.

This equation can be rearranged as

∑

µ

c c

a a

b b

µµ

=
∑

µ

c

g−1

c

g−1

a
g

b

g

a
g

b

g µµ

,

and therefore, comparing this equation to Eq. (A.4), we obtain that (Bcab)
2
= Id. Finally, using Eq. (A.3)
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and then Lemma A.1, we can write

∑

µν

(Bcab)µν
cc

aa
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ν µ

=
∑

µ

dadb
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wāwb̄
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a
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.

Part of the last statement follows using that da/wā = wa/da. Finally, using again Lemma A.1, we conclude
that

∑

µ
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ZāZ−1
a
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āa

c

b b

ā a

c
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∑

µ

wb̄

Zb̄Z
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c

a a

b̄ b

c

=
dadb
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c

a
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µ ν

.

Let us restate and prove now Lemma 5.2:

Lemma 5.2. For all a ∈ Irr(A∗), d2a = wawā > 0. Let moreover T cab be defined by T cab =
∑

µ (B
c
ab)µµ. Then

the following equations hold:

∑

b

T cab · db = da · δlalc · dc and
∑

x:lx=la

d2x =
∑

x:lx=ra

d2x.

Proof. Using Proposition 5.2,

∑

κ
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Zā Z−1
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κκ

ā
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ā
a

c

= wa
∑

κµν

(

Cbāc
)

κµ

(
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−1
)

κν

c c

a a

b b

νµ

.

Therfore, using Lemma 5.1, we obtain that Bcab can be expressed as

Bcab = wa ·
dc
dadb

·
(

Cbāc
)T

(Ccab)
−1
. (A.5)

As Bcab squares to the identity, the eigenvalues of Bcab are ±1, and thus T cab, the trace of Bcab, is an integer
with |T cab| ≤ N c

ab. Note now that Eq. (A.5) can be used to obtain the following expression for Bbāc:

Bbāc = wā ·
db
dadc

(Ccab)
T (Cbāc

)−1
= Cbāc ·

[

(Bcab)
−1
]T

·
(

Cbāc
)−1

= Cbāc · (Bcab)T ·
(

Cbāc
)−1

,

where in the first equation we have used that da = dā, in the second equation we have used that wādb/(dadc) =
(wadc/(dadb))

−1 and in the third that Bcab squares to the identity. Taking the trace of the two sides in this
equation, we obtain that T bāc = T cab. By a similar argument, we obtain that T cab = T a

cb̄
as well. The definition

of T cab and Lemma 5.1 implies that

∑

b

T cabdb · Idc =
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ā
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c

.
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Using Eq. (5.24), the fact that d2a = wawā, and the counit axiom Eq. (5.12), the r.h.s. can be further written
as

∑

b

T cabdb · Idc =
∑

bµ

dadc b

cc

la la

āā

a

µµ

= dadc
∑

b

b

cc

lala

=

{

dadc · Idc, if la = lc,

0 otherwise.

Therefore the equation
∑

b T
c
abdb = da · δlalcdc holds.

Following the proof of Theorem 2.3 in [ENO02] (see also [Bar15]), we can now prove that d2a = wawā is a
positive number. Notice first that the matrix T Ta Ta = TāTa is positive semidefinite (as Ta is a real matrix),
and thus all of its eigenvalues are non-negative. Let us show that d2a = wawā is one of its eigenvalues, then,
as neither wa nor wā is 0, this implies the the positivity of d2a. To see that it is an eigenvalue, we can check
that δralbdb is the corresponding eigenvector:

∑

bc

T dācT
c
abδralbdb =

∑

bc

T dācT
c
abdb = da

∑

c

T dācδlalcdc = da
∑

c

T dācdc = dadāδralddd,

where in the first equation we have used that T cab = 0 if δralb = 0 (as then N c
ab = 0 and |T cab| < N c

ab); the
same relation is used in the third equation, together with rā = la. In the last equation we have used ra = lā.
Finally note that dā = da and that the vector defined by δralbdb is non-zero.

Finally, let us prove that
∑

x:lx=la
d2x =

∑

x:lx=ra
d2x. For that, note that T

c
ab = T bāc = T ābc̄ = T c̄

b̄ā
, and thus

da
∑

x:lx=la

d2x =
∑
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T axbdxdb =
∑

xb

T ā
b̄x̄
dxdb =

∑

x̄b̄

T ā
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dx̄db̄ = dā

∑
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d2
b̄
= da

∑

x:lx=ra

d2x.

As da 6= 0, the statement follows.

B Example: string-net models

In the following we create WHAs from fusion categories that appear in the construction of string-net models.
For simplicity, we will restrict to fusion categories where the fusion multiplicities are all 0 or 1, N c

ab ≤ 1 for
all a, b, c. With this assumption, the pentagon equations for the F-symbols simplify to the equation:

[

F efcd
]g

l
[F eabl]

f
k =

∑

h

[F gabc]
f

h
[F eahd]

g
k

[

F kbcd
]h

l
. (B.1)

The MPO tensor used in the construction of the string-net models is then defined as

ba′f ′

f

l

e′

e a k′

k

l′
b′

= [F eabl]
f
k · δaa′δbb′δll′δee′δff ′δkk′ ,

where the dotted lines serve as a visual reminder of the δ prefactors. We will often make use of this visual
reminder of the δ prefactors and only write the non-zero components of the MPO tensor,

baf

f

l

e

e a k

k

l

b

= [F eabl]
f
k .

Each line is labeled by the simple objects of the category, i.e. it is an N -dimensional vector space (N is
the number of simple objects in the fusion category); thus the bond dimension of this tensor is N3. This
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bond dimension can be reduced as the tensor is block diagonal and it contains a zero block. The projectors
reducing the tensor (those that correspond to a non-zero block) are

Pb

a

b

c c′

b′

a′

= N c
ab · δbk · δaa′δbb′δcc′ . (B.2)

These are indeed projectors as Ne
fl ∈ {0, 1} and it is easy to see that they commute with the MPO tensor

(the F -symbols satisfy [F eabl]
f

k
= 0 unless Ne

fl 6= 0 and Nk
bl 6= 0). The bond dimension of each block is then

Dl =
∑

feN
e
fl. A similar decomposition holds for the vertical direction as well. There the projectors that

decompose the MPO tensor are

Pa
f a b

b′a′f ′

= Nf
ab · δbk · δaa′δbb′δcc′ .

Starting from this MPO tensor, let us define a linear space A as

A =
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∣
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⊕
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.

This linear space A has a natural coalgebra structure, with the coproduct given by

∆













X

b

l

k

baf

f

l

c

c a k

k

l

b













=
X

f ′

l

c′

baf f ′
a′b

f

l

c

c a k k a′ c′

k

l

b

f ′

l

c′

.

As above, taking repeated coproducts of a coalgebra element is the same as growing the size of the MPO.
In particular, the operation ∆ defined by this equation is associative. Note that as the pentagon equation
Eq. (B.1) can be rearranged as

[F eahd]
g
k

[

F kbcd
]h

l
=
∑

f

[

F efcd
]g

l
[F eabl]

f
k

[

(F gabc)
−1
]h

f
,

the coproduct can also be expressed as

cbh

l

d

c

lbk

g

d

e

e a k

k

d

h

g a h

=
∑

f

cfg

g

d

e

e f l

l

d

c

eak kb l

cbhhag

,

where we have defined the fusion tensors of the physical level as

l′fe′

eak kb l

= [F eabl]
f
k · δff ′δgg′δee′ and

g′fc′

cbhhag

=
[

(F gabc)
−1
]h

f
· δff ′δgg′δee′ .
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As the construction is built on a fusion category, there is a unique vacuum label that we denote by 1. The
counit of this coalgebra is given by

ǫ :
X

b

l

k

baf

f

l

c

c a k

k

l

b

7→
X

b

l

k

b

l

k =
X

b

l

k

baf

f

l

c

c a k

k

l

b

,

where we have used that
[

F k1bl
]b

k
= αb/αk independent of l and we have defined

f a b
= α−1

b · δfb · δa1 and kac = αk · δck · δa1.

Let us now show that A is not only a coalgebra, but it also has a pre-bialgebra structure. For that, we
define fusion tensors corresponding to this MPO tensor as

e

l

f

f ′

c

g

g′

d

e′

=
[

F efcd
]g

l
· δff ′δgg′δee′ and

e

l

f

f ′

c

g

g′

d

e′

=
[

(

F efcd
)−1
]l

g
· δff ′δgg′δee′ .

These tensors satisfy the associativity equations Eq. (4.6), because the equations

e

l

f
e

k

af

c

g

a

b

f

g

d

e

=
∑

h

[

F kbcd
]h

l
· g

h

a

e

k

a

a

b

f

f

c

g
g

d

e

and

e

l

f
e

k

a f

c

g

a

b

f

g

d

e

=
∑

h

[

(

F kbcd
)−1
]l

h
· g

h

a

e

k

a

a

b

f

f

c

g
g

d

e

both follow from the pentagon equation Eq. (B.1). More precisely, the left equation is exactly Eq. (B.1),
while the right equation is its inverse,

[

(

F efcd
)−1
]l

g

[

(F eabl)
−1
]k

f
=
∑

h

[

(F gabc)
−1
]h

f

[

(F eahd)
−1
]k

g

[

(

F kbcd
)−1
]l

h
.

We can now check for the key equation Eq. (4.8). The r.h.s. of Eq. (4.8) is

baf

f

c

g

g a h

h

c

b

g

d

e

e a k

k

d

h

=
∑

l

baf

f

l

e

e a k

k

l

b

f

c

g

g

d

e

b

c

h

h

d

k

,

where we have only written out the components that are not automatically zero due to the delta functions.
This equation is the pentagon equation rearranged:

[F gabc]
f

h
[F eahd]

g
k =

∑

l

[

F efcd
]g

l
[F eabl]

f
k

[

(

F kbcd
)−1
]l

h
.
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Let us now check for the l.h.s. of Eq. (4.8), i.e. the orthogonality of the fusion tensors:

∑

f ′gg′e′
e

l

f

f ′

c

g

g′

d

e′

e′′

l′′

f ′′

=
∑

f ′gg′e′cd

[

(

F efcd
)−1
]l′

g
· δff ′δgg′δee′

[

F efcd
]g

l
· δf ′f ′′δee′′ = δee′′δff ′′δll′′N

e
fl,

where again Ne
fl is one or zero, which gives the r.h.s. of Eq. (4.8). We have thus checked that A admits a

pre-bialgebra structure with the usual multiplication, except that we have not shown that A has a unit. For
that, note that the unit is of the form

1 =

baf

f

l

c

c a k

k

l

b

,

where we have defined

c

b

a

= α−1
a · δacδb1 and

c

b

a

= αa · δacδb1.
As the unit is described by a rank-one boundary that is supported only in the vacuum sector, the pre-
bialgebra A automatically satisfies the unit axiom. Dually, as the counit is also described by a rank-one
boundary that is supported only in the vacuum sector, A also satisfies the counit axiom. Therefore A is a
WBA.

Let us now show that A is a WHA as well. A cosemisimple WBA is a WHA if and only if for every irrep
sector a there is another irrep sector ā such that the symmetries N c

ab = N b
āc and N c

ab = Na
cb̄

hold. In our
case, as the fusion multiplicities originate from a fusion category, and thus these symmetries trivially hold.
Therefore A is a WHA. The matrices Zc and Z

−1
c describing the antipode can be expressed with the help of

the fusion tensors as Eq. (5.24):

Zc =
a

1

a

a

c̄

f

f

c

a

and Z−1
c =

1

[F c̄c̄cc̄]
1
1

f

1

f

f

c

a

a

c̄

f

.

It is easy to see that these matrices are the inverses of each other. The square of the antipode is realized by
the matrices

g
f

c

a a

c

f =
1

[F c̄c̄cc̄]
1
1

[

F ffcc̄

]a

1

[

(

F ffcc̄

)−1
]1

a

and
g−1

f

c

a a

c

f =
1

[F ccc̄c]
1
1

[F aac̄c]
f
1

[

(F aac̄c)
−1
]1

f
. (B.3)

B.1 Fibonacci anyons

The fusion rules are given by:

N1
11 = N τ

τ1 = N τ
1τ = N1

ττ = N1
ττ =1,

N τ
11 = N1

τ1 = N1
1τ =0.

The F-symbol
[

F efcd

]g

l
is proportional to Ng

fc · N l
cd · Ne

fg ·Ne
ld. Therefore the following entries are the only

non-zero ones and are given by
[

F 1
111

]1

1
= [F τ11τ ]

1
τ = [F ττ11]

τ
1 = [F τ1τ1]

τ
τ =

[

F 1
1ττ

]τ

1
= [F τ1ττ ]

τ
τ =

[F ττ1τ ]
τ
τ =

[

F 1
τ1τ

]τ

τ
= [F τττ1]

τ
τ =

[

F 1
ττ1

]1

τ
=
[

F 1
τττ

]τ

τ
= 1

[F ττττ ]
1
1 = ϕ, . [F ττττ ]

τ
τ = −ϕ, [F ττττ ]τ1 = [F ττττ ]

1
τ =

√
ϕ,

where ϕ = (
√
5− 1)/2. We also have

(

(

F dabc
)−1
)f

e
=
(

F dabc
)e

f
.
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B.1.1 The MPO tensor

The MPO tensor given in Eq. (B.2) has bond- and physical dimension 8. It is block-diagonal both in the
horizontal and vertical direction, with the two blocks labeled by 1 and τ . The block 1 corresponds to the
subspace spanned by |111〉, |τ1τ〉 and the block τ to the subspace spanned by |1ττ〉, |ττ1〉, |τττ〉. The two
simple cocommutative elements are given by

a1 ≡
(

[

F 1
111

]1

1
[F τ111]

1
τ

[

F 1
1τ1

]τ

1
[F τ1τ1]

τ
τ

)

⊕





0 0 0
0 0 0
0 0 [F τττ1]

τ
τ



 =

(

1 0
0 1

)

⊕





0 0 0
0 0 0
0 0 1





aτ ≡
(

[

F 1
11τ

]1

1
[F τ11τ ]

1
τ

[

F 1
1ττ

]τ

1
[F τ1ττ ]

τ
τ

)

⊕





0 0 0
0 0 0
0 0 [F ττττ ]

τ
τ



 =

(

0 1
1 1

)

⊕





0 0 0
0 0 0
0 0 −ϕ



 ,

where the basis is ordered as given above. The square of the antipode, as given by Eq. (B.3), is implemented
by

g
f

c

a a

c

f =

(

1 0
0 1

)

⊕





ϕ−1 0 0
0 ϕ 0
0 0 1



 .
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