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Abstract

We describe the most general GLNM classical elliptic finite-dimensional integrable system, which
Lax matrix has n simple poles on elliptic curve. ForM = 1 it reproduces the classical inhomogeneous
spin chain, for N = 1 it is the Gaudin type (multispin) extension of the spin Ruijsenaars-Schneider
model, and for n = 1 the model of M interacting relativistic GLN tops emerges in some particular
case. In this way we present a classification for relativistic Gaudin models on GL-bundles over
elliptic curve. As a by-product we describe the inhomogeneous Ruijsenaars chain. We show that
this model can be considered as a particular case of multispin Ruijsenaars-Schneider model when
residues of the Lax matrix are of rank one. An explicit parametrization of the classical spin variables
through the canonical variables is obtained for this model. Finally, the most general GLNM model
is also described through R-matrices satisfying associative Yang-Baxter equation. This description
provides the trigonometric and rational analogues of GLNM models.
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1 Introduction: classification scheme

In our previous paper [40] we reviewed the non-relativistic classical integrable systems on elliptic curve. The
classification scheme for these model is as follows:

Classification scheme for elliptic non-relativistic models:

1. general gl×n
NM model

M = 1 ւ
∣∣∣ ց N = 1

2. gl×n
N Gaudin model

n = 1
↓ 3. gl×n

M multispin CM

∣∣∣ 4. glNM mixed type model
∣∣∣

n = 1
↓ M = 1 ւ

∣∣∣ ց N = 1
n = 1
↓

5. glN integrable top
rk(S) = 1

↓ 6. glM spin CM

∣∣∣ 7. M interacting glN tops
∣∣∣

rk(S) = 1
↓ M = 1 ւ ց N = 1

rk(S) = 1
↓

8. glN top on Omin
N 9. glM spinless CM

family II family III family I

Scheme 1

Non-relativistic models. Let us briefly recall the main idea. The lowest level is given by the elliptic
spinless Calogero-Moser (CM) model and the elliptic top with minimal coadjoint orbit. These are the boxes 9
and 8 on the Scheme 1 respectively. Within the first family the Calogero-Moser model is extended to its spin
generalization (box 6) and the Nekrasov’s multispin model 3 of Gaudin type. Similarly, in the second family the
elliptic top with minimal coadjoint orbit is extended to the one with arbitrary orbit (box 5) and to the elliptic
Gaudin model (box 2). Hereinafter by the models of Gaudin type we mean those models, which are described
by the Lax matrices with a set of simple poles in spectral parameter z at some points z1, ..., zn on elliptic curve
(or its degeneration). In the classical spin Calogero-Moser model the spin variables are arranged into the ”spin
matrix” S, which is a residue of the Lax matrix at a single pole. In the Gaudin models there are n spin matrices
– residues at z1, ..., zn. For this reason the Gaudin type models are also called as multi-pole or multispin models.
Below we keep this terminology for the relativistic models.

The models from the second family are governed by the classical non-dynamical r-matrices of vertex type,
while the systems from the first family are described by dynamical (classical analogues of IRF type) r-matrices.
According to classification of classical elliptic integrable systems [21] there are also intermediate glNM models of
mixed type. They are presented in the third family. When N = 1 the first family is reproduced, and the second
family appears in the case M = 1. The models from different families are related by the so-called symplectic
Hecke correspondence [20]. In particular, it means that the systems 8 and 9 are gauge equivalent at the level of
Lax pairs, and explicit change of variables can be evaluated.

The upper level of the Scheme 1 (i.e. the cases 1, 2, 3) is given by the Gaudin type models. In these cases
the Lax matrices have n simple poles. When n = 1 these models turn into the middle level (i.e. the cases 4, 5,
6). And the lower level (i.e. the cases 7, 8, 9) comes from the middle one by restricting to the coadjoint orbits
of minimal dimensions for the spin variables. The spin variables are elements of the spin matrix S, and the
condition rk(S) = 1 is equivalent to the choice of minimal coadjoint orbit.
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Relativistic models. In this paper we discuss relativistic analogue of the above scheme. The classification
is presented on the Scheme 2.

Classification scheme for elliptic relativistic models:

1. general GL×n
NM model

M = 1 ւ
∣∣∣ ց N = 1

2. GL×n
N XYZ chain

n = 1
↓ 3. GL×n

M multispin RS

∣∣∣ 4. GLNM mixed type model
∣∣∣

n = 1
↓ M = 1 ւ

∣∣∣ ց N = 1
n = 1
↓

5. GLN relativ. top
rk(S) = 1

↓ 6. GLM spin RS

∣∣∣ 7. M interacting GLN tops
∣∣∣

rk(S) = 1
↓ M = 1 ւ ց N = 1

rk(S) = 1
↓

8. special GLN top 9. GLM spinless RS

family II family III family I

Scheme 2

Consider the first family. The relativistic (spinless) many-body system is the elliptic Ruijsenaars-Schneider
model [32] (box 9). It was extended to the spin case by Krichever and Zabrodin [19] (box 6). A generalization of
the latter to the multi-pole case (box 3) is also known in the literature. See, for example, [29], where such model
appears in the context of dualities. At the same time, the classical equations of motion and/or the Hamiltonian
description were not known to our best knowledge. In fact, the multispin Ruijsenaars-Schneider is known much
better at quantum level. It is constructed by means of dynamical Felder’s elliptic R-matrix [13]. Such models
are also studied in the context of supersymmetric gauge theories and underlying Seiberg-Witten geometry, see
e.g. [27, 29] and references therein.

The quantization problem is also related to a known open problem – to describe the Poisson and r-matrix
structures for the spin elliptic Ruijsenaars-Schneider model. The Hamiltonian description is still unknown. This
is why we discuss the Lax equations only in the general case3. At the same time much progress was achieved in
the studies of trigonometric spin Ruijsenaars-Schneider models, see [1, 7, 10, 12]. Although we do not address
to precisely this problem, we derive explicit parametrization of spin variables through canonical variables in a
special case of model 3, when all spin matrices are of rank one.

The models from the second family are the classical analogues of XYZ spin chain including the higher
rank generalizations [38, 11]. The model 2 is the GLN inhomogeneous classical XYZ spin chain on n sites. The
models 5 and 8 can be viewed as 1-site classical chain with the Poisson structure given by the classical Sklyanin
algebra [37]. From viewpoint of the classical mechanics these models are relativistic tops [23]. The model 8 is a
particular case of model 5 corresponding to the special case, when the matrix of spin variables S has rank one.

Finally, the third family consists of the mixed type GLNM models similarly to its non-relativistic analogue
from the Scheme 1. The models 4 and 7 on the Scheme 2 were described in [46, 33]. The model 1 is on the top of
the Scheme 2, and this is the subject of this article. Similarly to non-relativistic case the families on the Scheme

3There is no a full proof of integrability for elliptic spin relativistic models since the classical r-matrix structure is
unknown. However, there are some arguments for integrability besides existence of the Lax pair. On one hand there is a
quantum RLL algebra [34, 35], and on the other hand commutativity of anisotropic spin Ruijsenaars Hamiltonians was
proved directly at quantum level in [28].
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2 are related by the symplectic Hecke correspondence. For example, the models 8 and 9 are gauge equivalent.
This phenomenon was originally observed by K. Hasegawa [15], see also [8, 41, 17, 43].

The study of models from the third family can be interesting from different viewpoints. Their quantum
analogues are described by the mixed type quantum R-matrices [22], which turn into the vertex type when
M = 1 and become of purely IRF type in the case N = 1. The underlying quantum algebra takes the form of
an intermediate case between the Sklyanin algebra and the elliptic quantum group [34]. Recently the quantum
Hamiltonians for GLNM model of interacting tops (box 7) were proposed and used for construction of new
long-range spin chains [28]. The studies of multi-pole case in this context is an interesting open problem.

Another possible application of the Gaudin type models arises in the studies of 1+1 integrable field theories
generalizing the models on the Schemes 1 and 2. The 1+1 generalizations of the Calogero-Moser system is known
[18] as well as the continuous models of the Heisenberg-Landau-Lifshitz type [39, 11]. The 1+1 version of the
spin and multispin Calogero-Moser models (the box 3 on the Scheme 1) was given in [20] and the 1+1 Gaudin
models generalizing the models 2 on the Scheme 1 were discussed in [44, 2]. The field generalizations of Hitchin
systems including the multi-pole type models are actively studied nowadays [6, 26]. At the relativistic level the
1+1 field theories corresponding to the models 5 on the Scheme 2 are known from [9]. Recently the 1+1 analogue
of the Ruijsenaars-Schneider model was suggested in [43]. It is an interesting classification problem to describe
the soliton equations related to all boxes on the Schemes 1 and 2.

Purpose of the paper is to present the classification Scheme 2 and describe the most general model 1. The
generalized version of this model is also proposed through R-matrix formulation, which includes trigonometric
and rational degenerations of the elliptic model. We also suggest explicit parametrization of the reduced multispin
Ruijsenaars-Schneider model with rank one matrices of the spin variables.

The paper is organized as follows. In Section 2 we review the models from the family II and recall the
classical IRF-Vertex relation between the special relativistic top and the spinless Ruijsenaars-Schneider model.
The monodromy matrices of spin chains are naturally represented in the additive form, which is similar to the
one for (non-relativistic) Gaudin models. However, in contrast to non-relativistic case, where the underlying
quantum or classical algebra of exchange relations is based on Lie algebra, in the relativistic case we deal with
quadratic algebras of Sklyanin type. The term relativistic Gaudin model is understood as a model with some
multi-pole (and multispin) Lax matrix and (possibly complicated or, even more, unknown) quadratic Poisson
structure. In Section 3 the most general elliptic model is described. Namely, a natural ansatz for the Lax pair
is suggested and the equations of motion are derived. In Section 4 we propose inhomogeneous generalization of
the Ruijsenaars spin chain. It is obtained by the gauge transformation of IRF-Vertex type starting from GLN

XYZ spin chain. As a result, we express the spin variables in the reduced multispin Ruijsenaars-Schneider model
(with rank one spin matrices) through the set of canonical variables, thus providing the Hamiltonians description
for this model. Finally, in Section 5 we extend the results of Section 3 to R-matrix formulation based on the
associative Yang-Baxter equation.

2 Quantum R-matrices in quantum and classical models

In this Section we introduce necessary notations and recall some basic facts and definitions by considering the
model 2 from the Scheme 2 – GLN spin chain on n sites governed by the vertex type R-matrix. A detailed
description for the additive form of the monodromy matrices is given.

2.1 Quantum R-matrices and Yang-Baxter equations

A quantum R-matrix in the fundamental representation of GLN Lie group is some Mat(N,C)⊗2-valued function

R~

12(q1, q2) ∈ Mat(N,C)⊗2

depending on the Planck constant ~ and the spectral parameters q1, q2. In fact, we assume that R~
12(q1, q2) =

R~
12(q1 − q2), and the R-matrix is the elliptic GLN Baxter-Belavin’s one (B.7) or some its degeneration. In the

4



general case any Mat(N,C)⊗2-valued R-matrix is of the following form:

R~

12(q) =

N∑

ijkl=1

Rij,kl(~, q)Eij ⊗ Ekl , (2.1)

where {Eij ; i, j = 1...N} is the standard matrix basis in Mat(N,C), and Rij,kl(~, q) is a set of functions. By
definition any quantum R-matrix satisfies the quantum Yang–Baxter equation:

R~

12(q12)R
~

13(q13)R
~

23(q23) = R~

23(q23)R
~

13(q13)R
~

12(q12) , qij = qi − qj , (2.2)

where all R-matrices are considered as elements of Mat(N,C)⊗3. For example,

Rz
12(q) =

N∑

ijkl=1

Rij,kl(z, q)Eij ⊗ Ekl ⊗ 1N , Rz
13(q) =

N∑

ijkl=1

Rij,kl(z, q)Eij ⊗ 1N ⊗ Ekl , (2.3)

where 1N is the identity matrix in Mat(N,C). The elliptic R-matrix (B.7) satisfies (2.3) and the unitarity
property

Rz
12(x)R

z
21(−x) = (℘(z)− ℘(x)) 1N ⊗ 1N

(A.13)
= φ(z, x)φ(z,−x) 1N ⊗ 1N , (2.4)

where ℘(x) is the Weierstrass elliptic function, and φ(z, x) is the elliptic Kronecker function (A.2). One more
useful property of (B.7) is the skew-symmetry:

Rz
12(q) = −R−z

21 (−q) . (2.5)

Besides the quantum Yang-Baxter equation (2.2) the elliptic Baxter-Belavin R-matrix in the fundamental
representation of the GLN Lie group satisfies also the so-called associative Yang-Baxter equation (AYBE) [31]:

Rz
12R

w
23 = Rw

13R
z−w
12 +Rw−z

23 Rz
13, Ru

ab = Ru
ab(qa − qb), (2.6)

In contrast to (2.2) the latter equation remains nontrivial in the scalar case (when N = 1). In this case it turns
into the genus one Fay identity (A.10), while the R-matrix itself becomes the elliptic Kronecker function (A.2).
Being a solution of the Yang-Baxter equation (2.2) an R-matrix is fixed up to multiplication by an arbitrary
function. But this freedom is fixed in (2.6), and the way of fixation is given by the r.h.s. of the unitarity property
(2.4). More properties of the R-matrices under consideration can be found in the Appendix B and in [24].

2.2 Quantum models

Let us recall some details on description of vertex type models from the second family since we use it throughout
the paper. As a by-product we introduce necessary notations. At quantum level the spin chain (i.e. the model
2 from the Scheme 2) is described by means of a quantum R-matrix.

Quantum spin chains. The quantum inhomogeneous GLN spin chain4 is defined by the monodromy matrix

T̂ (z) = R~

01(z − z1)R
~

02(z − z2) . . . R
~

0n(z − zn) ∈ Mat(N,C)⊗ End(H) , (2.7)

where 0 denotes the auxiliary space Mat(N,C), and indices 1, .., n are tensor components of the (quantum)
Hilbert space H. If all R-matrices are in the fundamental representation of GLN then H = (CN )⊗n and
End(H) = Mat(N,C)⊗n. Alternatively, one writes the monodromy matrix

T̂ (z) = L̂1(z − z1)L̂
2(z − z2) . . . L̂

n(z − zn) . (2.8)

Each Lax operator L̂i(z − zi) ∈ Mat(N,C) is N × N matrix, which entries are operators acting on H. More
precisely,

L̂i(z − zi) = L̂~(Ŝi, z − zi) , Ŝi =
N∑

a,b=1

EabŜ
i
ab (2.9)

4Hereinafter we assume the closed spin chains only.

5



and5

L̂~(Ŝi, z − zi) = tr2

(
R~

12(z − zi)Ŝ
i
2

)
(2.1)
=

N∑

a,b,c,d=1

Rabcd(~, z − zi)Eab Ŝ
i
dc . (2.10)

The commutation relations of quantum algebra between the operators Ŝi
ab, i = 1, ..., n, a, b = 1, ..., N are

generated by [Ŝi
1, Ŝ

j
2] = 0 (or, equivalently [L̂i(z), L̂j(w)] = 0) for i 6= j and the Sklyanin algebra [37], which is a

set of quadratic relations coming from the quantum exchange relations6:

L̂~

1(Ŝ
i, z)L̂~

2(Ŝ
i, w)R~

12(z − w) = R~

12(z − w)L̂~

2(Ŝ
i, w)L̂~

1(Ŝ
i, z) . (2.11)

It follows from these commutation relations that the monodromy matrix (2.8) also satisfies (2.11):

T̂1(z)T̂2(w)R
~

12(z − w) = R~

12(z − w)T̂2(w)T̂1(z) . (2.12)

Therefore7, the quantum transfer-matrix
t̂(z) = tr0T̂ (z) (2.13)

obeys the property
[t̂(z), t̂(w)] = 0 . (2.14)

It is an essential idea underlying the quantum inverse scattering method since it means that t̂(z) is a generating
function of commuting Hamiltonians Ĥi, i = 1, ..., n (i.e. [Ĥi, Ĥj ] = 0), which can be defined as

Ĥi = Res
z=zi

t̂(z) . (2.15)

In order to write Ĥi explicitly we use that the residue of L̂(Ŝi, z−zi) at point z = zi equals Ŝ
i (see (2.20) below).

Then we have

Ĥi = tr
(
L̂~(Ŝ1, zi − z1) . . . L̂

~(Ŝi−1, zi − zi−1) · Ŝ
i · L̂~(Ŝi+1, zi − zi+1) . . . L̂

~(Ŝn, zi − zn)
)
. (2.16)

Alternatively, one can calculate Ĥi from (2.7) in the fundamental representation. Using the property (B.15) one
finds from the definitions (2.13) and (2.15) that

Ĥi = R~

i,i+1(zi − zi+1) . . . R
~

i,n(zi − zn) ·R
~

i,1(zi − z1) . . . R
~

i,i−1(zi − zi−1) . (2.17)

It is also important to mention that the Sklyanin algebra generated by (2.11) has the fundamental represen-
tation of GLN Lie group

Ŝi
ab = 1N ⊗ ...⊗ 1N ⊗ Eba ⊗ 1N ⊗ ...⊗ 1N ∈ Mat(N,C)⊗n , (2.18)

where Eba is in the i-th tensor component. The representation (2.18) exists because in this case the Lax operators
(2.10) L̂(Ŝi, z − zi) turn into R-matrices R~

0i(z − zi) in the fundamental representation. The exchange relations
(2.11) are then fulfilled due to the Yang-Baxter equation (2.2).

It is also known [37, 15] that GLN Sklyanin algebra has representation in terms of difference operators in
N variables. This case is the quantum analogue of the model 8 on the Scheme 2. It is closely related to the
quantum Ruijsenaars-Schneider model (the model 9 on the Scheme 2) [15].

Elliptic L-operator. Let us write down explicit form of the elliptic Lax operator [37] using our notation
(2.10). Plugging the expression for elliptic R-matrix (B.7) into (2.10) and using (B.5) one gets

L̂~(Ŝ, z) =
∑

α

TαŜαϕα(z, ωα +
~

N
) , (2.19)

5The standard notations are used: A1 = A⊗ 1N and A2 = 1N ⊗ A for any matrix A ∈ Mat(N,C).
6The relations (2.11) are assumed to hold identically in spectral parameters z and w. Hence (2.11) provides N4

relations in the general case.
7In fact, here we also use invertibility of R~

12(z − w). It is true in our case due to the unitarity property (2.4).
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Res
z=0

L̂(Ŝ, z) = Ŝ =
∑

α

TαŜα , (2.20)

where the sum is over α ∈ ZN × ZN , the basis matrices8 Tα are given in (B.1), and Ŝα are the components of
the matrix Ŝ in the basis Tα. In the fundamental representation Ŝα = (1/N)T−α, and in this way one restores
the Baxter-Belavin R-matrix from (2.19).

As a function of the spectral parameter z the Lax operator (2.19) has the following quasi-periodic behaviour
on the lattice of periods of the elliptic curve C/(Z+ τZ):

L̂(Ŝ, z + 1) = Q−1L̂(Ŝ, z)Q ,

L̂(Ŝ, z + τ) = exp(−
2πı~

N
) Λ−1L̂(Ŝ, z)Λ ,

(2.21)

where Q and Λ are the matrices (B.2). The properties (2.21) are derived from (A.9) and (B.3). The latter yields
Q−1TαQ = exp(πıα2/N)Tα and Λ−1TαΛ = exp(−πıα1/N)Tα.

The L-operator (2.19) satisfies the exchange relations (2.11) identically in z, w, thus providing the quantum
GLN Sklyanin algebra for the set of generators Ŝα, α ∈ ZN×ZN . The matrix (2.19) is fixed by the quasi-periodic
boundary conditions (2.19) together with fixation of the residue (2.20) at the single simple pole z = 0.

Gaudin model. The Gaudin model [14] appears from the spin chain (2.7) as the limiting case when ~ → 0.
The ”Planck constant” ~ is just a parameter of the model (2.7), so that the Gaudin model is also quantum, and
the only reason to call ~ the Planck constant is the classical limit expansion (B.8)-(B.9). Plugging (B.8) into
(2.7) one obtains the following Gaudin Hamiltonians in the first non-trivial order (in the order ~2−n):

ĤG
i =

n∑

k:k 6=i

rik(zi − zk) . (2.22)

The commutativity of these Hamiltonians follows from the classical Yang-Baxter equation (B.9). In the limit
~ → 0 the Sklyanin algebra (based on (2.11)) turns into the Lie algebra relations [Ŝi

1, Ŝ
j
2] = δij [Ŝi

1, P12], and the

generators Ŝi
(0,0) (the scalar component of the matrix Ŝ) become the Casimirs. Similarly to calculation of the

Hamiltonians (2.22) one can easily obtain the Lax operator for Gaudin model as the first non-trivial term in the
expansion in ~ of the monodromy matrix T̂ (z) (2.9). This yields the Lax operator

l̂G(z) =

n∑

k=1

tr2

(
r12(z − zk)Ŝ

k
2

)
. (2.23)

Each term in this sum has simple pole at z = zk with the residue equal to Ŝk. That is, in the Gaudin limit the
multiplicative form of the monodromy matrix (2.8) turns into the additive form of the Lax operator (2.23), and
the quadratic (Sklyanin’s) Poisson structure turns into the linear Poisson-Lie brackets.

2.3 Spin chain as relativistic Gaudin model

In this subsection we explain what we mean by the term relativistic Gaudin model. It is just an additive form
of the monodromy matrix of spin chain.

Additive form of spin chain. Let us represent the monodromy matrix of the spin chain (2.8) in the
additive form similarly to the Lax operator of the Gaudin model. We begin with the elliptic case. The monodromy
matrix T̂ (z) is an operator valued N ×N matrix. As a function of z it has n simple poles at z = zi, i = 1, ..., n.
The quasi-periodic behaviour follows from (2.21):

T̂ (z + 1) = Q−1T̂ (z)Q ,

T̂ (z + τ) = exp(−
2πın~

N
) Λ−1T̂ (z)Λ ,

(2.24)

8Some more properties of the basis Tα are briefly reviewed in the Appendix of [43].
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so that these properties are the same as in (2.21) but with ~ being replaced by n~. Therefore, T̂ (z) acquires the
form:

T̂ (z) =

n∑

k=1

L̂n~(Ŝk, z − zk) =

n∑

k=1

∑

α

TαŜ
k
αϕα(z − zk, ωα +

n~

N
) , (2.25)

where Ŝk are residues of T̂ (z) at the poles zk. Namely,

Ŝi = Res
z=zi

T̂ (z) =

= L̂~(Ŝ1, zi − z1) . . . L̂
~(Ŝi−1, zi − zi−1) · Ŝ

i · L̂~(Ŝi+1, zi − zi+1) . . . L̂
~(Ŝn, zi − zn) .

(2.26)

In this way we express the generators Ŝi
ab, i = 1, ..., n, a, b = 1, ..., N in terms of the generators of the Sklyanin

algebras (Ŝk
cd). It is important to mention that the commutation relations between operators Ŝi are non-trivial.

Initially, we had n copies of the Sklyanin algebra, where the operators related to different sites commute, i.e.
[Ŝi

ab, Ŝ
j
cd] = 0 for any a, b, c, d and i 6= j. Equivalently, [Ŝi

1, Ŝ
j
2] = 0. But it is not true for Ŝi

ab: [Ŝ
i
1, Ŝ

j
2 ] 6= 0. The

commutation relations for Ŝi
ab can be derived from RTT relations (2.12) by substitution (2.25). These relations

can be found in [42].

Notice also that

tr(Ŝi) = Res
z=zi

tr
(
T̂ (z)

)
(2.16)
= Ĥi . (2.27)

Changing the Planck constant parameter. Finally, due to (2.10) from (2.25) we conclude:

T̂ (z) =

n∑

k=1

tr2

(
Rn~

12 (z − zk)Ŝ
k
2

)
. (2.28)

This form of T̂ (z) is similar to the Lax operator (2.23) of the Gaudin model. Moreover, one can achieve exact
matching in the following way. In fact, the constant n~ in the R-matrix in (2.28) can be made different or even
more removed at all. Consider for simplicity n = 1 case:

Lη(Ŝ, z) =
∑

a

TaŜaϕa(z, ωa + η) , (2.29)

Using relation
ϕa(z − η, ωa + η)

φ(z − η, η)
=

ϕa(z, ωa)

ϕa(η, ωa)
, (2.30)

it is easy to see that

Lη(Ŝ, z) = φ(z, η)L0(S, z + η) , (2.31)

where
L0(S, z) = 1NS0 +

∑

a 6=0

TaSaϕa(z, ωa) (2.32)

and
Ŝ = L0(S, η) . (2.33)

The latter means explicit change of variables:

Ŝ0 = S0 , Ŝα = Sαϕα(η, ωα) , for α 6= 0 . (2.34)

Similar procedure can be performed in the multi-pole case. Then, by redefining the operators Si, the monodromy
matrix (2.28) takes the form9

T̂ (z − η) = f(z)
(
1NS0 +

n′∑

k=1

tr2

(
r12(z − zk)S

k
2

))
(2.35)

9An additional pole may arise in the described above procedure, so that the number of simple poles n′ may be equal

to n+ 1. In (2.35) an additional generator S0 appears. But it assumed that
n
′∑

k=1

S
k

0 = 0 in order to make the expression

in the r.h.s. of (2.28) quasi-periodic with respect to z → z + τ , that is the total number of independent generators in the
scalar component remains n.
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with some function f(z). Details are given in [42].

To summarize, the monodromy matrix (2.8) can be represented in the Gaudin like form (2.23) after some
set of redefinitions. While in (2.23) the operators Ŝi are generators of (i-th copy of) Lie algebra, in (2.35) we
have the operators Si originated from n copies of the Sklyanin algebra.

Another important remark is that the above mentioned trick allows to change the Planck constant parameter
entering (2.28). Indeed, one can remove it in a way described above, and then restore a different parameter.
This means that instead of exchange relations (2.11) one can study more general relations

L̂η
1(Ŝ

i, z)L̂η
2(Ŝ

i, w)R~

12(z − w) = R~

12(z − w)L̂η
2(Ŝ

i, w)L̂η
1(Ŝ

i, z) (2.36)

with two parameters ~ and η. It can be shown that these relations are indeed fulfilled for the elliptic Lax operator
(2.19) and the elliptic R-matrix (B.7) in a sense that (2.36) is equivalent to a set of quadratic algebra relations
identically in spectral parameters z and w. The quadratic relations explicitly depend on two parameters. But
one of them can be removed by the above mentioned redefinitions. Then we are left with a single parameter as
it should be in the Sklyanin algebras. However, it is sometimes useful to keep both parameters. We will use this
possibility below when studying the classical limit.

Additive form for the fundamental representation. Technically, the additive representation is based
on the identity

n∏

i=1

φ(xi, yi) =

n∑

i=1

φ

(
xi,

n∑

m=1

ym

) n∏

j 6=i

φ(xj − xi, yj) , (2.37)

which is the n-th order generalization of the addition formula (A.10). Indeed, by definition (2.8) any matrix
element of T̂ (z) is a sum of terms, which dependence on z has the form

ϕα1
(z − z1, ωα1

+ ~/N) . . . ϕαn
(z − zn, ωαn

+ ~/N)

for some α1, ..., αn. Using (2.37) for xi = z − zi one gets (2.25)-(2.26).

For R-matrices satisfying the associative Yang-Baxter equation (2.6) there is an R-matrix analogue of the
n-th order formula (2.37)10:

Ry1

0,1(x1)R
y2

0,2(x2) . . . R
yn

0,n(xn) =

= RY
0,n(xn) · R

y1

n,1(x1 − xn)R
y2

n,2(x2 − xn) . . . R
yn−1

n,n−1(xn−1 − xn)+

+Ryn

n−1,n(xn − xn−1) · R
Y
0,n−1(xn−1) · R

y1

n−1,1(x1 − xn−1) . . . R
yn−2

n−1,n−2(xn−2 − xn−1)+

+R
yn−1

n−2,n−1(xn−1 − xn−2)R
yn

n−2,n(xn − xn−2) · R
Y
0,n−2(xn−2)·

·Ry1

n−2,1(x1 − xn−2) . . . R
yn−3

n−2,n−3(xn−3 − xn−2)+

...

+Ry2

1,2(x2 − x1)R
y3

1,3(x3 − x1) . . . R
yn

1,n(xn − x1) ·R
Y
0,1(x1) ,

(2.38)

where Y =
n∑

m=1
ym. When n = 2 it is the equation (2.6). In the scalar case (N = 1) the above identity (2.38)

turns into (2.37) since R-matrices in N = 1 case become φ-functions. Plugging y1 = ... = yn = ~ (so that
Y = n~) and xi = z − zi into (2.38) one gets the following additive formula for the monodromy matrix (2.7):

10See Section 4 in [28]. Similar formula was proved in [47].
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T̂ (z) = R~

0,1(z − z1)R
~

0,2(z − z2) . . . R
~

0,n(z − zn) =

= Rn~
0,n(z − zn) ·R

~

n,1(zn − z1)R
~

n,2(zn − z2) . . . R
~

n,n−1(zn − zn−1)+

+R~

n−1,n(zn−1 − zn) · R
n~
0,n−1(z − zn−1) · R

~

n−1,1(zn−1 − z1) . . . R
~

n−1,n−2(zn−1 − zn−2)+

+R~

n−2,n−1(zn−2 − zn−1)R
~

n−2,n(zn−2 − zn) ·R
n~
0,n−2(z − zn−2)·

·R~

n−2,1(zn−2 − z1) . . . R
~

n−2,n−3(zn−2 − zn−3)+

...

+R~

1,2(z1 − z2)R
~

1,3(z1 − z3) . . . R
~

1,n(z1 − zn) ·R
n~
0,1(z − z1) .

(2.39)

By taking trace over zero tensor component and evaluating residues at z = zi one easily reproduces (2.17).

2.4 Classical models

Classical Sklyanin algebra and relativistic integrable tops. The model defined in (2.8) is a quan-
tum version of the model 2 from the Scheme 2. Its classical version was proposed in [37], see also [38, 11]. Main
idea is very similar to the one described above in the quantum case. In classical mechanics we deal with the Lax
matrix of the form

L(S, z) = 1NS0 +
∑

α6=0

TαSαϕα(z, ωα) , (2.40)

which is similar (2.35), but here S =
∑
α
TαSα ∈ Mat(N,C) is a matrix of N2 dynamical variables Sα = Sα1,α2

(coordinates on the phase space). The Poisson structure is generated by the quadratic r-matrix structure

{L1(S, z), L2(S,w)} = [r12(z − w), L1(S, z)L2(S,w)] , (2.41)

where

{L1(S, z), L2(S,w)} =

N∑

i,j,k,l=1

{Lij(S, z), Lkl(S,w)}Eij ⊗ Ekl =
∑

α,β∈Z
×2

N

{Lα(S, z), Lβ(S,w)}Tα ⊗ Tβ (2.42)

and r12(z − w) is the classical elliptic r-matrix. It can be shown that (2.41) is identically fulfilled in z, w and
provides the set of Poisson brackets {Sα, Sβ}, which is called the classical Sklyanin algebra. The underlying
integrable system is the relativistic elliptic top. It is in the box 5 on the Scheme 2. Let us notice that the
first flow generated by the Hamiltonian H = S0 provides equations of motion, which have precisely the same
form as those in the non-relativistic case (for the model 5 on the Scheme 1) generated by the Hamiltonian
H = (−1/2)

∑
α6=0 SαS−α℘(ωα) and the linear Poisson-Lie brackets. This phenomenon reflects existence of

bi-Hamiltonian structure. See details in [16].

Following [23] we slightly change the above definitions (2.40)-(2.41). Namely, we consider the Lax matrix
with explicit dependence on the parameter η:

Lη(S, z) =
∑

α

TαSαϕα(z, ωα +
η

N
) (2.43)

or
Lη(S, z) = tr2

(
Rη

12(z)S2

)
, (2.44)

which is obtained from the elliptic quantum L-operator L̂η(Ŝ, z) by replacing Ŝ with S. The relation between
descriptions in terms of Lax matrices (2.40) and (2.43) is the same as in (2.33). So that in (2.44) we added by
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hands explicit dependence on the additional parameter η. The corresponding Sklyanin algebra is now generated
by

{Lη
1(z, S), L

η
2(w, S)} =

1

c
[Lη

1(z, S)L
η
2(S,w), r12(z − w)] , (2.45)

where c is another constant parameter. It is straightforwardly follows from the quantum exchange relations
(2.36) in the limit ~ → 0. Namely, one should make a substitution ~ → (−1/c)~ and then consider the classical
limit (B.8) with the standard definition

{Lη
1(z, S), L

η
2(w, S)} = lim

~→0

L̂η
1(z, Ŝ)L̂

η
2(w, Ŝ)− L̂η

2(z, Ŝ)L̂
η
1(w, Ŝ)

~
(2.46)

In deriving this relation from (2.36) we used independence of parameters η and ~. Also, compared to (2.41), we
put a factor (−1/c) in the r.h.s. This factor is just for convenience of describing relation to Ruijsenaars-Schneider
model (see below).

Direct computations show that (2.46) is equivalent to the following set of Poisson brackets in the classical
Sklyanin algebra:

{Sα, Sβ} =
1

c

∑

ξ∈Z
×2

N
, ξ 6=0

κα−β,ξSα−ξSβ+ξ

(
E1(ωξ)− E1(ωα−β−ξ) + E1(ωα−ξ + η)− E1(ωβ+ξ + η)

)
, (2.47)

where κα,β are the constants from (B.4).

The relativistic top (model 5 on the Scheme 2) is defined as follows. The Poisson brackets (2.47) together
with the Hamiltonian

Htop = cNS0 = c trS = c
trLη(S, z)

φ(z, η)
. (2.48)

generate dynamics given by the following equations of motion:

Ṡ = [S, Jη(S)] . (2.49)

They have the form of multi-dimensional Euler-Arnold top. The linear operator Jη plays the role of the inverse
tensor of inertia (in principal axes). It has the form:

Jη(S) = 1NS0E1(η) +
∑

α∈Z
×2

N
,α6=0

TαSαJ
η
α , Jη

α = E1(η + ωα)− E1(ωα) . (2.50)

The equations (2.49) are represented in the Lax form

L̇η(S, z) = {Htop, Lη(S, z)} = [Lη(S, z),M(S, z)] (2.51)

with the M -matrix
M(S, z) = −tr2

(
r12(z)S2

)
. (2.52)

In the elliptic case the above statement is verified directly using identities from Appendix A. At the same time
the construction of the relativistic top can be generalized to any solution of the associative Yang-Baxter equation
(2.6). Indeed, the definition of the Lax pair (2.44) and (2.52) does not use explicit form of the underlying R-
matrix. The calculation providing the proof of the Lax equations can be performed using R-matrix identities
coming from (2.6). This type identities are collected in the Appendix B. In this case the expression Jη(S)
acquires the following form:

Jη(S) = tr
(
Jη
12S2

)
, Jη

12 = R
η,(0)
12 − r

(0)
12 , (2.53)

where R
η,(0)
12 is the coefficient of expansion (B.15), and r

(0)
12 is the coefficient of expansion (B.12). The description

of the (generalized) relativistic top in terms of R-matrices was proposed in [23] and then proved in [25] and [17].
Finally, let us remark that the described above integrable top can be viewed as the spin chain on a single site.
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Classical spin chains. Next, we proceed to the classical spin chain on n sites by introducing the classical
monodromy matrix

T (z) = Lη(S1, z − z1) . . . L
η(Sn, z − zn) , (2.54)

where S1, ..., Sn ∈ Mat(N,C) are n matrices of size N ×N of dynamical variables. Due to (2.44) it can be also
represented in the form:

T0(z) = tr12...n

(
T̂ (z)S1

1S
2
2 ...S

n
n

)
, (2.55)

where (similarly to notations S1 = S ⊗ 1N and S2 = 1N ⊗ S) Si
i means the Si matrix in the i-th tensor

component11, while T̂ (z) is the quantum monodromy matrix in the fundamental representation (2.7).

The Poisson structure for the spin chain is given by n copies of the Sklyanin algebra generated by n copies
of the quadratic r-matrix structure

{Lη
1(S

i, z), Lη
2(S

j , w)} =
δij

c
[Lη

1(S
i, z)Lη

2(S
i, w), r12(z − w)] , (2.56)

so that any Poisson brackets between variables from different sites vanish. The monodromy matrix satisfies the
same relations

{T1(z), T2(w)} =
1

c
[T1(z)T2(w), r12(z − w)] . (2.57)

Therefore, the classical transfer matrix
t(z) = trT (z) (2.58)

is a generating function of the classical Hamiltonians commuting with respect to the Poisson structure given by
a direct sum of n Sklyanin algebras.

Further description is parallel to the quantum case. One can represent the monodromy matrix (2.54) in the
form

T (z) =

n∑

k=1

Lnη(Sk, z − zk) =

n∑

k=1

∑

α

TαS
k
αϕα(z − zk, ωα +

nη

N
) , (2.59)

where Sk are again residues of T (z) at the poles zk, i.e.

Si = Res
z=zi

T (z) = Lη(S1, zi − z1) . . . L
η(Si−1, zi − zi−1) · S

i · Lη(Si+1, zi − zi+1) . . . L
η(Sn, zi − zn) . (2.60)

The non-local Hamiltonians are the classical analogues of (2.16):

Hi = Res
z=zi

tr
(
T (z)

)
= tr(Si) =

= tr
(
Lη(S1, zi − z1) . . . L

η(Si−1, zi − zi−1) · S
i · Lη(Si+1, zi − zi+1) . . . L

η(Sn, zi − zn)
)
.

(2.61)

In this way we come to the additive form of the monodromy matrix. It can be view as relativistic Gaudin model
by the following reason. Using the change of variables of type (2.34) one can (similarly to the quantum case
(2.35)) represent T (z) in the form (see the footnote for (2.35)):

T (z − η) = f(z)
(
1N S̃0 +

n∑

k=1

tr2

(
r12(z − zk)S̃

k
2

))
(2.62)

or

T (z − η) = f(z)
(
1N S̃0 +

( n∑

k=1

1N S̃k
0E1(z − zk) +

∑

γ 6=0

Tγ S̃
k
γϕγ(z − zk, ωγ)

))
. (2.63)

It is the form of the Lax matrix for the classical Gaudin model [36], which we considered in our previous paper
[40]. In that model the Poisson structure is given by the linear Poisson-Lie brackets, while in (2.62) we deal
with some quadratic Poisson algebra coming from n copies of Sklyanin algebra via (2.60). Explicit formulae for

11More precisely, in (2.55) we assume Si

i be the Si matrix in the i + 1-th tensor component. It is because Si is an
element of Mat(N,C)⊗(n+1) since the first tensor component has number 0 (it is the matrix space of T (z)).
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the brackets can be found in [42]. The term relativistic Gaudin model implies the multi-pole (and multispin)
structure together with quadratic Poisson brackets.

Let us remark that the above description naturally arises in the Hitchin approach to integrable systems, where
the Lax matrices are considered as sections of a certain bundles over curves. The relativistic generalization of
Hitchin systems was studied in [5, 42] and [10].

Gauge equivalence between RS model and relativistic top. Here, following [15] (see also [8, 17,
41, 43]) we briefly describe the change of variables between the models 8 and 9 on the Scheme 2.

The N -body Ruijsenaars-Schneider model [32] is given by the following Lax matrix of size N ×N :

LRS
ij (z) = φ(z, qij + η) bj , i, j = 1, . . . , N , (2.64)

where

bj =
N∏

k:k 6=j

ϑ(qj − qk − η)

ϑ(qj − qk)
epj/c , c = const ∈ C . (2.65)

The Hamiltonian

HRS = c
trLRS(z)

φ(z, η)
= c

N∑

j=1

bj(p, q) (2.66)

with the canonical Poisson brackets {pi, qj} = δij (and {pi, pj} = {qi, qj} = 0) generates equations of motion

q̈i =
N∑

k:k 6=i

q̇iq̇k(2E1(qik)− E1(qik + η)− E1(qik − η)) , i = 1, . . .N . (2.67)

Introduce the elliptic intertwining matrix [4]:

g(z, q) = ϑ

[
1
2 − i

N
N
2

](
z −Nqj +

N∑

m=1

qm |Nτ

)
1

N∏
k:k 6=j

ϑ(qj − qk)

,
(2.68)

where the theta-functions with characteristics appear:

θ

[
a
b

]
(z| τ) =

∑

j∈ζ

exp
(
2πı(j + a)2

τ

2
+ 2πı(j + a)(z + b)

)
. (2.69)

This matrix was used to describe the IRF-Vertex correspondence in 2d integrable lattice models.

The announced relation between models 8 and 9 consists of two steps. The first one is that the Lax matrix
(2.64) is represented in the factorized form:

LRS(z) =
ϑ′(0)

ϑ(η)
g−1(z, q)g(z +Nη, q) eP/c , P = diag(p1, . . . , pN) . (2.70)

The second step is the statement that the gauge transformed matrix g(z, q)LRS(z)g−1(z, q) has the form of the
Lax matrix of relativistic top (2.43). Namely,

LNη(S, z) = g(z, q)LRS(z)g−1(z, q) =
ϑ′(0)

ϑ(η)
g(z +Nη, q) eP/cg−1(z, q) . (2.71)

It is a nontrivial exercise to show that the r.h.s. of (2.71) indeed has the form

LNη(S, z) =
∑

α

SαTαϕα(z, ωα + η) (2.72)
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with some matrix S (see [15, 8, 41] and the appendix in [43] for details). The matrix S in this case is special. Its
rank equals one, and due to (2.71) it is a function of the canonical variables pi, qj . Explicit change of variables
can be calculated:

Sa(p, q, η, c) =
(−1)a1+a2

N
eπıa2ωa

N∑

m=1

epm/ce2πıa2(η−q̄m)ϑ(η + ωα)

ϑ(η)

N∏

l: l 6=m

ϑ(qm − ql − η − ωa)

ϑ(qm − ql)
, (2.73)

where a ∈ ZN × ZN and q̄m = qm − (1/N)
N∑

k=1

qk is the coordinate in the center of masses frame.

3 Elliptic Lax pairs

In this Section we consider the most general model 1 from the Scheme 2. Our purpose is to propose the Lax pair
and derive equations of motion. Then we briefly consider some particular cases including the models 2, 3 and 4.

For all the models from the family III the Lax matrices are of size NM ×NM with a natural block-matrix
structure:

L(z) =




L11(z) L12(z) . . . L1M (z)

L21(z) L22(z) . . . L2M (z)
...

...
. . .

...
LM1(z) LM2(z) . . . LMM (z)









each column or row
contains M blocks
of size N ×N

(3.1)

Equivalently,

L(z) =

M∑

i,j=1

Eij ⊗ Lij(z) ∈ Mat(NM,C) , Lij(z) ∈ Mat(N,C) . (3.2)

Inside N × N blocks (that is inside N × N matrices Lij(z)) we use the basis (B.1) as we did for relativistic
top (2.43). A similar block-matrix structure is used for (the accompany) M -matrix entering the Lax equation
L̇(z) = [L(z),M(z)] and the residues Sc, c = 1, ..., n of L(z) at simple poles z1, ..., zn, which are the classical
spin variables:

Sa =
M∑

i,j=1

Eij ⊗ Sij,a , Sa ∈ Mat(NM,C) , Sij,a ∈ Mat(N,C) . (3.3)

Each matrix Sij,a has components Sij,a
γ , γ ∈ ZN ×ZN in the basis Tγ (B.1). The zero component (for T0,0 = 1N )

is denoted as either Sii,a
0,0 or just Sii,a

0 .

3.1 General case

The Lax pair for the general model has the block-matrix structure (3.1) with the N ×N blocks

Lij(z) =
∑

γ∈Z
×2

N

n∑

a=1

TγS
ij,a
γ ϕγ(z − za, ωγ +

qij + η

N
), qij = qi − qj , ωγ =

γ1 + γ2τ

N (3.4)

and

M(z) =

M∑

i,j=1

Eij ⊗Mij(z) ∈ Mat(NM,C) , Mij(z) ∈ Mat(N,C) .

Mii(z) = −
n∑

a=1

T0S
ii,a
0,0 (E1(z − za) + E1(

η

N
))−

∑

γ 6=0

n∑

a=1

TγS
ii,a
γ ϕγ(z − za, ωγ),

Mij(z) = −
∑

γ

n∑

a=1

TγS
ij,a
γ ϕγ(z − za, ωγ +

qij
N

), i 6= j.

(3.5)
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Introduce the following set of linear operators (analogues of the inverse inertia tensor Jη (2.49)-(2.50)):

J̃η,qmn
a (Sij,b) =

∑

γ

Sij,b
γ Tγ

(
ϕγ(zab, ωγ +

qmn + η

N
)− ϕγ(zab, ωγ +

qmn

N
)
)
, for a 6= b , (3.6)

J̃η
a (S

ij,b) =
∑

γ 6=0

Sij,b
γ Tγ

(
ϕγ(zab, ωγ +

η

N
)− ϕγ(zab, ωγ)

)
, for a 6= b , (3.7)

Jη,qmn(Sij,b) =
∑

γ

Sij,b
γ Tγ

(
E1(ωγ +

qmn + η

N
)− E1(ωγ +

qmn

N
)
)
, (3.8)

Jη(Sij,b) =
∑

γ 6=0

Sij,b
γ Tγ

(
E1(ωγ +

η

N
)− E1(ωγ)

)
. (3.9)

In the above definitions i, j,m, n = 1, ...,M and a, b = 1, ..., n. The summation in γ is over ZN × ZN . If γ 6= 0
then the summation is over ZN × ZN \ (0, 0).

Main purpose of the current subsection is to derive equations of motion for the general model. Let us write
down the answer for the diagonal and non-diagonal blocks separately. For non-diagonal blocks Sij,a (i 6= j)
equations of motion have the form:

Ṡij,a = Sij,aJη(Sjj,a)− Jη(Sii,a)Sij,a +

M∑

k:k 6=j

Sik,aJη,qkj (Skj,a)−

M∑

k:k 6=i

Jη,qik(Sik,a)Skj,a+

+
n∑

b:b6=a

Sij,a
(
Sii,b
0,0 − Sjj,b

0,0

)(
E1(

η

N
) + E1(zab)− φ(zab,

η

N
)
)
+

+

n∑

b:b6=a

(
Sij,aJ̃η

a (S
jj,b)− J̃η

a (S
ii,b)Sij,a

)
+

n∑

b:b6=a

( M∑

k:k 6=j

Sik,aJ̃
η,qkj
a (Skj,b)−

M∑

k:k 6=i

J̃η,qik
a (Sik,b)Skj,a

)
.

(3.10)

Equations of motion for the diagonal blocks are as follows:

Ṡii,a =
[
Sii,a, Jη(Sii,a)

]
+

M∑

k:k 6=i

(
Sik,aJη,qki(Ski,a)− Jη,qik(Sik,a)Ski,a

)
+

+

n∑

b:b6=a

[
Sii,a, J̃η

a (S
ii,b)

]
+

n∑

b:b6=a

M∑

k:k 6=i

(
Sik,aJ̃η,qki

a (Ski,b)− J̃η,qik
a (Sik,b)Ski,a

)
.

(3.11)

Let us formulate the statement on these equations.

Theorem 1 Equations of motion (3.10) and (3.11) are equal to the Lax equation with additional term

d

dt
L(z) = [L(z),M(z)] +

M∑

i,j=1

n∑

c=1

∑

α∈Z
×2

N

Sij,c
α (µi − µj)Eij ⊗ Tαfα(z − zc, ωα +

qij + η

N
) (3.12)

for the Lax pair (3.4) and (3.5), where

µi =
q̇i
N

−

n∑

a=1

Sii,a
0,0 , i = 1, . . . ,M (3.13)

and the functions fα in the additional term in the r.h.s. of (3.12) are given by (A.20).
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Proof. Consider first the equation (3.12) for the diagonal blocks. For the l.h.s. we have

d

dt
Lii(z) =

n∑

a=1

∑

γ

TγṠ
ii,a
γ ϕγ(z − za, ωγ +

η

N
) , (3.14)

and for the r.h.s.

[L,M]
ii
=

n∑

a,b=1

∑

γ 6=0

∑

β

(κγ,β − κβ,γ)S
ii,a
γ Sii,b

β Tγ+βϕγ(z − za, ωγ)ϕβ(z − zb, ωβ +
η

N
)+

+

M∑

k:k 6=i

n∑

a,b=1

∑

γ,β

κγ,βS
ik,a
γ Ski,b

β Tγ+β

(
ϕγ(z − za, ωγ +

qik
N

)ϕβ(z − zb, ωβ +
qki + η

N
)−

−ϕγ(z − za, ωγ +
qik + η

N
)ϕβ(z − zb, ωβ +

qki
N

)
)
.

(3.15)

The first sum (the upper line) consists of two parts: a = b and a 6= b. Consideration of the case a = b coincides
with the one described in [46]. That gives us first two terms in the equation (3.11) (also the upper line in the
r.h.s.). Consider the case a 6= b. By applying the Fay identity (A.10) and (A.14), (A.15) to the first term in the
r.h.s. of (3.15) we obtain:

n∑

a 6=b

∑

γ

∑

β 6=0

Sii,a
γ Sii,b

β TγTβϕγ+β(z − za, ωγ+β +
η

N
)
(
ϕβ(zab, ωβ +

η

N
)− ϕβ(zab, ωβ)

)
−

−

n∑

a 6=b

∑

γ

∑

β 6=0

Sii,a
γ Sii,b

β TβTγϕγ+β(z − za, ωγ+β +
η

N
)
(
ϕβ(zab, ωβ +

η

N
)− ϕβ(zab, ωβ)

)
.

(3.16)

Similarly, for the second term (the second line) in the r.h.s. of (3.15):

M∑

k 6=i

n∑

a 6=b

∑

γ,β

Sik,a
γ Ski,b

β TγTβϕγ+β(z − za, ωγ+β +
η

N
)
(
ϕβ(zab, ωβ +

qki + η

N
)− ϕβ(zab, ωβ +

qki
N

)
)
−

−Sik,b
β Ski,a

γ TβTγ

(
ϕβ(zab, ωβ +

qik + η

N
)− ϕβ(zab, ωβ +

qik
N

)
)
ϕγ+β(z − za, ωγ+β +

η

N
) .

(3.17)

In this way we obtain the r.h.s. of (3.15). By comparing it with (3.14) one gets (3.11).

For the non-diagonal blocks of the equation (3.12) we have in the l.h.s.:

d

dt
Lij(z) =

n∑

a=1

∑

γ

(
Ṡij,a
γ Tγϕγ(z − za, ωγ +

qij + η

N
) +

q̇ij
N

Sij,a
γ Tγfγ(z − za, ωγ +

qij + η

N
)
)
. (3.18)

In the r.h.s. of (3.12) the following expression arises:

n∑

a,b=1

∑

γ

Sij,b
γ (Sii,a

0,0 − Sjj,a
0,0 )Tγϕγ(z − zb, ωγ +

qij + η

N
)
(
E1(z − za) + E1(

η

N
)
)

+

n∑

a,b=1

∑

γ 6=0
β

Sij,b
β (κγ,βS

ii,a
γ − κβ,γS

jj,a
γ )Tγ+βϕγ(z − za, ωγ)ϕβ(z − zb, ωβ +

qij + η

N
)+

+

n∑

a,b=1

∑

γ,β

Sij,a
γ (κγ,βS

jj,b
β − κβ,γS

ii,b
β )Tγ+βϕγ(z − za, ωγ +

qij
N

)ϕβ(z − zb, ωβ +
η

N
)+

(3.19)
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+

M∑

k:k 6=i,j

n∑

a,b=1

∑

γ,β

TγTβS
ik,a
γ Skj,b

β

(
ϕγ(z − za, ωγ +

qik
N

)ϕβ(z − zb, ωβ +
qkj + η

N
)−

−ϕγ(z − za, ωγ +
qik + η

N
)ϕβ(z − zb, ωβ +

qkj
N

)
)
+

+

n∑

a=1

∑

γ

Sij,a
γ (µi − µj)Tγfγ(z − za, ωγ +

qij + η

N
).

It includes [L,M]ij and the additional term (in the last line). Again, the part of the terms with a = b in all
sums was derived in [46]. This part provides the upper line of (3.10). The term with the summation over k is
transformed through (A.10). Then the expression under this sum takes the form:

Sik,a
γ Skj,b

β TγTβϕγ+β(z − za, ωγ+β +
qij + η

N
)
(
ϕβ(zab, ωβ +

qkj + η

N
)− ϕβ(zab, ωβ +

qkj
N

)
)
+

+Sik,b
β Skj,a

γ TβTγϕγ+β(z − za, ωγ+β +
qij + η

N
)
(
ϕβ(zab, ωβ +

qik
N

)− ϕβ(zab, ωβ +
qik + η

N
)
)
.

(3.20)

All computations are similar to the diagonal case, and in this way we get the last two terms in (3.10). At the
same time we also get additional terms, which are as follows:

∑

γ

∑

a,b

Sij,a
γ (Sii,b

0,0 − Sjj,b
0,0 )Tγϕγ(z − za, ωγ +

qij + η

N
)(E1(

η

N
) + E1(zab)− φ(zab,

η

N
))+

+
∑

γ

∑

a,b

Sij,a
γ (Sii,b

0,0 − Sjj,b
0,0 )Tγfγ(z − za, ωγ +

qij + η

N
).

(3.21)

The upper expression provides the middle line in the equation (3.10). And the last one expression is cancelled
together with the last terms in (3.18) and (3.19) by the definition (3.13). �

Finally, we mention that the Lax equation holds true on the constraints

µi = 0 , i = 1, ...,M , (3.22)

where µi are given by (3.13). In this case the additional term in (3.12) vanishes. By differentiating (3.22) with
respect to time variable we find equations of motion for the positions of particles:

q̈i = N

n∑

a=1

Ṡii,a
0,0 =

n∑

a=1

tr(Ṡii,a) , i = 1, ...,M , (3.23)

Summing up (in a) equations (3.11) and taking trace of both sides we find:

q̈i =
n∑

a=1

M∑

k:k 6=i

tr
(
Sik,aJη,qki(Ski,a)− Jη,qik(Sik,a)Ski,a

)
+

+
M∑

k:k 6=i

n∑

a,b:b6=a

tr
(
Sik,aJ̃η,qki

a (Ski,b)− J̃η,qik
a (Sik,b)Ski,a

)
.

(3.24)

The constraints (3.13) should be also supplied with M gauge fixation conditions thus performing (the Hamil-
tonian or the Poisson) reduction to the phase space of integrable model. The reduction is not only restriction
of equations (3.10)-(3.11) to the level of constraints (3.22) but provides some additional terms in the equations
through the Dirac brackets formula. The same phenomenon takes place in the non-relativistic models. For
example, the spin Calogero-Moser model with the spin variables from the minimal coadjoint orbit is reduced in
this way to the spinless system (the model 9 on the Scheme 1).
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3.2 Particular cases

Classical spin chain. First of all we mention that in the M = 1 case the Lax matrix (3.2), (3.4) is simplified
to the following one

L(z) =

n∑

a=1

∑

γ∈Z
×2

N

TγS
ij,a
γ ϕγ(z − za, ωγ +

η

N
) ∈ Mat(N,C) , (3.25)

which is the monodromy matrix (2.59) of the classical chain in the additive form (with the redefinition η → η/n).

GLNM model. When n = 1 we have a single pole, which can be fixed as z1 = 0. Then the Lax matrix (3.2),
(3.4) turns into

L(z) =

M∑

i,j=1

∑

γ∈Z
×2

N

Eij ⊗ TγS
ij
γ ϕγ(z, ωγ +

qij + η

N
) ∈ Mat(NM,C) . (3.26)

Detailed description of this model (it is the model 4 on the Scheme 2) can be found in [46].

Let us also mention several important particular cases of the GLNM model itself. The first one is the model
of M interacting relativistic GLN tops, which appears in the case rank(S) = 1. Recently a quantum version
of this model was proposed in [28], and related q-deformed long-rage spin chains were described. The second
particular case is the relativistic top (2.43), which comes from (3.26) in the M = 1 case. Finally, the third case
is the spin Ruijsenaars-Schneider model [19], which corresponds to N = 1. In our notation it is also briefly
reviewed in the beginning of [46]. If the matrix of spin variables has rank one then the reduction discussed in
the end of the previous subsection kills all spin degrees of freedom and the spinless Ruijsenaars-Schneider model
arises (see details in [19]). All these relations are shown on the Scheme 2.

Multispin Ruijsenaars model. In the N = 1 case the Lax matrix (3.2), (3.4) becomes the one for the
multispin GLM Ruijsenaars-Schneider model:

L(z) =
n∑

a=1

M∑

i,j=1

EijS
ij,aφ(z − za, qij + η) ∈ Mat(M,C) . (3.27)

Similarly to transition between (2.59) and (2.63) the Lax matrix (3.27) can be transformed to the form, which
has no explicit dependence on the variable η12 (see also the footnote to (2.35)):

L̄ij(z) = δij

(
S̄ii +

n′∑

a=1

S̄ii,aE1(z − za)
)
+ (1− δij)

n′∑

a=1

S̄ij,aφ(z − za, qij) . (3.28)

This form is known for non-relativistic multispin Calogero-Moser model introduced in [30]. Also, this form was
used in [29] for the multispin Ruijsenaars model. Although the form is non-relativistic, the Poisson structure is
quadratic and complicated.

In fact, the Hamiltonian description is unknown even for n = 1 case (the elliptic spin Ruijsenaars-Schneider
model), but it is known for n = 1 and rank(S) = 1 since it is the spinless Ruijsenaars-Schneider model due to
the additional reduction. In the next Section we describe explicit parametrization in canonical variables of the
model (3.27) with spin variables satisfying the property rank(Sk) = 1 for all k = 1, ..., n.

4 Inhomogeneous Ruijsenaars chain

The Ruijsenaars chain on n sites is the model introduced recently in [43]. Similarly to (2.54) it is described by
N ×N monodromy matrix

T̃ (z) = L̃1(z) . . . L̃n(z) ∈ Mat(N,C) , (4.1)

12In order to get (3.28) from (3.27) one should divide L(z) by function φ(z − x, η) for some x and then represent the
answer as in (3.28).
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where the Lax matrices L̃1(z) are of the form

L̃k
ij(z) = φ(z, q̄k−1

i − q̄kj + η)

N∏
l=1

ϑ(q̄kj − q̄k−1
l − η)

ϑ(−η)
N∏

l:l 6=j

ϑ(q̄kj − q̄kl )

ep
k
j /c , (4.2)

where k = 1, ..., n and i, j = 1, ..., N . We deal here with nN pairs of canonical variables:

{pki , q
l
j} = δklδij , {pki , p

l
j} = {qki , q

l
j} = 0 ,

i, j = 1, ..., N , k, l = 1, ..., n .
(4.3)

Also, the cyclic identification q0i = qni is assumed. By construction, the transfer matrix t̃(z) = trT̃ (z) satisfies
the involution property {t̃(z), t̃(w)} = 0, thus providing Poisson commuting Hamiltonians. Likewise it happens
in the classical homogeneous spin chains [11], there is a flow in this model describing interaction of neighbour
sites only. In continuous limit one obtains the local integrable 1+1 field theory – the field generalization of the
Ruijsenaars-Schneider model. See [43] for details.

The model (4.1) is homogeneous, i.e. we put all zk = 0 in (2.54). In this subsection we describe a nat-
ural generalization of the above model to the inhomogeneous case. Then we discuss its relation to multispin
Ruijsenaars model.

4.1 Inhomogeneous Ruijsenaars chain

The derivation of (4.1)-(4.2) was based on consideration of the classical GLN spin chain in the special case when
all matrices of spin variables S1, ..., Sn are of rank one. In this case the Lax matrices at each site are represented
in the factorized form (2.71). Let us follow the same strategy in the inhomogeneous case.

Lax matrices. Consider the monodromy matrix (2.54) (with η → Nη)

T (z) = LNη(S1, z − z1)L
Nη(S2, z − z2) . . . L

Nη(Sn, z − zn) (4.4)

and write all the Lax matrices in the form:

LNη(Sk, z − zk) =
ϑ′(0)

ϑ(η)
g(z − zk +Nη, qk) eP

k/cg−1(z − zk, q
k) . (4.5)

As we know from (2.73) the residue

Sk = Res
z=zk

LNη(Sk, z − zk) (4.6)

is explicitly expressed in terms of canonical variables qk1 , ..., q
k
N , pk1 , ..., p

k
n and satisfy the classical Sklyanin algebra

relations (2.47). Due to (4.5) the matrices Sk have rank one (see [41, 43]). Plugging (4.6) into the monodromy
matrix (2.54) one gets

T (z) =
(ϑ′(0)

ϑ(η)

)n
g(z − z1 +Nη, q1) eP

1/cg−1(z − z1, q
1) . . . g(z − zn +Nη, qn) eP

n/cg−1(z − zn, q
n) . (4.7)

Next, consider the gauge transformed monodromy matrix

T̃ (z) = G−1T (z)G =

=
(ϑ′(0)

ϑ(η)

)n
g−1(z − z1, q

1)g(z − z2 +Nη, q2) eP
2/c . . . g−1(z − zn, q

n)g(z − z1 +Nη, q1) eP
1/c ,

(4.8)

where

G = g(z − z1 +Nη, q1) eP
1/c . (4.9)
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In this way we come to
T̃ (z) = L

1(z − z1)L
2(z − z2) . . .L

n(z − zn) (4.10)

with

L
k(z − zk) =

ϑ′(0)

ϑ(η)
g−1(z − zk, q

k)g(z − zk+1 +Nη, qk+1) eP
k+1/c . (4.11)

Now we are in position to calculate (4.11). For this purpose we use the following formula proved in [15]:

(
− ϑ′(0) g−1(z, qm)g(z +Nη, qk)

)

ij
= φ(z, q̄mi − q̄kj + η)

N∏
l=1

ϑ(q̄kj − q̄ml − η)

N∏
l:l 6=j

ϑ(q̄kj − q̄kl )

. (4.12)

By writing g(z − zk+1 +Nη, qk+1) as g(z − zk +N(η − zk+1−zk
N ), qk+1) and using (4.12) we obtain

L
k
ij(z − zk) = φ

(
z − zk, q̄

k
i − q̄k+1

j + η −
zk+1 − zk

N

)
N∏
l=1

ϑ(q̄k+1
j − q̄kl + zk+1−zk

N − η)

ϑ(
zk+1−zk

N − η)
N∏

l:l 6=j

ϑ(q̄k+1
j − q̄k+1

l )

ep
k+1

j
/c . (4.13)

Notice that enumeration of Lax matrices shifted by 1 with respect to the one used in the homogeneous case
(4.2), i.e. when z1 = ... = zn = 0 L

k(z − zk) turns into L̃k+1(z). This is just in order to achieve matching with
numeration of poles z1, ..., zn. In fact, it is more properly to enumerate L (and L̃) by two neighbour indices since
each Lax matrix depends on two sets of variables q with neighbour values of upper indices.

It is possible to slightly simplify expression (4.13) by introducing the variables

q̆ki = q̄ki +
zk
N

, k = 1 . . . n , i = 1 . . .N . (4.14)

Then the Lax matrix (4.13) takes the form13:

L
k
ij(z − zk) = φ(z − zk, q̆

k
i − q̆k+1

j + η)

N∏
l=1

ϑ(q̆k+1
j − q̆kl − η)

ϑ( zk+1−zk
N − η)

N∏
l:l 6=j

ϑ(q̆k+1
j − q̆k+1

l )

ep
k+1

j
/c . (4.15)

There is the following relation between (4.15) and (4.2):

L
k
ij(z − zk) =

ϑ(−η)

ϑ( zk+1−zk
N − η)

L̄k+1(z − zk)
∣∣∣
q̄→q̆

. (4.16)

Non-local Hamiltonians. Recall that by construction, the monodromy matrix (4.10) is gauge equivalent
to the one for XYZ spin chain (4.4) in the special case (4.5). Therefore,

trT̃ (z) = trT (z) , (4.17)

and the non-local Hamiltonians for the inhomogeneous Ruijsenaars chain

H̃i = Res
z=zi

trT̃ (z) (4.18)

are precisely the same as in the XYZ spin chain, see (2.61). It is possible to write these Hamiltonians more
explicitly using (4.15). Introduce notations for N ×N matrix (of Cauchy type)

Cij(z, x, y) = φ(z, xi − yj + η) , i, j = 1, ..., N (4.19)

13For n ≥ 2 one can make an additional shift q̆ki → q̆ki + kη, which removes explicit dependence on η in (4.13), (4.15)
except the theta-function ϑ((zk+1 − zk)/N − η) in denominator.
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and a set of n diagonal N ×N matrices

B
[k,k+1]
ij = δij

N∏
l=1

ϑ(q̆k+1
j − q̆kl − η)

ϑ(
zk+1−zk

N − η)
N∏

l:l 6=j

ϑ(q̆k+1
j − q̆k+1

l )

ep
k+1

j
/c , k = 1, ..., n , i, j = 1, ..., N . (4.20)

Then from (4.10) and (4.15) we conclude that

T̃ (z) =

= C(z − z1, q
1, q2)B[1,2]C(z − z2, q

2, q3)B[2,3] . . . C(z − zn−1, q
n−1, qn)B[n−1,n]C(z − zn, q

n, q1)B[n,1] .

(4.21)

Due to (A.2) we have
Res
z=zi

C(z − zi, x, y) = ρ⊗ ρT , ρ = (1, 1, ..., 1)T , (4.22)

where ρ is a column-vector of units. Thus,

Res
z=zi

T̃ (z) = C(zi − z1, q
1, q2)B[1,2] . . . C(zi − zi−1, q

i−1, qi)B[i−1,i]×

×ρ⊗ ρTB[i,i+1]C(zi − zi+1, q
i+1, qi+2)B[i+1,i+2] . . . C(zi − zn, q

n, q1)B[n,1] .

(4.23)

After taking the trace, we finally get

H̃i = ρTB[i,i+1]C(zi − zi+1, q
i+1, qi+2)B[i+1,i+2] . . . C(zi − zn, q

n, q1)B[n,1]×

×C(zi − z1, q
1, q2)B[1,2] . . . C(zi − zi−1, q

i−1, qi)B[i−1,i]ρ .

(4.24)

4.2 Relation to multispin Ruijsenaars model

Let us represent the monodromy matrix T̃ (z) (4.10), (4.15) in the additive form similarly to what we did for
spin chains, see (2.54), (2.59).

Due to (A.9) the Lax matrices (4.15) have the following quasi-periodic properties on the lattice of elliptic
curve:

L
k(z + 1) = L

k(z) ,

L
k(z + τ) = e−2πıηH−1

k L
k(z)Hk+1 ,

(4.25)

where Hk ∈ Mat(N,C), k = 1, ..., n are diagonal matrices

Hk = diag(e2πıq
k
1 , ..., e2πıq

k
N ) . (4.26)

Therefore, for the monodromy matrix (4.10) we have

T̃ (z + 1) = T̃ (z) ,

T̃ (z + τ) = e−2πınηH−1
1 T̃ (z)H1 .

(4.27)

The matrix T̃ (z) has simple poles at zi, i = 1, ..., n with the residues given by the r.h.s. of (4.23). Let us denote
these residues as

Si = Res
z=zi

T̃ (z) . (4.28)

In this way T̃ (z) is fixed, and we can write it explicitly:

T̃ij(z) =

n∑

k=1

Sk
ijφ(z − zk, q

1
i − q1j + nη) . (4.29)
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It is a general form of the GLN multispin Ruijsenaars-Schneider model (3.27) with the substitution η → nη. Here
we deal with a special set of the spin variables Si (4.28), (4.23), which are rank one matrices due to the presence
of ρ⊗ ρT in the product (4.23). Positions of particles are q11 , ..., q

1
N , and the spin variables are parameterized by

the rest of variables (i.e. by qk1 , ..., q
k
N for k = 2, ..., n and pm1 , ..., pmN , m = 1, ..., n).

In n = 1 case the obtained result (i.e. (4.28)-(4.29) with (4.23)) reproduces relation between the spinless
Ruijsenaars-Schneider model (2.64) and the relativistic top (2.72). The latter means that we obtained the
parametrization of the reduced model (here we mean the reduction discussed in the end of subsection 3.1).

5 Generalized model through R-matrix formulation

In this Section we extend the formulation of the most general GLNM model presented in Section 3. For example,
it was mentioned in Section 2 that the Lax matrix (2.43) of the relativistic top is equivalently written in the
form (2.44) with the Baxter-Belavin R-matrix (B.7). Being written in the R-matrix form the model (2.44) is an
extension of (2.43) since not only the elliptic R-matrix (B.7) can be used, but also any trigonometric or rational
degeneration satisfying the associative Yang-Baxter equation with certain additional properties, which are the
classical limit (B.8), the unitarity (2.4) and the skew-symmetry (2.5). As a result, one obtains a more universal
formulation of the Lax pair (2.44), (2.52) and the equations of motion (2.49), (2.53). Then the models are
enumerated by possible R-matrices from a special but a wide class, which was briefly reviewed in our previous
paper [40], and we do not repeat it here. The calculations below are based on the above mentioned R-matrix
properties and identities from the Appendix B.

Introduce the following Lax pair:

L(z) =
M∑

i,j=1

Eij ⊗ Lij(z) ∈ Mat(NM,C), Lij(z) ∈ Mat(N,C).

Lij(z) =

n∑

a=1

tr2(R
z−za
12 (qij + η)P12S

ij,a
2 ), qij = qi − qj

(5.1)

and

M(z) =

M∑

i,j=1

Eij ⊗Mij(z) ∈ Mat(NM,C), Mij(z) ∈ Mat(N,C) ,

Mij(z) = −δij

n∑

a=1

tr2(R
z−za,(0)
12 P12S

ii,a
2 )− (1− δij)

n∑

a=1

tr2(R
z−za
12 (qij)P12S

ij,a
2 ) .

(5.2)

Define also the set of linear operators (the extensions of (3.6)-(3.9)):

J̃ η,qmn

a (Sij,b) = tr2

((
Rzab

12 (qmn + η)−Rzab

12 (qmn)
)
P12S

ij,b
2

)
, (5.3)

J̃ η
a (S

ij,b) = tr2

((
Rzab

12 (η)−R
zab,(0)
12

)
P12S

ij,b
2

)
, (5.4)

J η,qmn(Sij,b) = tr2

((
R

qmn+η,(0)
12 − R

qmn,(0)
12

)
Sij,b
2

)
, (5.5)

J η(Sij,b) = tr2

((
R

η,(0)
12 − r

(0)
12

)
Sij,b
2

)
. (5.6)

The goal of this Section is to derive equations of motion. For the non-diagonal blocks (i 6= j) of S matrix we
have:

Ṡij,a = Sij,aJ η(Sjj,a)− J η(Sii,a)Sij,a +

M∑

k:k 6=j

Sik,aJ η,qkj (Skj,a)−

M∑

k:k 6=i

J η,qik(Sik,a)Skj,a+

+

n∑

b:b6=a

(
Sij,aJ̃ η

a (S
jj,b)− J̃ η

a (S
ii,b)Sij,a

)
+

n∑

b:b6=a

( M∑

k:k 6=j

Sik,aJ̃
η,qkj
a (Skj,b)−

M∑

k:k 6=i

J̃ η,qik
a (Sik,b)Skj,a)

)
.

(5.7)
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For the diagonal blocks equations are as follows:

Ṡii,a = [Sii,a,J η(Sii,a)] +
M∑

k:k 6=i

(
Sik,aJ η,qki(Ski,a)− J η,qik(Sik,a)Ski,a

)
+

+
n∑

b:b6=a

[Sii,a, J̃ η
a (S

ii,b)] +
n∑

b:b6=a

M∑

k:k 6=i

(
Sik,aJ̃ η,qki

a (Ski,b)− J̃ η,qik
a (Sik,b)Ski,a)

)
.

(5.8)

Theorem 2 The equations of motion (5.7) and (5.8) are equivalent to the Lax equation with additional term:

d

dt
L(z) = [L(z),M(z)] +

M∑

i,j=1

n∑

a=1

tr2

(
(µi − µj)F

z−za
12 (qij + η)P12 S

ij,a
2

)
(5.9)

for matrices (3.4) and (3.5), where:

µi = q̇i −N

n∑

a=1

Sii,a
0,0 = q̇i −

n∑

a=1

tr(Sii,a) , i = 1, . . . ,M . (5.10)

Proof. The structure of the proof is similar to the proof of Theorem 1. Consider the l.h.s. of (5.9):

dL

dt
=
∑

i,j

Eij ⊗

n∑

a=1

tr2

(
Rz−za

12 (qij + η)P12Ṡ
ij,a
2 + F z−za

12 (qij + η)P12S
ij,a
2 q̇ij

)
. (5.11)

For the r.h.s. of (5.9) we consider the diagonal and non-diagonal blocks separately. The diagonal part is as
follows:

[L,M]ii =

n∑

a,b=1

tr23

((
R

z−za,(0)
12 Rz−zb

23 (η) −Rz−za
12 (η)R

z−zb,(0)
23

)
P12P13S

ii,a
2 Sii,b

3

)
+

+

n∑

a,b=1

M∑

k:k 6=i

tr23

((
Rz−za

12 (qik)R
z−zb
23 (qki + η)−Rz−za

12 (qik + η)Rz−zb
23 (qki)

)
P23P12S

ik,a
2 Ski,b

3

)
.

(5.12)

The calculations for the terms with a = b are performed in the same way as was described in [33]. So that, here
we consider the case a 6= b only. Using (B.20) and (B.21) we get the following expression for the upper line in
the r.h.s. of (5.12):

n∑

a,b:a 6=b

tr23

(
Rz−za

12 (η)P12

(
R

zab,(0)
23 −Rzab

23 (η)
)
P23S

ii,a
2 Sii,b

3

)
+

+

n∑

a,b:a 6=b

tr23

(
Rz−za

12 (η)P12S
ii,a
2

(
Rzab

23 (η) −R
zab,(0)
23

)
P23S

ii,b
3

)
.

(5.13)

Similarly, for the lower line in the r.h.s. of (5.12) one obtains

n∑

a,b:a 6=b

M∑

k:k 6=i

tr23

(
Rz−za

12 (η)P12

(
Rzab

23 (qik)−Rzab

23 (qik + η)
)
P23S

ki,a
2 Sik,b

3

)
+

+

n∑

a,b:a 6=b

M∑

k:k 6=i

tr23

(
Rz−za

12 (η)P12S
ik,a
2

(
Rzab

23 (qki + η)−Rzab

23 (qki)
)
P23S

ki,b
3

)
.

(5.14)

Comparing the resulting expressions with the left side of the Lax equation (5.11) and taking into account a = b
case, we get precisely the equation of motion for the diagonal blocks (5.8).
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Consider now the non-diagonal blocks in the r.h.s. of (5.9):

[L,M]ij =

n∑

a,b=1

tr23

((
R

z−zb,(0)
12 Rz−za

23 (qij + η)−Rz−zb
12 (η)Rz−za

23 (qij)
)
P12P13S

ii,b
2 Sij,a

3

)
+

+

n∑

a,b=1

tr23

((
Rz−za

12 (qij)R
z−zb
23 (η) −Rz−za

12 (qij + η)R
z−zb,(0)
23

)
P12P13S

ij,a
2 Sjj,b

3

)
+

+

n∑

a,b=1

M∑

k:k 6=i,j

tr23

(
Rz−za

12 (qik)R
z−zb
23 (qkj + η)P12P13S

ik,a
2 Skj,b

3

)
−

−

n∑

a,b=1

M∑

k:k 6=i,j

tr23

(
Rz−za

12 (qik + η)Rz−zb
23 (qkj)P12P13S

ik,a
2 Skj,b

3

)
.

(5.15)

Again, we focus on the terms with a 6= b. The first two upper lines in (5.15) are transformed using (2.6) and
(B.20)-(B.21):

n∑

a,b:a 6=b

tr23

(
Rz−za

12 (qij + η)P12S
ij,a
2

(
Rzab

23 (η)−R
zab,(0)
23

)
P23S

jj,b
3

)
−

−
n∑

a,b:a 6=b

tr23

(
Rz−za

12 (qij + η)P12

(
Rzab

23 (η)−R
zab,(0)
23

)
P23S

ii,b
3 Sij,a

2

)
+

+

n∑

a,b:a 6=b

tr23

(
Rz−za

12 (qij + η)P12S
ii,a
2

(
Rzab

23 (qij + η)−Rzab

23 (qij)
)
P23S

ij,b
3

)
−

−

n∑

a,b:a 6=b

tr23

(
Rz−za

12 (qij + η)P12

(
Rzab

23 (qij + η)−Rzab

23 (qij)
)
P23S

ij,b
3 Sjj,a

2

)
+

+

n∑

a,b:a 6=b

Ntr2

(
F z−za
12 (qij + η)P12(S

ii,b
0,0 − Sjj,b

0,0 )Sij,a
2

)
.

(5.16)

Two lower lines in (5.15) are transformed through (2.6). This yields:

n∑

a,b:a 6=b

M∑

k:k 6=i,j

tr23

(
Rz−za

12 (qij + η)P12S
ik,a
2

(
Rzab

23 (qkj + η)−Rzab

23 (qkj)
)
P23S

kj,b
3

)
−

−
n∑

a,b:a 6=b

M∑

k:k 6=i,j

tr23

(
Rz−za

12 (qij + η)P12

(
Rzab

23 (qik + η)−Rzab

23 (qik)
)
P23S

ik,b
3 Skj,a

2

)
.

(5.17)

Plugging this into (5.9) and taking into account (5.10) we get (5.7). �

On the constraints µi = 0 the additional term in the r.h.s. of (5.9) vanishes, and we get the Lax equations.
At the same time on the constraints µi = 0 we may easily deduce equations of motion for positions of particles:

q̈i =

n∑

a=1

tr
(
Ṡii,a

)
=

n∑

a=1

M∑

k:k 6=i

tr
(
Sik,aJ η,qki(Ski,a)− J η,qik(Sik,a)Ski,a

)
+

+

n∑

a,b:b6=a

tr

M∑

k:k 6=i

(
Sik,aJ̃ η,qki

a (Ski,b)− J̃ η,qik
a (Sik,b)Ski,a)

)
.

(5.18)
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In order to reproduce the elliptic case one should use the elliptic R-matrix (B.7). Plugging (B.7) into the
expressions (5.3)-(5.6), we get (here we use identities (A.26)-(A.29)):

J̃ η,qmn
a (Sij,b) → J̃η,qmn

a (Sij,b),

J̃ η
a (S

ij,b) → J̃η
a (S

ij,b) + Sij,b
0,0 φ(zab,

η

N
)1N − Sij,b

0,0 E1(zab)1N ,

J η,qmn(Sij,b) → Jη,qmn(Sij,b),

J η(Sij,b) → Jη(Sij,b) + Sij,b
0,0 E1(

η

N
)1N .

(5.19)

In this way equations of motion in the R-matrix description (5.7)-(5.8) turn into equations (3.10)-(3.11).

6 Appendix A: elliptic functions

Using the theta-function

ϑ(z) = ϑ(z|τ) = −
∑

k∈Z

exp

(
πiτ(k +

1

2
)2 + 2πi(z +

1

2
)(k +

1

2
)

)
, Im(τ) > 0 (A.1)

define the Kronecker elliptic function

φ(z, u) =
ϑ′(0)ϑ(z + u)

ϑ(z)ϑ(u)
, Res

z=0
φ(z, u) = 1 . (A.2)

It has the properties:
φ(z, u) = φ(u, z), φ(−z,−u) = −φ(z, u). (A.3)

Its derivative f(z, u) = ∂uϕ(z, u) is given by

f(z, u) = φ(z, u)(E1(z + u)− E1(u)), f(−z,−u) = f(z, u) , (A.4)

where14

E1(z) = ∂z lnϑ(z) , E2(z) = −∂zE1(z) = ℘(z)−
ϑ′′′(0)

3ϑ′(0)
, (A.5)

E1(−z) = E1(z) , E2(−z) = E2(z) , f(0, u) = −E2(u) . (A.6)

The local expansions near z = 0 is as follows:

φ(z, u) =
1

z
+ E1(u) + zρ(u) +O(z2) , ρ(z) =

E2
1(z)− ℘(z)

2
, (A.7)

E1(z) =
1

z
+

z

3

ϑ′′′(0)

ϑ′(0)
+O(z3) . (A.8)

The following quasi-periodic properties (on the lattice of periods 1 and τ) hold:

E1(z + 1) = E1(z), E1(z + τ) = E1(z)− 2πi,

E2(z + 1) = E2(z), E2(z + τ) = E2(z),

φ(z + 1, u) = φ(z, u), φ(z + τ, u) = e−2πiuφ(z, u),

f(z + 1, u) = f(z, u), f(z + τ, u) = e−2πiu(f(z, u)− 2πiφ(z, u)).

(A.9)

14Functions E1 and E2 are called the Eisenstein functions (the first and the second respectively).
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In calculations we use the addition formula

φ(z1, u1)φ(z2, u2) = φ(z1, u1 + u2)φ(z2 − z1, u2) + φ(z2, u1 + u2)φ(z1 − z2, u1) (A.10)

and its degenerations:

f(z1, u1)φ(z2, u2)− φ(z1, u1)f(z2, u2) = φ(z2, u1 + u2)f(z12, u1)− φ(z1, u1 + u2)f(z21, u2), (A.11)

f(z, u1)φ(z, u2)− φ(z, u1)f(z, u2) = φ(z, u1 + u2)(E2(u2)− E2(u1)), (A.12)

φ(z, u)φ(z,−u) = E2(z)− E2(u) = ℘(z)− ℘(u), (A.13)

φ(z, u1)φ(z, u2) = φ(z, u1 + u2)(E1(z) + E1(u1) + E1(u2)− E1(z + u1 + u2)), (A.14)

φ(z1, u)φ(z2, u) = φ(z1 + z2, u)(E1(z1) + E1(z2))− f(z1 + z2, u). (A.15)

φ(z1, u)ρ(z2)− E1(z2)f(z1, u) + φ(z2, u)f(z12, u)− φ(z1, u)ρ(z21) =
1

2
∂uf(z1, u), (A.16)

(E1(u + v)− E1(u)− E1(v))
2 = ℘(u+ v) + ℘(u) + ℘(v), (A.17)

φ(z, u)ρ(z)− E1(z)f(z, u)− φ(z, u)℘(u) =
1

2
∂uf(z, u). (A.18)

For α = (α1, α2) ∈ ZN × ZN define the following set of functions15:

ϕα(z, ωα + u) = exp(2πi
α2

N
z)φ(z, ωα + u), ωα =

α1 + α2τ

N
, (A.19)

fα(z, ωα + u) = exp(2πi
α2

N
z)f(z, ωα + u), (A.20)

fα(z, ωα + u) = ∂uϕα(z, ωα + u) = ϕα(z, ωα + u)(E1(z + ωα + u)− E1(ωα + u)). (A.21)

The addition formulae are of the form:

ϕα(z1, ωα + u1)ϕβ(z2, ωβ + u2) = ϕα(z1 − z2, ωα + u1)ϕα+β(z2, ωα+β + u1 + u2)+

+ϕβ(z2 − z1, ωβ + u1)ϕα+β(z1, ωα+β + u1 + u2) .
(A.22)

In particular,
ϕα(z − za, ωα)ϕβ(z − zb, ωβ) =

= ϕα(zba, ωα)ϕα+β(z − zb, ωα+β) + ϕβ(zab, ωβ)ϕα+β(z − za, ωα+β),
(A.23)

and
ϕα(z, ωα + u1)ϕβ(z, ωβ + u2) = ϕα+β(z, ωα+β + u1 + u2)×

×
(
E1(z) + E1(ωα + u1) + E1(ωβ + u2)− E1(z + ωα+β + u1 + u2)

)
,

(A.24)

and
ϕα(z1, ωα + u)ϕα(z2, ωα + u) =

= ϕα(z1 + z2, ωα + u)(E1(z1) + E1(z2))− fα(z1 + z2, ωα + u) .
(A.25)

The following identity (the finite Fourier transformation) underlies the Fourier symmetry (B.16):

1

N

∑

α

κ2
α,βϕα(Nz, ωα +

x

N
) = ϕβ(x, ωβ + z), ∀β ∈ ZN × ZN . (A.26)

Its degenerations yield the relations (see [45] and the Appendix from [43] for details):

1

N
E1(z) +

1

N

∑

α6=0

κ2
α,βϕα(z, ωα) = E1(ωβ +

z

N
) + 2πi∂τωβ . (A.27)

1

N

∑

α6=0

κ2
α,β

(
E1(ωα) + 2πi∂τωα

)
= E1(ωβ) + 2πi∂τωβ , β 6= 0. (A.28)

1

N

∑

α6=0

(
E1(ωα) + 2πi∂τωα

)
= 0. (A.29)

15The functions (A.19) are basis elements in the space of sections of the End(V ) for a holomorphic vector bundle V
over elliptic curve of degree 1.
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7 Appendix B: R-matrix properties

The Baxter-Belavin elliptic R-matrix [3]: For the elliptic R-matrix the following matrix basis in
Mat(N,C) is useful:

Tα = exp

(
α1α2

πi

N

)
Qα1Λα2 , α = (α1, α2) ∈ ZN × ZN , T0 = T(0,0) = 1N , (B.1)

where Q ∈ MatN and Λ ∈ MatN are matrix generators of non-commutative torus (the finite-dimensional repre-
sentation of the Heisenberg group):

Qjk = δjk exp

(
2πi

N
k

)
, Λjk = δj−k+1=0 modN , QN = ΛN = 1N . (B.2)

The commutation relations take the form:

exp

(
α1α2

2πi

N

)
Qα1Λα2 = Λα2Qα1 , (B.3)

TαTβ = κα,βTα+β , κα,β = exp

(
πi

N
(α2β1 − α1β2)

)
, κα,α+β = κα,β, κ−α,β = κβ,α, (B.4)

tr(TαTβ) = Nδα+β , δα = δα1,0δα2,0, (B.5)

[Tα, Tβ] = (κα,β − κβ,α)Tα+β = 2i sin
( π

N
(α1β2 − α2β1)

)
Tα+β. (B.6)

The elliptic Baxter-Belavin R-matrix is of the form:

Rz
12(x) =

1

N

∑

α

ϕα(x,
z

N
+ ωα)Tα ⊗ T−α . (B.7)

The R-matrix has the following local expansion near z = 0 (it is the classical limit since z here plays the role of
the Planck constant):

Rz
12(x) =

1

z
1N ⊗ 1N + r12(x) + z m12(x) +O(z2), (B.8)

where r12 is the classical r-matrix satisfying the classical Yang-Baxter equation:

[r12, r13] + [r12, r23] + [r13, r23] = 0, rij = rij(qi − qj) . (B.9)

Plugging (A.7) into (B.8) one gets explicit expressions for classical r-matrix and the next order term (the m-
matrix):

r12(x) =
1

N
E1(x) 1N ⊗ 1N +

1

N

∑

α6=0

ϕα(x, ωα)Tα ⊗ T−α, (B.10)

m12(x) =
1

N2
ρ(x) 1N ⊗ 1N +

1

N2

∑

α6=0

fα(x, ωα)Tα ⊗ T−α . (B.11)

The local expansion of the classical r-matrix has the form:

r12(x) =
1

x
P12 + r

(0)
12 + xr

(1)
12 (x) +O(x2), (B.12)

where in the elliptic case

r
(0)
12 =

1

N

∑

α6=0

(E1(ωα) + 2πi∂τωα)Tα ⊗ T−α. (B.13)

In (B.12) the matrix permutation operator P12 appears. It is as follows:

P12 =

N∑

k,l=1

Ekl ⊗ Elk =
1

N

∑

α∈ZN×ZN

Tα ⊗ T−α ∈ Mat(N,C)⊗2 . (B.14)
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R-matrix properties and identities

Here we give some more properties for the elliptic R-matrix (B.7) and its degenerations.

Besides the classical limit (B.8), which provides the local expansion of Rz
12(x) near z = 0, it is also useful to

consider its expansion near x = 0:

Rz
12(x) =

1

x
P12 +R

z,(0)
12 + xR

z,(1)
12 +O(x2) , Res

x=0
Rz

12(x) = P12 , (B.15)

where P12 is the permutation operator (B.14).

The next, is the Fourier symmetry:
Rz

12(x)P12 = Rx
12(z) , (B.16)

which can be viewed as matrix analogue of the trivial property φ(z, u) = φ(u, z).

The skew-symmetry property (2.5) provides a set of relations for the coefficients of the expansions (B.8) and
(B.12):

Rz
12(x) = −R−z

21 (−x), r12(z) = −r21(−z), r
(0)
12 = −r

(0)
21 , m12(z) = m21(−z). (B.17)

Using the symmetry (B.16) one can also derive a set of relations between the coefficients of the expansions (B.8)
and (B.15): (B.15):

R
z,(0)
12 = r12(z)P12 , r

(0)
12 = r

(0)
12 P12 ,

R
z,(1)
12 = m12(z)P12 , r

(1)
12 = m

(0)
12 P12 .

(B.18)

The following notation is used for the R-matrix derivative with respect to spectral parameter:

F z
12(q) = ∂qR

z
12(q). (B.19)

Degenerations of the associative Yang-Baxter equation (2.6) provide the following set of identities:

Rz−za
12 (x)R

z−zb,(0)
23 = Rz−zb

13 (x)Rzba
12 (x) +R

zab,(0)
23 Rz−za

13 (x) + P23F
z−za
13 (x), (B.20)

R
z−za,(0)
12 Rz−zb

23 (x) = Rzab

23 (x)Rz−za
13 (x) +Rz−zb

13 (x)R
zba,(0)
12 + F z−zb

13 (x)P12. (B.21)

Finally, we assume the following R-matrix traces:

tr1R
z
12(x) = tr2R

z
12(x) = φ(z, x)1N , tr1 r12(x) = E1(x)1N , tr1 m12(x) = ρ(x)1N . (B.22)

In the elliptic case the latter simply follows from the definitions (B.7), (B.10) and (B.11).
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