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Abstract

Einstein Equivalence Principle (EEP) requires all matter components to universally
couple to gravity via a single common geometry: that of spacetime. This relates
quantum theory with geometry as soon as interactions with gravity are considered.
In this work, I study the geometric theory of coupling a spin- 1

2 particle to gravity
in a twofold expansion scheme: First with respect to the distance based on Fermi
normal coordinates around a preferred worldline (e.g., that of a clock in the laboratory),
second with respect to 1

c (post-Newtonian expansion). I consider the one-particle sector
of a massive spinor field in QFT, here described effectively by a classical field. The
formal expansion in powers of 1

c yields a systematic and complete generation of GR
corrections for quantum systems. I find new terms that were overlooked in the literature
at order 1

c2 and extended the level of approximation to the next order. These findings
are significant for a consistent inclusion of gravity corrections in the description of
quantum experiments of corresponding sensitivities, and also for testing aspects of GR,
like the EEP, in the quantum realm.
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1. Introduction

Algebra is the offer made by the devil to the mathematician. The
devil said: ‘I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvellous machine.’

Michael Atiyah

The primary aim of this thesis is to probe the post-Newtonian correction of the Dirac
equation in the presence of the gravitational field. My thesis can be understood as
an extension of work done by Schwartz & Giulini [41, 40]. I expand on Schwartz &
Giulini’s work by adding the notion of spin which has led me to use the Dirac equation
instead of the Klein-Gordon equation.

Considering gravity being described by GR, I use the Dirac equation because it avoids
the shortcomings of the Schrödinger equation and grants us some important additional
benefits. The use of the Schrödinger equation is problematic because the Schrödinger
equation is: (1) a non-relativistic equation; (2) incompatible with GR; and (3) a first
derivative of time and second derivative of space which make it much harder to work
with than the Dirac equation. Using the Dirac equation is beneficial because the Dirac
equation: (1) has a clear geometrical description based on the concept of Spinors which
are well defined in the curved spacetime; (2) is a relativistic equation; and (3) has a
simpler differential structure in comparison to the Schrödinger equation.

My theoretical motivation is twofold: firstly to grasp a clear understanding of the
complicated interaction of gravity with quantum particles in a curved background
in QFT by considering their classical (i.e. ‘non-relativistic’, but still quantum) limits.
Secondly, to fill the gaps linking the description of spinor fields within classical Newto-
nian gravity to their description in relativistic GR, by providing a rigorous geometrical
description for the first one.

As a prerequisite to examining the post-Newtonian correction, I expand the Dirac
equation in the Fermi Normal Coordinate (FNC). The FNC can be seen as a general-
isation of the notion of a ‘proper reference frame’ to curved spacetime, defined with
respect to a reference worldline, e.g. that of a clock in the laboratory. Note that the
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1. Introduction

worldline in question is arbitrary and not just geodesic. To perform the FNC expan-
sion, the following two conditions (known as ‘weak gravity conditions’) need to be
satisfied [22]:

• The geodesics in the coordinate neighbourhood must not intersect i.e. the cur-
vature of the spacetime must be small compared to the size of the system.

• The spacelike hypersurfaces must not intersect i.e. the curvature of the worldline
must be small compared to the size of the system.

With the FNC expansion in place, I turn to post-Newtonian framework. The post-
Newtonian framework replaces the abstract notion of Spinors with the far more palpable
notion of wavefunction. The post-Newtonian framework transforms the Dirac equation
to the Pauli equation which is equivalent to the modified Schrödinger equation that
includes spin effects. The post-Newtonian framework has recently received a lot of
attention. It has been applied in variety of areas ranging from experimental quantum
optics to theoretical quantum gravity [23, 20]. The post-Newtonian framework is popu-
lar because it bridges the gap between the Newtonian physics and special relativistic
theories. However, it is crucial to note that there is no consensus on what constitutes
a post-Newtonian framework. While, among various methods, some insist on mass
and energy as grounding parameters, others rely on Foldy–Wouthuysen transform-
ation (FW-transformation) [11]. Following Giulini & Großardt [13], I take that the
post-Newtonian framework should be grounded in the ‘formal c-power expansion’.

I contribute to what has been previously described by finding a way to systematically
include GR correction terms in quantum systems, deriving new terms that were
neglected in the literature [35] and extending the level of approximation [33, 32, 35, 15].
My findings are significant to experimental physics because they suggest that quantum
particles can be used to test and measure gravity as described by GR. In addition, my
results can be seen as the increase of measurement sensitivity of quantum experiments
by including GR correction terms. One of the most important applications of my
calculation is in the study of gravitational effects on g-factor measurement which has
been already considered in [27, 49, 29, 48, 18, 17, 46]. However, the mentioned literature
is neither complete nor systematic. My findings can also be used as a grounding
for atomic interferometry observations and detection of the possible quantum gravity
effects [37, 2, 31, 8]. 1

This thesis is organised as follows: The second chapter begins with the conventions
and assumptions which are followed by mathematical and physical background needed
to comprehend this thesis as intended. In chapter three, I expand the Dirac equation in
the FNC in the extended order of approximation. This expansion not only illustrates

1For more inclusive list of applications see chapter 6.
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the geometrical description of Spinors in curved spacetime, but it also provides us
with the definition of time as it is measured in a laboratory setting. In chapter four, I
calculate the post-Newtonian limit of the expanded Dirac equation in the FNC and the
subsequent modifications to the Pauli equation. Finally, in chapter five, I compare my
results with two papers [35, 15] that were published in 2021 and I argue that different
post-Newtonian approaches lead to different results. My thesis concludes by claiming
that the formal expansion in powers of c seems to be more systematic in comparison to
the other methods that are used in the literature.

This thesis contains 5 appendices, regarding explicit computations. We calculate
the inverse of the metric which is expanded in the FNC in the appendix A and the
corresponding Christoffel symbols in the appendix B. Then using the results in the
previous appendices, we calculate the connection one-forms in appendix C and finally,
the spin connection in appendix D. There are some computational tricks provided in
appendix E which we will use to simplify our resulting Pauli Hamiltonian.
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2. Mathematical and physical
background

2.1. Conventions and Assumptions

Throughout this thesis, the following are presumed:

• h̄ = 1

• The metric signature is ‘mostly plus’, such that the Minkowski metric’s compon-
ents are ηI J = diag(−1,+1,+1,+1)

• Inner product for two 3-dimensional vectors are shown as: aibi := a · b, where
i = 1, 2, 3.

• Vector products for two 3-dimensional vectors are shown as: (a× b)i = εi
jkajbk,

where i,j and k run from 1 to 3.

• The vector arrows are dropped. Such that, terms such as ~a ·~b and (~a×~b)i are
written as (a · b) and (a× b)i respectively.

• When expanding any quantity X in powers of c−1, the term of order n, including
the prefactor c−n, will be denoted by X(n); i.e. we have

X = X(0) + X(1) + X(2) + . . . (2.1a)

with
X(0) = O(c0), X(1) = O(c−1), . . . (2.1b)

For example, this convention will be applied to Hamiltonians H = H(0) + H(1) +
. . . and fields ψ = ψ(0) + ψ(1) + . . . .

• Unless stated otherwise, the symbols { and } are only brackets and detached
from their use as anti-commutators.
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2. Mathematical and physical background

• English indices such as I = (0, i) are to be distinguished from their Greek
counterparts such as µ = (s, i). The former will be used for components with
respect to tetrads (orthonormal frames), while the latter is for spacetime coordinate
components.

• The curvature tensor is assumed to be of the order of c−2.

• The timelike coordinate s has the dimension of length and can be related to the
proper time as s = cτ.

• The time derivative of acceleration, curvature and rotation are neglected.

• By using the term ‘Fermi normal coordinate’, we mean the ‘generalised Fermi
normal coordinate’, in which the the rotation of the frame is also assumed.

• The order of approximation for Fermi Normal Coordinate expansion is up to and
including O(x2).

• The order of approximation for the post-Newtonian expansion is up to and
including O(c−2).

2.2. The Dirac equation in flat and curved spacetime

2.2.1. The Dirac equation in flat spacetime

Among the various definitions of Spinors, this thesis adheres to the following: Objects
which transform under the action of the Lorentz group according to the ( 1

2 , 0)⊕ (0, 1
2 )

representation of the Lorentz algebra are called Spinors. That means that Spinors can
be treated as an element of a four-dimensional complex vector space:

ψ =


ψ1

ψ2

ψ3

ψ4

 (2.2)

wherein, each component is a complex function in the spacetime. This representation
can be reduced to a two-component (ψA and ψB) representation, both of which are a
two-dimensional complex vector:

ψ =

(
ψA
ψB

)
(2.3)
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2.2. The Dirac equation in flat and curved spacetime

In this representation, ψA is interpreted as the state of positive frequencies (particles)
and ψB as the state of negative frequencies (anti-particles).

The Dirac equation is meant to describe the spin-½ massive particles. It is a relativistic
equation meaning that, it respects the principles of the theory of Special Relativity.
Originally, the Dirac equation was written in the flat spacetime background. However,
there exist non-trivial ways of writing it in the curved background spacetime. This
equation is usually expressed in its simplest form [43]:

(iγµ∂µ −mc)ψ = 0 (2.4)

where, γµ are so-called Gamma matrices:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
(2.5)

while, m is the mass and c is the speed of light .
Gamma matrices are generators of the Clifford algebra. Their anti-commutation

relations are as follows:1

{γµ, γν} = −2ηµν14 (2.6)

where, ηµν = (−1, 1, 1, 1) represent the Minkowski spacetime, and the so-called Pauli
matrices are:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.7)

for which, the following (anti-)commutation relations are considered:

[σi, σj] = 2iεij
kσk

{σi, σj} = 2δij1 (2.8)

from which, a very useful relation can be derived:

σiσj = δij + iεij
kσk (2.9)

Furthermore, one could easily include the electromagnetism interaction into the Dirac
equation by changing the partial derivative into a covariant derivative including the
electromagnetic four-potential:

(iγµDµ −mc)ψ = 0; Dµ = ∂µ − iqAµ (2.10)
1Note that in order to use the standard convention for gamma matrices, we add an extra minus sign to

the Clifford algebra anti-commutation relations. This is due to the mostly-plus convention we have for
the Minkowski spacetime.
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2. Mathematical and physical background

2.2.2. Spinors in curved spacetime

In order to generalise the Dirac equation in curved spacetime, the flat version of the
equation needs to be modified in a way that it respects the principles of the theory
of General Relativity [51, 38]. In order to do so, we need to use the formalism of
Spinors in four-dimensional Lorentzian manifolds. It means we need to provide the
description in which Spinors are defined within the context of curved spacetime . This
can be done by Spinor bundle formalism. That alludes to define Spinor bundle as
an associated bundle to a SO(1, 3) principal bundle. As a matter of fact, SL(2, C) is
the double cover of SO(1, 3) and it allows us to formulate the Spinor bundle from the
associated bundle and find the natural connection derived from it. More explicitly,
using the tetrad (vierbein) formalism, we can set eI = (e0, ei) to be an orthonormal
frame. That equates to:

eµ
I eν

J gµν = ηI J (2.11)

We can define the connection 1-form associated with this frame as:

∇µeI = w J
µ IeJ (2.12)

Now we can introduce another frame equivalent to Dirac basis for Spinor in flat
spacetime: Ea where; a = 1, 2, 3, 4 on Spinor bundle. In other words, we demand this
new frame to preserve the form of gamma matrices as they were introduced earlier.
Therefore we can introduce the covariant derivative as follows:

∇µψa = ∂µψa + Γ a
µ bψb (2.13)

We know that we can also express the spin connections in terms of the group generator
and the connection one-form [4]:

Γ a
µ bψb = −1

2
wµI J(SI J)a

bψb (2.14)

where:

SI J =
1
4
[γI , γJ ] (2.15)

is the generator of the group SL(2, C) action on the Spinor bundle and wµ is the
connection one-form. Note that in order to define the associated Spinor bundle, we
demand our orientable manifold to have the spin structure. On top of these conditions,
we will also demand that there exists a globally defined orthonormal frame over our
manifold so that Geroch’s theorem ensures that a spinor bundle can be built [44, 34].
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2.3. Newtonian limit: Dirac to Pauli in flat spacetime

2.3. Newtonian limit: Dirac to Pauli in flat spacetime

There are many approaches to study the post-Newtonian limit. FW-transformation, 1
m

expansion and formal c power expansion are examples of such. In the thesis, I will
use the formal c power expansion and then in chapter 5, we will compare it to other
methods to see the differences.

By formal expansion, it is meant to formulate the expansion as the formal limit of
c→ ∞, where, c is the speed of light. To implement this limit, we will expand Spinors
in the Dirac equation as formal power series in the parameter c−1 - or, more precisely,
formal Laurent series, since we will need negative orders of c.

Analytically speaking, a Taylor expansion in a dimensionful parameter like c is incor-
rect. Therefore we need to make it dimensionless as a small-parameter approximation.
This means that the corresponding small parameter has to be chosen as e.g., the ratio
of some typical velocity of the system under consideration to the speed of light. In this
thesis however, we will drop this issue and just expand in c−1 as a formal parameter.

More strictly speaking, we are to deal with tensor field that takes values in the field
of formal Laurent series R((c−1)) instead of the real numbers. It does not cause any
problem because, we define differentiation of series-valued tensor field order by order,
and demand that equations be satisfied order by order [39].

Let us see how to derive Pauli equation as the post-Newtonian limit of Dirac in flat
spacetime:

(iγµ∂µ −mc)ψ = 0 (2.16)

Using (2.3) , (2.5) and separating the spatial and temporal part will result in:

(i∂t −mc2)ψA = −ic(σ · ∂)ψB

(i∂t + mc2)ψB = −ic(σ · ∂)ψA (2.17)

Now we separate the phase factor:

ψ = eic2sψ̃ , ψ̃ = O(c0) (2.18)

where, s is an arbitrary function of space and time. Inserting it to (2.17):

(−c2ṡ + i∂t −mc2)ψ̃A = (c3(σ · ∂s)− icσ · ∂)ψ̃B (2.19a)

(−c2ṡ + i∂t + mc2)ψ̃B = (c3(σ · ∂s)− icσ · ∂)ψ̃A (2.19b)

where, ṡ = ∂ts and s′ is the spatial derivative of s. Now we are ready to expand our
equations in the powers of c. That means that we expand ψ̃A and ψ̃B as in (2.1).

Then we can look at the different orders of c:

9



2. Mathematical and physical background

(2.19a) at c3:

(σ · ∂s)ψ̃B(0) = 0 (2.20)

(2.19b) at c3:

(σ · ∂s)ψ̃A(0) = 0 (2.21)

Therefore in order to have a non-zero field we conclude:

∂is = 0 (2.22)

This implies that s depends only on time.
(2.19a) at c2:

(ṡ + m)ψ̃A(0) = −(σ · ∂s)ψ̃B(1) (2.23)

(2.19b) at c2:

(−ṡ + m)ψ̃B(0) = (σ · ∂s)ψ̃A(1) (2.24)

Knowing that s is not function of space, the right hand side is vanished:
(2.19a) at c2:

(ṡ + m)ψ̃A(0) = 0 (2.25)

(2.19b) at c2:

(−ṡ + m)ψ̃B(0) = 0 (2.26)

Again, as we want to have a non-zero field, we conclude:

(ṡ + m) = 0

(−ṡ + m) = 0 (2.27)

Therefore we can derive the explicit function of s as follows:

s = ±mt + K (2.28)

where, we can choose K = 0 because it is a phase in the exponential function. In
addition, we can ignore the s = +mt case by being interested in positive energy
solutions. Accordingly, (2.18) will turn into a strong ansatz:

ψ = e−imc2tψ̃ (2.29)

10



2.3. Newtonian limit: Dirac to Pauli in flat spacetime

Therefore the equation (2.17) will turn to:

i∂tψ̃A = (−icσ · ∂)ψ̃B (2.30a)

(i∂t + 2mc2)ψ̃B = (−icσ · ∂)ψ̃A (2.30b)

Now that we have fixed our ansatz, we can confidently expand our Dirac equation. For
the order of c3 ((2.20) and (2.21)) due to s′ = 0, there is no equation. However for the
next order, namely c2, our equations (2.25) and (2.26) will result in:

ψ̃B(0) = 0 (2.31)

which confirms our ansatz. With this information, we can now study next orders and
solve the coupled equations for the positive frequencies (ψ̃A):

(2.30a) at c1:

0 = (−icσ · ∂)ψ̃B(0) (2.32)

(2.30b) at c1:

ψ̃B(1) = −
i

2mc
(σ · ∂)ψ̃A(0) (2.33)

where, (2.32) is trivial because of (2.31). However, (2.33) will be useful in the next order
for finding an equation for ψA(0):

(2.30a) at c0:

i∂tψ̃A(0) = (−icσ · ∂)ψ̃B(1) (2.34)

(2.30b) at c0:

ψ̃B(2) = −
i

2mc
(σ · ∂)ψ̃A(1) (2.35)

Using (2.34) and (2.33), we conclude:

i∂tψ̃A(0) = −
1

2m
(σ · ∂)2ψ̃A(0) (2.36)

Equation (2.36) is the Pauli equation. It is derived as the Newtonian limit (c0 order) of
the Dirac equation. We calculated it by expanding the Dirac equation in the powers of
c. We can continue the procedure in order to see the post-Newtonian modification to
the Pauli equation by looking at the higher orders of c:

(2.30a) at c−1:

i∂tψ̃A(1) = (−icσ · ∂)ψ̃B(2) (2.37)

11



2. Mathematical and physical background

Using (2.37) and (2.35) we have again the Pauli equation, but this time for the ψ̃A(1).
That means there is no modifications to Pauli equation up to the first order of post-
Newtonian approximation. In the next order we have:

(2.30b) at c−1:

i∂tψ̃B(1) + 2mc2ψ̃B(3) = (−icσ · ∂)ψ̃A(2) (2.38)

(2.30a) at c−2:

i∂tψ̃A(2) = (−icσ · ∂)ψ̃B(3) (2.39)

Replacing ψ̃B(3) in (2.39) by (2.38):

i∂tψ̃A(2) =
1

2mc2 (−icσ · ∂)
{
(−icσ · ∂)ψ̃A(2)− i∂tψ̃B(1)

}
(2.40)

Now we use (2.33) to replace ψ̃B(1):

i∂tψ̃A(2) =
1

2mc2 (−icσ · ∂)
{
(−icσ · ∂)ψ̃A(2)− i∂t{−

i
2mc

(σ · ∂)ψ̃A(0)}
}

(2.41)

Simplifying it, we will end up:

i∂tψ̃A(2) = −
1

2m
(σ · ∂)2ψ̃A(2)−

i
4m2c2 (σ · ∂)∂t(σ · ∂)ψ̃A(0) (2.42)

It can be concluded that in the c−2 level of approximation, there are some modifications
to Pauli equation. More explicitly, the second term of the above equation is considered
to be the modification. Note that in order to include the external electromagnetic
field interaction, one could replace the partial derivative ∂ by the covariant derivative
Dµ = ∂µ − iqAµ. This method of relating the Dirac equation to the Pauli equation will
be also applied in the curved spacetime context. But before that, we need another
mathematical tool to be able to go to the curved spacetime scenario, namely, Fermi
normal coordinates.

2.4. Fermi normal coordinates

Fermi normal coordinates, in short FNC, are meant to be the generalisation of the inertial
coordinates for arbitrary timelike trajectories. These coordinates will be the second
tool (first was post-Newtonian expansion) to reduce Dirac’s Spinor formalism to an
understandable experimental framework for arbitrary trajectories in curved spacetimes.
As the post-Newtonian paradigm assumes ‘slow velocities’, metric expansion in the

12



2.4. Fermi normal coordinates

trajectory’s neighbourhood will be done under the assumption of ‘weak gravity’. The
coordinates for general relativistic situations are related to observable quantities such
as acceleration, rotation and distances. They were first formulated by M.Fermi in 1922.
Then they were generalised by Manasse and Misner [22] and later extended for the case
of an arbitrary moving observer (i.e. rotation and acceleration) by Ni and Zimmermann
[28, 24].

Let us assume an arbitrary trajectory, to which, we ascribe a coordinate for a moving
particle. The next step is to assume a laboratory around the particle on the trajectory.
That means we are interested not just in the coordinate of the particle on the trajectory,
but also the neighbourhood of that particle, or simply, the coordinate adapted to the
observer in the laboratory.

Mathematically it means that we need to first define a co-moving orthonormal
coordinates set for an arbitrary point in our trajectory. In order to do so, we will first
set our timelike unit vector [36]. This can be easily done by assuming the velocity of
the worldline, or more precisely, the normalised tangent vector to be the e0:

e0 =
∂

∂τ
(2.43)

Now at each point of the worldline we construct a tetrad eµ
I such that:

eµ
0 = (

∂

∂τ
)µ = żµ

0 (2.44)

where, zµ(τ) is the worldline of the observer. Now according to [26] we can define the
generator of infinitesimal Lorentz transformation as follows:

∇ueI =
DeI

Dτ
= −Ω.eI (2.45)

with

Ωµν = aµuν − aνuµ + uIωJε
I Jµν (2.46)

where, u = e0 is the four-velocity, aµ is the four-acceleration and ωµ is the four-rotation
of the observer.

If ω is zero, the observer would be Fermi-Walker-transporting his tetrad (gyroscope-
type transport). If both a and ω were zero, he would be freely falling (geodesic motion)
and would be parallel-transporting his tetrad ( DeI

Dτ = 0) [26]. The last remark is that any
normal tangent vector vµ which is perpendicular to our timelike unit vector (2.44) can
be written as [24]:

vµ = eµ
i αi where

3

∑
i=1

(αi)2 = 1 (2.47)

13



2. Mathematical and physical background

xµ

x

τ

eµ

(0)

eµ

(2)

eµ

(3)

eµ

(1)

Figure 2.1.: zµ

(τ)
is the worldline of the observer and the adopted coordinates can be seen

in red. One can see how to relate the neighbouring point xµ to this adopted
coordinates. Note that x is the proper length of the geodesic connecting the
worldline to the neighbouring point xµ.

Now we can use the tetrad defined on the worldline to construct coordinates xµ

for any point in the neighbourhood of the worldline (see figure 2.1). We do so by
connecting any points on the worldline to the neighbouring point by a geodesic starting
at the point on the worldline with a tangent vector perpendicular to (2.44). It will give
us the advantage to describe all the neighbouring points by the proper time of the
starting point in the worldline which we will call τ0 and three variables αi and the
length of the geodesic joining two points which, we call x.

Note that we should not confuse xµ and proper length x. The latter one can be shown
to be related to the spatial coordinate of the FNC by xi = xαi. That means we can
expand the metric [28] around this trajectory (xi = 0) by:

gss = −1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm + c−2(ω× x)2 + O(x3) (2.48)

gsi = c−1(ω× x)i −
2
3

R0limxlxm + O(x3) (2.49)

gij = δij −
1
3

Ril jmxlxm + O(x3) (2.50)

where, x can be also seen as the distance to the worldline. It is assumed that x is small
compared to the curvature radius. (weak gravity and weak inertial effects). Rijkl is the
Riemann tensor, a is acceleration of the observer on the worldline and ω is rotation
of the frame. One should bear in mind that, the conditions for using the FNC can be
summarised in the following two points [15]:

• The geodesics must not intersect i.e. The curvature of the spacetime must be small
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2.4. Fermi normal coordinates

compared to the size of the system:

RI JKL · x2 � 1⇐⇒ Rsystem � Rspacetime

• The spacelike hypersurfaces must not intersect i.e. the curvature of the worldline
must be small compared to the size of the system:

ω

c
· x � 1⇐⇒ Rsystem � Rangular velocity

a
c2 · x � 1⇐⇒ Rsystem � Racceleration

One remark would be that the curvature tensor has a factor of c−2 inside it. Therefore
the metric can be seen as the Minkowski metric which is perturbed by terms of the
different order of c.2 Note that we expand the metric in terms of the FNC to the order of
x2 without being concern with the linearity of the acceleration, curvature and rotation.

It is noteworthy that in order to differ the frame indices from the ones for spacetime
associated to Fermi normal coordinate indices, we will use the notation that Greek
indices are mostly used to indicate the spacetime indices. They split into space and
time components. The timelike coordinate s has the dimension of length and can be
related to the proper time as s = cτ. The spatial components is indicated by italic i.
The indices with respect to a chosen tetrad (orthonormal frame) are indicated by Latin
indices, such that, 0 for time coordinate and straight i for spatial components.

µ = (s, i)

I = (0, i) (2.51)

Sometimes throughout the calculation I might replace the frame indices with spacetime
indices. That is the case only when those terms are to be calculated on the worldline
itself and not the neighbourhood. In this case, it does not make a difference in which
set of indices they are written.

2This assumption that the curvature tensor has a factor of c−2 inside it, only plays a role in the second
phase of calculation where we expand the Dirac equation in terms of powers of 1/c to compute the
post-Newtonian limits.
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3. Expansion of the Dirac equation
in Fermi normal coordinates

3.1. Dirac Hamiltonian

In order to calculate the expanded Dirac equation in the FNC, we will first construct
the Dirac Hamiltonian. To calculate the Hamiltonian, we remember the Dirac equation:

(iγµ∇µ −mc)ψ = 0 (3.1)

Splitting the index µ into its temporal and spatial components:

(iγs∇s + iγi∇i −mc)ψ = 0 (3.2)

Inserting the covariant derivative and setting s = cτ for the partial time derivative will
result in:

(iγs∂τ + iγscΓs + iγic∂i + iγicΓi −mc2)ψ = 0 (3.3)

Now we separate the time derivative in order to create a Schrödinger-like equation:

i∂τψ = (−γs)−1(iγic∂i + iγicΓi −mc2)ψ− icΓsψ (3.4)

which enables us to read-off the Hamiltonian. We call it Dirac Hamiltonian:

H := (gss)−1γs(iγic∂i + iγicΓi −mc2)− icΓs (3.5)

3.2. The spin connection in Fermi normal coordinates

As we already saw, the general metric which is expanded in Fermi Normal Coordinate
up to the order of x2 is:

gss = −1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm + c−2(ω× x)2 + O(x3) (3.6)

gsi = c−1(ω× x)i −
2
3

R0limxlxm + O(x3) (3.7)

gij = δij −
1
3

Ril jmxlxm + O(x3) (3.8)
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3. Expansion of the Dirac equation in Fermi normal coordinates

From this, the inverse metric can be calculated (see appendix A):

gss = −1 + 2c−2(a · x)− 3c−4(a · x)2 + R0l0mxlxm + O(x3) (3.9)

gsi = c−1(ω× x)i − 2
3

R i
0l mxlxm − 2c−3(a · x)(ω× x)i + O(x3) (3.10)

gij = δij +
1
3

Ri j
l mxlxm − c−2(ω× x)i(ω× x)j + O(x3) (3.11)

Having the metric and its inverse, we can calculate the corresponding Christoffel
symbols (see appendix B):

Γs
ij =

1
3

{
(R0jil + R0ijl)− 2c−2(a · x)(R0jil + R0ijl)− c−1(ω× x)n(Rnjil + Rnijl)

}
xl

(3.12)

Γs
si = c−2ai − c−4ai(a · x) + c−6ai(a · x)2 + R0i0lxl − 2c−2(a · x)R0i0lxl

− c−2aiR0l0mxlxm − c−1(ω× x)nxl R0lni +
2
3

c−1R n
0l mxlxmε ijnω j (3.13)

Γi
ss = c−2ai + c−4(a · x)ai + R i

0 0lx
l − c−2((ω× x)×ω)i +

c−2

3
Ri j

l mxlxmaj

− c−4aj(ω× x)i(ω× x)j (3.14)

Γi
sj = −c−3(ω× x)iaj + c−5aj(a · x)(ω× x)i − c−1(ω× x)iR0j0lxl

+
2
3

c−2ajR i
0l mxlxm + c−1εi

pjω
p − R i

0l jx
l − 1

3
c−1εnpjω

pRn i
l mxlxm (3.15)

Γs
ss = c−3(a.(ω× x))− c−5(a.(ω× x))(a · x) + c−1R0n0lxl(ω× x)n

− 2
3

c−2anR n
0l mxlxm (3.16)

Γi
jk = −

1
3

xlc−1(ω× x)i(R0kjl + R0jkl)−
1
3

xl(Ri
kjl + Ri

jkl) (3.17)
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3.2. The spin connection in Fermi normal coordinates

Now we need to choose the FNC basis vectors:

e0
s = 1 + c−2(a · x) + 1

2
R0l0mxlxm + O(x3)

ei
s = −

1
2

Ri
l0mxlxm + c−1(ω× x)i + O(x3)

e0
j =

1
6

R0l jmxlxm + O(x3)

ei
j = δi

j −
1
6

Ri
l jmxlxm + O(x3) (3.18)

We can also calculate the dual basis vectors by:1

es
0 = η00(gsse0

s + gsje0
j )

es
i = ηij(gssej

s + gsiej
i)

ej
0 = η00(gjse0

s + gjie0
i )

ej
i = ηij(gjsej

s + gjiej
i) (3.19)

Therefore:

es
0 = 1− c−2(a · x) + c−4(a · x)2 − 1

2
R0l0mxlxm

es
i = −

1
6

Ril0mxlxm

ej
0 = −c−1(ω× x)j + c−3(a · x)(ω× x)j +

1
2

R j
0l mxlxm

ej
i = δ

j
i +

1
6

R j
il mxlxm (3.20)

Still requiring clarification is why did we chose this specific set of basis vectors. The
reasoning will be provided in section 5.2 of chapter 5 in which my calculation are
compared with Ito [15].

Now we have the required information in order to calculate the connection one
forms:

w I
µ J = Γα

µνeI
αeν

J − eν
J ∂µeI

ν (3.21)

As the final step we need to calculate the derivative of our basis vectors ∂µeI
ν. We first

separate it to spatial and temporal parts for ν, then we again separate each part to
spatial and temporal parts for I. We also note that to simplify our calculations we

1Note that there is a difference between j and j the former represent the spatial part of the spacetime and
the latter represent the spatial part of the frame.
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3. Expansion of the Dirac equation in Fermi normal coordinates

ignore the time derivatives of acceleration, curvature and angular velocity. This can be
physically interpreted as the metric being stationary up to our order of approximation.
Therefore the result is:

∂ie0
s = c−2ai + R0i0lxl ; µ = (s, i) (3.22)

∂ie
j
s = −

1
2
(Rj

i0l + Rj
l0i)xl + c−1ε

j
kiω

k; µ = (s, i) (3.23)

∂je0
i =

1
6
(R0jil + R0lij)xl ; µ = (s, j) (3.24)

∂pej
i = −

1
6
(Rj

pil + Rj
lip)xl ; µ = (s, p) (3.25)

Now we are ready to calculate the connection one-forms (calculations can be found in
appendix C). The result is:

w 0
i 0 =

c−1

2
xl(ω× x)kR0kli +

1
2

ε ipnωpR n
0l mxlxm − c−2(a · x)R0i0lxl

− c−2

2
aiR0l0mxlxm (3.26)

w i
s 0 = c−2ai + c−1(ω× x)kR i

0l kxl +
c−1

2
εi

pkωpR k
0l mxlxm +

c−2

6
Ri

l jmxlxmaj

− c−2R i
0 0lx

l(a · x) + R i
0 0lx

l − c−2

2
R0l0mxlxmai (3.27)

w j
i 0 =

c−1

6
Rj

lnmxlxmεn
piω

p +
c−2

6
Rj

l0mxlxmai +
1
2

xl Rj
0li −

c−2

2
(a · x)xl Rj

0li

+
c−1

2
xl(ω× x)rRj

ril (3.28)

w 0
s i = −c−2ai − R0i0lxl +

c−2

2
aiR0l0mxlxm + c−2(a · x)R0i0lxl + c−1(ω× x)nxl R0lni

− c−2

6
ajR

j
il mxlxm +

c−1

2
εn

piω
pR0lnmxlxm (3.29)

w i
s j =

c−1

6
ωpxlxm(εn

pjRilnm + εn
ipRjlnm) + c−1εi

pjω
p − R i

ol jx
l

+
c−2

6
xlxm(ajRi

l0m − aiRjl0m) (3.30)

w j
k i =

1
2

Rj
ilkxl (3.31)

w 0
µ 0 = 0 (3.32)

w 0
j i =

1
2

R0ijlxl − c−2

3
xl(a · x)(R0jil + R0ijl)−

c−1

3
xl(ω× x)n(Rnjil + Rnijl) (3.33)
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3.3. The Dirac equation in Fermi normal coordinates

Lastly, we are able to calculate the spin connection:

Γµ = −1
2

wµI JSI J (3.34)

Separating it to spatial and temporal parts (µ = (s, f )) we have (for details, see appendix
D):

Γs =
1
2

γ0γi
{

c−2ai + R0i0lxl − c−2

2
aiR0l0mxlxm − c−2(a · x)R0i0lxl − c−1(ω× x)nxl R0lni

+
c−2

6
ajR

j
il mxlxm − c−1

2
εn

piω
pR0lnmxlxm

}
− 1

4
γiγj

{
c−1

6
ωpxlxm(εn

pjRilnm + ε n
ip Rjlnm) + c−1ε ipjω

p − R0lijxl

+
c−2

6
xlxm(ajRil0m − aiRjl0m)

}
(3.35)

Γ f = −
1
2

γiγ0
{

c−1

6
Rilnmxlxmεn

p f ωp +
c−2

6
Ril0mxlxma f +

1
2

xl Ri0l f −
c−2

2
(a · x)xl Ri0l f

+
c−1

2
xl(ω× x)rRir f l

}
− 1

4
γiγj

{
1
2

Rijl f xl
}

(3.36)

3.3. The Dirac equation in Fermi normal coordinates

There is a final step to be done before we are ready to expand the Dirac equation in the
FNC. In order to relate the calculations we did for the expanded metric in the FNC, we
need to expand the gamma matrices in terms of Fermi Normal Coordinates as well.
That means:

γs = es
0γ0 + es

bγb, I = (0, b) (3.37)

γi = ei
0γ0 + ei

j γ
j, J = (0, j) (3.38)

Therefore gamma matrices in the FNC can be read as follows:

γs =

{
1− c−2(a · x) + c−4(a · x)2 − 1

2
R0l0mxlxm

}
γ0 −

{
1
6

Rbl0mxlxm
}

γb

γi =

{
− c−1(ω× x)i + c−3(a · x)(ω× x)i +

1
2

R i
0l mxlxm

}
γ0 +

{
δi

j +
1
6

R i
jl mxlxm

}
γj

(3.39)
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3. Expansion of the Dirac equation in Fermi normal coordinates

Now we are ready to calculate the Dirac Hamiltonian (3.5). We have already calcu-
lated all the necessary terms in (3.35) , (3.36) and (3.39). The only term to be calculated
is (gss)−1 which is calculated in appendix A.2 It is, indeed, a colossal calculation and in
order to avoid calculation mistakes, we divide it into parts and calculate it separately.

The first term we calculate is (gss)−1γs:

(gss)−1γs =

{
− 1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm

}
{{

1− c−2(a · x) + c−4(a · x)2 − 1
2

R0l0mxlxm
}

γ0 −
{

1
6

Rbl0mxlxm
}

γb

}

= γ0{−1− c−2(a · x)− 1
2

R0l0mxlxm}+ γb{1
6

Rbl0mxlxm} (3.40)

Now we calculate (gss)−1γs(iγic∂i + iγicΓi −mc2) by multiplying (3.40) to each terms
step by step. Therefore we first calculate (gss)−1γs(iγic∂i):

(gss)−1γs(iγic∂i) =

{
γ0{−1− c−2(a · x)− 1

2
R0l0mxlxm}+ γb{1

6
Rbl0mxlxm}

}
{

ic
{
{−c−1(ω× x)i + c−3(a · x)(ω× x)i +

1
2

R i
0l mxlxm}γ0

+ {δi
j +

1
6

R i
jl mxlxm}γj

}
∂i

}

= 1

{
i(ω× x)i∂i −

ic
2

R i
0l mxlxm∂i

}
− γ0γj

{
δi

j{ic∂i + ic−1(a · x)∂i

+
ic
2

R0l0mxlxm∂i}+
ic
6

R i
jl mxlxm∂i

}
+ γbγj

{
δi

j{
ic
6

Rbl0mxlxm∂i}
}

(3.41)

Note that we used γ0γ0 = 1 in the last step.

For the second term, namely (gss)−1γs(iγicΓi) we have to first replace the terms

2Note that g−1
µν is not necessarily equal to gµν.
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3.3. The Dirac equation in Fermi normal coordinates

being careful with renaming the indices correctly:

(gss)−1γs(iγicΓi) =

{
γ0{−1− c−2(a · x)− 1

2
R0l0mxlxm}+ γb{1

6
Rbl0mxlxm}

}
{

ic
{{
− c−1(ω× x)i + c−3(a · x)(ω× x)i +

1
2

R i
0l mxlxm}γ0+

{
δi

j +
1
6

R i
jl mxlxm}γj

}
{
− 1

2
γbγ0{ c−1

6
Rblnmxlxmεn

piω
p +

c−2

6
Rbl0mxlxmai +

1
2

xl Rb0li

− c−2

2
(a · x)xl Rb0li +

c−1

2
xl(ω× x)rRbril

}
− 1

4
γbγc{1

2
Rbclixl}}}

(3.42)

where, for Γ f in (3.36) we have changed the index i to b, j to c and f to i in order to
carry on with the calculation. Now we can easily multiply the terms and move forward
in the calculation:

(gss)−1γs(iγicΓi) = ic

{
1
2

γbγ0{− c−1

2
(ω× x)iRb0lixl}+ 1

4
γbγc{− c−1

2
(ω× x)iRbclixl}

+
1
2

γ0γjγbγ0{δi
j{

c−1

6
Rblnmεn

piω
pxlxm +

c−2

6
Rbl0mxlxmai +

1
2

Rb0lixl

− c−2

2
(a · x)xl Rb0li +

c−1

2
xl(ω× x)rRbril +

c−2

2
(a · x)xl Rb0li

}
+

1
4

γ0γjγbγc{δi
j{

1
2

Rbclixl +
c−2

2
(a · x)Rbclixl}

}}

= γbγ0
{
− i

4
xl(ω× x)iRb0li

}
+ γbγc

{
− i

8
xl(ω× x)iRbcli

}
+ γjγb

{
i

12
Rblnmxlxmεn

pjω
p +

ic−1

12
Rbl0mxlxmaj +

ic
4

xl Rb0l j

− ic−1

4
(a · x)xl Rb0l j +

i
4

xl(ω× x)rRbrjl +
ic−1

4
(a · x)xl Rb0l j

}
+ γ0γjγbγc

{
ic
8

Rbcljxl +
ic−1

8
(a · x)Rbcljxl

}
(3.43)

Note that we have used the fact that γ0γjγbγ0 = γjγb . Now we can again rename c to
j in order to further simplify the expression. We Note that γ0γj = −γjγ0. Therefore we
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3. Expansion of the Dirac equation in Fermi normal coordinates

end up to:

(gss)−1γs(iγicΓi) = γ0γb
{

i
4

xl(ω× x)iRb0li

}
+ γbγj

{
− i

8
xl(ω× x)iRbjli

+
i

12
Rjlnmxlxmεn

pbωp +
ic−1

12
Rjl0mxlxmab +

ic
4

xl Rj0lb−

ic−1

4
(a · x)xl Rj0lb +

i
4

xl(ω× x)rRjrbl +
ic−1

4
(a · x)xl Rj0lb

}
+ γ0γjγbγc

{
ic
8

Rbcljxl +
ic−1

8
(a · x)Rbcljxl

}
(3.44)

Now the only term which needs to be simplified is γ0γjγbγc. We know that we have
the following relation for gamma matrices:

γIγJγK = −η I JγK − η JKγI + η IKγJ − iεLI JKγLγ5 (3.45)

where, εI JKL is the Levi-Civita symbol in four dimensions and γ5 = iγ0γ1γ2γ3 . There-
fore we can simplify the last line in (3.44) as follows:

γ0γjγbγc
{

ic
8

Rbcljxl +
ic−1

8
(a · x)Rbcljxl

}
=

ic
8

γ0γjγbγcRbcljxl
{

1 + c−2(a · x)
}

=
ic
8

γ0Rbcljxl(−η jbγc − ηbcγj + η jcγb − iεLjbcγLγ5)

{
1 + c−2(a · x)

}
= +

ic
8

γ0Rjlbcxl(η jbγc − η jcγb)

{
1 + c−2(a · x)

}
= − ic

4
γ0Rjlcbxlη jbγc

{
1 + c−2(a · x)

}
= − ic

4
γ0γc(η JBRJlcB − η00R0lc0)xl

{
1 + c−2(a · x)

}
= +

ic
4

γ0γc(Rlc + R0l0c)xl
{

1 + c−2(a · x)
}

(3.46)

where, in the last two line of the above equations, we have used the fact that in order to
take the trace of a tensor, we first need to include all the spatial and temporal indices.
More explicitly:

η jbRjlbc 6= Rlc
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3.3. The Dirac equation in Fermi normal coordinates

Putting (3.46) back to (3.44), we will end up:

(gss)−1γs(iγicΓi) = γ0γb
{

i
4

xl(ω× x)iRb0li

}
+ γbγj

{
− i

8
xl(ω× x)iRbjli

+
i

12
Rjlnmxlxmεn

pbωp +
ic−1

12
Rjl0mxlxmab +

ic
4

xl Rj0lb−

ic−1

4
(a · x)xl Rj0lb +

i
4

xl(ω× x)rRjrbl +
ic−1

4
(a · x)xl Rj0lb

}
+

ic
4

γ0γc(Rlc + R0l0c)xl
{

1 + c−2(a · x)
}

= γbγj
{
− i

8
xl(ω× x)iRbjli +

i
12

Rjlnmxlxmεn
pbωp+

ic−1

12
Rjl0mxlxmab +

ic
4

xl Rj0lb −
ic−1

4
(a · x)xl Rj0lb+

i
4

xl(ω× x)rRjrbl +
ic−1

4
(a · x)xl Rj0lb

}
+ γ0γc

{
+

ic
4
(Rlc + R0l0c)xl

{
1 + c−2(a · x)

}
+

{
i
4

xl(ω× x)iRc0li

}}
(3.47)

Finally, we calculate (gss)−1γs(−mc2) and −icΓs respectively as:

(gss)−1γs(−mc2) = γ0{mc2 + m(a · x) + mc2

2
R0l0mxlxm} − γb{mc2

6
Rbl0mxlxm} (3.48)

−icΓs = −
ic
2

γ0γi
{

c−2ai + R0i0lxl − c−2

2
aiR0l0mxlxm − c−2(a · x)R0i0lxl

− c−1(ω× x)nxl R0lni +
c−2

6
ajR

j
il mxlxm − c−1

2
εn

piω
pR0lnmxlxm

}
+

ic
4

γiγj
{

c−1

6
ωpxlxm(εnpjRilnm + ε ipnRjlnm) + c−1ε ipjω

p − R0lijxl

+
c−2

6
xlxm(ajRil0m − aiRjl0m)

}
(3.49)

Therefore we can insert (3.49) , (3.48) , (3.47) and (3.41) back into (3.5) and doing the
simplifications, we have the Dirac Hamiltonian which is expanded in the Fermi Normal
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3. Expansion of the Dirac equation in Fermi normal coordinates

Coordinate as:

HDirac = 1

{
i(ω× x)iDi −

ic
2

R i
0l mxlxmDi − qcA0

}
+ γ0

{
mc2 + m(a · x) + mc2

2
R0l0mxlxm

}
− γb

{
mc2

6
Rbl0mxlxm

}
− γ0γj

{
icDj + ic−1(a · x)Dj +

ic
2

R0l0mxlxmDj +
ic
6

R i
jl mxlxmDi

− i
4

xl(ω× x)iRj0li +
ic−1

2
aj +

ic
4

R0j0lxl − ic−1

2
ajR0l0mxlxm

+
ic−1

4
(a · x)R0j0lxl − i

2
(ω× x)ixl R0lij +

ic−1

12
anR n

jl mxlxm

− i
4

εn
pjω

pR0lnmxlxm − ic
4

Rl jxl − ic−1

4
(a · x)Rl jxl

}
+ γbγj

{
ic
6

Rbl0mxlxmDj +
i
4

εbpjω
p +

ic
4

xl R0bjl

+ ixl(ω× x)r
(

1
8

Rjblr +
1
4

Rjrbl

)
+

ic−1

24
xlxm(ajRbl0m + abRjl0m)

+
i

24
ωpxlxm(εn

pbRjlnm + εn
pjRblnm)

}
+ O(x3) (3.50)

This is one of the main results of this thesis.
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4. Post-Newtonian expansion of the
Dirac equation

4.1. Post-Newtonian expansion: Dirac to modified Pauli
in curved spacetime

After expanding the Dirac equation in the FNC coordinate as the first phase of the
calculation, we end up having the following Dirac Hamiltonian. We Note that it was
calculated completely independent of the second upcoming phase:

HDirac = 1

{
i(ω× x)iDi −

ic
2

R i
0l mxlxmDi − qcA0

}
+ γ0

{
mc2 + m(a · x) + mc2

2
R0l0mxlxm

}
− γb

{
mc2

6
Rbl0mxlxm

}
− γ0γj

{
icDj + ic−1(a · x)Dj +

ic
2

R0l0mxlxmDj +
ic
6

R i
jl mxlxmDi

− i
4

xl(ω× x)iRj0li +
ic−1

2
aj +

ic
4

R0j0lxl − ic−1

2
ajR0l0mxlxm

+
ic−1

4
(a · x)R0j0lxl − i

2
(ω× x)ixl R0lij +

ic−1

12
anR n

jl mxlxm

− i
4

εn
pjω

pR0lnmxlxm − ic
4

Rl jxl − ic−1

4
(a · x)Rl jxl

}
+ γbγj

{
ic
6

Rbl0mxlxmDj +
i
4

εbpjω
p +

ic
4

xl R0bjl + ixl(ω× x)r
(

1
8

Rjblr +
1
4

Rjrbl

)
+

ic−1

24
xlxm(ajRbl0m + abRjl0m) +

i
24

ωpxlxm(εn
pbRjlnm + εn

pjRblnm)

}
(4.1)

Now for taking the post-Newtonian limit as the second phase of calculation, we will do
a similar process as in the flat spacetime case. First, we open the Dirac Hamiltonian for
the ψA and ψB and end up having two equations for positive and negative frequencies.
Then we apply the ansatz of positive frequencies by assuming ψ = e−imc2tψ̃. The result
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4. Post-Newtonian expansion of the Dirac equation

is the following two equations:{
iDτ −m(a · x)− mc2

2
R0l0mxlxm − i(ω× x)iDi +

ic
2

R i
ol mxlxmDi + σbσj ic

6
RblomxlxmDj

+
i
4

σbσjεbpjω
p +

ic
4

σbσjxl R0bjl + iσbσjxl(ω× x)r
(1

8
Rjblr +

1
4

Rjrbl

)
+

ic−1

24
xlxmσbσj(ajRbl0m + abRjl0m) +

i
24

ωpxlxmσbσj(εn
pbRjlnm + εn

pjRblnm)

}
ψ̃A

=

{
− mc2

6
σbRblomxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

σjR0l0mxlxmDj

− ic
6

σjR i
jl mxlxmDi +

i
4

σjxl(ω× x)iRjoli −
ic−1

2
σjaj −

ic
4

σjR0j0lxl

+
ic−1

2
σjajR0l0mxlxm − ic−1

4
σj(a · x)R0j0lxl +

i
2

σj(ω× x)ixl R0lij

− ic−1

12
σjanR n

jl mxlxm +
i
4

σjεn
pjω

pR0lnmxlxm +
ic
4

σjRl jxl +
ic−1

4
σj(a · x)Rl jxl

}
ψ̃B

(4.2a)

{
iDτ + 2mc2 + m(a · x) + mc2

2
R0l0mxlxm − i(ω× x)iDi +

ic
2

R i
ol mxlxmDi

+ σbσj ic
6

RblomxlxmDj +
i
4

σbσjεbpjω
p +

ic
4

σbσjxl R0bjl

+ iσbσjxl(ω× x)r
(1

8
Rjblr +

1
4

Rjrbl

)
+

ic−1

24
xlxmσbσj(ajRbl0m + abRjl0m)

+
i

24
ωpxlxmσbσj(εn

pbRjlnm + εn
pjRblnm)

}
ψ̃B

=

{
mc2

6
σbRblomxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

σjR0l0mxlxmDj −
ic
6

σjR i
jl mxlxmDi

+
i
4

σjxl(ω× x)iRjoli −
ic−1

2
σjaj −

ic
4

σjR0j0lxl +
ic−1

2
σjajR0l0mxlxm

− ic−1

4
σj(a · x)R0j0lxl +

i
2

σj(ω× x)ixl R0lij −
ic−1

12
σjanR n

jl mxlxm

+
i
4

σjεn
pjω

pR0lnmxlxm +
ic
4

σjRl jxl +
ic−1

4
σj(a · x)Rl jxl

}
ψ̃A (4.2b)

Note that we have changed the partial derivative to the covariant derivative in order
to include an external electromagnetic field. Now to see the post-Newtonian limit, we
expand the ψ̃ in c powers by noticing that the curvature tensor already has a factor of
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4.1. Post-Newtonian expansion: Dirac to modified Pauli in curved spacetime

c−2 inside. The result is:

ψ̃ = ψ̃(0) + ψ̃(1) + ψ̃(2) + . . . (4.3)

(4.2a) at c1:

0 = −icσjDjψ̃B(0) (4.4)

(4.2b) at c2:

ψ̃B(0) = 0 (4.5)

Therefore equation (4.4) at c1 becomes trivial. We can carry on to the next order: (4.2a)
at c0: {

i∂τ + qcA0 −m(a · x)− mc2

2
R0l0mxlxm−

i(ω× x)iDi +
i
4

σbσjεbpjω
p
}

ψ̃A(0) = −σjicDjψ̃B(1) (4.6)

(4.2b) at c1:

2mc2ψ̃B(1) = −σjicDjψ̃A(0) (4.7)

Putting the (4.7) into (4.6) at c0:{
i∂τ + qcA0 −m(a · x)− mc2

2
R0l0mxlxm−

i(ω× x)iDi +
i
4

σbσjεbpjω
p
}

ψ̃A(0) =
−1
2m

(σ · D)2ψ̃A(0) (4.8)

So we can read off H(0) by having i∂tψ̃A(0) = H(0)ψ̃A(0):

H(0) = −( 1
2m

)(σ · D)2 + m(a · x) + mc2

2
R0l0mxlxm + i(ω× x)iDi −

1
2

σpωp − qcA0

(4.9)

where, for i
4 σbσjεbpjω

p, we used:

σbσj = δbj + ε
bj

kσk
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4. Post-Newtonian expansion of the Dirac equation

in order to simplify it to − 1
2 σpωp. The next order then will be: (4.2a) at c−1:{

iDτ −m(a · x)− mc2

2
R0l0mxlxm − i(ω× x)iDi +

1
2

σpωp
}

ψ̃A(1)

+

{
ic
2

R i
0l mxlxmDi +

ic
6

σbσjRblomxlxmDj +
ic
4

σbσjxl R0bjl

}
ψ̃A(0)

= {−σjicDj}ψ̃B(2)− {
mc2

6
Rbl0mσbxlxm}ψ̃B(1) (4.10)

(4.2b) at c0:

2mc2ψ̃B(2) = {−σjicDj}ψ̃A(1) + {
mc2

6
σbRblomxlxm}ψ̃A(0) (4.11)

We can combine these two equations and have the expression for ψ̃B(2) in terms of
ψ̃A(1) and ψ̃A(0):

ψ̃B(2) =
1

2mc2 {−σjicDj}ψ̃A(1) + {
1
12

σbRbl0mxlxm}ψ̃A(0) (4.12)

Putting (4.7) and (4.12) into (4.10) at c−1:{
iDτ −m(a · x)− mc2

2
R0l0mxlxm − i(ω× x)iDi +

1
2

σpωp
}

ψ̃A(1)+{
ic
2

R i
0l mxlxmDi +

ic
6

σbσjRblomxlxmDj +
ic
4

σbσjxl R0bjl

}
ψ̃A(0)

= − 1
2m

(σ · D)2ψ̃A(1)−
1
12

{
σjσbicRbl0mDj(xlxm)

}
ψ̃A(0) +

ic
12

Rbl0mσbσjxlxmDjψ̃A(0)

(4.13)

We can rename the operators acting on ψs as follows:

i∂τψ̃A(1) = H(1)ψ̃A(0) + H(0)ψ̃A(1) (4.14)

So we can read off the H(1):

H(1) = −2ic
3

R i
0l mxlxmDi −

ic
4

σbσjxl R0bjl −
ic
12

σjσb(Rbj0l + Rbl0j)xl (4.15)

Note that H(0) is the same as the one calculated above. We finally need the next order
of expansion in order to compute the Hamiltonian in c−2 order. Therefore, (4.2a) at c−2
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4.1. Post-Newtonian expansion: Dirac to modified Pauli in curved spacetime

is:

{
iDτ −m(a · x)− mc2

2
R0l0mxlxm − i(ω× x)iDi +

1
2

σpωp
}

ψ̃A(2)

+

{
ic
2

R i
0l mxlxmDi +

ic
6

σbσjRbl0mxlxmDj +
ic
4

σbσjxl R0bjl

}
ψ̃A(1)

+

{
iσbσjxl(ω× x)r(

1
8

Rjblr +
1
4

Rjrbl) +
i

24
ωpxlxmσbσj(εn

pbRjlnm + εn
pjRblnm)

}
ψ̃A(0)

=

{
− σjic−1(a · x)Dj − σj ic

2
R0l0mxlxmDj −

ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

σjR0j0lxl

+
ic
4

σjRl jxl
}

ψ̃B(1) + {−σjicDj}ψ̃B(3) + {
−mc2

6
Rbl0mxlxmσb}ψ̃B(2) (4.16)

(4.2b) at c−1:

2mc2ψ̃B(3) +
{

iDτ + m(a · x) + mc2

2
R0l0mxlxm − i(ω× x)iDi +

1
2

σpωp
}

ψ̃B(1)

=

{
− σjic−1(a · x)Dj − σj ic

2
R0l0mxlxmDj −

ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

σjR0j0lxl

+
ic
4

σjRl jxl
}

ψ̃A(0) + {−σjicDj}ψ̃A(2) + {
mc2

6
σbRbl0mxlxm}ψ̃A(1) (4.17)

We can express the ψ̃B(3) from the second equation in terms of ψ̃As by using (4.7):

ψB(3) =
1

4m2c4

{
− iDτ −m(a · x)− mc2

2
R0l0mxlxm+

i(ω× x)iDi −
1
2

σpωp
}
{−σjicDj}ψ̃A(0)

+
1

2mc2 {−σjicDj}ψ̃A(2) +
1

12
{σbRbl0mxlxm}ψ̃A(1)

+
1

2mc2

{
− σjic−1(a · x)Dj − σj ic

2
R0l0mxlxmDj −

ic
6

σjR i
jl mxlxmDi

− ic−1

2
σjaj −

ic
4

σjR0j0lxl +
ic
4

σjRl jxl
}

ψ̃A(0) (4.18)
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4. Post-Newtonian expansion of the Dirac equation

Now we use (4.7), (4.12) and (4.18) to rewrite the equation (4.16) at c−2 just in terms of
ψ̃A:

{
iDτ −m(a · x)− mc2

2
R0l0mxlxm − i(ω× x)iDi +

1
2

σpωp
}

ψ̃A(2)

+

{
ic
2

R i
0l mxlxmDi +

ic
6

σbσjRbl0mxlxmDj +
ic
4

σbσjxl R0bjl

}
ψ̃A(1)

+

{
iσbσjxl(ω× x)r(

1
8

Rjblr +
1
4

Rjrbl) +
i

24
ωpxlxmσbσj(εn

pbRjlnm + εn
pjRblnm)

}
ψ̃A(0)

=
1

4m2c4 {−icσjDj}{−iDτ}{−icσjDj}ψ̃A(0)

− 1
4mc4 {−icσjDj}{a · x}{−icσjDj}ψ̃A(0)

− 1
8mc2 {−icσjDj}{R0l0mxlxm}{−icσjDj}ψ̃A(0)

+
1

4m2c4 {−σjicDj}{i(ω× x)kDk}{−σjicDj}ψ̃A(0)

− 1
8m2c4 σjσpσiωp{−c2DjDi}ψ̃A(0)

− 1
2m

(σ · D)2ψ̃A(2) +
1
12
{−icσjDj}{σbRbl0mxlxm}ψ̃A(1)

+
1

2mc2 {−icσjDj}{−ic−1σj(a · x)Dj}ψ̃A(0)

+
1

2mc2 {−icσjDj}{−
ic
2

σjR0l0mxlxmDj}ψ̃A(0)

+
1

2mc2 {−icσjDj}{−
ic
6

σjR i
jl mxlxmDi}ψ̃A(0)

+
1

2mc2 {−icσjDj}{−
ic−1

2
σjaj}ψ̃A(0)

+
1

2mc2 {−icσjDj}{−
ic
4

σjR0j0lxl}ψ̃A(0)

+
1

2mc2 {−icσjDj}{
ic
4

σjRl jxl}ψ̃A(0)

+ {− 1
12

Rbl0mσbxlxm}{(−icσjDj)ψ̃A(1) + (
mc2

6
σbRbl0mxlxm)ψ̃A(0)}

+
1

2mc2

{
− ic−1σj(a · x)Dj −

ic
2

σjR0l0mxlxmDj −
ic
6

σjR i
jl mxlxmDi

− ic−1

2
σjaj −

ic
4

σjR0j0lxl +
ic
4

σjRl jxl
}
{−icσjDj}ψ̃A(0) (4.19)
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4.1. Post-Newtonian expansion: Dirac to modified Pauli in curved spacetime

Note that we need to rename some indices in order to continue the calculations. (E.g.
σjDj)

Further remark is that the term 1
4m2c4 {−icσjDj}{−iDτ}{−icσjDj}ψ̃A(0) which might

seem unrelated to the order of approximation, is not actually irrelevant. Because the
time derivative of ψ̃A(0) is still of the order of c−2 and makes the whole expression
again relevant to our approximation. Further details can be found in appendix E.

A final remark is in {− 1
12 Rbl0mσbxlxm}{(−icσjDj)ψ̃A(1) + (mc2

6 σbRbl0mxlxm)ψ̃A(0)}
the second terms is obviously off the order so we will neglect it in the upcoming
simplification. Now we know that in order to read off H(2) we need to look at the
operators action on ψ̃A(0) because:

i∂tψ̃A(2) = H(2)ψ̃A(0) + H(1)ψ̃A(1) + H(0)ψ̃A(2) (4.20)

We can confirm from the above calculations that H(1) and H(0) are calculated
correctly and we can read off H(2):

H(2) = − 1
4mc2 ajDj −

i
4mc2 ε

ij
kσkaiDj −

1
4m

R0l0mxlxm(σ.D)2 − 1
2mc2 (a.x)(σ.D)2

+
1

8m
R +

1
4m

R00 −
i

4m
ε

ij
kσkR0l0ixl Dj +

1
4m

R j
l xl Dj

− 1
12m

σiσj(R n
jl i + R n

ji l)xl Dn −
1

6m
δiδjR q

jl mxlxmDqDi

− q
4m2c2 σbσjDbEj −

1
8m3c2 (σ · D)4

+
i

4m2c2 (ω× x)i(σ · D)2Di −
i

4m2c2 σiσj(ω× x)kDiDjDk

+ σkε
bj

kxl(ω× x)r
(1

8
Rjblr +

1
4

Rjrbl

)
− i

4
xl(ω× x)rRrl −

i
4

xl(ω× x)rR0r0l

(4.21)

This is the final information that we need in order to calculate the extended Pauli
Hamiltonian up to and including the order of c−2. Note that in the expression DbEj the
Db acts on both the Ej and the ψ̃A.
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4. Post-Newtonian expansion of the Dirac equation

4.1.1. Pauli Hamiltonian

Now as HPauli = H(0) + H(1) + H(2) +O(c−3), we conclude (details of the calculation
may be found in appendix E):

HPauli =

{
− 1

2m
− 1

2mc2 (a · x)− 1
4m

R0l0mxlxm
}
(D2 + q(σ · B))

+

{
− 1

4mc2 aj − i
4mc2 aiε

ij
kσk +

1
12m

R j
0l0 xl − i

4m
ε

ij
kσkR0l0ixl

+
1

3m
R j

l xl − 2ic
3

Rj
l0mxlxm − i

12m
ε

iq
kσkxl(R j

ql i + R j
qi l) + i(ω× x)j

}
Dj

− 1
6m

δqiR j
ql mxlxmDjDi

− qcA0 −
1
2

σpωp +
mc2

2
R0l0mxlxm +

1
8m

R +
1

4m
R00 + m(a · x)

+
ic
3

R0lxl + cε
jb

kσkxl(
1
3

R0jbl +
1
12

Rbj0l)

− q
4m2c2 ((∂ · E) + iσ · (∂× E))− q

4m2c2 σbσjEjDb −
1

8m3c2 (σ · D)4

+
i

4m2c2 (ω× x)i(σ · D)2Di −
i

4m2c2 σiσj(ω× x)kDiDjDk

+ σkε
bj

kxl(ω× x)r
(1

8
Rjblr +

1
4

Rjrbl

)
− i

4
xl(ω× x)rRrl −

i
4

xl(ω× x)rR0r0l + O(c−3) + O(x3) (4.22)

where, we used σiσj = δij1 + iεij
kσk to simplify most of the terms. This is the second

main result of this thesis.1 This Hamiltonian includes all the terms up to the order of
x3, where, x is the distance from the worldline and up to the order of c−3, where, c is
the speed of light. These are the limits of weak gravity and slow velocities which have
been applied separately in two different logically-independent stages of the calculation.
We needed ‘weak gravity assumption’ in order to expand the Dirac equation in the
FNC and relate the Dirac equation to the geometry (equation (3.50)). Then we assumed

1It might be asked, why terms related to c−2mω(ω × x) which stands for centrifugal apparent force
does not appear in the Hamiltonian. In order to answer this, considering the simple case of ordinary
classical Hamiltonian mechanics for a point particle, we remember that as we are in the rotating frame,
the canonical momentum itself (being expressed in terms of position and velocity) is related to ω.
Therefore, we do not have terms related to ω2 in the Hamiltonian. However, it explicitly appears in
the Lagrangian formalism. Therefore the question can be answered by noting the difference between
the canonical and kinetic momentum. In this situation they are not equal. Same argument can be
employed for the term related to c−4(a · x)2.
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4.2. Interpretations

‘slow velocities’ in order to study the post-Newtonian limits of the expanded Dirac
equation in the FNC. The resulting Hamiltonian is what we called here in the equation
(4.22) the Pauli Hamiltonian.

4.2. Interpretations

As we already have the results of the thesis in the equations (3.50) and (4.22), one
might ask; what does this long and somewhat horrible-looking terms refer to? To
address this question, we need review quickly the steps we have already taken. We
first expanded our Dirac equation in Fermi Normal Coordinate which, as we claimed
previously, corresponds to our laboratory. Then in order to make sense of Spinors, we
used the post-Newtonian paradigm and by the ansatz we chose, we simplified Spinors
to wave-functions.

Now the post-Newtonian effects and corrections which appear in the so-to-say Pauli
Hamiltonian at hand (4.22) are ready to be interpreted. Interpretation is important here,
because it will guide experimental physicists to look for the right effects and attempt
to observe those. Only after the correct interpretation, experimental observation can
confirm whether the approach we have used is correct.

The interpretation of terms as they appear in one of the resulting Dirac/Pauli
Hamiltonian is still an ongoing research and is beyond the scope of this thesis. However,
we can take two simple examples and see how the process works.

As the first example, in order to translate back the mathematics to its realistic
correspondence, we recall that σi corresponds to Spins. Therefore terms with σi are the
spin coupling terms. For example, − 1

2 σpωp is the coupling of the spin to the angular
velocity of the system which modifies the magnetic moment i.e. the g-factor [25].

As the second example, considering the coupling of the Newtonian gravitational
potential to the Schrödinger equation:

i∂tψ =

(
p2

2m
+ mφ

)
ψ (4.23)

we can conclude that Newtonian gravitational potential can be expressed as the
coefficient of m in the Pauli Hamiltonian. Therefore we can name the following terms
as the Newtonian gravitational potential:

φ = c−2(a · x) + 1
2

R0l0mxlxm + O(x3) + O(c−3) (4.24)

Besides, knowing the Hessian as following:

φ(x0 + x) = φ(x0) + x · ∇φ(x0) +
1
2

xixj(∂i∂jφ)(x0) + O(x3) (4.25)
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4. Post-Newtonian expansion of the Dirac equation

where,

(∂i∂jφ)(x0) = ((Hφ)(x0))ij (4.26)

we can see the term R0l0m in the Hamiltonian is the Hessian.
Apart from these examples, we could have also translated the terms in terms of

physical operators as H = H(x, P, S), where S is the spin operator, P is the momentum
operator and x is the position operator; but we will leave it for section 5.2 where we
discuss this approach in detail.

Finally, I need to mention that, in March 1978, Ni and Zimmermann published a
paper titled as ‘Inertial and gravitational effects in the proper reference frame of an
accelerated, rotating observer’ [28]. There, the authors expanded the equation of motion
of a freely falling particle in the FNC and then they tried to interpret the terms. For the
further interpretation one could refer to this paper.
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5. Comparison to previous works

In this chapter, I will compare my results with two papers which have been published
recently [35, 15]. The comparisons are formulated in the context of two independent
‘reports’, which are the sections of this chapter. 1

5.1. Perche & Neuser 2021: ‘A wavefunction description for a
localised quantum particle in curved spacetimes’

In a paper titled ‘A wavefunction description for a localised quantum particle in curved
spacetimes’ [35], Perche & Neuser give a well-thought out description of the Dirac
Hamiltonian on expanded metric in Fermi Normal Coordinates. Here, I will try to
point out and clarify some of the most important differences of their method and ours.

We will show that our method of post-Newtonian expansion is more general than
what they applied. Our method leads to extra terms in the post-Newtonian resulting
Hamiltonians (Pauli and Schrödinger Hamiltonians) which are of the order of m−1 and
neglected due to the assumptions of their method. Finally, we will bring an argument
named ‘Tracing or not?’ in order to see whether the intention behind the reduction of
post-Newtonian Pauli Hamiltonian to the Schrödinger Hamiltonian is justifiable.

5.1.1. Comparing the Dirac Hamiltonian

I calculated the Dirac Hamiltonian for a general metric which is expanded in a rotating
Fermi Normal Coordinates with an arbitrary acceleration up to the order of x2. In order
to make my calculation comparable with Perche-Neuser, I set ω (the angular velocity,
which causes the rotation in the FNC) to zero, and I ignore all the non-linear terms of a

1This chapter is revised and updated after fruitful scientific debates with the authors of both papers.
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and Rµνρσ. The result is as follows:

HDirac =γ0
{

mc2 + m(a · x) + mc2

2
R0l0mxlxm

}
− γb

{
mc2

6
Rbl0mxlxm

}
− 1

{
ic
2

Ri
m0lx

lxm∂i

}
− γ0γj

{
δi

j (ic∂i + ic−1(a · x)∂i +
ic
2

R0l0mxlxm∂i) +
ic
6

Ri
mjlx

lxm∂i +
ic−1

2
aj

+
ic
4

R0j0lxl − ic
4

Rljxl
}
+ γbγj

{
δi

j (
ic
6

Rbl0mxlxm∂i) +
ic
4

xl Robjl

}
(5.1)

It is identical to the equation 62 in Perche & Neuser’s paper [35]. However, the
difference between the post-Newtonian expansion methods will later cause a rather
important difference in the post-Newtonian Pauli Hamiltonian.

5.1.2. Differences of 1/m and 1/c expansions

In order to see the post-Newtonian limit2, Perche & Neuser split the Dirac Spinor into
positive and negative ψs as follows:

ψ =

(
ψA
ψB

)
(5.2)

(5.3)

Then they can write down the Hamiltonian as:

H =

(
HAA HAB
HBA HBB

)
(5.4)

Therefore the Dirac equation can be broken into the following equations:

i∂tψA = HAAψA + HABψB (5.5)

i∂tψB = HBAψA + HBBψB (5.6)

One can read off each H from the given Dirac Hamiltonian. Then they can write down
the second equation as follows:

ψB = DBψA (5.7)

DB := (i∂t − HBB)
−1HBA (5.8)

2It is not exactly what they intended to do. However, one can use it as their calculations’ side result.

38



5.1. Perche & Neuser 2021

Therefore the equations for the states are decoupled:

idtψA = (HAA + HABDB)ψA (5.9)

(HAA + HABDB) will be then our post-Newtonian Pauli H including spins, if one
calculates the part (idτ − HBB)

−1 in DB by defining idT = i∂τ −mc2 and uses geometric
series and expands it in 1/m. Where, idT is so called ‘energy operator’. Referring to
their paper:

In equation C2 to C3 they apply what was explained above. And in transition of
equation C3 to C4 they simply argue that they keep the order of approximation up
to and including 1/m in (i∂τ − HBB)

−1, which is just part of DB . That is why the
term idT+qcA0

2mc2 is eliminated. However, neglecting this term will lead to differences at

order m−1 in the end. More explicitly, DB must have had the term idT+qcA0
4m2c4 (−ic(σ.D))

in order not to miss any information of the order of 1/m and to be mathematically
consistent.3Then DB would then be:

DB =
1

2mc2

{
1− idT + qcA0

2mc2 − c−2

2
(a · x)− 1

4
R0l0mxlxm

}
HBA

=
1

2mc2

{
1− c−2

2
(a · x)− 1

4
R0l0mxlxm

}
HBA + O (5.10)

where, O is:

O = − idT + qcA0

4m2c4 HBA

= − idT + qcA0

4m2c4

{
mc2

6
σbRbl0mxlxm − ic(σ.D)− ic−1(a.x)(σ.D)− ic

2
R0l0mxlxm(σ.D)−

ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl
}

(5.11)

Therefore:

i∂tψA = (HAA + HABDB)ψA (5.12)

=⇒ i∂tψA ∼ HABO (5.13)

3The mentioned term might seem off the order of approximation but as we continue it turns out that it is
relevant. It is to be explained in the followings.
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Now, let us see what is the explicit form of HABO:

HABO = −
{
− mc2

6
σbRbl0mxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

R0l0mxlxmσjDj

− ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl
}

O

=

{
− mc2

6
σbRbl0mxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

R0l0mxlxmσjDj

− ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl
}

idT + qcA0

4m2c4{
− ic(σ.D)− ic−1(a.x)(σ.D)− ic

2
R0l0mxlxm(σ.D)− ic

6
σjR i

jl mxlxmDi−

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl
}

(5.14)

Note that as idT = idτ −m, the other terms (which can also be of the order of 1
m2 ) in (5.10)

also contribute to the calculation. Having the order of approximation 1
m , the neglected

term in their calculation is:

HABO = −{icσ.D}( iDT

4m2c4 ){icσ.D} (5.15)

where, iDT = idT + qcA0. We can now rewrite the equation (5.15) using iDT =

iDτ −mc2:

HABO =
1

4m2c2 {σ.D}(iDτ){σ.D} − 1
4m

(σ.D)2

=⇒ HABO = − 1
8m2c2 (σ.D)2(iDτ) +

1
8m2c2 (σ.D)[(σ.D), iDτ] +

1
8m

(σ.D)2

=⇒ HABO = − 1
8m2c2 (σ.D)2HPauli +

1
8m2c2 (σ.D)[(σ.D), iDτ] +

1
8m

(σ.D)2 (5.16)

where, [, ] is the commutation relation. In the last step we replaced the first term using
the fact that iDτψ = Hψ. Note that the second term is off the order of approximation.
To write the neglected terms down explicitly, we can label them as E:

E :=
1

2mc2 ajDj +
1

4mc2 (a.x)(σ.D)2 +
1

8m
R0l0mxlxm(σ.D)2 +

1
4m

R00 +
1

2m
R j

0 0mxmDj

(5.17)

Note that this is exactly what I have calculated in appendix E. These new terms are
obtained if one does not assume that the system’s non-relativistic energy is negligible
compared to its rest mass. This is where we claim that our post-Newtonian method is
more general than their method, as it requires less assumptions and produces more
terms.
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5.1.3. Perche & Neuser’s corrected Pauli and Schrödinger Hamiltonian

4 Here, I calculate the corrected Hamiltonian doing the calculation with the 1/m
expansions. For doing so, we will first write down HAA , HAB , HBA and HBB explicitly:

HAA =− ic
2

R i
0l mxlxmDi + mc2 + m(a · x) + mc2

2
R0l0mxlxm

− σbσj ic
6

Rbl0mxlxmDj − σbσj ic
4

xl R0bjl (5.18)

HAB =− mc2

6
σbRbl0mxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

R0l0mxlxmσjDj

− ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl (5.19)

HBA =
mc2

6
σbRbl0mxlxm − σjicDj − ic−1(a · x)σjDj −

ic
2

R0l0mxlxmσjDj

− ic
6

σjR i
jl mxlxmDi −

ic−1

2
σjaj −

ic
4

R0j0lxlσj +
ic
4

σjRl jxl (5.20)

HBB =− ic
2

R i
0l mxlxmDi −mc2 −m(a · x)− mc2

2
R0l0mxlxm

− σbσj ic
6

Rbl0mxlxmDj − σbσj ic
4

xl R0bjl (5.21)

Therefore one can calculate DB:

DB =
1
12

σbRbl0mxlxm − i
2mc

σj
(

1 +
c−2

2
(a · x) + 1

4
R0l0mxlxm

)
Dj

− 1
2mc2

(
ic
6

R i
jl mxlxmσjDi +

ic−1

2
σjaj +

ic
4

σjR0j0lxl − ic
4

σjRl jxl
)

(5.22)

4The main reason for including this section in my thesis and not just referring to their paper is that they
do not calculate the Pauli Hamiltonian explicitly, and do not provide full details of their calculation.
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Finally, we need HABDB:

HABDB =
ic
12

[σb, σj]Rbl0mxlxmDj −
ic
12

σjσb(Rbj0l + Rbl0j)xl

− 1
2m

(
1 +

3c−2

2
(a · x) + 3

4
R0l0mxlxm

)
(D.σ)2

− 1
2m

σjσq
(

c−2

2
aj +

1
2

R0j0lxl
)

Dq −
1

12m
σjσq(R i

qj l + R i
ql j)xl Di

− 1
8m

σjσqR0q0j +
1

8m
Rlqxl{σj, σq}Dj +

1
8m

σjσqRjq

− 1
12m

R i
jl mxlxm{σjDi, σqDq} −

1
4mc2 aq{σj, σq}Dj −

1
8m

R0j0l{σj, σq}Dq

(5.23)

where, we used square brackets and curly brackets to denote commutators and anti-
commutators, respectively, in order to simplify the equation.5 Now we name HAA +

HABDB as the post-Newtonian Pauli Hamiltonian.

HPauli + E = HPauli by me in their level of approx. (5.24)

where, E is calculated in (5.17).

5.1.4. Comparing the Pauli Hamiltonians

My Pauli Hamiltonian in the order of approximation m−1 and linear in R and a, while
ω is vanishing, is:

HPauli =

{
− 1

2m
− 1

2mc2 (a · x)− 1
4m

R0l0mxlxm
}
(D2 + q(σ · B))

+

{
− 1

4mc2 aj − i
4mc2 aiε

ij
kσk +

1
12m

R j
0l0 xl − i

4m
ε

ij
kσkR0l0ixl

+
1

3m
R j

l xl − 2ic
3

Rj
l0mxlxm − i

12m
ε

iq
kσkxl(R j

ql i + R j
qi l)

}
Dj

− 1
6m

δqiR j
ql mxlxmDjDi

− qcA0 +
mc2

2
R0l0mxlxm +

1
8m

R +
1

4m
R00 + m(a · x)

+
ic
3

R0lxl + cε
jb

kσkxl
(

1
3

R0jbl +
1

12
Rbj0l

)
(5.25)

5A very important note is that in equation (5.23), it is one of the rare places we use such notation. Later
to make the calculations more understandable we will use ‘{’ and ‘}’ as brackets.
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Comparing it to what Perche & Neuser calculated in their paper [35], we note that
the terms labelled as E in equation (5.17) are neglected in their Pauli Hamiltonian.

5.1.5. Comparing the Schrödinger Hamiltonians

Now we can, finally, trace over spin degrees of freedom (using the Pauli matrices algebra
as exactly what Perche & Neuser did) in order to calculate the Schrödinger Hamilto-
nian as Perche-Neuser did. The result then would be Post-Newtonian Schrödinger
Hamiltonian in curved spacetime:

HSchrödinger =

{
− 1

2m
− 1

2mc2 (a · x)− 1
4m

R0l0mxlxm
}

D2 − 1
6m

Ri j
l mxlxmDjDi

−
{

1
4mc2 aj − 1

12m
R j

0l0 xl − 1
3m

R j
l xl +

2ic
3

Rj
l0mxlxm

}
Dj

− qcA0 +
mc2

2
R0l0mxlxm +

1
8m

R +
1

4m
R00 + m(a · x) + ic

3
R0lxl (5.26)

Comparing it to Perche & Neuser’s Schrödinger Hamiltonian, we note that the terms
labelled as E (5.17) are neglected in their Schrödinger Hamiltonian.

Now there are few remarks about what we have achieved. First, Dirac Hamiltonians
were identical. As we went further, we realised that new terms arising from my
different assumptions start having more and more consequences. Therefore we decided
to explicitly calculate the term they neglected. We concluded at the end that all the
differences between our calculation and theirs are caused by the less general choice of
post-Newtonian approximation method they are applying.

In addition, tracing over spin degrees of freedom is still ambiguous as we just trace
the terms which include sigma terms and we leave out the terms with the identity
matrix in front of them. We will discuss it in more details in the following part.

5.1.6. Tracing or not?

As we saw in the previous sections, in order to calculate the effective Schrödinger
Hamiltonian from the post-Newtonian Pauli Hamiltonian, Perche & Neuser traced
over the spin degrees of freedom, such that only the terms corresponding to the sigma
matrices were affected. This method is, however, not physically meaningful: the unitary
time evolution described by the full post-Newtonian Pauli Hamiltonian will induce
interactions between the position and spin degrees of freedom. Therefore, the time
evolution which we would obtain by ignoring the spin, i.e. by taking the partial trace
of the total density matrix over the spin degrees of freedom, would no longer be
unitary. Therefore, it cannot be described by any Schrödinger equation with respect to
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a Hamiltonian. Of course, it might be possible to argue for an approximately unitary
time evolution in some cases, but Perche & Neuser don’t do this.

5.1.7. Summary

To summarise, in this section we contend that Perche & Neuser’s method to reduce
the Dirac Hamiltonian to the Pauli Hamiltonian is not complete if understood as a
1
m expansion, because a term relevant at order 1

m was neglected by them: we found
out that if one wants to consistently expand in 1

m , there are crucial terms missing in
their post-Newtonian Pauli Hamiltonian, such as 1

4m R00. The extra terms arise if one
does not assume that the non-relativistic energy of the system is negligible compared
to its rest mass, which Perche & Neuser did. This is a novel result of our calculation,
when compared to previous literature, but also expected, due to the fewer assumptions
we make in our post-Newtonian method. These terms could have been reproduced
by applying their method and not neglecting the term in (5.17), thus turning their
calculation into a systematic expansion in 1

m (instead of an expansion neglecting terms
assumed to be small compared to rest mass).6 Furthermore, the idea of reducing the
Pauli Hamiltonian to the Schrödinger Hamiltonian by tracing over the spin degrees of
freedom seems also conceptually unsound.

5.2. Ito 2021: ‘Inertial and gravitational effects
on a geonium atom’

This section is to compare my result with what Ito calculated in a paper titled ‘Inertial
and gravitational effects on a geonium atom’ [15], where he uses the FW-transformation
[11] in order to study the post-Newtonian limit of Dirac Hamiltonian. Again, we
will call such a limit, ‘Pauli Hamiltonian’ and we will check whether the results are
comparable. We will see that one needs to apply a Lorentz transformation due to
the different choice of Fermi Normal basis vectors. We will interpret the geometric
meaning of the possible choices and conclude that his choice might not be the best.
After finding the Lorentz transformation, in the next section, we will transform our
result to a Hamiltonian which would be comparable to Ito’s Pauli Hamiltonian. We will
see that the results are still incomparable. We will discuss the possible reasons for such
differences and conclude the section by stating that due to the different methods of

6One could argue that Perche & Neuser did not consider the 1
4m R00 term, because they assumed that

their calculation is outside of the matter, i.e. they assumed to be in the situation where Rµν-related
terms are vanishing. This could have been a valid argument, if they did not have the Ricci term
neither. However, they do have the term related to 1

m R in their Hamiltonians and this makes the
aforementioned argument invalid.
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post-Newtonian approximation, the resulting Pauli Hamiltonians seem to be impossible
to be compared.

5.2.1. Comparing the Dirac Hamiltonian

Ito calculated the Dirac Hamiltonian to the linear order of curvature, acceleration and
angular velocity. Converting his notation to mine and including all the c-factors, we
can see that the resulting Hamiltonian in his paper is:

HDirac =1

{
− qcA0 −

ic
2

R i
0l mxlxmDi

}
+ γ0

{
mc2 + m(a · x) + mc2

2
R0l0mxlxm

}
− γb

{
mc(ω× x)b +

mc2

6
Rbl0mxlxm

}
− γ0γj

{
icDj + ic−1(a · x)Dj +

ic
2

R0l0mxlxmDj +
ic
6

R i
jl mxlxmDi +

ic−1

2
aj

+
ic
4

R0j0lxl − ic
4

Rl jxl
}
+ γbγj

{
ic
6

Rbl0mxlxmDj +
ic
4

R0bjlxl + i(ω× x)bDj

}
(5.27)

It is worth seeing my result in the same order of approximation and compare the two
Dirac Hamiltonians. My Hamiltonian is:

HDirac =1

{
i(ω× x)iDi − qcA0 −

ic
2

R i
0l mxlxmDi

}
+ γ0

{
mc2 + m(a · x) + mc2

2
R0l0mxlxm

}
− γb

{
mc2

6
Rbl0mxlxm

}
− γ0γj

{
icDj + ic−1(a · x)Dj +

ic
2

R0l0mxlxmDj +
ic
6

R i
jl mxlxmDi +

ic−1

2
aj

+
ic
4

R0j0lxl − ic
4

Rl jxl
}
+ γbγj

{
ic
6

Rbl0mxlxmDj +
ic
4

R0bjlxl +
i
4

εbpjω
p
}

(5.28)

As we can see, there are just two terms which are different and they are both related
to angular velocity. More explicitly, in Ito’s Hamiltonian, they are the first term in γb

and last term in γbγj which take different forms than my Hamiltonian’s first term in 1

and last term in γbγj. The reason is the different choice of basis vectors for expanded
metric in Fermi Normal Coordinate.7

7If one considers ω = 0 then the resulting Dirac Hamiltonian are identical here, this is a good reason to
be confident about our result and the comparison we did in the previous section.
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Different choice of basis vectors

Choosing the basis vectors in the first glance, would seem to be unimportant. It is the
matter of the taste and simplicity which may be brought for the rest of calculation.
However, when it comes to geometric description and more importantly, the post-
Newtonian approximations, it is really important to choose the basis vectors carefully.

Ito chooses his basis vectors as follows:

e0
s = 1 + c−2(a · x) + 1

2
R0k0lxkxl

ei
s = −

1
2

Ri
k0lx

kxl

e0
j = c−1ε jmkxmωk +

1
6

R0kjlxkxl

ei
j = δi

j −
1
6

Ri
kjlx

kxl (5.29)

He did not give any argument for justifying his choice. On the other hand, my choice
of basis vector was as follows:

e0
s = 1 + c−2(a · x) + 1

2
R0l0mxlxm

ei
s = −

1
2

Ri
l0mxlxm + c−1(ω× x)i

e0
j =

1
6

R0l jmxlxm

ei
j = δi

j −
1
6

Ri
l jmxlxm (5.30)

As it can be seen, up to the choice of angular velocity being a part of e0
j or ei

s they are
identical. In order to give an argument we also need to calculate the dual basis; Ito’s
dual basis are:

es
0 = 1− c−2(a · x)− 1

2
R0l0mxlxm

es
i = −

1
6

Ril0mxlxm + c−1(ω× x)i

ej
0 =

1
2

R j
0l mxlxm

ej
i = δ

j
i +

1
6

R j
il mxlxm (5.31)
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τ = cte
~v

Figure 5.1.: Choosing ~v orthogonal to the spatial leaf of the constant τ

My dual basis up to same level of approximation as Ito are:

es
0 = 1− c−2(a · x)− 1

2
R0l0mxlxm

es
i = −

1
6

Ril0mxlxm

ej
0 = −c−1(ω× x)j +

1
2

R j
0l mxlxm

ej
i = δ

j
i +

1
6

R j
il mxlxm (5.32)

Having calculated the basis and their dual, one can see whether they correspond to
something meaningful in geometry. This is done by looking at the geometric definition
of time in the neighbourhood of the worldline. We know that there are two possible
choices for defining the measurable usual time which is corresponding to the clock in a
laboratory in the neighbourhood of the worldline. The first option is to define the time
to be the normal vector which is orthogonal to the hyper spatial plane of τ = constant,
where τ is the proper time (see figure 5.1). In this case, mathematically we have:

(grad(τ))µ = gµν(dτ)ν (5.33)

After normalising it, we have:

eµ
0 = − gµs

(−gss)
1
2

(5.34)

Note that the minus sign is there to make the vector future directed.
The second option is to define the time as the tangent vector to the worldline

connecting two neighbouring spatial hyper surfaces with constant τ and same spatial
coordinates (see figure 5.2). In that case, normalising what just stated, we have:

eµ
0 =

1

(−gss)
1
2

δ
µ
s (5.35)
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τ = τ1

τ = τ0

(τ1, xi)

(τ0, xi)
~v

Figure 5.2.: Choosing ~v such that it is tangent to the worldline connecting two neigh-
bouring hyper surfaces of constant τ with identical spatial components

Now we need to calculate and compare these dual basis to justify our choice of basis.
The first option would result in the following dual components:

es
0 = 1− c−2(a · x)− 1

2
R0l0mxlxm

ej
0 = −c−1(ω× x)j +

2
3

R j
0l mxlxm (5.36)

which, agrees with my decision of considering the angular velocity term to be in ej
0

component. The second option, on the other hand, would result in:

es
0 = 1 + c−2(a · x) + 1

2
R0l0mxlxm

ej
0 = 0 (5.37)

As it is not related to what Ito and I calculated, we will leave it.
Finally, we could say that at the level of Dirac Hamiltonian where there is no problem

of having a different set of basis vectors, one could easily relate them by a Lorentz
transformation. It works as follows:

eµ
AΛA

B = ẽµ
B (5.38)

where, ẽµ
B represents Ito’s basis, eµ

A is my basis and ΛA
B is the Lorentz transformation

matrix. Therefore we can calculate ΛA
B as follows:

Λc
B = ec

µ ẽµ
B. (5.39)
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As the result:

Λ0
0 = 1

Λ0
i = c−1(ω× x)i

Λi
0 = c−1(ω× x)i

Λi
j = δi

j (5.40)

Using (5.40) we can see that our result is transferable to Ito’s result in the level of Dirac
Hamiltonian,

5.2.2. Comparing the Pauli Hamiltonian

Ito calculated the Pauli Hamiltonian by using FW-transformation in terms of the
physical operators. His Pauli Hamiltonian written in my convention is:

HPauli =

{
1

2m
+

1
2mc2 (a · x) + 1

4m
R0l0mxlxm

}
Π2

− q
m

{
1 + c−2(a · x) + 2

3
R0l0mxlxm +

1
6

Rlmxlxm
}

SkBk +
1

6m
Rj i

l mxlxmΠjΠi

+

{
i

2mc2 aj +
1

2mc2 aiSkε
ij

k −
i
m

R j
0l0 xl +

1
2m

ε
ij

kSkR0l0ixl − i
2m

R j
l xl

+
2c
3

Rj
l0mxlxm +

1
4m

ε
qi

kSkxl R j
qil − (ω× x)j

}
Πj

− q
6m

SiBjRikjlxkxl − Siωi +
mc2

2
R0l0mxlxm + m(a · x)− 1

8m
R− 1

8m
R00 +

ic
6

R0lxl

+
c
2

ε
jb

kxlSkRbj0l − qcA0 + mc2 (5.41)

where:

Dj := iΠj = ∂j − iqAj , where Π is the canonical momentum (5.42)

σk

2
:= Sk , where S is spin operator (5.43)

Bi :=
1
2

εijk(∂j Ak − ∂k Aj) , where B is magnetic field (5.44)
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5. Comparison to previous works

On the other hand, my Pauli Hamiltonian in the same order of approximation and in
terms of the mentioned physical operators would be:

HPauli =

{
1

2m
+

1
2mc2 (a · x) + 1

4m
R0l0mxlxm

}
Π2

− q
m

{
1 + c−2(a · x) + 1

2
R0l0mxlxm

}
SkBk +

1
6m

Rj i
l mxlxmΠjΠi

+

{
− i

4mc2 aj +
1

2mc2 aiSkε
ij

k +
i

12m
R j

0l0 xl +
1

2m
ε

ij
kSkR0l0ixl +

i
3m

R j
l xl

+
2c
3

Rj
l0mxlxm +

1
6m

ε
iq

kSkxl(R j
ql i + R j

qi l)− (ω× x)j
}

Πj

− Siωi +
mc2

2
R0l0mxlxm + m(a · x) + 1

8m
R +

1
4m

R00 +
ic
3

R0lxl

− qcA0 + cε
jb

kSkxl(
2
3

R0jbl +
1
6

Rbj0l) (5.45)

Due to the different choices of basis vectors and different methods of post-Newtonian
approximations we cannot compare the result yet. In order to do so, one could try
to make the result comparable by Lorentz transforming one Hamiltonian to the other.
This might address the first difference and we will investigate this in the following
section.

Lorentz Transformation and relating the results

In order to compare the result, we need to analyse how to transform Spinors which
are written in different basis vectors. Using the principal fibre bundle mathematics, we
know that by assuming:

ēµ
B = ΛA

Beµ
A (5.46)

Spinors transform as follows:

ψ̄(ẽ) = exp
(
−1

2
AI

JS
J

I

)
ψ(e) (5.47)

where A, defined by Λ = exp(A), is the infinitesimal Lorentz transformation and
SI J = 1

4 [γ
I , γJ ] is the generator of Lorentz transformation on Spinors.

As we want to perform the transformation at the level of Pauli Hamiltonian, we can
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use Teylor expansion in order to find what A is:

ēµ
B = ΛA

Beµ
A

= exp(A)A
Beµ

A

= eµ
A + AA

Beµ
A +

(A2)A
B

2
eµ

A (5.48)

On the other hand:

ΛA
B = eA

µ ēµ
B (5.49)

Therefore:

Λ0
0 = 1

Λ0
i = c−1(ω× x)i

Λi
0 = c−1(ω× x)i

Λi
j = δi

j (5.50)

Now using (5.46) and (5.50) we can read off A from (5.48):

A0
0 = 0

Ai
0 = c−1(ω× x)i

A 0
i = c−1(ω× x)i

Ai
j = 0 (5.51)

In order to complete the calculation for (5.47), we need to calculate the term S J
I :

SI J =
1
4
[γI , γJ ] =

1
2

γ[IγJ ] (5.52a)

S J
I =

1
4
[γI , γJ ] (5.52b)

AI
JS

J
I =

1
4

{
c−1(ω× x)iγ0γi − c−1(ω× x)iγ

iγ0

+ c−1(ω× x)iγiγ
0 − c−1(ω× x)iγ0γi

}
(5.52c)

AI
JS

J
I = −1

2
c−1(ω× x)iγ

0γi = −1
2

c−1(ω× x)i

(
0 σi

σi 0

)
(5.52d)

Therefore (5.47) yields:

ψ̄(ē) = exp
{

1
4

c−1(ω× x)i

(
0 σi

σi 0

)}
ψ(e) (5.53)
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5. Comparison to previous works

Now we again use the Taylor series in order to apply the transformation in the level of
Pauli Hamiltonian. Therefore:

ψ̄ = ψ +

{
1
4

c−1(ω× x)i

(
0 σi

σi 0

)}
ψ +

1
2

{
1
4

c−1(ω× x)i

(
0 σi

σi 0

)}2

ψ + O(x3)

(5.54)

= ψ +

{
1
4

c−1(ω× x)i

(
0 σi

σi 0

)}
ψ +

{
3

32
c−2(ω× x)21

}
ψ

Now we know that:

ψ =

(
ψA
ψB

)
(5.55)

Therefore (5.54) can be simplified to the following two equations:

ψ̄A = ψA +
c−1

4
(ω× x).σψB +

3c−2

32
(ω× x)2ψA (5.56)

ψ̄B = ψB +
c−1

4
(ω× x).σψA +

3c−2

32
(ω× x)2ψB (5.57)

Now in order to decouple the above equations, we first note that we are interested
about the positive frequency solutions. Therefore we need to use the relations we found
in the previous chapter for different orders of ψB. Secondly, we need to expand ψB in
the (5.56) by its equivalent in terms of ψA by using the equations (4.5) , (4.7) and (4.12):

ψ̄A = ψA +
c−1

4
(ω× x).σ

{
ψB(0) + ψB(1) + ψB(2) + O(c−3)

}
+

3c−2

32
(ω× x)2ψA

= ψA +
3c−2

32
(ω× x)2ψA +

c−1

4
(ω× x).σ

{
− i

2mc
(σ · D){ψA(0) + ψA(1)}+

1
12

σbRbl0mxlxmψA(0)

}
(5.58)

Considering the Ito’s level of approximation, we can neglect the terms of the non-linear
order in ω and terms of the order c−3. Therefore we end up with:

ψ̄A = ψA −
i

8mc2 (ω× x)iσ
iσjDjψA(0) (5.59)

Note that in our convention ψA(1) = c−1ψA . Knowing the Pauli matrices algebra (2.9),
we can simplify it further:

ψ̄A = ψA −
i

8mc2 (ω× x)i(δ
ij + iεij

kσk)DjψA(0)

= ψA −
i

8mc2 (ω× x)iDiψA(0) +
1

8mc2 (ω× x)iε
ij

kσkDjψA(0) (5.60)
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Now we need to replace ψ in (5.41) by (5.60) and see if the resulting Pauli Hamiltonian
is identical to mine as seen in (5.45). In order to do so, we first translate the terms in
(5.60) by physical operations as in (5.42):

ψ̄A = ψA +
1

8mc2 (ω× x)iΠiψA(0)−
1

4mc2 ε
ij

kSk(ω× x)iΠjψA(0) (5.61)

However, applying the above transformation also would not make the resulting equation
comparable to mine. Therefore one would conclude that the result is not comparable
and the reason is the different methods of post-Newtonian expansions which are used.
We will briefly discuss it in the following section.

5.2.3. Different methods of post-Newtonian approximation

It seems that it is not easy to compare the results after performing the post-Newtonian
approximation. The reason is the different approaches Ito and I took to perform the
post-Newtonian approximation itself.

He is using ‘Foldy-Wouthuysen-like’ expansion [11, 16] up to the order of 1
m and

I am using the formal c power expansion. Foldy-Wouthuysen transformation (or in
short FW-transformation) was first formulated by Leslie Lawrance Foldy and Siegfried
Adolf Wouthuysen in 1949 to study the non-relativistic limit of the Dirac equation in
the flat background [11, 10, 45]. Ever since physicists mostly use it in order to talk
about the non-relativistic limit. It is a unitary transformation of the orthonormal basis
in which both the Hamiltonian and the state are represented. The eigenvalues do not
change under such a unitary transformation, this means the physics does not change
under such a unitary basis transformation. Therefore such a unitary transformation
can always be applied. In particular a unitary basis transformation may be picked
which will put the Hamiltonian in a more pleasant form, at the expense of a change
in the state function, which then represents something else [9]. It, however, seems to
be problematic. The first reason is that it is not clear whether FW-transformation is
well-defined in the context of curved spacetime. Secondly, as scientist want to interpret
the terms appearing in the Hamiltonian to set up an experiment and observe them,
they will face a problem. Because the unitary transformation makes the Hamiltonian
to be dependant on the taste of the person who does the calculation. As stated earlier,
the unitary basis transformation may be picked which will put the Hamiltonian in a
more pleasant form. Therefore, one could not decide whether the terms appearing in
the Hamiltonian correspond to a realistic effect which is detectable in the laboratory.

On the other hand, the method which I have shown in this thesis, is pretty much
independent of the taste of the person who performs the calculation. It is a straight-
forward, mathematically-consistent and logical process which provides us not only
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5. Comparison to previous works

with the non-relativistic limit, but also with the post-Newtonian corrections. Physical
operators such as Spin and canonical momentum operators are the corresponding
lab measurement tools in real world experiments. In order to define them properly
one needs to be really careful. It is the other objection to Ito’s choice of basis vectors
and his method of non-relativistic expansion. Because, it is not clear at all why he
thinks that the spin operator would still be defined as S = σ/2 after performing the
FW-transformation. In other words, the axis of the rotation would have been differed,
if one would choose another set of basis vectors. That means the interpretation of the
terms and coupling in the Hamiltonian is impossible.
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6. Conclusion

We have achieved the description of spin-half particle under gravity also known as the
Pauli equation with corrections. We believe our approach to be the only systematic
and complete method for the inclusion of gravitational effects, i.e., the inclusion of
all the effects without repetition, other than in existing literature [53, 5, 52, 1]. Our
calculation consisted of two steps: first, we expanded the Dirac Hamiltonian in the
FNC in curved spacetime (3.50), which implemented certain approximations based
on the assumption of weak gravity and weak inertial effects. Second, we studied the
resulting Hamiltonian in the post-Newtonian regime (4.22), which implemented the
assumption of slow velocities. We note that these two steps of our calculation are
logically independent because they rely on different sets of self-standing assumptions.
Our work expands on the existing literature [15, 35] by systematic inclusion of neglected
terms.

The mentioned resulting Hamiltonians are significant findings, because they can
be applied in different research areas ranging from theoretical quantum gravity to
experimental quantum optics and atom interferometry. Additionally, my results can be
applied to all the following ongoing research:

• Electron g-factor measurements [15, 14, 30]

• Localisation of fermions in AdS backgrounds [35]

• Unruh effect studies [47, 12, 6, 42, 50, 19, 21]

• Atoms in weak gravitational fields [7, 2, 31, 8, 37]

A possible further research direction would be to design novel experiments for
observing the coupling effects derived from my resulting Hamiltonians. One could also
make the situation more realistic by dropping the assumption of time independence
in curvature, acceleration and angular velocity. Another potentially interesting topic
for further research is the relationship between the description of a Dirac field in
curved spacetime and the description of classical spinning bodies by the Mathisson–
Papapetrou–Dixon equations: this has been somewhat explored in the fully relativistic
case [3], but we believe that exploring it via post-Newtonian expansions may lead to
further understanding.
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A. Calculation of inverse metric

In order to calculate the inverse metric, as the off-diagonal components gsi does not
vanish, we should first separate the spatial components of the metric and rename it as
follows:

gij =: hij (A.1)

for which the inverse , namely hij , can be calculated by using the geometric series.
Then define:

βi := hijgsj and α2 := hijβ
iβj − gss (A.2)

We note that:

hijβ
iβj = hijgsigsj (A.3)

Now it can be proven that:

gss = −α−2 (A.4)

gsi = α−2βi (A.5)

gij = hij − α−2βiβj (A.6)

Therefore we need to calculate hij , βi and α2 to be able to calculate the inverse metric.
Given the recipe, we can start by calculating the hij:

hij = δij −
1
3

Ril jmxlxm (A.7)

Using the geometric series:

1
1− x

= 1 + x + x2 + ... (A.8)

Therefore:

hij = δij +
1
3

Ri j
l mxlxm (A.9)
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A. Calculation of inverse metric

Now for βi we have:

βi = hijgsj

=

{
δij +

1
3

Ri j
l mxlxm

}{
c−1(ω× x)j −

2
3

R0l jmxlxm
}

= c−1(ω× x)i − 2
3

R i
0l mxlxm (A.10)

and, finally for the α2 we have:

α2 = hijgsigsj − gss

=
{

δij + 1
3 Ri j

l mxlxm}{c−1(ω× x)i − 2
3 R0limxlxm}{c−1(ω× x)j − 2

3 R0l jmxlxm}− gss

= δijc−2(ω× x)i(ω× x)j − gss

= c−2(ω× x)2 − gss

= 1 + 2c−2(a · x) + c−4(a · x)2 + R0l0mxlxm (A.11)

Now in order to calculate α−2 we use the geometric series:

gss = −α−2

= −(1 + 2c−2(a · x) + c−4(a · x)2 + R0l0mxlxm)−1

= −
{

1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm

+ { 2c−2(a · x) + c−4(a · x)2 + R0l0mxlxm}2 + O(x3)

}
= −(1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm + 4c−4(a · x)2)

= −(1− 2c−2(a · x) + 3c−4(a · x)2 − R0l0mxlxm) (A.12)

gsi = α−2βi

=

{
1− 2c−2(a · x) + 3c−4(a · x)2 − R0l0mxlxm

}{
c−1(ω× x)i − 2

3
R i

0l mxlxm
}

= c−1(ω× x)i − 2
3

R i
0l mxlxm − 2c−3(a · x)(ω× x)i (A.13)

and, finally similar to previous calculation:

gij = δij +
1
3

Ri j
l mxlxm − c−2(ω× x)i(ω× x)j (A.14)
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At the end, we can calculate the inverse of the metric (gss)−1 by using the geometric
series (A.8) up to the order of x3.

(gss)−1 = −{1− 2c−2(a · x) + 3c−4(a · x)2 − R0l0mxlxm}−1

= −
{

1 + {2c−2(a · x)− 3c−4(a · x)2 + R0l0mxlxm}

+ {2c−2(a · x)− 3c−4(a · x)2 + R0l0mxlxm}2
}

= −
{

1 + {2c−2(a · x)− 3c−4(a · x)2 + R0l0mxlxm}+ {4c−4(a · x)2}
}

= −1− 2c−2(a · x)− c−4(a · x)2 − R0l0mxlxm (A.15)

It is needed in section 3.3 in order to calculate the Dirac Hamiltonian which is expanded
in the FNC.
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B. Calculation of Christoffel
symbols

In order to calculate the Christoffel symbols, we will use the definition:

Γµ
νρ =

1
2

gµκ(gκν,ρ + gκρ,ν − gνρ,κ) (B.1)

In this case, we need to calculate the following 6 components: Γs
ij , Γs

si , Γi
ss , Γs

ss , Γi
jk

and Γi
sj.

Γs
ij =

1
2

gss(gsi,j + gsj,i − gij,s) +
1
2

gsn(gni,j + gnj,i − gij,n)

=
1
2

gss
{

c−1(ω× x)i,j −
2
3

R0lim(xlxm),j + c−1(ω× x)j,i −
2
3

R0l jm(xlxm),i

}
+

1
2

gsn
{
(δni −

1
3

Rnlimxlxm),j + (δnj −
1
3

Rnljmxlxm),i − (δij −
1
3

Ril jmxlxm),n

}
(B.2)

Note that throughout this thesis, the time derivative of R, a and ω are ignored. Therefore
terms such as gij,s are vanishing. Now in order to further simplify the expression we
use the definition of the vector product:

Γs
ij =

1
2

gss
{

c−1ε iqkωqxk
,j −

2
3

R0lim(xl
,jx

m + xlxm
,j)

+ c−1ε jqkωqxk
,i −

2
3

R0l jm(xl
,ix

m + xlxm
,i)

}
+

1
6

gsn
{
−Rnlim(xl

,jx
m + xlxm

,j)− Rnljm(xl
,ix

m + xlxm
,i) + Ril jm(xl

,nxm + xlxm
,n))

}
(B.3)
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B. Calculation of Christoffel symbols

Now we know that xm
,n = δm

n . Moreover, using the fact that ε iqk is totally anti-symmetric
we can simplify the expression as follows:

Γs
ij = −

1
3

gss
{
(R0kil + R0lik)δ

k
j xl + (R0kjl + R0l jk)δ

k
i xl
}

− 1
6

gsn
{
(Rnkil + Rnlik)δ

k
j xl + (Rnkjl + Rnljk)δ

k
i x

l − (Rikjl + Ril jk)δ
k
nxl
}

(B.4)

Now we can use the relations of Riemann tensor. Therefore:

Γs
ij = −

1
3

gss
{
(R0jil + R0ijl)xl

}
− 1

3
gsn
{
(Rnjil + Rnijl)xl

}
(B.5)

Opening gss and gsn and multiplying the terms up to and including the order of x2 will
give us the final result:

Γs
ij =

1
3

xl
{
(R0jil + R0ijl)− 2c−2(a · x)(R0jil + R0ijl)− c−1(ω× x)n(Rnjil + Rnijl)

}
(B.6)

The rest can be calculated the same way.
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C. Calculation of the connection
one-forms

Connection one-forms can be calculated by:

w I
µ J = Γα

µνeI
αeν

J − eν
J ∂µeI

ν (C.1)

As we already have all the required terms for the above equation, we can calculate the
connection one-forms components to components. For instance:

w 0
s 0 = Γs

sse
0
s es

0 + Γi
sse

0
i es

0 + Γs
sje

0
s ej

0 + Γi
sje

0
i ej

0 − es
0∂se0

s − ej
0∂se0

j (C.2)

In order to calculate (C.2), we study it term by term. The first term:

Γs
sse

0
s es

0 = Γs
ss{1 + c−2(a · x)− 1

2 R0
l0mxlxm}{1− c−2(a · x) + c−4(a · x)2 − 1

2 R0l0mxlxm}
(C.3)

So far, we just replaced the e0
s and es

0 by their values in (3.18) and (3.20). Note that
we need to keep the order up and including x2. Therefore we can simplify the above
expression by multiplying the brackets:

Γs
sse

0
s es

0 = Γs
ss

{
1− c−2(a · x) + c−4(a · x)2 − 1

2
R0l0mxlxm+

c−2(a · x)− c−4(a · x)2 − 1
2

R0
l0mxlxm

}
(C.4)

Now we know that lowering the time-indices, due to our convention and the fact that
the frame is Minkowski metric, will give us a minus sign. I.e:

R0
l0m = −R0l0m

Therefore:

Γs
sse

0
s es

0 = Γs
ss (C.5)
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For the second term, we will use the same approach:

Γi
sse

0
i es

0 = Γi
ss

{
− 1

6
R0

limxlxm
}{

1− c−2(a · x) + c−4(a · x)2 − 1
2

R0l0mxlxm
}

= Γi
ss(−

1
6

R0
limxlxm)

=
1
6

c−2aiR0limxlxm (C.6)

where, in the last line we replaced Γi
ss by its value in (3.14). The third term:

Γs
sje

0
s ej

0 = Γs
sj

{
1 + c−2(a · x) + 1

2
R0l0mxlxm

}
{
− c−1(ω× x)j + c−3(a · x)(ω× x)j +

1
2

R j
0l mxlxm

}
= Γs

sj(−c−1(ω× x)j +
1
2

R j
0l mxlxm)

= −c−3a.(ω× x) + c−5a.(ω× x)(a · x)− c−1(ω× x)jR0j0lxl +
1
2

c−2ajR
j

0l mxlxm

(C.7)

The forth term:

Γi
sje

0
i ej

0 = Γi
sj

{
1
6

R0limxlxm
}{
− c−1(ω× x)j + c−3(a · x)(ω× x)j +

1
2

R j
0l mxlxm

}
= 0 (C.8)

Again, in the last line we ask our approximation to be up to and including the order of
x2 and that is why we end up to zero. Finally, the last two terms are also zero because
of our assumption that the time variation of our variables are negligible. All in all, we
will insert each terms back into (C.2):

w 0
s 0 = Γs

sse
0
s es

0 + Γi
sse

0
i es

0 + Γs
sje

0
s ej

0 + Γi
sje

0
i ej

0 − es
0∂se0

s − ej
0∂se0

j

= Γs
ss +

1
6

c−2aiR0limxlxm − c−3a.(ω× x) + c−5a.(ω× x)(a · x)

− c−1(ω× x)jR0j0lxl +
1
2

c−2ajR
j

0l mxlxm (C.9)

Using (3.16) to replace Γs
ss, we end up:

w 0
s 0 = c−3(a.(ω× x))− c−5(a.(ω× x))(a · x) + c−1R0n0lxl(ω× x)n

− 2
3

c−2anR n
0l mxlxm +

1
6

c−2aiR0limxlxm − c−3a.(ω× x)

+ c−5a.(ω× x)(a · x)− c−1(ω× x)jR0j0lxl +
1
2

c−2ajR
j

0l mxlxm (C.10)
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Renaming the indices, we will see that they are all cancelling each other out. Therefore:

w 0
s 0 = 0 (C.11)

The others are also calculated with the same approach. As the calculation is rather
straightforward and tedious I will not write them down.
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D. Calculation of spin connection

The spin connection is to be calculated by:

Γµ = −1
2

wµI JSI J (D.1)

where, SI J is given by (2.15). Therefore:

Γµ = −1
8

wµI J [γ
I , γJ ] (D.2)

where:

[γI , γJ ] = γIγJ − γJγI

is the commutation relation. Now we break the spin connection into its temporal and
spatial parts. We have the following:

Γs = −
1
8

wsI J [γ
I , γJ ]

= −1
8

{
ws00[γ

0, γ0] + ws0j[γ
0, γj] + wsi0[γ

i, γ0] + wsij[γ
i, γj]

}
= −1

8

{
ws0i[γ

0, γi]− ws0i[γ
i, γ0] + wsij[γ

i, γj]

}
(D.3)

where, in the last line we Note that we renamed the index in ws0j[γ
0, γj] and also we

used the anti-symmetric property of w. I.e. ws0i = −wsi0. Therefore we can simplify it:

Γs = −
1
8

{
2ws0i[γ

0, γi] + wsij[γ
i, γj]

}
= −1

8

{
4ws0iγ

0γi + 2wsijγ
iγj
}

= −1
2

ws0iγ
0γi − 1

4
wsijγ

iγj (D.4)
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D. Calculation of spin connection

where, in the second line we again use the anti-symmetry property of both commutators
and connection one-forms in order to drop the commutation brackets. Now we just
need to replace each term by using our previous calculations in (3.29) and (3.30).
Therefore we end up with:

Γs =
1
2

γ0γi
{

c−2ai + R0i0lxl − c−2

2
aiR0l0mxlxm − c−2(a · x)R0i0lxl − c−1(ω× x)nxl R0lni

+
c−2

6
ajR

j
il mxlxm − c−1

2
εn

piω
pR0lnmxlxm

}
− 1

4
γiγj

{
c−1

6
ωpxlxm(εn

pjRilnm + ε n
ip Rjlnm) + c−1ε ipjω

p − R0lijxl

+
c−2

6
xlxm(ajRil0m − aiRjl0m)

}
(D.5)

The same approach will be adopted to calculate the spatial part.
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E. Some tricks

In the equation (4.19) we can do the following simplification for the term

1
4m2c4 {−icσjDj}{−iDτ}{−icσjDj}ψ̃A(0)

as follows:

= (
i

4m2c2 )σ
bσjDbDτDjψ̃A(0)

=
i

4m2c2 σbσjDb[Dτ, Dj]ψ̃A(0) +
1

4m2c2 (σ · D)2H(0)ψ̃A(0) +
q

4m2c2 (σ · D)2(cA0ψ̃A(0))

(E.1)

in which, the first term is related to electromagnetic fields. The second term is however
calculated by the fact that iDτψ̃A(0) = H(0)ψ̃A(0) + qcA0ψ̃A(0). The first term can be
further simplified as follows:

i
4m2c2 σbσjDb[Dτ, Dj]

=
i

4m2c2 σbσjDb

{
(∂τ − iqcA0)(∂j − iqAj)− (∂j − iqAj)(∂τ − iqcA0)

}

=
i

4m2c2 σbσjDb

{
iq(c∂j A0 − ∂τ Aj)

}
= − q

4m2c2 σbσjDbEj (E.2)

Note that in our convention, DbEj is acting on the ψ and derivative needs to be expanded
on both Ej and ψ in the resulting Hamiltonian.
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E. Some tricks

We can also simplify the second term in (E.1) as follows:

1
4m2c2 (σ · D)2H(0) =

1
4m2c2 (σ · D)2

{
− 1

2m
(σ · D)2 + m(a · x) + mc2

2
R0l0mxlxm

+ i(ω× x)iDi −
1
2

σpωp − qcA0

}

= − 1
8m3c2 (σ · D)4 +

1
4mc2 (σ · D)2(a · x)

+
1

8m
R0l0m(σ · D)2(xlxm) +

i
4m2c2 (σ · D)2(ω× x)iDi

− 1
8m2c2 ωp(σ · D)2σp −

q
4m2c2 (σ · D)2cA0 (E.3)

where, we used (4.9) to replace H(0). Note that the last term will cancel the last term
in (E.1). Now we need to apply the derivative to each term and simplify:

(σ · D)2

4m2c2 H(0) = − 1
8m3c2 (σ · D)4 +

1
4mc2 (σ · D)2(a · x) + 1

8m
R0l0m(σ · D)2(xlxm)

+
i

4m2c2 (σ · D)2(ω× x)iDi −
1

8m2c2 ωp(σ · D)2σp −
q

4m2c2 (σ · D)2cA0

= − 1
8m3c2 (σ · D)4 +

1
4mc2 (a · x)(σ · D)2 +

1
4mc2 ai{σi, σj}Dj

+
1

8m
R0l0mxlxm(σ · D)2 +

1
4m

R0i0mxm{σi, σj}Dj +
1

8m
R0i0j{σi, σj}

+
i

4m2c2 ε i
mn ωm{σp, σn}DpDi +

i
4m2c2 (ω× x)i(σ · D)2Di

− 1
8m2c2 σiσjσpωpDiDj −

q
4m2c2 (σ · D)2cA0 (E.4)

Note that again in our convention (σ ·D)2 = σiDiσ
jDj is just for the sake of simplicity.1

In addition, { and } denote anti-commutators. Finally, as we know {σi, σj} = 2δij we

1It can be also simplified as (σ · D)2 = σiσjDiDj = (δij + iεij
kσk)DiDj = D2 + iσ · (D× D) = D2 + q(σ ·

B), where for the second equality we used the Pauli matrices algebra.
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can simplify the above expression as:

1
4m2c2 (σ · D)2H(0) = − 1

8m3c2 (σ · D)4 +
1

4mc2 (a · x)(σ · D)2 +
1

2mc2 ajDj+

1
8m

R0l0mxlxm(σ · D)2 +
1

2m
R j

0 0mxmDj +
1

4m
R00+

i
2m2c2 ε i

mn ωmDnDi +
i

4m2c2 (ω× x)i(σ · D)2Di−
1

8m2c2 σiσjσpωpDiDj −
q

4m2c2 (σ · D)2cA0 (E.5)

This can be replaced as the second term in (E.1) and can be inserted back to (4.19) in
order to calculate H(2) in (4.21).

As another calculation tricks, in the equation (4.22) considering the term:

i
4m2c2 σiσj(ω× x)kDiDjDk

we can further simplify it as follows:

i
4m2c2 σiσj(ω× x)kDiDjDk =

i
4m2c2 (δ

ij + iεij
mσm)(ω× x)kDiDjDk

=
i

4m2c2 (ω× x)k
{

D2 + iσ.(D× D)

}
Dk

=
i

4m2c2 (ω× x)k
{

D2 − iσ.iqB
}

Dk

=
i

4m2c2 (ω× x)k
{

D2 + qσ · B
}

Dk (E.6)

where, B is the magnetic field. Same approach was employed in order to calculate the
terms related to E in (4.22).
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