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Abstract

The “RE trieval from MIxed Frequency Sampling” (REMIS) ap-
proach based on blocking developed in Anderson et al. (2016a) is con-
cerned with retrieving an underlying high frequency model from mixed
frequency observations.

In this paper we investigate parameter-identifiability in the Johansen
(1995) vector error correction model for mixed frequency data. We
prove that from the second moments of the blocked process after tak-
ing differences at lag N (N is the slow sampling rate), the parameters
of the high frequency system are generically identified. We treat the
stock and the flow case as well as deterministic terms.
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1 Introduction

Econometric analysis is often encountered with multivariate time series data
sampled at mixed frequencies. Examples for treating this are Zadrozny
(1988), Ghysels et al. (2007)[MIDAS-regression], Anderson et al. (2012), Schorfheide and Song
(2015), Ghysels (2016), Anderson et al. (2016a) and Chambers (2020). Iden-
tifiability is a prerequisite for consistent estimation (see, e.g., Deistler and Seifert,
1978; Pötscher and Prucha, 1997) and often is needed for economic interpre-
tation of effects related to particular model parameters. This article inves-
tigates identifiability of the model parameters in a Johansen (1995) vector
error correction model.
The general question is whether the internal characteristics, i.e. the model
parameters θ, can be retrieved from the external characteristics – in our case
observable second moments. Identifiability means that the mapping from the
parameters to these second moments is injective. Often injectivity of this
mapping can only be achieved for a certain subset of the parameterspace.
Here, we prove that identifiability can be obtained for a generic subset of the
parameterspace (see Anderson et al., 2016a).
As opposed to MIDAS-regression, where the observations at high frequency
are considered as additional information, we consider mixed frequency as ei-
ther a “missing-values” or a “dis-aggregation”-problem, by which we mean
the following: We commence from an underlying high frequency system (e.g.,
a VECM) parameterised by θ for a multivariate process

(yt)t∈Z =

((
yft
yst

))

t∈Z

,

with dimensions n, nf and ns for yt, y
f
t and yst respectively. Our aim is to

identify and estimate the high frequency system from the observed (mixed
frequency) data. The observational scheme is as follows: While the fast
variables yft are observed at t ∈ Z, for the slow variables yst we consider:
1. Stock-Case: yst is observed only at t ∈ NZ for some sampling rate N ≥ 2,
hence we have a missing-value problem.
2. Affine aggregation: we observe an affine transformation

wt := cw + c0y
s
t + · · ·+ cpcy

s
t−pc , (1)

where ci are known constant matrices for i ≥ 0, cw is a known vector and wt
is observed at t ∈ NZ. A special case of affine aggregation are flow variables:
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For example suppose yst = GDPt, the monthly gross domestic product of a
country. The quarterly GDP, wt, is the sum of three monthly GDPs. We call
yst latent whenever it is not directly observed. Hence, our aim is to retrieve
the underlying high frequency parameters θ from data observed according to
the observational schemes described above.1

With the procedure described above, we are able to model all kinds of lin-
ear dynamic relationships between latent and observed variables, whereas
the MIDAS (see, e.g., Ghysels, 2016) approach only covers relationships
between observed variables. After identifying the parameters one may inter-
polate missing values or dis-aggregate observations in a model based way by
using the retrieved parameters of the underlying high frequency system.
Estimation of continuous time models from mixed frequency data are in-
vestigated in Chambers (2003, 2016, 2020). In particular, Chambers (2003,
2020) consider co-integrating regressions and show that the scaled estima-
tors proposed, converge in distribution to functionals of Brownian motion
and to stochastic integrals. Hence, the estimators are (weakly) consistent.
Then, by Gabrielsen (1978) – and for the case of strong consistency by
Deistler and Seifert (1978) – the model parameters are identified.
For the stable vector auto-regessive model Anderson et al. (2012) and Anderson et al.
(2016a) either used the blocking approach (see also Filler, 2010; Ghysels,
2016) or the extended Yule-Walker equations (see Chen and Zadrozny, 1998;
Anderson et al., 2016a) to show g-identifiability. For the same model class
Gersing and Deistler (2021) present an alternative proof for identifiability us-
ing the so-called canonical projection form. This idea is also applied in this
paper. On the other hand, Deistler et al. (2017) show that the parameters
need not be identified in the auto-regressive-moving average (VARMA) case,
if the order of the MA polynomial exceeds the order of the AR polynomial.
This article is organised as follows: Section 2 starts with the vector error cor-
rection model developed in Johansen (1995) as the underlying high frequency
model. In Section 2.2 we describe the observational schemes considered in
detail. In particular, we introduce a stationary blocked process containing all
observed variables. Section 2.3 introduces conditions, which are later shown
to be sufficient for identifiability. We prove that these conditions hold generi-
cally in the underlying high frequency parameterspace. Section 3 extends the

1In this example we assume that the variable considered, yt, is integrated of order
one. If by contrast (log yt) is integrated of order one, the affine approximation of Aadland
(2000) in combination with the methodology developed in this article can be applied.
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REMIS approach to the non-stationary case: Here, we use the result from
Chambers (2020) that the cointegrating vectors can be identified from mixed
frequency data. First, we derive a state-space representation of the blocked
process that we call Canonical Projection Form (CPF). In this representa-
tion, the system matrices are simple transformations of the parameters of the
underlying high-frequency model. After that we start from the unique factor
of the spectrum of the blocked process (see, e.g., Deistler and Scherrer, 2022,
chapter 6.2 and 7.3) to get an arbitrary minimal realisation for this factor
and relate this to the CPF. From there we can retrieve the parameters of
the underlying high frequency system using the structural properties of the
CPF. Section 4 adds deterministic terms. Finally, Section 5 concludes.

2 Notation and Model Class

2.1 Representations and Parameterspace of the Un-
derlying High Frequency System

In the first step, we introduce the class of underlying high frequency systems:
We commence from a process which is integrated of order one and allows for
cointegration. Suppose (yt)t∈Z is n×1 and a solution on Z of the vector error
correction system:

∆yt = Πyt−1 +

p−1∑

j=1

Φj∆yt−j + νt, νt ∼WN (Σν) , (2)

where (νt)t∈Z is white noise and Π is of rank r > 0 in the case of cointegrating
relationships, but we also allow the case r = 0. Such solutions always exist
and can be constructed as described in detail in Bauer and Wagner (2012).
We obtain a unique factorisation of Π = αβ ′ with α, β ∈ Rn×r applying the
singular value decomposition to Π in the following way:

Π = U︸︷︷︸
n× n

diag(d1, ..., dr, 0, ..., 0)︸ ︷︷ ︸
D

V ′
︸︷︷︸
n× n

= U1︸︷︷︸
n× r

diag(d1, ..., dr)︸ ︷︷ ︸
D̃

V ′
1︸︷︷︸

r × n

= U1D̃V
′
1 = U1Q

−1

︸ ︷︷ ︸
α

QD̃V ′
1︸ ︷︷ ︸

β′

,

where Q is a non-singular matrix of elementary row operations that trans-
forms D̃V ′

1 into its reduced echelon form, such that QD̃V ′
1 =

(
Ir β ′

n−r

)
.
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We stack the parameters α, β,Φ1, ...,Φp−1 to a vector θV ECM ∈ Rd, where
d = nr + (n− r)r + (p− 1)n2.
We also have a VAR(p) representation for (yt) of the form,

yt = A1yt−1 + · · ·+Apyt−p + νt . (3)

Throughout this article, we assume that r and p are known a priori. We
obtain the representation in (3) by the mapping ψ:

ψ : θV ECM 7→ θAR, defined as

A1 = In +Π+ Φ1, Aj = Φj − Φj−1 for 1 < j < p, Ap = −Φp−1,

with θAR = vec
(
A1 · · · Ap

)
. On the other hand for a θAR which has a

corresponding VECM representation, we compute θV ECM as follows:

ψ−1 : θAR 7→ θV ECM

Π = −In +

p∑

j=1

Aj , Φ1 = −In +A1 +Π, Φ2 = Φ1 +A2, · · · , Φp−1 = −Ap.

Now, define the polynomial matrix a(z) = In −A1z − · · · − Apz
p where z is

a complex variable or the lag operator on Z depending on the context. For

č =

(
Ir
0

)
∈ Rn×r and č⊥ =

(
0

In−r

)
∈ Rn×(n−r), β⊥ :=

(
In − č(β ′č)−1β ′

)
č⊥,

and α⊥ defined analogously to β⊥. We impose the following assumptions
(Johansen, 1995, chapter 4):

Assumption 1 (Cointegrated VAR-System)

(C1) rkαβ ′ = r < n.

(C2) det(α′
⊥(In −

∑p−1
j=1 Φj)β⊥) 6= 0.

(C3) det a(z) = 0 ⇒ z = 1 or |z| > 1.

(C4) Σν = E νtν
′
t > 0.
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We define the parameterspace as follows:2

ΘV ECM,1 := ψ−1

(
ψ

(
R
d
∣∣∣
C1,C2

) ∣∣∣∣∣
C3

)
, Θ1 := ψ (ΘV ECM,1)

with Θ1
ψ
↔ ΘV ECM,1

Note that under these assumptions ψ is a homeomorphism. The set of vech Σν
with Σν ∈ R

n×n, Σν = Σ′
ν and Σν > 0 (condition (C4) in Assumption 1) is

denoted by Θ2. The overall parameterspace for the VAR(p) representation
is

Θ = Θ1 ×Θ2.

We will also need the state-space representation of (yt)t∈Z, which follows from
(3):




yt
...

yt−p+1




︸ ︷︷ ︸
Xt+1

=




A1 A2 · · · Ap

In 0
. . .

...
In 0




︸ ︷︷ ︸
A



yt−1
...

yt−p




︸ ︷︷ ︸
Xt

+




In
0
...
0




︸ ︷︷ ︸
B

νt (4)

yt =
(
A1 · · · Ap

)
︸ ︷︷ ︸

C

Xt + νt. (5)

Note that (4), (5) is always controllable as Σν and therefore Γ(t) := E
(
Xt+1X

′
t+1

)

are of full rank. The system (4), (5) is also observable whenever Ap is of full
rank. This follows since Ap is nonsingular (and therefore A is non-singular)
from the BPH-test (see Kailath (1980) 2.4.3). Hence under Assumption 1
and if Ap is nonsingular the system (4), (5) is minimal. For details on con-
trollability and observability see e.g. Deistler and Scherrer (2022), chapter 7
or Hannan and Deistler (2012), chapter 2.

2.2 Mixed Frequency Data: Stock and Flow Variables

A main challenge of the identifiability proof in the integrated case – as op-
posed to the stationary case (Anderson et al., 2016a) – is that the second

2We write Rd
∣∣∣
C1,C2

to denote the set of real vectors in Rd for which C1 and C2 hold.
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moments of an integrated process (that is, Eysyt, s, t ∈ Z) are time depen-
dent and cannot be estimated directly. Instead, for the sake of practical
relevance of identifiability considerations, we identify from observable second
moments of stationary transformations of the level process (that is, (yt)t∈Z).
Suppose for the moment, that the matrix of cointegration vectors β is known.
Our proof commences from what we call the “blocked process”, where we dis-
tinguish between the Stock- and the Flow-case:
1. Stock Variables: In this case for t ∈ NZ, we get the co-stationary vector
ỹt of “observed” random variables. We will use ñ := r+n+(N−1)nf for the

dimension of ỹt henceforth. Let u
S
t := β ′yt, ∆Nyt := yt−yt−N =

∑N−1
j=0 ∆yt−j ,

and

ỹt =




β ′yt
yt − yt−N

yft−1 − yft−N−1
...

yft−N+1 − yft−2N+1




=




uSt
∆Nyt
∆Ny

f
t−1

...

∆Ny
f
t−N+1




. (6)

The blocked process (ỹt) is similar to the blocked process in Anderson et al.
(2016a) with the distinction that we added the variable β ′yt = uSt and take
differences at lag N . Admittedly, the true β is in fact not observed, however
since β can be estimated consistently, for the purpose of the analysis of
identifiability we can assume β ′yt to be observed.
2. Flow Variables: In a similar way, we may consider the case where all
slow variables are flow variables, in which case we are able to observe the
temporal aggregate wt :=

∑N−1
j=0 y

s
t−j at t ∈ NZ. So

∆Σ
Nyt :=

N−1∑

j=0

yt−j −

N−1∑

j=0

yt−N−j = ∆N

N−1∑

j=0

(
yft
yst

)
.

If all slow variables are flow variables, we can observe
∑N−1

j=0 yt−j =
(
w′
t,
∑N−1

j=0 y
f ′
t−j

)′
,

t ∈ NZ. Since β ′yt is stationary, we have that (β ′yt)t∈NZ
and uFt :=

β ′
∑N−1

j=0 yt−j ∈ Rr are integrated of order zero. For the flow case we de-
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fine the co-stationary vector process

ỹt =




uFt
∆Σ
Nyt

∆Ny
f
t−1

...

∆Ny
f
t−N+1




. (7)

We call the autocovariance function of the (stationary) blocked process

γ̃ : h 7→ E ỹt+hỹ
′
t , where h ∈ NZ , (8)

observed second moments, which can be consistently estimated from the data
(if β is known) under standard assumptions.
The motivation to consider this blocked process for identifiability is the fol-
lowing:
1. We take differences at lag N (as opposed to lag one) because these dif-
ferences can be directly computed from the mixed frequency data and are
stationary.
2. Note that the set of observable autocovariances given mixed frequency
data is

γff∆Ny
(h) := E∆Ny

f
t+h∆Ny

f
t

′
h ∈ Z

γfs∆Ny
(h) := E∆Ny

f
t+h∆Ny

s
t
′ h ∈ Z

γss∆Ny
(h) := E∆Ny

s
t+h∆Ny

s
t
′ h ∈ NZ

γ·β(h) := E u·t+hu
·
t
′ h ∈ NZ ,

where the superscript “·” is shorthand for S or F . Note that these are exactly
the second moments of the autocovariance function γ̃ of the blocked process
defined in equations (6) for the stock case. In an obvious way this is treated
accordingly in the flow case (7). So the blocked process “contains the whole
second moment information available” from which we can identify. The same
idea is also applied for the stationary case in Anderson et al. (2016a).
3. Our interest in the particular blocked process (6), (7) having u·t in the first
coordinates, originates in the fact that we can obtain a minimal representa-
tion for this process (see Section 3), where the parameters are fairly simple
functions of the parameters of the underlying high frequency system. This
will finally help us to retrieve the high frequency model parameters.
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Next, we define the concept of generic identifiability. Here, identifiability is
concerned with the problem whether the parameters of the underlying high
frequency system (4), (5) or (2) are uniquely determined from the observable
second moments (defined below in this section). To be more precise, a subset
ΘI ⊂ Θ is called identifiable, if the mapping attaching the observable second
moments to the parameters θ ∈ ΘI is injective. In our setting identifia-
bility for the whole set Θ cannot be obtained. To see this, we consider a
simple example where p = 1, r = 1, and n = 2, the first coordinate of yt is
a fast variable, denoted yft , while the second coordinate, yst , is a slow stock
variable. We assume that the cointegrating vector β = (1, βs) is known.
Recall that the observed second moments are as described in equations (6)
and (8). Let σff , σfs = σsf , and σss denote the elements of the covari-
ance matrix Σν . Appendix B shows that there exist two parameter vectors
θI :=

(
αIf , α

I
s, 1, βs, σ

I
ff , σ

I
fs, σ

I
ss

)′
6= θII :=

(
αIIf , α

II
s , 1, βs, σ

II
ff , σ

II
fs, σ

II
ss

)′
such

that all observable second moments are the same; hence in this case the
mapping from the model parameters to observable second moments cannot
be injective and the model parameters are not identified from observed sec-
ond moments. In this example αIf = αIIf = 0. This implies that the fast
coordinate follows a random walk and does not provide any information on
the parameter αs, that is on how β ′yt affects ∆y

s
t , t ∈ 2Z. However, in this

paper we prove that identifiability holds for a so called generic subset of Θ.
Note that a set ΘI ⊂ Θ is called generic in Θ, if it contains a subset that is
open and dense in Θ.
Let ΘI := (G ∩Θ1)×Θ2, where G ⊂ Rn2p is defined in Assumption 2 below.
In this paper we show firstly that ΘI is generic in Θ (see Section 2.3) and
secondly that the set of high frequency systems corresponding to ΘI is iden-
tifiable from the observable second moments (see Section 3). Or formally, we
show that

π : θ 7→ γ̃ (9)

is injective on ΘI ⊂ Θ.
Finally, in terms of identifiability, we may suppose without loss of generality
that β is known. For instance Miller (2016) or Chambers (2020) propose
estimators, accounting for stock and flow variables, respectively. The esti-
mators of β scaled by T weakly converge to a random variable bounded in
probability. Hence, e.g. by White (2001), the estimator is weakly consis-
tent. By Gabrielsen (1978) the matrix of cointegrating vectors β ∈ Rn×r is
identified from mixed frequency observations given the assumptions imposed

9



in Chambers (2020) or Miller (2016). These assumptions are only posed
on the stochastic properties of the high frequency innovations (νt)t∈Z and
therefore do not restrict our results on the genericity of the identifiability
conditions from Section 2.3. If strong consistency could be established for
some estimator of β, the results of Deistler and Seifert (1978) apply and β is
identified.

2.3 Generic Identifiability and Topological Properties
of the Parameterspace

In this section we define the conditions that we need for identifiability and
prove that these conditions result in a generic subset of the parameterspace.
Define a set G ⊂ R

n2p by the following assumptions:

Assumption 2 (g-Identifiability Assumptions)

(I1) rkAp = n.

(I2) rk Γ(t) = np where Γ(t) = E(Xt+1X
′
t+1).

(I3) The eigenvalues of A are of the form: (1, ..., 1, λn−r+1, ..., λnp) where
|λj| < 1 and λi 6= λj for i 6= j with i, j = n− r + 1, ..., np.

(I4) For non-unit eigenvalues λi 6= λj it follows that λ
N
i 6= λNj .

(I5) For all eigenvalues λ of A smaller than one, it holds that 1+ λ+ · · ·+
λN 6= 0 or v1 consisting of the first n elements of the eigenvector v of
A corresponding to λ, it holds that β ′v1 6= 0.

(I6) The pair (S
(1)
nf , A) is observable, where S

(1)
nf is defined in equations (14),

(15) and A is defined in equation (10).

Assumption (I2) already follows from Σ > 0. Recall that ΘI = (G ∩Θ1)×
Θ2. These assumptions are similar to the stationary case considered in
Felsenstein (2014); Anderson et al. (2016a,b). There, the stability condition
defines an open set Θ′ ⊂ Rn2p. We also have a corresponding set G′ defining
the identifiability conditions for the stationary case, which is generic in Rn2p.
Then, the intersection Θ′ ∩ G′ is generic in Θ′. However, in the integrated
case, where unit roots occur, the situation is more intricate since neither Θ1

nor G is open in R
n2p. This follows from the fact that for a process with n−r
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common trends, the n− r eigenvalues of A in (4) are equal to one [note that
the eigenvalues of A are the reciprocals of the zeros of a(z)]. The following
Theorem 1 implies that the identifiability conditions are generically fulfilled
in Θ:

Theorem 1
Let Θ1 be endowed with the Euclidean norm d. The set Θ1 ∩ G is open and
dense in Θ1.

Since genericity is a topological property, it also holds for the homeomor-
phic parameterspace corresponding the vector error correction representation
in (2) defined by Assumption 1.

3 Generic Identifiability

In this section, we first define a canonical state-space representation for the
blocked process running on t ∈ NZ. We prove that this representation
is minimal under our identifiability conditions. Then under an additional
assumption on the lag order p, we show that the high frequency parameters
are generically identifiabile. The proofs of minimality and identifiability make
use of the canonical representation.
We follow Hansen and Johansen (1999) and obtain from (2) the following
state-space system for β ′yt and first differences of yt, that is ∆yt = yt− yt−1.
Then,




β ′yt
∆yt
...

∆yt−p+2




︸ ︷︷ ︸
xt+1∈R

r+n(p−1)

=




β ′α + Ir β ′Φ1 · · · · · · β ′Φp−1

α Φ1 · · · · · · Φp−1

0n×r In 0n×n
...

. . .
...

In 0




︸ ︷︷ ︸
A ∈ Rr+n(p−1)×r+n(p−1)




β ′yt−1

∆yt−1
...

∆yt−p+1




︸ ︷︷ ︸
xt

+




β ′

In
0
...
0




︸ ︷︷ ︸
B

νt

(10)

(
β ′yt
∆yt

)

︸ ︷︷ ︸
∈Rr+n

=

(
β ′α + Ir β ′Φ1 · · · · · · β ′Φp−1

α Φ1 · · · · · · Φp−1

)

︸ ︷︷ ︸
C∈Rr+n×r+n(p−1)




β ′yt−1

∆yt−1
...

∆yt−p+1


 +

(
β ′

In

)

︸ ︷︷ ︸
D ∈ Rr+n×n

νt .

(11)
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By m := r + n(p − 1), we denote the dimension of xt. As we will see later,
given that our identifiability conditions hold m is also the McMillan degree
of (ỹt)t∈NZ.
According to the observational scheme, the slow variables yst are observed
only every N -th period. We derive state-space representations for the pro-
cesses (6) and (7) running on t ∈ NZ:
1. Case: Stock Variables: We define a new state vector xt+1 in the
following way, with the condition that p ≥ N + 2:




uS
t

∆Nyt
...

∆Nyt−N+1

∆yt−N

...
∆yt−p+2




︸ ︷︷ ︸
xt+1∈Rr+n(p−1)

=




Ir 0 0 . . .

0 In In . . . In 0 . . .

0 0 In . . . . . . In 0 . . .
...

. . .
. . .

... In . . . . . . In 0 . . .

... . . . 0 In 0 . . .

...
. . .




︸ ︷︷ ︸
c ∈ R

r+n(p−1)×r+n(p−1)




uS
t

∆yt
...

∆yt−p+2


 . (12)

By iterating the system (10), (11), we get the non-miniphase system (in
the sense that the transfer-function is not causally invertible as the input

12



dimension exceeds (Nn) the output dimension (ñ), noting that Σν > 0):

xt+1 = c AN

︸︷︷︸
:=Ab

c−1

︸ ︷︷ ︸
Ab,c

xt−N+1 + cBb︸︷︷︸
Bb,c

νbt (13)

ỹt = SζA
N

︸ ︷︷ ︸
:=Cb

c−1

︸ ︷︷ ︸
:=Cb,c

xt−N+1 +Dbν
b
t , (14)

where

Sζ :=

(r ×m){

S
(1)
nf (nf ×m){

S
(1)
ns (ns ×m){

S
(2)
nf (nf ×m){

...

S
(N)
nf (nf ×m){




Ir 0 · · · 0
0

(
Inf

, 0
)

· · ·
(
Inf

, 0
)

0 · · · 0
0 (0, Ins

) · · · (0, Ins
) 0 · · · 0

0 0
(
Inf

, 0
)

· · ·
(
Inf

, 0
)

. . .
. . .

...(
Inf

, 0
)

· · ·
(
Inf

, 0
)

0




,

Cb =




(
Ir 0 · · · 0

)
AN

S
(1)
nf A

N

S
(1)
ns A

N

S
(2)
nf A

N

S
(3)
nf A

N

...

S
(N)
nf AN




=




(
Ir 0 · · · 0

)
AN

S
(1)
nf A

N

S
(1)
ns A

N

S
(1)
nf A

N−1

S
(1)
nf A

N−2

...

S
(1)
nf A




, νbt :=




νt
...
...

νt−N+1




∈ R
Nn.

(15)

The matrices Bb,c ∈ Rr+n(p−1)×Nn and Db ∈ Rr+n×Nn are obtained from B
and A.
2. Case: Flow Variables: Next, we obtain the state vector xt+1 for
the flow case. Note that yt−j = yt −

∑j
ℓ=1∆yt−ℓ, such that

∑N−1
j=0 yt−j =

∑N−1
j=0

(
yt −

∑j
ℓ=1∆yt−ℓ

)
= Nyt−(N−1)∆yt−1−· · ·−∆yt−N+1. Analogously

13



to equation (12), this yields for p ≥ 2N + 1 that


















β′
∑N−1

j=0 yt−j

∆Σ
Nyt

∆Nyt−1

...
∆Nyt−N+1

∆yt−N

...
∆yt−p+2


















︸ ︷︷ ︸

xt+1∈Rr+n(p−1)

=



















NIr −(N − 1)β′ −(N − 2)β′ · · · −β′ 0 · · ·
0 In · · · In −In · · · −In 0
0 0 In · · · In 0 · · ·
...

. . .
. . .

... In · · · In 0

..

. · · · 0 In 0 · · ·

.

..
. . .



















︸ ︷︷ ︸

c ∈ R
r+n(p−1)×r+n(p−1)








uSt
∆yt
...

∆yt−p+2








.

(16)

We use the same notation for ỹt, xt, c for both cases. With this notation,
we obtain the following state-space representation for blocked process in the
flow case:

xt+1 = cAbc
−1

︸ ︷︷ ︸
Ab,c

xt−N+1 + cBb︸︷︷︸
Bb,c

νbt (17)

ỹt = SζA
N

︸ ︷︷ ︸
Cb∈Rñ×m

c−1

︸ ︷︷ ︸
Cb,c∈Rñ×m

xt−N+1 +Db,cν
b
t , (18)

where

Sζ =




NIr −(N − 1)β′ −(N − 2)β′ · · · −β′ 0 · · ·
0 In · · · In −In · · · −In 0 · · ·
0 0 (Inf

, 0) · · · (Inf
, 0) 0 · · ·

. . .

0 0 (Inf
, 0) · · · (Inf

, 0) 0 · · ·




.

The matrix Db,c ∈ Rñ×Nn follows from Db, the matrix c and the selection of
the corresponding rows resulting in ỹt.
3. Case: Mixed Case: Consider the case where we have slow stock as well
as slow flow variables: For example, if (yt) is a three-dimensional process,

where nf = 1, ns = 2, N = 2, c1 = I2, and c2 =

(
0 0
0 1

)
in equation (1).

Then β ′
(
yf ′t , w

′
t

)′
is (in general) not stationary. However, in special cases,

such as separate cointegrating relationships among the slow flow variables
only, or among the slow stock and fast variables only, etc. we can proceed
similarly to the flow case. In the following we only consider the stock or the
flow case.
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The problem with the systems considered above is that the inputs νbt are not
the innovations of ỹt. However, from the stable miniphase spectral factorisa-
tion, we only obtain transfer functions corresponding to systems in innovation
form (see, e.g., Deistler and Scherrer, 2022, Chapter 7). The following Theo-
rem 2 is the first step for obtaining a canonical state-space representation for
the blocked process. A minimal state-space representation is called “canon-
ical” if its parameters are uniquely determined from the transfer function.
We introduce the following notation for specific subspaces of L2(Ω,A, P ),
the space of square integrable random variables on the underlying probabil-
ity space (Ω,A, P ):

H(y) := sp(yit | t ∈ Z, i = 1, ..., n)

Ht(y) := sp(yis | s ≤ t, i = 1, ..., n)

NH(y) := sp(yit | t ∈ NZ, i = 1, ..., n)

NHt(y) := sp(yis | s ≤ t and s ∈ NZ, i = 1, ..., n) ,

where sp(·) denotes the closed span and proj(v | U) the projection of v on a
closed subspace U of L2.

Theorem 2
Suppose that Assumption 1 holds. Consider the blocked process (ỹt)t∈NZ and
set

st−N+1 := proj(xt−N+1 | NHt−N (ỹ))

ν̃t := ỹt − proj(ỹt | NHt−N (ỹ)) .

Then there exists B̃c ∈ Rnp×ñ such that

st+1 = Ab,cst−N+1 + B̃cν̃t (19)

ỹt = Cb,cst−N+1 + ν̃t (20)

is a miniphase and stable state-space representation of (ỹt)t∈NZ, i.e. it is in
innovation form.

We call the representation in (19), (20) canonical projection form (CPF)
of ỹt. Note that the CPF provides an algorithm for computing the trans-
fer function k̃(z̃) of (ỹt)t∈NZ which corresponds to the Wold representation,
where z̃ := zN .
Next we show that the system (19) and (20) is observable and controllable
and therefore minimal (see, e.g., Hannan and Deistler, 2012, Theorem 2.3.3)
for all θ ∈ ΘI .
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Theorem 3
For θ ∈ ΘI, the system (19) and (20) is minimal.

By Theorem 3, we know that the McMillan degree of the transfer func-
tion of the blocked process (ỹt)t∈NZ corresponding to an underyling high-
frequency VECM is m = r + n(p− 1). This will be used in the proof of the
subsequent Theorem 4, where we can relate an arbitrary minimal realisation
(Āb,c, B̄b,c, C̄b,c) of the transfer function k̃(z̃) =

(
C̄b,c

(
Imz̃

−1 − Āb,c
)
B̄b,c + Iñ

)

(where z̃ := zN ) to the CPF (Ab,c, B̃c, Cb,c). The minimal realisation (Āb,c, B̄b,c, C̄b,c)
can be either obtained by the spectral factorisation and e.g. the eche-
lon realisation from the Hankel matrix of the transfer function (see e.g.
Hannan and Deistler, 2012, Theorem 2.6.2) or directly from the Hankel ma-
trix of the observed second moments (see, e.g. Anderson et al., 2016a, Proof
of Theorem 8). In the next step we relate the CPF to the underlying
VECM/VAR – exploiting the fact that the parameters θ of the underyling
VECM reappear in the CPF.
Finally, we show that the parameters of the high frequency system are gener-
ically identifiable from the observed second moments, i.e. from γ̃.

Theorem 4 (Generic-Identifiability: Flow or Stock Case)
Let p ≥ N + 2 for stock case or p ≥ 2N + 1 for the flow case. Then,

1. The mapping, π in equation (9) which attaches the second moments of
(ỹt)t∈NZ to the high frequency parameters θ is injective on ΘI .

2. Its inverse, π−1, is continuous on π(ΘI).

Since by Theorem 1, ΘI is a generic subset of Θ, we say that θ is gener-
ically identifiable from the observed autocovariance function γ̃. Theorems 3
and 4 imply that the representation (19), (20) is indeed canonical on π(ΘI).
Since the second moments of (ỹt) can be consistently estimated from the data
under mild conditions, by the continuity of π−1 it follows that we have a con-
sistent estimator for θ. The mapping π−1 is also called realisation procedure,
since we realise the system parameters from the external characteristics of
the data, i.e. the second moments, the spectrum or the transfer function
respectively.
Finally, we consider the question whether π−1(π(ΘI)) = ΘI . This is impor-
tant to ensure that outside that the identified parameter set ΘI there are no
elements, say θ¬I , which result in the same observable second moments as
some θ ∈ ΘI :
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Theorem 5
For all θ¬I ∈ Θ \ΘI there exists no θ ∈ ΘI such that π(θ¬I) = π(θ) = γ̃.

4 Deterministic Terms

This section investigates the VECM

∆yt = µ0 + µ1t+Πyt−1 +

p−1∑

j=1

Φj∆yt−j + νt , νt ∼WN(Σν) , (21)

containing the deterministic terms µ0 and µ1t. The five cases following from
(21), namely “H2(r), H1(r), H

∗
1 (r), H(r), and H∗(r)”, are obtained and

defined in Johansen (1995)[page 81 and our Appendix H]. Recall that the
cointegrating vectors β can be identified from mixed frequency data (see
Chambers, 2020). For high frequency data (∆yt)t∈Z and (β ′yt)t∈Z we can
compute the expectations E∆yt and E β ′yt, while for mixed frequency case
we get E β ′yt and E∆Nyt = E (yt − yt−N) for the stock case and E β ′wt =
E
∑N−1

j=0 β
′yt−j and E∆Σ

Nyt = E
∑N−1

j=0 ∆Nyt−j for the flow case, respectively.
To identify the deterministic terms in (21) we can proceed as follows:

1. Remove deterministic trends from (β ′yt)t∈NZ
and (∆Nyt)t∈NZ

in the
stock case or (β ′wt)t∈NZ

and
(
∆Σ
Nyt
)
t∈NZ

for the flow case [given β],

such that E β ′yt = 0 and E∆Nyt = 0, E β ′wt = 0, and E∆Σ
Nyt = 0.

2. Apply Theorem 4 to obtain the parameters θ.

3. Given the parameters θ, Appendix H shows that the parameters µ0 and
µ1 can be identified from moments following from data observed.

This results in:

Theorem 6
Under the assumptions of Theorem 4 the parameters µ0 and µ1 can be iden-
tified generically from observable first and second moments.

Proof. See Appendix H. �
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5 Conclusion

In this paper, we generalise the results on identifiability from mixed frequency
data in Anderson et al. (2016a,b) obtained for stationary VAR-systems to the
case of unit-roots and cointegrating relationships. As is well known these sys-
tems have also a vector error correction representation. The corresponding
parameterspaces are homeomorphic.
We commence from a solution of the (unstable) VAR system on the integers Z
(see Bauer and Wagner, 2012, for the existence of such a solution). Then we
take differences at lag N (which is the sampling rate of the slow/aggregated
process) and stack these to what we call the “blocked process”. In addition,
the blocked process also contains the stationary process β ′yt, where β is the
matrix of cointegrating relationships. This matrix is identified from mixed
frequency data as already shown in Chambers (2020). This blocked process
is stationary and contains all relevant differences of the observations.
The contribution of this paper can be seen as an extension of the results
in Chambers (2020), by proving that also the remaining parameters of the
vector error correction model (i.e. besides β) are (generically) identified from
mixed frequency observations.
The identifiability proof consists of two steps: In the first step, we derive a
state-space representation of the blocked process (“the canonical projection
form”) which is minimal, in innovation form (both, for the stock and the flow
case) and unique. In the second step, we derive an algorithm, that retrieves
the parameters of the underlying high frequency system from the parameters
of the canonical projection form.
We show that the conditions (Assumption 2) which are sufficient for identifi-
ability are generic in the parameterspace. This is more intricate than in the
stationary case, since the parameterspace is not an open subspace of the Eu-
clidean space, due to the fact that we allow for unit roots. Since the VECM
and the VAR parameterspaces are homeomorphic, the genericity result holds
for both.
Finally, we show that all common cases of deterministic terms in the VECM
can be reduced to the case of non-deterministic terms.
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A Moments Observed

In Section 2.2, we call the moments E ỹt+hỹ
′
t in equation (8) also observed

second moments since they can be consistently estimated from the data as
we will argue in this section. Those moments in E ỹt+hỹ

′
t which involve only

N -differences from the data do not require any further discussion. We are
left with considering moments that involve β.
In the following, if N is the sampling rate of the slow variables and T is the
number of time observations of high-frequency data, we denote by Ts the
number of time observations available for the slow/ aggregated coordinates
which is approximately T/N and by Is the index set of slow/ aggregated time
observations, e.g. for N = 3 we could have Is = {3, 6, 9, ..., T}.

In Miller (2016); Chambers (2020) consistent estimators β̂Ts that converge
in probability to β are provided for the mixed frequency case. In both articles,
the corresponding estimator β̂Ts converges weakly to a product of the inverse
of a functional of Brownian motions and a stochastic integral. By applying
(White, 2001, Lemmata 4.5 and 4.6), we observe that

(β̂T − β) = Op(T
−1
s ) .

Next we consider the high-frequency moments E β ′yt, E β ′yt∆y
′
s, and

E β ′yty
′
sβ , s, t ∈ Z. The following calculations work in the same way for

the mixed frequency counterparts. We can estimate E β ′yt by
1
Ts

∑
t∈Is

β̂ ′
Tsyt.

We impose the standard assumptions that a weak law of large number and a
functional central limit theorem can be applied to properly scaled terms. For
a “Low-Frequency Invariance Principle” see, e.g., Miller (2016)[Section 2.3].

Let B(τ) denote some n-dimensional Brownian motion. Define ûSt := β̂ ′
Tsyt

and ûFt := β̂Ts
∑N−1

j=0 yt−j. This results in

T−1
s

∑

t∈Is

ûSt = T−1
s

∑

t∈Is

β̂ ′
Tsyt = T−1

s

∑

t∈Is

β ′yt + T−1
s

∑

t∈Is

(
β̂Ts − β

)′
yt

= E β ′yt + op(1) + T 1/2
s (β̂Ts − β)′ T−3/2

s

∑

t∈Is

yt

︸ ︷︷ ︸
⇒

∫ 1
0
B(τ)dτ

= E β ′yt + op(1) +Op(T
−1/2)Op(1) . (A.1)

Next, we look at the second moments for the stock case appearing in γ̃, i.e.
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second moments of the form E uSt ∆Nys. Observe that we have

T−1
s

∑

t∈Is

ûSt ∆y
′
s = T−1

s

∑

t∈Is

β̂ ′
Tsyt∆y

′
s

= T−1
s

∑

t∈Is

β ′yt∆y
′
s +
(
β̂Ts − β

)′
T−1
s

∑

t∈Is

yt∆y
′
s

︸ ︷︷ ︸
⇒

∫ 1
0
B(τ)dB(τ)′

= E uSt ∆y
′
s + op(1) +Op(T

−1
s )Op(1) . (A.2)

It follows immediately that also

T−1
s

∑

t∈Is

ûSt ∆Nys
P
−→ E uSt ∆Ny

·
s ,

where “
P
−→” denotes convergence in probability and “·” is shorthand for s, f

(“fast” and “slow” coordinates). Finally we look the estimation of E uSt u
S
s
′

for t− s ∈ NZ:

T−1
s

∑

t∈Is

ûSt (û
S
s )

′ = T−1
s

∑

t∈Is

β ′yty
′
sβ + T 1/2

s (β̂Ts − β)′ T−2
s

(
∑

t∈Is

yty
′
s

)

︸ ︷︷ ︸
⇒

∫ 1
0 B(τ)B(τ)′dτ

T 1/2
s (β̂Ts − β)

= E uSt (u
S
s )

′ + op(1) +Op(T
−1/2
s )Op(1)Op(T

−1/2
s ) . (A.3)

We obtain analogous results for moments involving uFt , by noting that uFt =∑N−1
j=0 β

′yt−j. Hence, equations (A.1) to (A.3) demonstrate why the above
moments can be considered as moments observed although β has to be esti-
mated.

23



B Example for Non-Identifiability

We consider a VECM where n = 2, r = 1, and p = 1. The cointegrating
vector is β = (1, βs)

′, α = (αf , αs)
′, and Π = αβ ′. That is

∆yt = Πyt−1 + νt, νt ∼WN (Σν) , such that Σν =

(
σff σfs
σsf σss

)
, and

yt = (In +Π)︸ ︷︷ ︸
A1

yt−1 + νt =




1 + αf︸ ︷︷ ︸
aff

αfβs︸︷︷︸
afs

αs︸︷︷︸
asf

1 + αsβs︸ ︷︷ ︸
aff


 yt−1 + νt . (A.4)

By Theorem 1 of Anderson et al. (2016a) the model parameters are not
identified if and only if (i) afs = 0, (ii) asf +

σsf
σff

(ass − aff ) = 0, and (iii)

ass 6= 0. afs = 0 implies αf = 0 [with βs = 0 we do not have a cointegrating

relationship]. From asf +
σsf
σff

(ass − aff) = αs

(
1 +

σsf
σff
βs

)
= 0, we conclude

that αs must be non-zero, otherwise (yt) is a white noise process. Hence, we

get 0 =
(
1 +

σfs
σff
βs

)
. The third constraint results in 0 = 1 + αsβs. Hence,

by considering the second moments in levels and the arguments provided in
the proof Theorem 1 of Anderson et al. (2016a), we get identifyability on a
generic set. Unfortunately these moments are not “observed moments” since
they cannot be estimated from data observed as in the stationary case.
By contrast E∆N ỹt∆N ỹ

′
t−Nℓ, ℓ ∈ Z, are observed moments, where we consider

stock variables only and let ∆N ỹt = yt− yt−N . In addition, when β is known
[or can be consistently estimated as shown in Miller (2016); Chambers (2020)]
also the moments Eβỹt∆N ỹ

′
t−ℓ, t, t− ℓ ∈ 2Z, can be observed. Applying (10)

and (11) to the current example yields




β ′yt
∆yt
∆yt−1


 =



β ′α + 1 01×2 01×2

α 02×2 02×2

02×1 I2 02×2




︸ ︷︷ ︸
A ∈ Rr+2n×r+2n



β ′yt−1

∆yt−1

∆yt−2


+



β ′

In
0


 νt , t ∈ Z . (A.5)
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Next, by direct calculations we get

∆2yt = ∆yt +∆yt−1 = Πyt−1 + νt +Πyt−2 + νt−1

= Π (yt−2 +∆yt−1) + νt +Πyt−2 + νt−1

= 2αβ ′yt−2 + αβ ′αβ ′yt−2 +Πνt−1 + νt−1 + νt

=

(
2αf + α2

f + αfβsαs
2αs + αfαs + α2

2βs

)

︸ ︷︷ ︸
=:Mα,β

βyt−2 +Πνt−1 + νt−1 + νt . (A.6)

In addition, β ′yt = β ′ (yt−2 +∆2yt) and ∆yft−1 := y1t−1 = αfβyt−2+(1, 0)′νt−1.
This results in the state-space system



β′yt
∆2yt

∆y
f
t−1




︸ ︷︷ ︸
xt

=



1 + β′Mα,β 01×2 01×2

Mα,β 02×2 02×2

αf 01×2 01×2




︸ ︷︷ ︸
Ã ∈ R

r+n+1×r+n+1




β′yt−2

∆2yt−2

∆yt−3


+



β′I2 β′(I2 +Π)
I2 I2 +Π
0 (1, 0)′




︸ ︷︷ ︸
B̃

(
νt

νt−1

)

ỹt = Iñxt , t ∈ 2Z . (A.7)

Finally, we investigate whether there are (different) parameter vectors such
that the autocovariance function of (ỹt)t∈2Z, i.e. γ̃, is the same. (Recall that
θI :=

(
αIf , α

I
s, 1, βs, σ

I
ff , σ

I
fs, σ

I
ss

)
and θII :=

(
αIIf , α

II
s , 1, βs, σ

II
ff , σ

II
fs, σ

II
ss

)
as

defined in Section 2.2.) This is the case if Ã, and B̃ΣB̃′ are equal though

θI 6= θII . Consider Ã, for αf = 0, from the definition of M[α, β] in equation
(A.6), we can choose some αIs 6= αIIs solving the quadratic equation 2αs +
βsα

2
s − [Mα,β]2,1 = 0, in which case Ã remains the same.

Next we consider B̃ΣB̃′. To get equality with some θI , θII , the covariances
of the lagged fast variable have to be equal, this demands for σIff = σIIff .
Second, to get equality of the covariances of the cointegrating terms it is
sufficient to look at the covariances of ∆Nyt. Direct calculations show that
(with αf = 0, σIff = σIIff )

[

B̃ΣB̃′
]

(2:3,2:3)

=

(
σff αsσff + (1 + αsβs)σsf

αsσff + (1 + αsβs)σsf αs

(
αsσff + (1 + αsβs)σsf

)
+

(
αsσfs + (1 + αsβs)σss

)
(1 + αsβs)

)

.

(A.8)

This yields σIIsf = σIIfs =
αI
sσff−α

II
s +(1+αI

sβs)σ
I
sf

(1+αII
s βs)

, where (1+αIIs βs) 6= 0. Finally,

choose σIIss such that the (2,2)-elements of (A.8) for parameters θI and θII

become equal, this requires (1 + αIsβs) 6= 0. Hence, we have obtained a
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pair θI , θII , θI 6= θII , where Ã and B̃ΣB̃′ are the same. This implies by
Lyapunov equations that the model parameters cannot be identified from

γ̃. In this example we observed the following: If αf = 0,
(
yft

)
t∈Z

is a

random walk not affected by (yst )t∈Z. Therefore, the high frequency variable

yft does not provide information about the parameter αs. By contrast, if
αf 6= 0 the fast variable yft provides sufficient information to identify αs. To
see this, if αf 6= 0, αf follows from the (4,1)-element of Ã, while αs can be
uniquely retrieved from the first coordinate ofMα,β , that is from the equality
2αf + α2

f + αfβsαs = [Mα,β ](1,1).

C Proof of Theorem 1

Proof. 1. (G ∩Θ1 is dense.)
Suppose that θ0 ∈ Θ1 does not satisfy at least one of the identifiability
conditions. Let ε > 0, we show that there exists θ ∈ G ∩ Θ1 such that
‖θ − θ0‖ < ε by perturbing the eigenvalues / eigenvectors of the companion
matrix A corresponding to θ0.
For this we define a mapping fθ0 that maps A to a companion matrix A∗

with perturbed eigenvalues and eigenvectors such that θ = vec
(
A∗

1 · · · A∗
p

)

is in G ∩Θ1:

1. Compute the Jordan decomposition of A = QΛQ−1.

2. Perturb the eigenvalues:

Ā∗ = Q
(
Λ + diag( 0, ..., 0︸ ︷︷ ︸

n− r -times

, ξ1, ..., ξnp−(n−r))
)

︸ ︷︷ ︸
Λ̃

Q−1. (A.9)

3. We transform Ā∗ to a similar matrix A∗ that has the companion struc-
ture by using the procedure from Anderson et al. (2016a):

A∗ = T Ā∗T−1, hence A∗T =




A∗
1 · · · A∗

p

In 0
. . .

...
In 0







T1
T2
...
Tp


 = T Ā∗ ,
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where Tj for j = 1, ..., p are the n × np rowblocks of T . Now we set
T1 =

[
In 0 · · · 0

]
and solve the equation above:

A∗
1T1 + ... +A∗

pTp = T1Ā
∗, T1 = T2Ā

∗, . . . , Tp−1 = TpĀ
∗,

which yields

Tj = Tj−1Ā
∗−1 for j = 2, ..., p.

Clearly, the mapping fθ0 : ξ 7→ A∗ 7→ θ for ξ = (ξn−r+1, ..., ξnp)
′ ∈ Rnp−(n−r)

is continuous at θ0 and fθ0(0) = θ0 (as in this case T = Inp). So for the ε-
neighborhood around θ0 denoted by Uε(θ0) there exists a δ > 0, such that for
all ξ ∈ Uδ(0) we have fθ0(ξ) ∈ Uε(θ0), where Uδ(0) is the open δ-neighborhood
around 0 in Rnp−(n−r).
Now, λ∗ := (1, ..., 1, λn−r+1 + ξ1, ..., λnp + ξnp−n−r) are the eigenvalues of A∗

because they are the zeros of the characteristic polynomial of Λ̃ in equation
(A.9) from which we obtain A∗ by similarity transformation with TQ. For
any δ > 0, we can find a ξ ∈ Uδ(0) such that the corresponding eigenvalues
λ∗ of A∗ satisfy the conditions (I1), (I3), (I4) and (I5). Analogously to
equation (A.9), we can perturb the eigenvalues and eigenvectors of A to en-
sure conditions (I5) (second part) and (I6).
We have to ensure that the image fθ0(ξ) is real valued: Since A is real valued,
for any complex eigenvalue z = a + ib ∈ C \ R, the conjugate z̄ = a − ib is
also an eigenvalue of A. If the algebraic multiplicity of z is larger than 1, z
has to be perturbed. As is easily shown, if we add to z and z̄ the same small
real number, the resulting Ā∗ (and therefore also A∗) is again real valued.
Thus, we found θ ∈ G close to θ0 and are left with checking whether θ is also
in Θ1. (C3) is trivial.
For (C1), note that, still n − r eigenvalues of A∗ equal unity which en-
sures that rkΠ = r (see Bauer and Wagner, 2012). Applying the procedures
described above, we obtain the vector error correction representation corre-
sponding to fθ0(ξ) = θ, say (α(ξ), β(ξ),Φ1(ξ), ...,Φp−1(ξ)), and see that

g : θ 7→ detα⊥(ξ)
′
(
In −

p−1∑

j=1

Φj(ξ)
)
β⊥(ξ)

is continuous at θ = θ0. We know that g(θ0) 6= 0 since θ0 ∈ Θ1. So there
exists ε3 > 0 such that the neighbourhood Uε3

(
g(θ0)

)
is bounded away from
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zero. By continuity there exists ε2 > 0 such that for all θ ∈ Uε3(θ0), we have
g(θ) ∈ Uε2

(
g(θ0)

)
. For the same reasons as above we can find suitable ξ such

that fθ0(ξ) = θ ∈ Uε(θ0) ∩ Uε3(θ0). Hence Θ ∩G is dense in Θ.
2. (G ∩Θ1 is open in (Θ1, d)),
where d denotes the Euclidean metric. Suppose now for θ∗ ∈ G∩Θ1, we have
to show that there exists ε > 0 such that Uε(θ0) ⊂ G ∩Θ1. The eigenvalues
are the zeros of the characteristic polynomial of A and therefore continuous
functions at θ∗ (since as is well known, the zeros of any polynomial are
continuous function of its coefficients). So the mapping

e : θ 7→ A 7→
(
λn−r+1 · · · λnp

)
= λ

is continuous in θ∗. Clearly there is an open neigbourhood U ⊂ Cnp−(n−r) of
λ∗ = e(θ∗) such that for all λ ∈ U the corresponding spectrum

(
1 · · · 1 λ′

)′
satisfies the identifiability conditions. The pre-image e−1(U) ⊂ G is an open
neighborhood of θ0. Analogously to the arguments applied above, we can
establish (C2).
(I2) follows from (C4) and (I1) which completes the proof. �

D Proof of Theorem 2

Proof. This follows from transforming a state-space system into prediction
error form. See Hannan and Deistler (2012)[chapter 1] and Gersing and Deistler
(2021). From Johansen (1995)[Proof of Theorem 4.2] it follows that the
largest eigenvalue of A is in modulus smaller than one. Hence the system is
stable. The linear expansion of the transfer function for a stable system is
already the Wold representation as the inputs ν̃t are the innovations. Hence,
the system is also miniphase (see, e.g., Deistler and Scherrer, 2022, Chap-
ters 2 and 7.3). �

E Proof of Theorem 3

Proof. By Johansen (1995)[Proof of Theorem 4.2] it follows that the eigen-
values of modulus smaller than 1 are the same, for A and A.
1.1 Observability for the Stock Case: We use the PBH-Test (see, e.g., Kailath,
1980, Section 2.4.3) to prove that the pair (Ab, Cb) is generically observ-
able (note that the observability of (Ab, Cb) also implies the observability of
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(Ab,c, Cb,c) since c is non-singular). For this, note that the eigenvectors of
Ab are the same as the eigenvectors of A. Let λ be an eigenvalue of A and
q =

(
q′β q′1 · · · q′p−1

)′
the corresponding eigenvector. We write

Aq =




β ′α + Ir β ′Φ1 · · · β ′Φp−1

α Φ1 · · · Φp−1

0 In 0
...

. . .

0 In 0







qβ
q1
...

qp−1




= λ




qβ
q1
...

qp−1



,

where qβ is r× 1 and qi is n× 1 for i = 1, ..., p− 1. From this, we obtain the
relations

(β ′α+ Ir)qβ +

p−1∑

i=1

β ′Φiqi = λqβ (A.10)

αqβ +

p−1∑

i=1

Φiqi = λq1 (A.11)

qi = λqi+1 , i = 1, ..., p− 2. (A.12)

Since A is of full rank, λ 6= 0 and q1 = 0 imply q = 0, which is a contradiction
(noting that α has rank r). Now we look at

Cbq =




Ir 0 · · · 0
0 In · · · In 0 · · · 0
0 0

(
Inf

, 0
)

· · ·
(
Inf

, 0
)

. . .
. . .

...(
Inf

, 0
)

· · ·
(
Inf

, 0
)

0







λNqβ
λNq1
...

λNqp−1


 ,

(A.13)

which is not equal to zero. If, for example,

λNq1 + · · ·+ λNqN = λNq1 + λN−1q1 + · · ·+ q1 = (1 + λ+ · · ·+ λN)q1 6= 0

⇔ (1 + λ+ · · ·+ λN) 6= 0,

which is generically the case (see Assumption 2). Recall that by q we denote
eigenvectors of A and by v eigenvectors of A, where both correspond to the
same eigenvalue |λ| < 1. In Lemma 7, we show that

qβ =
λ

λ− 1
β ′q1 = β ′v1, (A.14)
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so if we suppose that v1 is not in the right kernel of β ′, we also get Cbq 6= 0.

1.2 Observability for the Flow Case: The first part of the proof is analo-
gous to the stock case. It remains to show that there exists no eigenvector
that is in the right kernel of Cb, where Cb is now defined in (18). Now, anal-
ogously to the procedure in (A.13) we obtain, that an eigenvector of Ab is
not in the rightkernel of Cb if e.g.

λNq1 + · · ·+ λNqN − λNqN+1 − · · · − λNq2N

= λNq1 + λN−1q1 + · · ·+ λq1 − q1 − · · · − λ−N+1q1

= λN−1(−1 − λ− · · · − λN−1 + λN + · · ·+ λ2N−1)q1 6= 0

⇔ (−1− λ− · · · − λN−1 + λN + · · ·+ λ2N−1) 6= 0,

Also the second part is similar to the stock case: By Lemma 7, qβ = λ
λ−1

β ′q1 =
β ′v1. Assume that v1 is not in the right kernel of β ′ (as already done in the
stock case). In addition, by considering the first r rows of the matrix c for
the flow case, provided in (16), we get

NIrqβ − (N − 1)β′q1 − (N − 2)β′q2 − · · · − 2β′qN−2 − β′qN−1

=NIr
λ

λ− 1
β′q1 −

(N − 1)

λ0
β′q1 −

(N − 2)

λ
β′q1 − · · · − −

2

λN−2
β′q1 −

1

λN−1
β′q1

=

(
N

λ

λ− 1
−

(N − 1)

λ0
−

(N − 2)

λ
− · · · −

2

λN−2
−

1

λN−1

)
β′q1

=
1

λN−1

(
N

λN

λ− 1
− (N − 1)λN−1 − (N − 2)λN−2 − · · · − 2λ− 1

)
β′q1 .

Note that λ 6= 1 and λ 6= 0 by the model assumptions (recall that by
Johansen (1995)[Proof of Theorem 4.2] it follows that the eigenvalues of
modolus smaller than 1 are the same, for A and A). Hence, if v1 is not in the

right kernel of β ′ and N λN

λ−1
− (N − 1)λN−1− (N − 2)λN−2−· · ·− 2λ− 1 6= 0

we also get that C̃bq 6= 0 for the flow case.
2. Controllability: It is enough to show that the matrix E xt+1

(
ỹ′t ỹ′t−N · · ·

)′
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has full rank. For k sufficiently large, we have

xt+N−1 = Ak−1
b,c xt−kN+1 +

k−1∑

j=0

Ajb,cBb,cν
b
t−N−jN

∆Nyt−kN =
[
0n×r In 0 · · · 0

]
︸ ︷︷ ︸

S∆Ny

xt−kN+1

E∆Nyt−kNx
′
t−N+1 = E

{
S∆Nyxt−kN+1x

′
t−kN+1A

k−1
b,c

′
+ S∆Nyxt−kN+1

( k−2∑

j=0

Ajb,cBb,cν
b
t−N−jN

)′}

= S∆Ny cΓrpc
′

︸ ︷︷ ︸
Γrp,c

Ak−1
b,c

′
.

Therefore

E xt−N+1

(
∆Ny

′
t−kN ∆Ny

′
t−(k+1)N · · · ∆Ny

′
t−(k+p−1)N

)

= Ak−1
b,c

[
Γrp,cS

′
∆Ny

Ab,cΓrp,cS
′
∆Ny

· · · Ap−1
b,c Γrp,cS

′
∆Ny

]
,

which has full rank if Γrp > 0 as follows from the proof of Theorem 7
in Anderson et al. (2016a). By Hannan and Deistler (2012)[Theorem 2.3.3]
controllability and observability imply that the system is minimal. �

Lemma 7
Suppose the Assumption 1 and 2 hold. Then equation (A.14) holds.

Proof. Substracting β ′ times (A.11) from (A.10), we obtain

qβ = λqβ − λβ ′q1 such that qβ =
λ

λ− 1
β ′q1.

Next, we consider the eigenvector v =
(
v′1 · · · v′p

)′
of A corresponding to

λ (recall that eigenvalues in modulus smaller that one of A and A are the
same). By using the relations of the parameters between the VECM and
VAR representation, we get

λv1 = (In + αβ ′)v1 + Φ1(v1 − v2) + Φ2(v2 − v3) + · · ·+ Φp−1(vp−1 − vp)

αβ ′v1 + Φ1
λ− 1

λ
v1 + Φ2

λ− 1

λ2
v1 + . . .

λ− 1

λp−1
v1 = (λ− 1)v1 ,

where the last relation follows from vi = λvi+1 for i = 1, ..., p−1, which results
by the companion structure of A. Now, we see that q1 = ((λ−1)/λ)v1 solves
(A.10) and (A.11). �
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F Proof of Theorem 4

Proof. Consider the stable, miniphase spectral factor k̃(z̃), z̃ := zN , corre-
sponding to the Wold representation of (ỹt)t∈NZ.

Step 1: We obtain an arbitrary minimal realisation (Āb,c, B̄b,c, C̄b,c) of k̃(z̃),
e.g. by taking the echelon form, see Hannan and Deistler (2012)[Thm 2.5.2.].
Step 2: (Obtain eigenvalues Λ = diag

(
λ1, . . . , λr+n(p−1)

)
and a linear com-

bination of the eigenvectors of A, denoted qi, from Āb,c).
By, e.g., Hannan and Deistler (2012)[Theorem 2.3.4] the parameter matrices
of minimal systems relate via Āb,c = T−1Ab,cT , C̄b,c = Cb,cT and B̄b,c =

T−1B̃c, where T is a non-singular matrix.
Since A (see equation (4)) is assumed to be diagonalizable (Assumption 2),
the matrix A (see equation (10); recall that by Johansen (1995)[Proof of
Theorem 4.2] the of modulus smaller than 1 are the same, for A and A) can
be expressed by means of A = QΛQ−1, where Λ = diag(λ1, . . . , λr+n(p−1)) is

the diagonal matrix of eigenvalues of A and Q =
(
q1, . . . , qr+n(p−1)

)
contains

the eigenvectors. Ab = AN , Cb,c = Cbc
−1 and Ab,c = cAbc

−1, such that Āb,c =

T−1Ab,cT = T−1cAbc
−1T = (T−1cQ) ΛN (T−1cQ)

−1
, C̄b,c = Cb,cT = Cbc

−1T .
By the eigen-decomposition of Āb,c, we obtain (T−1cQ) and ΛN . In addition,
(0n×r, 0n×n, In 0 . . . 0)A2 = (0n×r, In 0 . . . 0)A by the companion structure of
A. Hence by (15), we have

C̄b,cT
−1cQ = Cbc

−1TT−1cQ = CbQ =




(
Ir 0 · · · 0

)
AN

S
(1)
nf A

N

S
(1)
ns A

N

S
(1)
nf A

N−1

S
(1)
nf A

N−2

...

S
(1)
nf A




Q. (A.15)

Now we look at the last two rowblocks of Cb with the eigenvectors qi, 1 ≤
i ≤ m. From assumption 2 (I4), it follows that the eigenvectors of A are the
same as the eigenvectors of A2 (also as AN) (see Felsenstein, 2014, Lemma
3.2.1), therefore we have

S(1)
nf
A2qi = S(1)

nf
λ2i qi

S(1)
nf
Aqi = S(1)

nf
λiqi, (A.16)

and we can compute all eigenvalues not equal to one since S
(1)
nf qi 6= 0 by as-

sumption 2 (I6). The flow-case is analogous. Summing up, from Āb,c we are
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able to obtain T−1cQ, ΛN = diag(λN1 , . . . , λ
N
r+n(p−1)) and Λ = diag(λ1, . . . , λr+n(p−1)).

Step 3: (relate c−1T to T )
To jointly treat the stock and the flow case, we write

c =



cββ cβ1 cβ2 · · · cβN−1 0 · · ·
0 c11 c12 · · · · · · c1N c1,N+1 · · ·
...

. . .
. . .


 ,

where cβ1, . . . , cβN−1 and cN−1+j, j ≥ 1 are zero for the stock case (see equa-
tion (12)). For the flow case c11, . . . , cN−1,1 = In and c1N , . . . , c2N−1,1 = −In
(see equation (16)). For the case of stock and flow variables the correspond-
ing coordinates of c1N , . . . , c2N−1,1 are zero for stock variables.

Let

A =




Aβ
A1
...

Ap−1


 , T =




Tβ
T1
...

Tp−1


 , and R := c−1T =




Rβ

R1
...

Rp−1


 .

(A.17)

Observe that for the stock case (the flowcase is treated analogously)

C̄b,c Ā
−1
b,c

=









Ir cβ1 . . . cβN−1 0 . . .
0 In In . . . In 0 . . .

♯



AN



 c−1T T−1cA−N c−1T
︸ ︷︷ ︸

Ā
−1
b,c

=





Ir cβ1 . . . cβN−1 0 . . .
0 In In . . . In 0 . . .

♯



 c−1T =

(
[c](1:n+r,1:m)

♯

)

c−1T =





Tβ
T1
♯



(A.18)

where “♯” denotes some matrix entries which are not important here. Note
that Āb,c = T−1cAbc

−1T . From Steps 1 and 2, we obtain Āc := T−1cAc−1T =
T−1cQΛQ−1c−1T . Ac−1T = c−1TĀc and

AR = A








Rβ

R1

..

.
Rp−1








=










(Ir + β′α)Rβ + β′Φ1R1 + · · ·+ β′Φp−1Rp−1

αRβ + Φ1R1 + · · ·+Φp−1Rp−1

R1

...
Rp−2










=










RβĀc

R1Āc

R2Āc

...
Rp−1Āc










= RĀc (A.19)

AR = RĀc = c−1










TβĀc

T1Āc

T2Āc

.

..
TpĀc










= c−1










TβT
−1cAc−1T

T1T−1cAc−1T
T2T−1cAc−1T

...
TpT−1cAc−1T










. (A.20)
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Now, Rβ = c−1
β T and R1 = c−1

1 T , where c−1
β := [c−1](1:r,1:m) and c−1

1 :=

[c−1](r+1:r+n,1:m). Therefore, we receive Ri for i = 2, ..., p−1, given R1 = c−1
1 T1

from the recursion Ri+1 = RiĀ
−1
c , for i = 1, ..., p− 2.

Step 4: (obtain R = c−1T , T and β,Φ1, ...,Φp−1 )
To retrieve T and R we proceed as follows: By means of (A.18) and (A.20),
and the assumption p ≥ 2N we derive

T = cR =


















cββRβ + cβ1R1 + cβ2R2 + · · ·+ cβN−1RN−1

0Rβ + c11R1 + c12R2 + · · ·+ c1NRN + c1,N+1RN+1 + · · ·+ c1,2NR2N

0Rβ + 0R1 + R2 + R3 + · · ·+RN+1

...
RN +RN+1 + · · ·+R2N−1

InRN+1

...
InRp−1


















.(A.21)

Recall that for stock case c1j = In, j = 1, . . . , N , c1j = 0, j > N , cβj = 0,
for j ≥ 1, while for the flow case c1j = In, j = 1, . . . , N , c1j = −In, j =
N + 1, . . . , 2N , and cβj = −(N − j)β ′, for j = 1, . . . , N − 1.

From the above considerations T1 can be obtained from (A.18). Since
Ri+1 = RiĀ

−1
c , equation (A.21) yields

T1 =

{
R1 +R2 + · · ·+RN , for the stock case,

R1 +R2 + · · ·+RN −RN+1 − · · · −R2N , for the flow case.
(A.22)

In the above Step 3, we obtained Ri+1 = RiĀ
−1
c , which results in

T1 =

{
R1 +R2 + · · ·+RN , for the stock case,

R1 +R2 + · · ·+RN − (R1 + · · ·+RN ) Ā−N
c , for the flow case,

(A.23)

such thatR1+· · ·+RN = T1 for the stock andR1+· · ·+RN = T1
(
Im − Ā−N

c

)−1

for the flow case. As already obtained above, Ri+1 = RiĀ
−1
c . This yields

R1+ · · ·+RN = R1

∑N
j=1 Ā

−j+1
c . Since R1+ · · ·+RN follows from (A.23) we

are also able to derive R1 and therefore Ri+1 by the recursion Ri+1 = RiĀ
−1
c ,

i = 2, . . . , p− 1. Finally, we observe

T2 = R2 +R3 + · · ·+RN+1 = (R1 +R2 + · · · +RN ) Ā
−1
c

...

TN = RN +RN+1 + · · ·+RN+N−1 = . . .

TN+1 = RN+1

...

Tp−1 = Rp−1 . (A.24)
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Hence Ti, i = 2, . . . , p − 1, are provided by (A.23). Recall that Tβ and T1
follow from (A.18).

Step 5: (Obtain Σν)
Let

γ∆Ny(κ− ℓ) := E∆Nyt−ℓ∆Ny′t−κ ,

γβ(κ− ℓ) := Eβ′yt−ℓ(β
′yt−κ)

′ , (A.25)

γβ,∆Ny(κ− ℓ) := Eβ′yt−ℓ∆Ny′t−κ = (E∆Nyt−κ(β
′yt−ℓ)

′)
′
= γ∆Ny,β(ℓ − κ)′ , and

Γrp := Ext+1x
′
t+1 ∈ R

m×m

=




γβ(0) γβ,∆y(0) γβ,∆y(1) . . . γβ,∆y(p− 2)
γ∆y,β(0) γ∆y(0) γ∆y(1) . . . γ∆y(p− 2)
γ∆y,β(−1) γ∆y(−1) γ∆y(0) . . . γ∆y(p− 3)

. . .

γ∆y,β(−p+ 2) γ∆y(−p+ 2) γ∆y(−p+ 3) . . . γ∆y(0)




=




γβ(0) γβ,∆y(0) γ∆y,β(−1)′ . . . γ∆y,β(p− 2)′

γ∆y,β(0) γ∆y(0) γ∆y(−1)′ . . . γ∆y(−p+ 2)′

γ∆y,β(−1) γ∆y(−1) γ∆y(0) . . . γ∆y(−p+ 3)′

. . .

γ∆y,β(−p+ 2) γ∆y(−p+ 2) γ∆y(−p+ 3) . . . γ∆y(0)




,

(A.26)

where xt was defined in (10),(11). The last step follows from the fact that
(xt)t∈Z is stationary, such that Γrp has to be symmetric.
Let Sβ := (Ir×r, , 0r×n, . . . , 0) ∈ Rr×m, and S∆Ny := (0n×r, In, 0, . . . , 0) ∈
R
n×m. Then (10) and (11) result in

γu·(−hN) := E u·t−hNu
·′
t = SβcA

hNc−1cΓrpc
′S ′
β = SβA

h
b,ccΓrpc

′S ′
β ,

γu·,∆Ny(−hN) := E u·t−hN∆Ny
′
t = SβcA

hNc−1cΓrpc
′S ′

∆Ny
= SβA

h
b,ccΓrpc

′S ′
∆Ny

,

γ∆Ny(−hN) = S∆NycA
hNc−1cΓrpc

′S ′
∆Ny

= S∆NyA
h
b,ccΓrpc

′S ′
∆Ny

, and




γu· (0) γu·,∆Ny (0)
γu·,∆Ny (0) γ∆Ny (0)
γu·,∆Ny (N) γ∆Ny (N)

...
γu·,∆Ny ((np− 2)N) γ∆Ny ((np− 2)N)




︸ ︷︷ ︸
Γβ∆Ny

=




Sβ
S∆Ny

S∆NyA
N
b,c

S∆NyA
2N
b,c

...

S∆NyA
N(np−2)
b,c




︸ ︷︷ ︸
ON

cΓrpc
′

(
S ′
β

S ′
∆Ny

)
.

Note that ONA
−N
b,c = O, where O is defined in (A.30). The matrix O has

full column rank, as will be shown in Lemma 8, such that also ON has full
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rank. Thus we obtain the first two column blocks of Γrp,c. Now looking at
the specific structure of

Γrp,c =





























γu· (0) γu·,∆Ny (0) γu·,∆Ny (1) γu·,∆Ny (2) · · · γu·,∆Ny (N − 1)

γ∆Ny,u· (0) γ∆Ny (0) γ∆Ny (1) γ∆Ny (2) · · · γ∆Ny (N − 1)

γ∆Ny,u· (−1) γ∆Ny (−1) γ∆Ny (0) γ∆Ny (1) · · · γ∆Ny (N − 2)

γ∆Ny,u· (−2) γ∆Ny (−2) γ∆Ny (−1) γ∆Ny (1) · · · γ∆Ny (N − 3)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
γ∆Ny,u· (−(N − 1)) γ∆Ny (−(N − 1)) γ∆Ny (−(N − 2)) γ∆Ny (−(N − 3)) · · · γ∆Ny (0)

γ∆y,u· (−N) γ∆y,∆Ny (−N) γ∆y,∆Ny (−(N − 1)) γ∆y,∆Ny (−(N − 2)) · · · γ∆y,∆Ny (−1)

γu·,∆y (N) γu·,∆y (N + 1) · · · γu·,∆Ny (p − 2)

γ∆Ny,∆y (N) γ∆Ny,∆y (N + 1) · · · γ∆Ny,∆Ny (p − 2)

γ∆Ny,∆y (N − 1) γ∆Ny,∆y (N) · · · γ∆Ny,∆Ny (p − 3)

γ∆Ny,∆y (N − 2) γ∆Ny,∆y (N − 1) · · · γ∆Ny,∆Ny (p − 4)

.

.

.

.

.

.

.

.

.

.

.

.
γ∆Ny,∆y (1) γ∆Ny,∆y (2) · · · γ∆Ny,∆Ny (p + 2 − (N − 1))

γ∆y (0) γ∆y (1) · · · γ∆y (p + 2 − N)



























,

(A.27)

we see the following relations

Γ(2+h)
rp,c = Γ(2)

rp,c(h) for h = 1, ..., m− 2

Γrp,c(h) = AhcΓrp,c for h = 1, 2, ...

Γrp,c(2 + h) = AhcΓ
(2)
rp,c, (A.28)

where by Γ
(j)
rp,c(h), we denote the j-th column block of Γrp,c(h). The first

equation follows from the structure of the autocovariances of the states, i.e.
Γrp,c(h) = E xt+hx

′
t for h ∈ N0, the second equation follows from the Lya-

punov equations. Hence, we receive all columns of Γrp,c by using the recur-

sions in (A.28) and therefore of Γrp = c−1Γrp,cc
−1′. Finally, again by using

the Lyapunov equations we have all second moments of (∆yt)t∈Z and (uSt )t∈Z.
Now Σν retained by using the “high frequency Yule-Walker type equations”,
that is,

∆yt − αβ′yt−1 − Φ1∆yt−1 − · · · − Φp−1∆yt−p+1 = νt

∆yt∆y
′
t − αβ′yt−1∆y

′
t − Φ1∆yt−1∆y

′
t − · · · − Φp−1∆yt−p+1∆y

′
t = νt∆y

′
t

E∆yt∆y
′
t

︸ ︷︷ ︸

γ∆y(0)

−αEβ′yt−1∆y
′
t

︸ ︷︷ ︸

γβy∆y(1)

−Φ1 E∆yt−1∆y
′
t

︸ ︷︷ ︸

γ∆y(1)

− · · · −Φp−1 E∆yt−p+1∆y
′
t

︸ ︷︷ ︸

γ∆y(p−1)

= Eνt∆y
′
t

︸ ︷︷ ︸
Σν

. (A.29)

Hence, also generic identifiability of Σν is established.
Finally we prove continuity of π−1. This involves two steps: 1. The continu-
ity of the mapping from the observed second moments to the parameters of
a canonical minimal realisation (Āb,c, B̄b,c, C̄b,c) (say the echelon form):
Recall that the set of transfer functions with McMillan-degree m, call it
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M̃(m), can be decomposed in disjoint pieces corresponding to different Kro-
necker indices summing up to m. The set of transfer functions where the
first m rows of the Hankel matrix are a basis of the row space of the Han-
kel matrix is generic in M̃(m) (w.r.t. the pointwise topology for M̃(m) (see
Hannan and Deistler, 2012, p. 65)). This set is also called the “generic neigh-
bourhood”. As has been shown in Step 5 above, Γr,pc from equation (A.27)
has full rank m. We know that the linear dependencies in the Hankel matrix
of the transfer function, say H̃, and the Hankel matrix of the second mo-
ments, say H̃γ , are the same (for the definitions see Anderson et al., 2016a).
Now since Γrp,c is the upper left m×m block of H̃γ , we know that the first
m rows of H̃ are a basis of the row space of H̃. Therefore ΘI is a subset of
the generic neighbourhood.
2. Note that from a given minimal realisation (Āb,c, B̄b,c, C̄b,c) of θ ∈ ΘI

all transformations involved in the retrieval algorithm described above are
continuous. �

Lemma 8
Suppose that Assumptions 1 and 2 hold. The matrix

O =




SβAb,c
S∆Ny

Ab,c
S∆Ny

A2
b,c

...

S∆Ny
A
n(p−1)
b,c




(A.30)

is of full column rank m = r + n(p− 1).

Proof. The proof is very similar to the proof that the observability matrix is
of full rank in Anderson et al. (2016a)[Proof of Theorem 7, page 823]. Since
the matrix c is of full rank m we are allowed to consider AN and A. To
see this, let q̃i now denote an eigenvector of cAc−1 with eigenvalue λi, then(
cANc−1

)
q̃i = cAN−1c−1cAc−1q̃i = λicA

N−1c−1q̃i = λNi q̃i. In addition, if qi
is an eigenvector of A, then q̃i = cqi is an eigenvector of Ab,c. Moreover,

Ajb,cq̃i = cAjNc−1cqi = λNji cqi. The eigenvalues of A are such that λi 6= λj
implies λ2i 6= λ2j , the eigenvectors of A and A2 coincide. To see this, let
qi ∈ Rm and λi ∈ R denote an eigenvector and an eigenvalue of the matrix
A. Then, Aqi = λiqi and A

2qi = AAqi = λiAqi = λ2i qi; for N > 2 this works
in the same way. Therefore it is sufficient to look at the eigenvectors and
eigenvalues of the matrix A. Similar to Anderson et al. (2016a)[Lemma 2]
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we have shown in the proof of the above Theorem 3 that the first r + n
components of an eigenvector of A or cAc−1 are not equal to a vector of zeros.
Therefore, by the Popov-Belevitch-Hautus (PBH)-eigenvector test (see, e.g.,
Kailath, 1980, page 135), the matrix O has full column rank r + n(p − 1).
That is,



(
AN − λNi Im

)
(

Sβ
S∆y

)
AN


 qi =

(
0m×1

λNi [qi]1:n+r 6= 0n+r×1

)
. (A.31)

�

G Proof of Theorem 5

Proof. The proof is constructed as follows: For each of the identifiability
conditions in Assumption 2, we suppose that (Ij) is violated for j = 1, ..., 6
and show that there exists no “observationally equivalent” θ ∈ ΘI .
Suppose (I1) or (I2) are violated for θ¬I , then it follows that the McMillan
degree of k̃(z̃) is less than m. Hence there exists no θ ∈ ΘI with the same
auto-covariance function γ̃, which is granted by K̃(0) = Iñ.
Suppose (I3) or (I4) are violated, then the minimal realisation of Āb,c, which
is directly obtained from γ̃ has eigenvalues λNi = λNj for some i 6= j, and thus
(I4) is violated.
Suppose that neither of the conditions in (I5) hold, then by equations (A.13),
we have Cbq = 0 and the system is not observable (and therefore of McMillan
degree smaller than m).
Suppose that condition (I6) is not satisfied, then after going through steps
Steps 1 and 2 of the retrieval algorithm in the proof of Theorem 4, we obtain
in equation (A.16) that S

(1)
nf qi = 0 for some i and therefore we are outside of

ΘI already. �

H Proof of Theorem 6

By considering the Granger-Representation-Theorem for the solution on Z

in Bauer and Wagner (2012) [equation (26)], (see also Johansen, 1995, The-
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orem 4.3), we obtain (see also Hansen and Johansen, 1998, Exercise 4.5)

E∆yt = C(µ0 + µ1t) +Mcµ1 , (A.32)

with C := β⊥

(
α′
⊥

(
In −

p−1∑

j=1

Φj

)
β⊥

)−1

α′
⊥ , (A.33)

andMc is the limit of the stable part of the impulse responses in the particular
solution defined in Bauer and Wagner (2012) [equation (8)] (this is k•(1) in
Bauer and Wagner (2012) equation (26)).
Let ᾱ′ = (α′α)−1α′, then

E β ′yt = ᾱ′

[
C(µ0 + µ1t) +Mcµ1 − µ0 − µ1t ,

−

p−1∑

j=1

Φj
(
C(µ0 + µ1(t− j)) +Mcµ1

)]
. (A.34)

For N = 1, both moments in equations (A.32) and (A.34) are observable (or
consistently estimable from observed data) for the stock as well as for the
flow case. In addition, for N > 1 we get

E β ′yt−ℓ = ᾱ′

[
C(µ0 + µ1(t− ℓ)) +Mcµ1 − µ0 − µ1(t− ℓ)

−

p−1∑

j=1

Φj
(
C(µ0 + µ1(t− j)) +Mcµ1

)]
for the stock case, and

(A.35)

E β ′wt = E

N−1∑

ℓ=0

β ′yt−ℓ , for the flow case . (A.36)
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E∆Nyt =
N−1∑

j=0

(C(µ0 + µ1(t− j)) +Mcµ1)

= NCµ0 + Cµ1

(
N−1∑

j=0

(t− j)

)
+NCMcµ1 , for the stock case, and

(A.37)

E∆Σ
Nyt =

N−1∑

ℓ=0

E∆Nyt−ℓ =
N−1∑

ℓ=0

ℓ+N−1∑

j=ℓ

(C(µ0 + µ1(t− j)) +Mcµ1)

= N2Cµ0 + Cµ1

(
N−1∑

ℓ=0

ℓ+N−1∑

j=ℓ

(t− j)

)
+N2Mcµ1 , for the flow case .

(A.38)

As already stated in Section 4, we first remove the deterministic trends
from E β ′yt and E∆Nyt for the stock case or E β ′wt = E

∑N−1
j=0 β

′yt−j and

E∆Σ
Nyt = E

∑N−1
j=0 ∆Nyt−j for the flow case. β follows from mixed frequency

data as demonstrated in Chambers (2020). Then the parameters of the model
without deterministic terms are generically identified as shown in the main
text. For the five cases arsing from model (21) we get:

Case H2(r): (µ0 = µ1 = 0) No deterministic terms. This case was shown
above.
Case H1(r): (µ1 = 0 and µ0 6= 0.) We have a linear trend in Eyt, and a
constant in E∆yt, and a constant in Eβ ′yt. Let the matrix SC select n − r
basis rows of C (e.g., SC = α′

⊥ can be used). In this case it holds that

E

(
β ′yt

SC∆Nyt

)
=

(
ᾱ′((In −

∑p−1
j=1 Φj)C − In)

NSCC,

)
µ0 , for the stock case, and

E

(
β ′wt

SC∆
Σ
Nyt

)
=

(
Nᾱ′((In −

∑p−1
j=1 Φj)C − In)

N2SCC

)
µ0 , for the flow case ,

where the matrix on the LHS before µ0 is of rank n since the first rowblock
has rank r and C has rank n−r and both are mutually orthogonal as α′

⊥α = 0
and therefore (with α′

⊥ the last term of C)

α′
⊥

(
(In −

p−1∑

j=1

Φj)C − In
)′
ᾱ = 0 .
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From this we can compute µ0.
Case H∗

1 (r): (µ1 = 0, µ0 6= 0 and α′
⊥µ0 = 0) no linear trend but constant in

E yt, constant in Eβ ′yt−1, and E∆yt = 0. This results in r parameters in the
cointegration equation. In this case we write µt = αρ0, where ρ0 ∈ Rr. Note
that Cµt = Cαρ0 = 0, which results in

E

(
β ′yt
∆Nyt

)
=

(
ᾱ′((In −

∑p−1
j=1 Φj)C − In)

NC

)
αρ0

=

(
−ᾱ′αρ0
N0

)
=

(
−ρ0
0

)
, for the stock case.

For the flow case we get

E

(
β ′wt
∆Σ
Nyt

)
=

(
Nᾱ′((In −

∑p−1
j=1 Φj)C − In)

N2C

)
αρ0

=

(
−Nᾱ′αρ0
N20

)
=

(
−Nρ0

0

)
.

This allows to uniquely retrieve the unkown parameter ρ0 from E β ′yt−1.
Case H(r): (µ0 ∈ Rn and µ1 6= 0) quadratic trend in Eyt, linear trend in
Eβ ′yt, linear trend in E∆yt. For this the stock case we get the system of
linear equations

E




β ′yt
SC∆

Σ
Nyt

β ′yt−N
SC∆

Σ
Nyt−N


 =Mµ

(
µ0

µ1

)
,

where

M
S

µ :=















ᾱ′(C − In −
∑p−1

j=1 CΦj ) | ᾱ′
[

Ct + Mc − tIn −
∑p−1

j=1 Φj (C(t − j) − Mc)
]

NSCC | SCC
(

∑N−1
ℓ=0

(t − ℓ) + NMc

)

ᾱ′(C − In −
∑p−1

j=1 CΦj ) | ᾱ′
[

C(t − N) + Mc − (t − N)In −
∑p−1

j=1 Φj (C(t − N − j) − Mc)
]

NSCC | SCC
(

∑N−1
ℓ=0

(t − N − ℓ) + NMc

)















=

(

MS
µ11 MS

µ12

MS
µ21 MS

µ22

)

.

For the flow case we have

E




β ′wt
SC∆

Σ
Nyt

β ′wt−N
SC∆

Σ
Nyt−N


 =Mµ

(
µ0

µ1

)
,
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where

MF
µ :=








Nᾱ′(C − In −
∑p−1

j=1 CΦj) |

N2SCC |

Nᾱ′
(

C − In −
∑p−1

j=1 CΦj

)

|

N2SCC |

ᾱ′
[

C
∑N−1

ℓ=0 (t− ℓ) +NMc −
(
∑N−1

ℓ=0 (t − ℓ)
)

In −
∑p−1

j=1 Φj

(

C
∑N−1

ℓ=0 (t − ℓ)−NMc

)]

SC

((
∑N−1

ℓ=0

∑N−1
j=0 (t− j − ℓ)

)

C +N2Mc

)

ᾱ′
[

C
∑N−1

ℓ=0 (t −N − ℓ) +NMc −
∑N−1

ℓ=0 (t − ℓ−N)In −
∑p−1

j=1 Φj

(

C
(∑N−1

ℓ=0 (t−N − j − ℓ)
)

−NMc

)]

SC

((
∑N−1

ℓ=0

∑N−1
j=0 (t −N − ℓ− j)

)

C +N2Mc

)











=

(
MF

µ11 MF
µ12

MF
µ21 MF

µ22

)

.

The matrix SC selects n − r basis rows of C (e.g., SC = α′
⊥ can be used)

and M ·
µ11 = M ·

µ21. The matrix M ·
µ11 is of full column rank n by the above

calculations where we set µ1 = 0. The determinant of a blocked matrix is
given by

detM ·
µ = detM ·

µ11 det


M ·

µ22 −M ·
µ21M

·−1
µ11︸ ︷︷ ︸

In

M ·
µ12


 = detM ·

µ11 det
(
M ·
µ22 −M ·

µ12

)
.

Note that MS
µ22 −MS

µ12 =

(
Nᾱ′(C − In −

∑p−1
j=1 CΦj)

N2SCC

)
= NMS

µ11 for the

stock case, while for the flow caseMF
µ22−M

F
µ12 =

(
N2ᾱ′(C − In −

∑p−1
j=1 CΦj)

N3SCC

)
=

NMF
µ11. Therefore, detM

·
µ 6= 0. This allows to uniquely solve for µ0 and µ1.

Case H∗(r): (µ0 ∈ Rn, µ1 6= 0, with α′
⊥µ1 = 0) linear trend in Eyt, linear

trend in Eβ ′yt, and constant in E∆yt. µ0 contains n free parameters, while
µt = µ0 + αρ1t, where ρ1 ∈ Rr. Hence, Cµt = Cµ0 + Cαρ1t = Cµ0. This
results in

E




β ′yt
SC∆Nyt
β ′yt−N


 =

[
MS

µ

]
1:r+n,1:2(r+m)

(
µ0

αρ1

)

=
[
MS

µ

]
1:r+n,1:2(r+n)

(
In 0n×r

0n×n α

)

︸ ︷︷ ︸
MS

µ,H∗
1
(r)

(
µ0

ρ1

)
.
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Since MF
µ has full rank 2n, the matrix MF

µH∗
1 (r)

has rank r + n. This allows
to uniquely obtain µ0 and ρ1. For the flow case this works equivalently.
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