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Abstract: We analyze the Lagrangian and Hamiltonian formulations of the Maxwell-Chern-
Simons theory defined on a manifold with boundary for two different sets of boundary equa-
tions derived from a variational principle. We pay special attention to the identification of
the infinite chains of boundary constraints and their resolution. We identify edge observables
and their algebra [which corresponds to the well-known U(1) Kac-Moody algebra]. Without
performing any gauge fixing, and using the Hodge-Morrey theorem, we solve the Hamilton
equations whenever possible. In order to give explicit solutions, we consider the particular
case in which the fields are defined on a 2-disk. Finally, we study the Fock quantization of
the system and discuss the quantum edge observables and states.
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1 Introduction

The Chern-Simons (CS) theory in manifolds with boundaries is a very interesting model
as pointed out by Witten in [1] (see also [2]). It plays a relevant role in condensed matter
physics, in particular in the study of the integral and fractional Hall effects [3–6]. The system
obtained by adding the Maxwell and CS Lagrangians (MCS) describes important physical
phenomena, among them the gap from the fundamental state and bulk elementary excitations
[3] and topologically massive spinor electrodynamics [7, 8]. An interesting feature of the CS
and MCS dynamics is the appearance of edge excitations [9–12] and edge observables [13–17].
Edge excitations play a significant role to explain the transport properties of integer quantum
Hall states [18], whereas in the case of the fractional Hall effect it is necessary to rely on a
low energy effective theory, obtained by using the so-called hydrodynamical approximation, in
which the Kac-Moody algebra plays a central role. This effective theory turns out to be given
by an Abelian CS Lagrangian [18, 19]. In this context the edge states correspond to classical
solutions to the effective field equations which are essentially supported on the boundary.
Edge observables also appear in general relativity [20]. For instance, the Einstein-Maxwell-
Chern-Simons theory has played a relevant role in the study of (2+1)-dimensional black holes
[21]. In this case, the black hole horizon acts as a spacetime boundary.

Hamiltonian methods are important, among other things, as the starting point for canon-
ical quantization. In the context of the MCS model in manifolds with boundaries, these have
been discussed by a number of authors [22–24]. In the particular case of a disk, the identifi-
cation of edge observables and their algebra (whose relevance on general grounds was already

– 1 –



pointed out in [1]) has been highlighted in [22], as well as their role in the Dirac quantization
of the system.

The Dirac analysis of field theories defined on manifolds with boundaries exhibits a num-
ber of interesting features, in particular with regard to the boundary dynamics (as defined by
the action) and the role of boundary conditions. For instance, a characteristic phenomenon,
which is often neglected, is the appearance of infinite chains of boundary constraints, which
are necessary for the dynamical consistency of the model. In the case of the scalar field, it is
well known that these chains of constraints play an important role related to the smoothness
of the solutions to the field equations [25]. From a practical point of view, the best way to
implement the Dirac algorithm for field theories with boundaries is the geometric approach
discussed in [26] [or a similar one based on the Gotay-Nester-Hinds (GNH) method [27–29]].

In the present work we give a general discussion of the Hamiltonian formulation of the
MCS model on a compact manifold Σ with boundary. We consider two different situations
which are taken into account by adding a surface term to the Lagrangian proportional to a
non-negative coupling constant λ2, which may be equal or different from zero. As pointed
out in [22], this parameter has a physical interpretation in the case where the manifold Σ

(actually a disk) is surrounded by a superconductor. By relying on a geometric version of
Dirac’s method [26], we find all of the constraints, including the often neglected chains of
constraints at the boundary. We then discuss the edge observables, their evolution, and their
algebra. By using the Hodge-Morrey theorem, we solve the Hamilton equations of motion,
characterize in a precise way the reduced phase space, and give a concrete description both of
the Hamiltonian and the edge observables. These results lead to a straightforward quantization
of the model in the reduced phase space. In order to make contact with the results of [22], we
consider in detail the case in which Σ is a disk, in particular we give the full solution to the
Hamilton equations for the λ = 0 case, the edge observables, and the solutions that play the
role of edge states. In the λ ≠ 0 case, the concrete description of the reduce phase space is not
direct. At any rate, we have been able to complete the resolution of the field equations for
the pure Maxwell case. It is important to note that we have not used any gauge fixing but,
rather, given explicit descriptions of the relevant reduced phase spaces.

The structure of the paper is the following. After this introduction, in Section 2, we use
the Abelian CS model to illustrate some issues relevant for the study of the MCS theory. In
Section 3 we present the Lagrangian and Hamiltonian analysis of the MCS model for two
natural sets of boundary conditions. Whenever possible, we solve the resulting Hamilton
equations of motion together with all the constraints, and use these solutions to carry out
the Fock quantization of the theory. Furthermore, we discuss the classical and quantum edge
observables of the model. Finally, we end the paper with our conclusions in Section 4 and
two appendixes. In the first one we solve an eigenvalue problem for the δd operator and in
the second we give the relevant details about the derivation of the infinite chains of boundary
constraints.

2 Abelian Chern-Simons

In this section, we use a simple example to illustrate some features of gauge theories
defined on manifolds with boundary that we exploit in the next section for the models that
we study in the paper. Let Σ be a two-dimensional compact manifold with boundary and
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M = R ×Σ. The action
SCS(A) = ∫

M
A ∧ dA , (2.1)

where F = dA is the curvature of a connection 1-form A, defines the Abelian Chern-Simons
model. Notice that the field space is F = Ω1 (M), and that we have not introduced any other
condition in its definition (this is of the utmost importance when deriving the Euler-Lagrange
equations). The field equations are

dA = 0 , (2.2a)

∗∂(A) = 0 , (2.2b)

where ∂ ∶ ∂M ↪ M is the natural inclusion of the the boundary ∂M ∶= R × ∂Σ in M , and
∗∂ denotes the corresponding pullback. The bulk equation (2.2a) tells us that the connection
A must be flat, and (2.2b) are boundary conditions of the Dirichlet type. Notice that other
boundary conditions—that can be included in the definition of the field space—may be com-
patible with the action principle (2.1). This will be made clear as soon as we perform the 2+1

decomposition, as we discuss now.
To this end, we consider the 2-surfaces, Σt ∶= {t} ×Σ, of constant t, diffeomorphic to Σ,

where t is the scalar function defined on M as t ∶ R×Σ→ R ∶ (τ, p)↦ τ . For p ∈ Σ, the vectors
tangent to the curves c ∶ R → M ∶ t ↦ (t, p) define a vector field t satisfying the condition
£tt = 1. In the following, we use nonbold fonts for the objects living on Σ to distinguish
them from those defined on M . Using the standard decomposition of the connection, the
configuration space is Q = {(At,A) ∣At ∈ C

∞(Σ),A ∈ Ω1(Σ)}, and the action (2.1) can be
written as

SCS(At,A) = ∫
R

dt∫
Σ
(£tA ∧A +A ∧ dAt +AtdA) . (2.3)

By demanding the stationarity of (2.3), we obtain

∫
R

dt∫
Σ

2 (atdA − a ∧ (£tA − dAt)) + ∫
R

dt∫
∂Σ
ı∗∂ (Ata − atA) = 0 , ∀(at, a) , (2.4)

where (at, a) denotes the variations of (At,A), ı∂ ∶ ∂Σ↪ Σ is the natural inclusion, and ı∗∂ its
pullback. We get F ∶= dA = 0 and £tA − dAt = 0 in the bulk, as expected. The vanishing of
the boundary term implies ı∗∂ (At) = 0 = ı∗∂ (A) = 0. It is important to notice that, in principle,
we can include the following conditions (which are independent of the shape of the boundary)
in the definition of the configuration space:

(i) ı∗∂ (A) = 0, which leads to the condition ı∗∂(a) = 0 on the variations of A. Then (2.4)
implies that At is arbitrary at the boundary, or

(ii) ı∗∂ (At) = 0, which leads to ı∗∂ (at) = 0. Then (2.4) implies that A is arbitrary at the
boundary .

Both (i) and (ii) are compatible with the action (2.3) in the sense that the boundary term in
(2.4) vanishes as a consequence of them. The conditions (i) trivialize the edge observables that
we will construct below; therefore we will work with (ii) from now on. We must mention that
if we are interested on a particular boundary (as in the next section), we can take advantage
of its particular shape to write specific boundary conditions. For instance, if we consider
the particular case in which the boundary is a disk of radius R, then a = ardr + aθdθ and
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the boundary term ı∗∂ (Ata − atA) can be written as (Ataθ − atAθ) ∣r=R. This term vanishes
if we introduce in the definition of the configuration space the conditions At∣r=R = Aθ ∣r=R or
At∣r=R = −Aθ ∣r=R.

We must remark that adding boundary terms to the action may change the boundary
conditions as a consequence of the boundary dynamics determined by the action. For example,
the conditions (ii) can become part of the field equations (i.e., we do not have to put them a
priori in the definition of the configuration space) if we add the following boundary term

∫
R

dt∫
∂Σ
ı∗∂ (AtA) (2.5)

to the Chern-Simons action (2.3). For this reason, in the following we will work with the
action

SCSb(At,A) = ∫
R

dt∫
Σ
(£tA ∧A +A ∧ dAt +AtdA) + ∫

R
dt∫

∂Σ
ı∗∂ (AtA)

= ∫
R

dt∫
Σ
(£tA ∧A + 2AtdA) ,

(2.6)

whose boundary equations are just (ii). We must mention that (2.5) [and, hence, (2.6)] is
adapted to the foliation R ×Σ, and it cannot be written in a covariant “spacetime” form.

We summarize now the main results of the Hamiltonian analysis of the action (2.6) using
the geometric implementation of Dirac’s algorithm discussed in [26, 30] (similar information
can be obtained by using the GNH method [27–29, 31, 32]). The submanifold in phase space
where the dynamics takes place is

C ∶= {(At,A,pt,p) ∈ T
∗
Q ∶ pt(⋅) = 0, p(⋅) − ∫

Σ
(⋅) ∧A = 0, dA = 0, ı∗∂(At) = 0} ,

and the components of the Hamiltonian vector field are

XAt = µt , Xp t (⋅) = 0 ,

XA = dAt , Xp (⋅) = ∫
Σ
(⋅) ∧ dAt , (2.7)

with the Dirac multiplier µt ∈ C∞(Σ) vanishing at the boundary, i.e., ı∗∂ (µt) = 0, but otherwise
arbitrary.

The presence of the arbitrary function of time µt in the Hamiltonian vector field (2.7),
which implies that At is arbitrary, can be immediately interpreted as the Abelian gauge
symmetry A↦ A + dε with ε ∈ C∞(Σ) and ı∗∂(ε) = 0.

2.1 Classical edge observables

Let us construct the so-called classical edge observables [13]. Given any Λ ∈ C∞(Σ), we
define

QΛ(A) ∶= ∫
Σ

dΛ ∧A. (2.8)

First, notice that the functions (2.8) are invariant under the gauge transformations of the
theory, A′ = A + dε, because

QΛ(A
′
) = ∫

Σ
dΛ ∧A′

= QΛ(A) − ∫
∂Σ
ı∗∂ (εdΛ) = QΛ(A) ,
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where we have used ı∗∂(ε) = 0 [which is a consequence of ı∗∂ (At) = 0]. Therefore, the functions
(2.8) are observables. Second, on the constraint submanifold defined by the condition dA = 0,
they satisfy

QΛ(A) = ∫
Σ

dΛ ∧A = −∫
Σ

ΛdA + ∫
∂Σ
ı∗∂ (ΛA) = ∫

∂Σ
ı∗∂ (ΛA) .

This means that, for a given solution A, the functions (2.8) are characterized by the value of
Λ on the boundary, ı∗∂(Λ); this is the reason they are called edge observables.

Using the Hamiltonian vector field (2.7), we can calculate the evolution of the QΛ(A)

Q̇Λ(A) = ∫
Σ

dΛ ∧XA = ∫
∂Σ
ı∗∂ (ΛdAt) = 0 , (2.9)

where we have made use of ı∗∂ (At) = 0. As we can see, the QΛ(A) are constants of mo-
tion. Another interesting aspect of these edge observables is related to their algebraic prop-
erties. If one uses the Poisson brackets of the full phase space, the edge observables satisfy
{QΛ1(A),QΛ2(A)} = 0. However, if one is interested in quantization, the presence of second-
class constraints prevents us from doing this. Instead, the relevant Poisson algebra of the edge
observables must be computed with the Poisson brackets {⋅, ⋅}PB defined by the pullback of
the canonical symplectic form onto the phase space submanifold defined by

p(⋅) − ∫
Σ
(⋅) ∧A = 0 .

By doing this we find

{QΛ1(A),QΛ2(A)}PB =
1

2
∫

Σ
dΛ1 ∧ dΛ2 =

1

4
∫
∂Σ
ı∗∂ (Λ1dΛ2 −Λ2dΛ1) . (2.10)

The same result can be obtained by using Dirac brackets [33]. When ∂Σ ≅ S1, these observables
generate a U(1) Kac-Moody algebra [34] localized on ∂Σ. The relevance of the loop group
LU(1) (and in general of LG) to the treatment of the CS theory was pointed out by Witten
in his celebrated 1989s paper [1]. In particular, for the edge observables of the pure CS theory
on the disk, the algebra (2.10) was found in [13].

Finally, notice that the construction of these edge observables is based on the first-class
constraints of the theory, in this case dA = 0, which guarantee their gauge invariance and
show that they vanish in the bulk. We must also remark the importance of the condition
ı∗∂ (At) = 0. The procedure discussed above suggests a way to construct edge observables for
other gauge theories. However, we must say that they may or may not exist as well-defined
operators in a fully quantized theory.

3 The Maxwell-Chern-Simons Model

The main purpose of the present paper is to study the Maxwell-Chern-Simons model. For
a three-dimensional manifold M = R ×Σ this is defined by the action

SMCS(A) = ∫
M

(αF ∧ ⋆F + βA ∧F ), (3.1)

where α and β are nonzero real constants, F = dA is the curvature of the three-dimensional
connection 1-form A, and ⋆ is the Hodge dual in M with respect to the Minkowski metric
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with signature (−,+,+). The field space is F = Ω1 (M). In the following, we will work with
the Lagrangian

L ∶ TQ ∶= T (C∞
0 (Σ) ×Ω1(Σ)) Ð→ R

v = ((At,A), (vt, v)) z→ L(v)

given by

L(v) =∫
Σ
( − α (v − dAt) ∧ ∗ (v − dAt) + α (∗dA)dA + β (v − dAt) ∧A + βAtdA)

+ ∫
∂Σ
ı∗∂ (λ

2Aιν ∗A) , (3.2)

where we have considered a foliation by inertial observers and, as in the previous section, ı∂ is
the natural inclusion of ∂Σ in Σ, ı∗∂ its pullback, and ∗ is the Hodge dual in Σ with respect to
the induced metric. The bulk terms in (3.2) correspond to the 2+1 decomposition of the action
(3.1) (which is performed by introducing the same geometrical objects as in the Chern-Simons
case) and we have added a boundary term. In that term λ is a function on ∂Σ, ν is the outer
unit normal to the boundary, and ινϑ denotes the interior product (contraction) of ν with the
differential form ϑ. Finally, notice that the notation C∞

0 (Σ) means that ı∗∂ (At) = 0, i.e., we
incorporate this boundary condition in the definition of the configuration space.

The role of the boundary term in (3.2) is to give

ı∗∂ ({α ∗ d + λ2ιν∗}A) = 0 ,

as boundary equations naturally derived from the variational principle. Notice that the bound-
ary term [and hence the action (3.2)] is adapted to the foliation R×Σ so it cannot be written
in a covariant form. As we show below, some details of the Hamiltonian analysis strongly
depend on λ. In fact, it is useful to treat the cases λ = 0 and λ ≠ 0 separately. Finally, we
must mention that the added boundary term is compatible with the gauge symmetries of the
theory (which we will get below), in particular A↦ A + dε with ı∗∂ (ε) = 0.

3.1 Hamiltonian formulation

In this section, we give the relevant steps to obtain the Hamiltonian formulation of the
model defined by the Lagrangian (3.2) using the geometric version of the Dirac algorithm [26].
If we take v,w in the same fiber of TQ, v ∶= ((At,A, ), (vt, v)) ,w ∶= ((At,A), (wt,w)) , we get
the fiber derivative, FL ∶ TQ→ T ∗Q,

⟨p∣w⟩ = ⟨FL (v) ∣w⟩ = ∫
Σ
w ∧ ∗ (−2α (v − dAt) − β ∗A) . (3.3)

Boldfaced letters will be used to denote elements of the dual space, i.e., p ∈ (C∞
0 (Σ) ×Ω1(Σ))

∗.
Writing p ∶= (pt,p), we read the momenta from (3.3)

pt(⋅)= 0 , p(⋅)= ∫
Σ
⋅ ∧ ∗ (−2α (v − dAt) − β ∗A) . (3.4)

The energy function is given by

E ∶= ⟨FL (v) ∣v⟩ −L =∫
Σ
( − α (v + dAt) ∧ ∗ (v − dAt) − α (∗dA)dA + β (dAt ∧A −AtdA) )

− ∫
∂Σ
ı∗∂ (λ

2Aιν ∗A) . (3.5)
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An easy way to write down the Hamiltonian is to represent the canonical momenta in terms
of differential forms. Explicitly, taking advantage of the fact that the Hodge operator defines
a scalar product, the momenta can be written as

pt(⋅) = ∫
Σ
⋅ ∗ pt , p(⋅) = ∫

Σ
⋅ ∧ ∗p ,

where pt ∈ C∞(Σ) and p ∈ Ω1(Σ). From (3.4), we obtain

pt = 0 , p = −2α (v − dAt) − β ∗A. (3.6)

Notice that the first equation in (3.6) is a primary constraint. Plugging (3.6) into (3.5) gives
the Hamiltonian

H =∫
Σ
((dAt −

1

4α
(p + β ∗A)) ∧ ∗ (p + β ∗A) − α (∗dA)dA + β (dAt ∧A −AtdA))

− ∫
∂Σ
ı∗∂ (λ

2Aιν ∗A) . (3.7)

Dirac analysis in the bulk

The constraints in the bulk are

pt = 0 , δ (p − β ∗A) = 0 ,

where δ is the codifferential defined as δ = − ∗ d∗ when acting on forms of any order. In the
previous computations, we have used ∗∗ = (−1)k(2−k) = (−1)k on k-forms.

The components of the Hamiltonian vector field are

XAt = µt , Xpt = 0 ,

XA = −
1

2α
(p + β ∗A) + dAt , Xp = 2αδdA −

β

2α
∗ (p + β ∗A) − β ∗ dAt ,

(3.8)

where the Dirac multiplier µt ∈ C∞(Σ) is arbitrary in the bulk. This implies that At is also
arbitrary in the bulk, a fact which is, of course, related to the Abelian gauge symmetry

A↦ A + dε , p↦ p − β ∗ dε , (3.9)

with ε ∈ C∞(Σ) and ı∗∂(ε) = 0 [these boundary conditions are a consequence of requiring
ı∗∂ (At) = 0 in the definition of the configuration space].

Dirac analysis on the boundary

The analysis of the boundary constraints strongly depends on λ; we show the final result
below.

Case λ = 0. After the first steps of the Dirac algorithm we obtain

ı∗∂ (At) = 0 , (3.10a)

ı∗∂ (µt) = 0 , (3.10b)

ı∗∂ (∗dA) = 0 . (3.10c)

Remember that (3.10a) is a condition that was incorporated in the definition of the config-
uration space, the consistency condition derived from it gives (3.10b), which fixes the value
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of µt at the boundary to zero. Equation (3.10c) is a secondary constraint at the boundary.
Demanding its consistency we get the following infinite number of boundary constraints [see
equation (B.5) and its derivation in Appendix B]

ı∗∂ ((∗d)2k+1
(p + β ∗A)) = 0 , (3.11a)

ı∗∂ ((∗d)2k+1A) = 0 . (3.11b)

We pause now to make some comments. a) These kinds of constraints (an infinity chain
of conditions) also appears in the case of a scalar field in manifolds with boundary [26, 35, 36].
b) The actual number of boundary constraints in (3.11) depends on the regularity demanded
of the solutions to the field equations. As we are formally allowing for as much smoothness
as we wish, we get an infinite tower of them. c) Although similar conditions are introduced
in the mathematical literature [25] as necessary conditions to guarantee the smoothness of
solutions to partial differential equations, usually they are not taken into account in the
physical literature, in particular in the Hamiltonian analysis of field theories.

Case λ ≠ 0. After the first steps of the Dirac algorithm, we obtain

ı∗∂ (At) = 0 , (3.12a)

ı∗∂ (µt) = 0 , (3.12b)

ı∗∂ ({α ∗ d + λ2ιν∗}A) = 0 , (3.12c)

ı∗∂({α ∗ d + λ2ιν∗} (p + β ∗A) ) = 0 . (3.12d)

The role of (3.12a) and (3.12b) is the same as before. Equation (3.12c) is a secondary boundary
constraint; its consistency gives rise to the new constraint (3.12d). In this step, we have used
ı∗∂ (ιν ∗ dAt) = − ∗∂ ı

∗
∂ (dAt) = 0 which vanishes as a consequence of (3.12a). Here and in the

following ∗∂ denotes the Hodge dual in ∂Σ with respect to the induced metric. As in the
λ = 0 case, the consistency of (3.12d) gives rise to an infinite chain of boundary constraints as
explained in Appendix B.

For the particular case in which Σ is a disk of radius r0, redefining λ so that λ2 ↦ −αr0λ
2

with the new λ a real constant, the constraint (3.12c) becomes

ı∗∂ (∗dA) = −λ2Aθ ∣∂ . (3.13)

This condition was introduced in Ref. [22] after completing the Hamiltonian analysis of
the action (3.1). This is why the constraints (3.12d) and the corresponding infinite chain
were not considered there. We must say that, according to [22], if the disk is surrounded
by a superconductor, then 1/λ2 can be interpreted as the penetration depth. This physical
interpretation makes this model interesting, and for this reason, we will discuss it below.

We remark that we were able to obtain (3.12c) [or (3.13)] as a natural boundary condition
thanks to the boundary term that we included in the Lagrangian (3.2).

3.2 Classical edge observables

Given Λ ∈ C∞(Σ), we define the functions

QΛ(A,p) = ∫
Σ

dΛ ∧ ∗ (p − β ∗A) . (3.14)
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Under the gauge transformations of the theory (3.9), A′ = A + dε, p′ = p − β ∗ dε, we have

QΛ(A
′, p′) = ∫

Σ
dΛ ∧ ∗ (p − β ∗A − 2β ∗ dε) = QΛ(A,p) − 2β ∫

∂Σ
ı∗∂ (εdΛ) = QΛ(A,p) .

Notice that the boundary term vanishes because ı∗∂ (ε) = 0 [which is a consequence of having
incorporated the condition ı∗∂ (At) = 0 in the definition of the configuration space]. We then
conclude that the functions (3.14) are observables characterized by the value of ı∗∂ (Λ); because
on the constraint submanifold defined by the condition δ (p − β ∗A) = 0 they can be written
as a boundary integral

QΛ(A,p) = ∫
Σ

dΛ ∧ ∗ (p − β ∗A) = ∫
Σ

Λ ∗ δ (p − β ∗A) + ∫
∂Σ
ı∗∂ (Λ ∗ (p − β ∗A))

= ∫
∂Σ
ı∗∂ (Λ ∗ (p − β ∗A)) .

We remark that the boundary conditions also play a role in the definition of the observables
because these have to be evaluated on solutions to the Hamilton equations, which depend on
them.

With the help of the Hamiltonian vector field (3.8), we get the evolution of the edge
functions (3.14)

Q̇Λ(A,p) = ∫
Σ

dΛ ∧ ∗ (Xp − β ∗XA) = 2α∫
∂Σ
ı∗∂ (Λd ∗ dA) , (3.15)

where we have used ı∗∂ (At) = 0. Notice that the edge functions (3.14) are preserved in time for
any Λ if and only if dı∗∂ (∗dA) = 0. In the case λ = 0, the primary boundary condition (3.12c)
is ı∗∂ (∗dA) = 0. Therefore, for λ = 0 the edge observables (3.14) are constants of motion. We
will return to these observables after obtaining the solutions to the field equations in the next
subsection.

Finally, the Poisson bracket of the two edge observables QΛ1(A,p) and QΛ2(A,p) is

{QΛ1(A,p),QΛ2(A,p)} = 2β ∫
Σ

dΛ1 ∧ dΛ2 = β ∫
∂Σ
ı∗∂ (Λ1dΛ2 −Λ2dΛ1) . (3.16)

Notice that, for β = 0 they commute, but for β ≠ 0 and ∂Σ ≅ S1 these observables generate
the same U(1) Kac-Moody algebra described in (2.10). Notice that, in the MCS theory, all
the constraints are first class and hence (3.16) is the appropriate algebra.

3.3 Solving the Hamilton equations

In this section, we determine the space of solutions to the Hamilton equations of motion in
the phase space for λ = 0 and discuss the peculiarities of the λ ≠ 0 case. From now on we take
α = −1/2 (as is customary in the literature). In the bulk, the field equations in Hamiltonian
form are

Ȧt = µt , (3.17a)

ṗt = 0 , (3.17b)

Ȧ = p + β ∗A + dAt , (3.17c)

ṗ = −δdA + β ∗ p − β2A − β ∗ dAt , (3.17d)
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with µt arbitrary. Equation (3.17a) tells us that At is arbitrary and (3.17b) tells us that pt is
a constant of motion, which is actually zero because of the bulk constraint pt = 0. We remark
that the fields (A,p) must satisfy the bulk constraint

δ (p − β ∗A) = 0 . (3.18)

In order to solve equations (3.17c)-(3.17d), the constraint (3.18), and the boundary constraints,
our main tool will be the Hodge-Morrey theorem for manifolds with boundary [37–39]. This
theorem will provide us with field decompositions that are specially appropriate for the prob-
lem that we are discussing here.

Let us introduce some definitions. We say that a form α is normal if it has a vanishing
tangential component, i.e., ı∗∂α = 0, and tangential if it has a vanishing normal component,
i.e., ı∗∂ (∗α) = 0.

3.3.1 Case λ = 0

A convenient decomposition for Ωk(Σ) is given by the Hodge-Morrey theorem

Ωk
(Σ) = E

k
(Σ)⊕ C

k
(Σ)⊕H

k
(Σ),

where

E
k
(Σ) = {dγ ∣γ ∈ Ωk−1

(Σ) with ı∗∂γ = 0} , (3.19a)

C
k
(Σ) = {δζ ∣ ζ ∈ Ωk+1

(Σ) with ı∗∂ (∗ζ) = 0} , (3.19b)

H
k
(Σ) = {h ∈ Ωk

(Σ) ∣dh = 0 and δh = 0} . (3.19c)

Notice that, on Ω1(Σ), ∗ satisfies ∗2 = −id so it endows Ω1(Σ) with the structure of a
complex vector space that we denote as Ω1(Σ)∗. The subspaces E1(Σ)⊕C1(Σ) and H1(Σ) are
complex subspaces of Ω1(Σ)∗, i.e., ∗(E1(Σ)⊕ C1(Σ)) = E1(Σ)⊕ C1(Σ) and ∗H1(Σ) =H1(Σ).
Finally, ∗E1(Σ) = C1(Σ) and ∗C1(Σ) = E1(Σ).

In the following, given a k-form η we will write it as the sum η = ηd + ηδ + ηh, with
ηd ∈ E

k(Σ), ηδ ∈ C
k(Σ), ηh ∈H

k(Σ). Then, for the 1-forms A and p we have

A = Ad +Aδ +Ah , p = pd + pδ + ph , (3.20)

Substituting (3.20) in the bulk constraint (3.18) gives δ (pd − β ∗Aδ) = 0. Notice that we also
have (pd − β ∗Aδ) ∈ E1(Σ) [since ∗C1(Σ) = E1(Σ)]. In particular, d (pd − β ∗Aδ) = 0, then
pd − β ∗Aδ ∈H

1(Σ), but H1(Σ) ∩ E1(Σ) = {0}. Therefore, the bulk constraint (3.18) implies

pd = β ∗Aδ . (3.21)

Before introducing the decomposition (3.20) into the Hamilton equations, notice that in
this case the first boundary constraint (3.10c) is

0 = ı∗∂ (∗dA) = ı∗∂ (∗dAδ) . (3.22)

Then we have that δdA = δdAδ ∈ C
1(Σ). Actually, it is straightforward to prove the converse:

(δdA)d = 0 and (δdA)h = 0 implies ı∗∂ (∗dA) = 0.
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Using (3.20), (3.21), and δdAδ ∈ C1(Σ) allows us to write the independent set of equations
of motion (3.17c)-(3.17d) as

Äδ = − (δd + 4β2)Aδ , (3.23a)

Ȧd = 2β ∗Aδ + dAt , (3.23b)

pδ = Ȧδ − β ∗Ad , (3.23c)

Ȧh = ph + β ∗Ah , (3.23d)

ṗh = β ∗ ph − β
2Ah . (3.23e)

Notice that the componentsAh andAδ are decoupled (we show below that they parametrize
the reduced phase space) and that if we find Aδ, then we can directly calculate Ad, pd, and
pδ. This suggests that, in order to solve (3.23a) together with the boundary constraint (3.22),
we should first look for ϑ ∈ Ω1(Σ) satisfying

δdϑ = ω2ϑ with ı∗∂ (∗dϑ) = 0 . (3.24)

This is a well-posed problem in the sense that, under these conditions, the positive-definite
operator δd is self-adjoint [37]. Hence, according to the spectral theorem, there always exists
an orthonormal basis of eigen 1-forms ϑ. Notice that, when ω ≠ 0, equation (3.24) implies
ϑ ∈ C1(Σ) and for ω = 0 we have ϑ ∈ E1(Σ)⊕H1(Σ). This is so because δdϑ = 0 implies that
∗dϑ is a constant (which is actually zero as a consequence of the boundary condition), hence,
dϑ = 0.

For ω ≠ 0, using the eigen 1-forms defined in (3.24) it is possible to find the solutions Aδ
of (3.23a). However, before we write them, it helps to cast (3.24) in a more familiar form. Let
us define the function F ∶= ∗dϑ. Taking into account that ϑ is an eigen 1-form, δdϑ = ω2ϑ, we
have

∗ dF = −ω2ϑ⇒ ϑ = −
∗dF

ω2
; (3.25)

Therefore, we only have to find the function F to determine ϑ. Using (3.25), the conditions
(3.24) are equivalent to

∇
2F = −ω2F with ı∗∂ (F ) = 0 , (3.26)

where, acting on functions, δd = −∇2 is minus the standard (nonpositive) scalar Laplacian.
In order to give an explicit solution of (3.26) we need to specify Σ. Notice that ϑ must be of
the form δφ with ı∗∂ (∗φ) = 0. From (3.25), we can write φ = ∗F /ω2, which already satisfies
ı∗∂ (∗φ) = 0 as a consequence of ı∗∂ (F ) = 0.

Let us assume that the eigen 1-forms in (3.24) exist and denote them as ϑI (with eigenvalue
ω2
I > 0). Using this orthonormal basis, ⟨ϑI , ϑJ⟩ = ∫Σ ϑI ∧ ∗ϑJ = δIJ , the solutions to (3.23a)-

(3.23c) are

Aδ(t) =∑
I

1
√

2ω̃I
(CI exp (iω̃It) +C

∗
I exp (−iω̃It))ϑI , (3.27a)

pδ(t) =∑
I

i
√

2ω̃3
I

( (ω̃2
I − 2β2) (CI exp (iω̃It) −C

∗
I exp (−iω̃It)) + 2β2

(CI −C
∗
I ) )ϑI

− β ∗ (d(∫

t

0
Atdt

′
) +Ad(0)) , (3.27b)
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Ad(t) =2β∑
I

−i
√

2ω̃3
I

(CI (exp (iω̃It) − 1) −C∗
I (exp (−iω̃It) − 1) ) ∗ ϑI

+ d(∫

t

0
Atdt

′
) +Ad(0) , (3.27c)

pd(t) =β∑
I

1
√

2ω̃I
(CI exp (iω̃It) +C

∗
I exp (−iω̃It)) ∗ ϑI , (3.27d)

with ω̃2
I = ω

2
I + 4β2. The real and imaginary parts of the complex constant C are given by
√

2

ω̃I
ReCI = ⟨ϑI ,Aδ(0)⟩ , −

√
2ω̃I ImCI = ⟨ϑI , pδ(0) + β ∗Ad(0)⟩ .

Notice that, so far, we have only used the boundary constraint (3.10c), not the infinite
chain (3.11). However, it must be remarked that all the constraints in (3.11) are satisfied if
ı∗∂ (∗dϑI) = 0. Actually, plugging (3.20) and (3.27) in (3.11a) and (3.11b), we get

ı∗∂ ((∗d)2n+1
(pδ + β ∗Ad))∝∑

I

(−1)nω2n
I ı

∗
∂ (∗dϑI) ,

ı∗∂ ((∗d)2n+3Aδ)∝∑
I

(−1)n+1ω2n+2
I ı∗∂ (∗dϑI) .

Then, our solutions (3.27) actually satisfy the infinite chain of boundary conditions (3.11).
This situation is similar to the scalar field case [28, 36].

We study now the harmonic sector. First, one should notice that the harmonic 1-forms
satisfy all the boundary conditions (3.10c)-(3.11). The evolution equations are (3.23d) and
(3.23e). In order to solve them, we first notice that ṗh − β ∗ Ȧh = 0, hence the ph − β ∗Ah are
constants of motion. They will play a relevant role in the edge observables discussed below.
Second, we define πh ∶= ph + β ∗Ah, then (3.23d) and (3.23e) are equivalent to

Ȧh = πh , π̇h = 2β ∗ πh ⇒ π̈h = −4β2πh ,

whose solutions are

πh(t) = (cos (2βt) + sin (2βt)∗)πh(0) ,

Ah(t) = Ah(0) +
1

2β
(sin (2βt) + (1 − cos (2βt))∗)πh(0) .

In terms of Ah, ph we get

Ah(t)=
1

2β
∗ (ph(0) − β ∗Ah(0)) +

1

2β
( sin (2βt) − cos (2βt)∗)(ph(0) + β∗Ah(0)) , (3.28a)

ph(t)=
1

2
(ph(0) − β ∗Ah(0)) +

1

2
( cos (2βt) + sin (2βt) ∗ )(ph(0) + β ∗Ah(0)) . (3.28b)

As mentioned before the 1-forms

ph(t) − β ∗Ah(t) = ph(0) − β ∗Ah(0)

are time independent.
Notice that as ∗ is a (linear) complex structure on H1(Σ), there exists a complex infinite

(but countable) orthonormal basis {hm, h̄m} (m ∈ N and the bar over the 1-forms hm denotes
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their complex conjugate) of H1(Σ) formed by the eigen 1-forms of ∗ (as ∗2 = −1 acting over
1-forms, the eigenvalues are ±i), i.e., the hm satisfy

∗ hm = −ihm , ∗h̄m = ih̄m , (hm, hl) = δml = (h̄m, h̄l) , (hm, h̄l) = 0 , (3.29)

where (hm, hl) = ∫Σ h̄m ∧ ∗hl. Using this basis, for β > 0 we can write

ph(0) + β ∗Ah(0) =
√

2β∑
m

(amhm + a∗mh̄m) ,

ph(0) − β ∗Ah(0) =
√

2β∑
m

(b∗mhm + bmh̄m) ,

with

am =
1

√
2β

(hm, ph(0) + β ∗Ah(0)) , a∗m =
1

√
2β

(h̄m, ph(0) + β ∗Ah(0)) ,

bm =
1

√
2β

(h̄m, ph(0) − β ∗Ah(0)) , b∗m =
1

√
2β

(hm, ph(0) − β ∗Ah(0)) , (3.30)

while for β < 0 we must change
√

2β →
√
−2β, and interchange am with a∗m and bm with b∗m.

This allows us to write Ah(t) and ph(t) in terms of this basis.

The disk In order to give explicit expressions of the eigen 1-forms ϑ in (3.24), we consider
the case in which Σ is a disk of radius r0. Using polar coordinates (r, θ) and separation of
variables, we write F (r, θ) = g(θ)f(r) [with g(0) = g(2π)] in (3.26) to get

g′′(θ) = −N2g(θ) , (3.31a)

(
∂2

∂r2
+

1

r

∂

∂r
+ (ω2

−
N2

r2
)) f(r) = 0 . (3.31b)

where N is a constant. The solutions to (3.31a) are of the form exp (iNθ) with N ∈ Z. Equa-
tion (3.31b) is the Bessel equation; its finite solutions at r = 0 are the JN(ωr) Bessel’s func-
tions. Thus, the solutions F (r, θ) to (3.26) can be written in terms of the exp (iNθ)JN(ωr),
which must satisfy the boundary condition ı∗∂ (F ) = 0. This implies JN(ωr0) = 0, which tells
us what the values of ω are. As we can see, for each N we have a family of ω’s. We denote
these infinite (but countable) sets by ωN,n (equal to zN,n/r0, where zN,n are the zeros of JN ).
The index I used in the previous subsection corresponds now to the pair (N,n).

We conclude that the real eigen 1-forms ϑN,n are

ϑN,n =
1

ω2
N,n

∗ d( (AN,n exp (iNθ) +A∗
N,n exp (−iNθ))JN(ωN,nr)) .

The complex constants AN,n are fixed by the orthonormality condition ⟨ϑN,n, ϑM,m⟩ = δnmδNM
(the δNM is a consequence of Bourget’s hypothesis, a corollary of a theorem proved by Carl
Ludwig Siegel [40]). Notice that we must replace ∑I by ∑N ∑n in the solutions (3.27).

Finally, in this case, the harmonic forms hn satisfying (3.29) are

hn =
1

√
2πnrn0

dzn , (3.32)

– 13 –



with z = x1 + ix2 (here x1, x2 are Cartesian coordinates in Σ) and n ∈ N [22]. Notice that,
using polar coordinates,

hn =

√
n

2π
(
r

r0
eiθ)

n

(
dr

r
+ idθ) ,

and it is straightforward to check that, for r < r0, hn ÐÐÐ→
n→∞

0. On the other hand, for r = r0

we get hn =
√

n
2π e

nθ (dr
r0
+ idθ). Hence the eigen 1-forms hn behave as classical edge states in

the sense of references [10, 11]

3.3.2 Case λ ≠ 0

Regardless of the boundary conditions, we have shown that the decomposition (3.20) can
be used to solve the bulk constraint in a convenient way [obtaining (3.21)]. However, for λ ≠ 0,
the boundary condition (3.12c) is

ı∗∂ ({∗d − 2λ2ιν∗}A) = 0 , (3.33)

which is different from the one that appears in the previous case where we had ı∗∂ (∗dA) = 0.
As a consequence, we have now (δdA)h ≠ 0, thus δdA = (δdA)δ+(δdA)h with both components
different from zero. Notice that using (3.20) we can write (3.33) as

ı∗∂ (∗d (Aδ +Ah)) + 2λ2
∗∂ ı

∗
∂ (Aδ +Ah) = 0 . (3.34)

This leads us to work with the combination Aδ +Ah =∶ Aδh. Using the Hamiltonian equations
(3.17c) and (3.17d) we see that Aδh must satisfy

Äδh = − (δd + 4β2)Aδh + 2β ∗ (ph − β ∗Ah) . (3.35)

The presence of ph −β ∗Ah in (3.35) makes it very difficult to solve because this term involves
a projector onto the harmonic sector, which is related to a (nonlocal) Green’s operator. We
remark that in the λ ≠ 0 case the ph − β ∗ Ah are no longer constants of motion because
ṗh −β ∗ Ȧh = − (δdAδ)h. In the pure Maxwell case β = 0, it is possible to use the eigen 1-forms
of the operator δd to solve (3.35), i.e.,

δdϑ = ω2ϑ with ı∗∂ (∗dϑ − 2λ2ιν ∗ ϑ) = 0 . (3.36)

This is a well-posed problem and the operator δd with these Robin-like boundary conditions
is self-adjoint [22]. The corresponding spectrum and eigenfunctions when Σ is a disk were
(partially) analyzed in [22]. This is an interesting problem by itself. In Appendix A, we show
how to deal with (3.36) from the Hodge decomposition point of view.

Another strategy to solve the Hamiltonian equations is to use a different Hodge-like
decomposition adapted to the boundary constraints (3.33). For instance, we can write A and
p as

A = Aδ +Acn , p = pδ + pcn , (3.37)

where Aδ = δφ, [with φ ∈ Ω2(Σ) and free at the boundary ∂Σ], and Acn and pcn closed 1-forms
normal to ∂Σ, (i.e., dAcn = 0 = dpcn and ı∗∂Acn = 0 = ı∗∂pcn) [37, 38]. Notice that as Acn is
normal to ∂Σ then ı∗∂ (ιν ∗Acn) = ∗∂ı

∗
∂Acn = 0. Taking all this into account and using the

decomposition (3.37) on the boundary constraint (3.12c) we get

ı∗∂ (∗dAδ − 2λ2ιν ∗Aδ) = 0 .
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This equation only involves Aδ, which seems to suggest the use of the composition (3.37) to
solve the Hamilton equations of motion.

Plugging (3.37) into the constraint δ (p − β ∗A) = 0, we obtain d ∗ (pcn − β ∗Aδ) = 0.
Assuming that Σ is a smoothly contractible manifold with boundary (then, its first de Rham
cohomology group is zero [41]), the previous equation implies (pcn − β ∗Aδ)cn = 0, and we get
pcn = β (∗Aδ)cn. Unfortunately, (∗Aδ)cn ≠ ∗Aδ, and then the solution to the bulk constraint
involves a nonlocal operator (the projector onto the space of the closed 1-forms normal to
∂Σ). Once again, the problem becomes intractable.

3.4 Fock quantization and quantum edge observables

In this section we present the (reduced phase space) Fock quantization [42] of the MCS
model for the case λ = 0 and study the corresponding quantum edge observables. We start by
computing the pullback of the symplectic structure Ω = ∫Σ dA ∧∧ ∗dp to the space of solutions
given by (3.27) and (3.28), which we denoted ΩS . The result is

ΩS = ∫
Σ
(dAd ∧∧ ∗dpd + dAδ ∧∧ ∗dpδ + dAh ∧∧ ∗dph)

= −i∑
I

dCI ∧∧ dC∗
I + ∫

Σ
dAh(0) ∧∧ ∗dph(0)

= −i∑
I

dCI ∧∧ dC∗
I +∑

m

(−idam ∧∧ da∗m − idbm ∧∧ db∗m) . (3.38)

The pullback of the Hamiltonian (3.7) to this space in the λ = 0 case is

HS =∑
I

ω̃IC
∗
ICI +

1

2
∫

Σ
(ph(0) + β ∗Ah(0)) ∧ ∗ (ph(0) + β ∗Ah(0))

=∑
I

ω̃IC
∗
ICI + 2∣β∣∑

m

a∗mam . (3.39)

Therefore, as it must be clear from the previous expressions, we end up with an infinite number
of uncoupled harmonic oscillators, one harmonic oscillator of frequency ω̃I for each eigen 1-
form ϑI and an infinite number of oscillators of frequency 2∣β∣ in the harmonic sectors. Notice
that the bm-modes are constants of motion.

The Fock quantization of the system is direct: we promote the variables CI , C∗
I , am, a

∗
m,

bm, and b∗m to creation and annihilation operators Ĉ†
I , â

†
m, b̂

†
m and ĈI , âm, b̂m, respectively,

with nonvanishing commutators given by

[ĈI , Ĉ
†
J] = δIJ , [âm, â

†
n] = δmn = [b̂m, b̂

†
n] .

By using these operators, we get from (3.39) the quantum Hamiltonian operator

Ĥ =∑
I

ω̃IĈ
†
I ĈI + 2∣β∣∑

n

â†
nân . (3.40)

The basis states for the theory are taken as the product of the basis states for each
oscillator (which can be chosen to be the eigen states of the number operators Ĉ†

I ĈI , â
†
nân,

and b̂†nb̂n).
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Quantum edge observables The quantum edge observables are obtained by promoting,
when possible, the classical edge observables to operators. In this case, the observables (3.14)
evaluated on the solutions (3.27) and (3.28) reduce to

QSΛ(A,p) = ∫
Σ

dΛ ∧ ∗(p(t) − β ∗A(t))

= ∫
∂Σ
ı∗∂(Λ ∗ (pδ(t) − β ∗Ad(t) + ph(0) − β ∗Ah(0)))

= ∫
Σ

dΛ ∧ ∗(ph(0) − β ∗Ah(0)) , (3.41)

where we have used pd = β ∗ Aδ, ı∗∂ (∗pδ) = 0, and ı∗∂ (Ad) = 0. In subsection (3.2), we have
shown that, for λ = 0, the edge observables are constants of motion (which correspond to the
constants of motion in the harmonic sector found in the previous section). In fact, by using
the basis {hm, h̄m}, we can write (3.41) for β > 0 as

QSΛ(A,p) =
√

2β∑
m
∫

Σ
dΛ ∧ ∗(b∗mhm + bmh̄m)

=
√

2β∑
m

(b∗m∫
Σ

dΛ ∧ ∗hm + bm∫
Σ

dΛ ∧ ∗h̄m) , (3.42)

and an analogous expression for β < 0.
From (3.42), we define the quantum edge observable of the MCS theory acting over the

harmonic basis {hn, h̄n} as

Q̂hn ∶=
√

2β∑
m

(b̂†m∫
Σ
hn ∧ ∗hm + b̂m∫

Σ
hn ∧ ∗h̄m)

=
√

2β∑
m

(b̂†m(h̄n, hm) + b̂m(h̄n, h̄m))

=
√

2β b̂n , (3.43a)

Q̂h̄n ∶=
√

2β∑
m

(b̂†m(hn, hm) + b̂m(hn, h̄m))

=
√

2β b̂†n , (3.43b)

where we have used (hm, hl) = δml = (h̄m, h̄l), (hm, h̄l) = 0. For β < 0 we obtain Q̂hn =
√
−2β b̂†n

and Q̂h̄n =
√
−2β b̂n. As pointed out in [22], the Fock states created by the operators b̂†n can

be thought of as quantum states localized at the boundary. As expected, the quantum edge
observables correspond to (linear combinations of) the operators b̂n, b̂

†
n which are obtained

by promoting to quantum objects the bn, b∗n-modes (remember that these are constants of
motion).

We end by pointing out that, for the particular case in which the fields are defined on a
disk, the quantization in the full phase space of the MCS action was discussed in [22]. There,
the authors followed the rules of Dirac’s quantization, imposed the Gauss law as an operator
that annihilates physical states, and tried to diagonalize it together with the Hamiltonian.
They succeeded for λ = 0, but not for λ ≠ 0. Despite the differences in the in the approach
of [22] and ours, for the particular case of the disk and λ = 0, the results about the classical
(3.42) and quantum (3.43) edge observables are the same.
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4 Conclusions

We have used the Abelian Chern-Simons model to illustrate some classical aspects of
the so-called edge observables. Then, we have studied in detail the Lagrangian and the
Hamiltonian formulations of the Maxwell-Chern-Simons model defined on a manifold with
boundary for two different sets of boundary equations naturally derived from a variational
principle. Using the geometric version of the Dirac algorithm, we have been able to handle
in a rigorous way the introduction of the boundary and obtain the infinite chain of boundary
constraints of the model, which are usually ignored in the literature.

We have shown that, inspired by the Gauss constraint (which is first class), one can build
classical edge observables. Their formal definition is independent of the boundary conditions
imposed on the field variables, but their actual values and properties depend on them. We
have shown that for λ = 0 these observables are constants of motion, while for λ ≠ 0 they are
not. Also, we have calculated their algebra which, when the boundary of Σ is a circumference,
is the well-known U(1) Kac-Moody algebra.

In order to get a better characterization of the classical edge observables and states and
perform the Fock quantization of the MCS model, we have looked for the solutions of the
Hamilton equations of motion together with the bulk and boundary constraints. Our principal
tool has been the Hodge-Morrey decomposition. For λ = 0, we have found the solutions,
without any gauge fixing, and showed their explicit form for the particular case in which the
fields are defined on a disk. For the case λ ≠ 0, we have discussed the obstructions that prevent
us from obtaining the corresponding solutions by using the procedure that works in the λ = 0

case.
For λ = 0, we have shown that, on the space of solutions, the system reduces to an

infinite collection of uncoupled oscillators. This has allowed us to directly carry out the Fock
quantization. Furthermore, we have discussed the classical and quantum edge observables. In
the reduced phase space, they correspond to the constants of motion of the harmonic sector
and the quantum operators associated with these constants, respectively. Explicitly, when Σ

is a disk, the Hodge dual endows the harmonic sector (of the Hodge-Morrey decomposition)
with a basis of eigen 1-forms (3.32) that can be identified with the classical edge states (at
least when n is large). These states can be used not only to expand the constant of motion
(3.41) [see (3.42)] but also to define a privileged pair of edge observables (3.43).

Our results can be applied to other compact regions besides the disk, in particular the
resolution of the field equations for λ = 0. The case with noncompact Σ is also interesting
and has been considered in the literature (see, for instance, [24]), but the spectra of some
relevant operators become continuous and the analytical issues that crop up must be carefully
considered.

The strategy that we have followed in the present work can be used in principle for other
boundary conditions for the MCS model. As far as the edge observables are concerned, it would
be interesting to study them in other gauge theories, such as BF and gravitational models.
It would also be interesting to analyze the behavior of these systems under the action of the
trace operator which, for some Sobolev spaces, provides a consistent and well-defined way to
project the dynamics of the bulk onto the boundary [43]. However, for higher dimensional
boundaries, it is important to mention that there are a lot of functional analytic subtleties
that have to be taken into account.
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A Eigen 1-forms problem

In this appendix, we study the eigen 1-forms problem (3.36), i.e.,

δdϑ = ω2ϑ with ı∗∂ (∗dϑ − 2λ2ιν ∗ ϑ) = 0 . (A.1)

Notice that if ϑ is an eigen 1-form with eigenvalue ω2 ≠ 0 and υ ∈ E1 [υ = dg with ı∗∂ (g) = 0]
then ⟨υ,ϑ⟩ = ⟨υ, δdϑ⟩/ω2 = 0, which implies that ϑ ∈ C1(Σ)⊕H1(Σ). In this case, we can use
the function F = ∗dϑ to rewrite (A.1) as

∇
2F = −ω2F with ı∗∂ (F − 2(

λ

ω
)

2

ινdF) = 0 , (A.2)

which is an eigen functions problem. Remember that if we have F then we get ϑ as ϑ =

− ∗ dF /ω2 [see (3.25)].
For ω = 0, if we decompose ϑ = ϑd + ϑδ + ϑh and plug it into (A.1), we obtain that ϑd is

arbitrary [this sector is not relevant for (3.35)], and δdϑδ = 0 implies ∗dϑδ = C1, where C1 is a
constant. Writing ϑδ = δφ with ı∗∂ (∗φ) = 0 and defining f ∶= ∗φ, the equation ∗dϑδ = C1 and
the boundary condition (A.1) become

∇
2f = −C1 with ı∗∂ (C1 − 2λ2ιν (df + ∗ϑh)) = 0 . (A.3)

Then, given ϑh, we can solve for f in (A.3) and finally get ϑδ.

The disk With the purpose of giving an explicit solution, we restrict ourselves to the case in
which Σ is a disk of radius r0 (to conform with the conventions of [22] we make the replacement
λ2 → r0λ

2/2).
For ω ≠ 0 the solutions to (A.2) take the form F (r, θ) = exp (iMθ)JM(ωr) with M ∈ Z,

and must satisfy the boundary condition

ı∗∂ (F − r0 (
λ

ω
)

2

∂rF) = 0⇒ JM(ωr0) − r0
λ2

ω
J ′M(ωr0) = 0 ,

with J ′M(x) = ∂xJM(x). These equations give the frequencies: for each M we have a family
of ωm. We denote these infinite (but countable) sets as ωM,m. Then, the eigen 1-form ϑM,m
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with eigenvalue ω2
M,m is

ϑM,m =
1

ω2
M,m

∗ d (AM,m exp (iMθ)JM(ωM,mr) +A
∗
M,m exp (−iMθ)JM(ωM,mr)) . (A.4)

The complex constantsAM,m are fixed by the orthonormality condition ⟨ϑMn, ϑM ′n′⟩ = δMM ′δnn′ .
For ω = 0, we must solve (A.3). The solution of ∇2f = −C1 is

f = −
C1

4
r2
+∑
k=1

(Ak coskθ +Bk sinkθ) rk ,

with k ∈ N, and Ak,Bk ∈ R. Using polar coordinates for the harmonic 1-forms hk, and writing
ϑh in this basis as ϑh = ∑k=1 (ckhk + c

∗
kh̄k) with ck ∈ C, the boundary condition in (A.3) gives

C1 (1 +
λ2r2

0

2
) − λ2

∑
k=1

⎛

⎝

⎛

⎝
Ak +

√
2

πk
r−k0 Im ck

⎞

⎠
krk0 coskθ

+
⎛

⎝
Bk +

√
2

πk
r−k0 Re ck

⎞

⎠
krk0 sinkθ

⎞

⎠
= 0 .

which, as the sine and cosine form an orthonormal basis, implies

Ak = −

√
2

πk
r−k0 Im ck , Bk = −

√
2

πk
r−k0 Re ck , and C1 = 0.

Therefore, for ω = 0, the eigen 1-forms are ϑ = ϑd+ϑδ+ϑh, with ϑd and ϑh = ∑k=1 (ckhk + c
∗
kh̄k)

arbitrary, and ϑδ given by

ϑδ =

√
2

π
∗ d(∑

k=1

1
√
k
((Im ck) coskθ + (Re ck) sinkθ)(

r

r0
)
k

) .

Notice that the subspace spanned by the ϑh is infinite dimensional.

B The infinite chain of boundary constraints

In this section, given a form α, for k ∈ N we denote αk ∶= (∗d)kα, α0 = α and α−k = 0. We
also denote π ∶= p + β ∗A. Assuming the Hamiltonian dynamics given by (3.17), we have the
following easy to prove equation

Ȧk = πk , k = 1,2, . . .

Using the Gauss constraint δ(π − 2β ∗ A) = 0 and equations (3.17) and (3.10a), it is also
straightforward to check that

(∗π)k = −2βAk , k = 1,2, . . . and π̇k = {
A2 + 2β ∗ π0 k = 0

Ak+2 − 4β2Ak k ≥ 1
.

We study now the consistency conditions that arise from equations (3.10c) and (3.12c). Notice
that they are both of the form Γ(A) = 0 where Γ = ı∗∂∗d in the first case and Γ = ı∗∂(α∗d+λ2ιν∗)

in the second. Notice, however, that the explicit expression of Γ is irrelevant for the following
argument as long as

Γ(dAt) = 0 . (B.1)
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Applying (3.10a), it is clear that both expressions of Γ satisfy (B.1).
Under the hypotheses spelled out in the previous paragraph, let us prove that Γ(A) = 0

implies the following infinite chain of boundary constraints:

Γ(π0) = 0 , (B.2)

Γ(A2k + 2β ∗ π2k−2) − 4β2Γ(A2k−2) = 0 , k = 1,2, . . . (B.3)

Γ(π2k + 2β ∗A2k) = 0 , k = 1,2, . . . (B.4)

Equation (B.2) follows from (3.17c) and (B.1). Equation (B.3) for k = 1 is found by
requiring the consistency of (B.2) and applying (3.17d). Equation (B.4) for k = 1 is obtained
by demanding the consistency of (B.3) for k = 1. Now, assuming that (B.3) holds for k
and (B.4) holds for k − 1, we prove that they hold to the next order. First, demanding the
consistency of (B.3) for k leads to

0 = Γ(π2k + 2β ∗ (A2k − 4β2A2k−2)) − 4β2Γ(π2k−2)

= Γ(π2k + 2β ∗A2k) − 4β2Γ(π2k−2 + 2β ∗A2k−2) = Γ(π2k + 2β ∗A2k) ,

which holds as a consequence of (B.4) for k − 1. This proves (B.4) for k. Analogously,
demanding the consistency of (B.4) for k leads to

0 = Γ(A2k+2 − 4β2A2k + 2β ∗ π2k) = Γ(A2k+2 + 2β ∗ π2k) − 4β2Γ(A2k) ,

which proves (B.3) for k + 1. A final comment is in order now. For Γ = ı∗∂ ∗ d it is easy to
prove that Γ ∗Ak = 0 = Γ ∗ πk for k ≥ 1. Hence, the infinite chain of conditions simplifies to

{
Γ(A2k) = 0

Γ(π2k) = 0
≡ {

ı∗∂(∗d)2k+1A = 0

ı∗∂(∗d)2k+1π = 0
. (B.5)
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