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MATRIX PRODUCT OPERATOR ALGEBRAS II:

PHASES OF MATTER FOR 1D MIXED STATES

ALBERTO RUIZ-DE-ALARCÓN, JOSÉ GARRE-RUBIO, ANDRÁS MOLNÁR,

AND DAVID PÉREZ-GARCÍA

Abstract. The classification of topological phases of matter is fundamental
to understand and characterize the properties of quantum materials. In this
paper we study phases of matter in one-dimensional open quantum systems.
We define two mixed states to be in the same phase if both states can be trans-
formed into the other by a shallow circuit of local quantum channels. We aim
to understand the emerging phase diagram of matrix product density opera-
tors that are renormalization fixed points. These states arise, for example, as
boundaries of two-dimensional topologically ordered states. We first construct
families of such states based on C*-weak Hopf algebras, the algebras whose
representations form a fusion category. More concretely, we provide explicit
local fine-graining and local coarse-graining quantum channels for the renor-
malization procedure of these states. Finally, we prove that a subset of these
states, those arising from C*-Hopf algebras, are in the trivial phase.

1. Introduction

One of the main projects that quantum science is undertaking in the last decades
is the understanding and classification of exotic topological phases of quantum
matter. The approach to tackle this project is intrinsically connected to quantum
information theory. On the one hand, topological phases of matter have been
identified as valuable resources in quantum computing [21]. On the other, quantum
information tools and ideas are playing a key role in the classification program.

Before going any further, it is important to define what it means that two sys-
tems belong to the same topological phase. Since topological properties have an
inherent global nature, the key idea is that their ground states display similar global
properties independently of their (possibly) different local features. For instance, a
ferromagnetic state |↑↑ · · · ↑↑〉 is topologically equivalent to an antiferromagnetic
one |↑↓ · · · ↑↓〉 since one can map locally one into the other, despite the fact that
they have a very different magnetization behaviour.

A definition, motivated by quantum information, which tries to capture the
global properties, is the existence of a short-depth geometrically local quantum
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circuit mapping one ground state into the other [11, 8]. Using Hastings-Wen’s
quasi-adiabatic evolution [23] and Lieb-Robinson bounds [31] one can prove that
this property is implied by the more standard definition of phase based on the
existence of a gapped path of Hamiltonians connecting both systems [2].

The main advantage of the definition based on quantum circuits is that it focuses
on states rather than on Hamiltonians, which is crucial to extend it to more general
setups, like the one we are addressing here: open quantum systems. However, this
approach poses an additional problem: one has to identify the relevant class of
states to classify. For closed quantum systems this relevant class is precisely the set
of ground states of gapped short-range Hamiltonians. Again quantum information
theory provided us with a characterization of this set: ground states of short-ranged
gapped Hamiltonians fulfill an area law for the entanglement between neighbouring
regions, which implies that they are well approximated by “tensor network states”,
in particular by matrix product states (MPS) and projected-entagled pair states
(PEPS) [24, 1, 15].

A natural approach to classify phases is to first restrict the classification to “sim-
ple” states that nevertheless are representatives for each phase. Since topological
properties are global, these representatives are taken to be insensitive to real space
renormalization steps (being those a finite depth circuit), that is, they are renor-
malization fixed points (RFP). In 2D, for instance, the string-net models of Levin
and Wen [29] are believed to provide a complete set of renormalization fixed points
for non-chiral 2D topological phases.

The restriction to RFPs has two important benefits. On the one hand, RFPs
in gapped phases have zero correlation length and thus they are exactly MPS and
PEPS [15]; no approximation is needed. On the other hand, it is easier to identify
the key global invariants and thus identify the different phases of RFP states.

These two points have been the crucial insights to successfully complete the clas-
sification of 1D phases with symmetries, the so-called symmetry protected topo-
logical (SPT) phases. Let us illustrate that this is the case by recalling the steps
that led to the classification of 1D SPT phases. The first step was to prove that
any MPS can be transformed into an RFP MPS in the same phase [42]. This re-
stricts the classification problem to just RFP MPS. The second step was to identify
the invariants of the phases using the set of RFP MPS. These invariants are a
set of quantities which, on the one hand, are robust against short depth circuits
and, on the other, are sufficient to identify each phase uniquely. For SPT phases
with unique ground state, the invariants are the different equivalence classes of the
second cohomology group of the symmetry group [12, 42]. For SPT phases with
symmetry breaking and therefore degenerate ground states, the invariants are the
different induced representations of the non-symmetry broken subgroup together
with its second cohomology group [42]. The third step was to prove that any two
RFP MPS that share the same invariants can be mapped into each other with a
short depth quantum circuit. On top of that, a final and important step has been
recently made: the breakthrough results of Ogata [37] show that one can even ex-
tend these arguments beyond the framework of MPS to cover all gapped short-range
Hamiltonians.

All the previous results stand for closed quantum systems, where the object of
interest is the ground state of a Hamiltonian. However, the question of classifying
phases is far from being answered for open quantum systems, even in one dimension.
Since isolation is never practically achieved, the characterization of those systems
play a fundamental role in real applications.
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In this manuscript, we take the first steps towards the classification of open
quantum systems in 1D. A main difference between open and closed quantum sys-
tems is that evolutions in closed quantum systems (either Hamiltonian evolution
or quantum circuits) are reversible, whereas this is no longer true in open quantum
systems evolved under a Linbland master equation. For instance, if one starts in a
topologically ordered state, like the toric code [27], one cannot find a short depth
quantum circuit mapping it into a product state. Short depth quantum circuits
cannot create or destroy global correlations. However, local depolarizing noise can
convert the toric code (and indeed any topologically ordered state, no matter how
complex) into a product state in a short amount of time [16]. Destroying global
correlations is therefore easy in the open quantum systems regime. Constructing
global correlations is, on the other hand, still hard. In fact, local fast dissipative
evolutions cannot create global correlations [28]. This shows that in the open quan-
tum setting, phases should not be thought of as classes of an equivalence relation,
but rather as a partial order given by the existence of a local fast dissipative evolu-
tion mapping one state into another one. This partial order can also be understood
as the complexity present in the different topological phases. This proposal, due to
[16], is the one we are taking here. Concretely, we will say that a mixed state ρ1
is more complex than another one ρ2 if there is a short-depth (geometrically local)
circuit of quantum channels, i.e. completely positive trace-preserving linear maps,
mapping ρ1 into ρ2 .

There are several subtleties to make this definition formal. First of all, ρ1 and
ρ2 should be well defined for all system size n. Second, one should ask only for
getting sufficiently close to ρ2, allowing for both polylog(n) depth and polylog(n)
locality in the gates of the circuit. Finally, one could take either a discrete point of
view, as here, or a continuous one, asking for a rapid mixing quasi-local Linbladian
evolution that approximates ρ2 starting from ρ1. Since in this paper we are working
only with RFP states, we will not need any of those subtleties here and we refer to
[16] for a detailed analysis of those.

We notice that there are other definitions of phases in the open quantum system
setting, like the works of Diehl et al. for Gaussian mixed states [17, 3, 4] and
for quasi thermal states [22], where the authors generalize the notion of phases via
gapped paths of Hamiltonians or via local unitary transformations respectively. We
refer also to [16] for a detailed discussion about why the definition we are taking
here seems more appropriate.

Encouraged by the successful classification of pure states sketched above, we will
focus on RFP that are gapped mixed states, that is, mixed states which fulfill an area
law for the mutual information. This is motivated by two facts. On the one hand,
it is known that Gibbs states of short-range Hamiltonians fulfill an area law for the
mutual information [44]. On the other hand, it is known that fixed points of rapidly
mixing dissipative evolutions also fulfill an area law for the mutual information [9].

This naturally leads us to the set of RFP mixed states with a matrix product
density operator (MPDO) representation. The structure of RFP MPDOs has been
studied in detail in [14] where, up to minor technical conditions, the following is
shown: (i) An MPDO is an RFP if there exist two quantum channels T and S

that implement the local coarse graining and the local fine graining respectively,
for which the given MPDO is a fixed point. (ii) The RFP condition for MPDOs
is characterized operationally by the absence of length scales in the system; in
particular by having zero correlation length and saturation of the area law. (iii)
The existence of such T and S maps is equivalent to the fact that from the MPDO
an MPO algebra can be constructed.
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This result brings the classification of 1D mixed states into the understand-
ing and classification of MPO algebras. Notably, MPO algebras are precisely the
mathematical objects behind the classification of RFP 2D topologically ordered
pure states in terms of PEPS [41, 10]. This is not a lucky coincidence, but a con-
sequence of the remarkable bulk-boundary correspondence originated in the work
of Li and Haldane [30]. In PEPS the bulk-boundary mapping is very explicit [13]
and allows one to establish a dictionary between bulk and boundary properties
[43, 26, 38]. Indeed, RFP MPDOs are expected to contain the set of boundary
states associated to RFP 2D non-chiral topologically ordered systems [14].

A throughout study of MPO algebras is done in the first paper of this series
[33]. There, it is shown that MPO algebras are closely related to representations of
semisimple finite-dimensional weak Hopf algebras, which are, in turn, the algebraic
description of fusion categories.

The paper is structured as follows. In Section 2 we recall the basic notions
and results on weak Hopf algebras with a compatible C*-structure, called C*-weak
Hopf algebras. In this setting, we introduce the canonical regular element, which is
fundamental for our constructions. We also introduce the notion of biconnected C*-
WHA, whose representation categories are fusion categories. Moreover, we recall
their characterization as matrix product operators with a boundary, as introduced
in [33]. In Section 3 we recall the definition of RFP MPDOs given in [14] and
provide the construction of a family of RFP MPDOs arising from any given bicon-
nected C*-weak Hopf algebra. In particular, we provide explicit constructions of the
local coarse-graining and local fine-graining quantum channels T and S commented
before. In Section 4 we describe the previous RFP MPDOs as the boundary states
of topological 2D PEPS. In Section 5 we prove that the previous families of RFP
MPDOs are in the trivial phase in the C*-Hopf algebra case, in the sense that they
can be obtained via a finite-depth and bounded-range circuit of quantum channels
acting on the maximally mixed state. Moreover, we show that this result can be
extended to the trivial sector of any biconnected C*-weak Hopf algebra.

2. Preliminaries

In this section we collect elementary notions on algebras, coalgebras and C*-weak
Hopf algebras, as well as their representation theory in terms of matrix product
operators, recently developed in [33]. From now on, we assume that all vector
spaces are finite dimensional and their ground field is the field of complex numbers
C. For any two vector spaces, we denote by L(V,W ) the set of C-linear maps from
V to W and let L(V ) := L(V, V ). We denote by V ∗ := L(V,C) the dual vector
space and by 〈·, ·〉 : V ∗ × V → C, (f, x) 7→ 〈f, x〉 = f(x) the canonical pairing. An
associative unital algebra is a vector space A endowed with an associative linear
map A ⊗ A → A, called multiplication, denoted by juxtaposition, and an element
1 ∈ A, called unit, satisfying 1x = x1 = x for all elements x ∈ A. A unital C*-
algebra is an algebra A with an anti-linear involutive algebra anti-homomorphism
( · )∗ : A→ A, x 7→ x∗, called ∗-operation, and a compatible Banach space structure.
In this context, positive elements of A are elements of the form x = y∗y for some
element y ∈ A. As usually, the multiplication, the unit element and the ∗-operation
of two C*-algebras A and B are implicitly extended to their tensor product space
A ⊗ B componentwise. Dually to the notion of algebra, a coassociative counital
coalgebra is a vector space C endowed with a linear map ∆ ∈ L(C,C ⊗ C), called
comultiplication, such that

(1) (Id ⊗ ∆) ◦ ∆ = (∆ ⊗ Id) ◦ ∆,
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and a linear functional ε ∈ C∗, known as counit, compatible with the comultipli-
cation in the sense that (Id ⊗ ε) ◦ ∆ = (ε⊗ Id) ◦ ∆ = Id, where we have identified
C⊗C ∼= C⊗C ∼= C. Henceforth, we drop the words associative, unital, coassociative
and counital. As usually done in the literature of coalgebras, we denote

(2) ∆1 := ∆ and ∆(n+1) := (∆ ⊗ Id⊗n) ◦ ∆(n)

for all n ∈ N and, complementarily, make use of Sweedler’s notation

(3) x(1) ⊗ x(2) ⊗ · · · ⊗ x(n+1) := ∆(n)(x)

for all x ∈ C and all n ∈ N, ommiting the summation symbol and cumbersome
indices. In this context, an element x ∈ C is cocentral if

(4) x(1) ⊗ x(2) = x(2) ⊗ x(1).

i.e., its coproduct ∆(x) ∈ C ⊗ C is invariant under the flip operator. In addition,
an element x ∈ C is non-degenerate if for all y ∈ C there exist φ, ψ ∈ C∗ such that

(5) 〈φ, x(1)〉x(2) = y = x(1)〈ψ, x(2)〉,
roughly speaking, any element can be recovered from the coproduct ∆(x) ∈ C ⊗C
by applying an appropiate linear functional on any of the cofactors.

In order to describe a sufficiently large family of renormalization fixed point
mixed states, e.g. boundary states of 2D string-net models, we will introduce
an algebraic construction that combines both structures of a C*-algebra and a
coalgebra. This is well-motivated from a representation theoretical point of view
[36, 6] and may look odd from a purely algebraic one; thus, the subsequent axioms
can be skipped in a first reading. The following definition is due to G. Böhm and
K. Szlachányi.

Definition 2.1 (see [5, 36]). A C*-weak Hopf algebra (C*-WHA) is a vector space
A simultaneously endowed with the structures of a C*-algebra and a coalgebra for
which the comultiplication is multiplicative, i.e.

(6) (xy)(1) ⊗ (xy)(2) = x(1)y(1) ⊗ x(2)y(2)

for all elements x, y ∈ A; the ∗-operation ∗ : A→ A is comultiplicative, i.e.

(7) (x∗)(1) ⊗ (x∗)(2) = (x(1))
∗ ⊗ (x(2))

∗

for all elements x ∈ A; the counit ε ∈ A∗ is weakly comultiplicative, i.e.

(8) 〈ε, xyz〉 = 〈ε, xy(1)〉〈ε, y(2)z〉 = 〈ε, xy(2)〉〈ε, y(1)z〉
for all elements x, y, z ∈ A; the unit 1 ∈ A is weakly comultiplicative, i.e.

(9) 1(1) ⊗ 1(2) ⊗ 1(3) = 1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) = 1(1) ⊗ 1(1′)1(2) ⊗ 1(2′),

where the prime symbol distinguishes different coproducts of 1 ∈ A, and there
exists an anti-multiplicative linear map S ∈ L(A) satisfying

(10) S(x(1))x(2) = 〈ε, 1(1)x〉1(2) and x(1)S(x(2)) = 1(1)〈ε, x1(2)〉
for all elements x ∈ A, called antipode.

Remark 2.2 (see e.g. Subsection 2.1 in [6]). The previous axioms are self-dual
in the sense that for any C*-WHA A its dual vector space A∗ can be canonically
endowed with the structure of a C*-WHA. For simplicity, let us denote all structure
maps in the same way. First, the product of any two φ, ψ ∈ A∗ is defined by the
expression φψ := (φ ⊗ ψ) ◦ ∆, the unit element of A∗ is the counit ε ∈ A∗ of A

and the ∗-operation is given by 〈φ∗, x〉 := 〈φ, S(x)∗〉 for all φ ∈ A∗ and all elements
x ∈ A, where the bar denotes the complex conjugate. The coalgebra structure
is given via the comultiplication 〈∆(φ), x ⊗ y〉 := 〈φ, xy〉 for all φ ∈ A∗ and all
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elements x, y ∈ A, and the counit is the map A∗ → C, φ 7→ 〈φ, 1〉. Finally, the
antipode is defined by S(φ) := φ ◦ S for all φ ∈ A∗.

Remark 2.3 (see Lemma 2.8 and Theorem 2.10 in [6]). In any C*-WHA the
antipode is unique, invertible, both an algebra and a coalgebra anti-homomorphism,
and satisfies S(x∗)∗ = S−1(x) for all elements x ∈ A.

Definition 2.4. A C*-Hopf algebra (C*-HA) A is a C*-WHA for which the co-
multiplication ∆ ∈ L(A,A⊗A) is unit-preserving, i.e. ∆(1) = 1 ⊗ 1. Equivalently,
the counit ε ∈ A∗ is an algebra homomorphism, i.e. 〈ε, xy〉 = 〈ε, x〉〈ε, y〉 for all
elements x, y ∈ A and 〈ε, 1〉 = 1.

Example 2.5. The group C*-algebra CG of a finite group G is endowed with the
structure of a C*-HA by the linear extensions of the maps given by the expressions
∆(g) := g ⊗ g, 〈ε, g〉 := 1 and S(g) := g∗ := g−1 for all elements g ∈ G.

Example 2.6. The dual vector space (CG)∗ is again a C*-algebra endowed with the
multiplication 〈φψ, g〉 := 〈φ, g〉〈ψ, g〉, the unit element g 7→ 1 and the ∗-operation

given by 〈φ∗, g〉 := 〈φ, g〉, for all φ, ψ ∈ (CG)∗ and all elements g ∈ G. Moreover,
it becomes a C*-HA too by virtue of the comultiplication 〈∆(φ), g ⊗ h〉 := 〈φ, gh〉,
the counit 〈ε, φ〉 := 〈φ, 1〉, and the antipode 〈S(φ), g〉 := 〈φ, g−1〉 for all φ ∈ (CG)∗

and all elements g, h ∈ G.

The following example, due to G. I. Kac and V. G. Paljutkin, describes the small-
est C*-HA which is neither cocommutative, i.e. a group algebra, nor commutative,
i.e. the dual of a group algebra.

Example 2.7 (see [25]). Let H8 be the C*-algebra generated by three elements x,
y and z subject to the relations x2 = 1, y2 = 1, z2 = 2−1(1 + x+ y− xy), xy = yx,
zx = yz, zy = xz, x∗ = x, y∗ = y and z∗ = z−1. It becomes a C*-HA by means
of ∆(x) := x ⊗ x, ∆(y) := y ⊗ y, ∆(z) := 2−1(z ⊗ z + yz ⊗ z + z ⊗ xz − yz ⊗ xz),
〈ε, x〉 = 〈ε, y〉 = 〈ε, z〉 = 1, S(x) := x, S(y) := y and S(z) := z.

The following example is the smallest proper C*-WHA. It is known as the Lee-
Yang C*-WHA as it is reconstructed from the solutions of the pentagon equation
arising from the Lee-Yang fusion rules.

Example 2.8 (cf. [5]). Let ALY be the direct sum M(2,C)⊕M(3,C) of full-matrix
2 × 2 and 3 × 3 C*-algebras with complex coefficients, respectively. Let ζ ∈ R be
the unique positive solution to z4 + z2 − 1 = 0 and fix matrix units eij1 , i, j = 1, 2,
in M(2,C) and ekℓ2 , k, ℓ = 1, 2, 3, in M(3,C). Then, the comultiplication of ALY is
defined by the expressions

∆(e111 ) := e111 ⊗ e111 + e112 ⊗ e222 ,

∆(e121 ) := e121 ⊗ e121 + ζ2e122 ⊗ e212 + ζe132 ⊗ e232 ,

∆(e221 ) := e221 ⊗ e221 + ζ4e222 ⊗ e112 +

ζ3e232 ⊗ e132 + ζ3e322 ⊗ e312 + ζ2e332 ⊗ e332 ,

∆(e112 ) := e111 ⊗ e112 + e112 ⊗ e221 + e112 ⊗ e332 ,

∆(e122 ) := e121 ⊗ e122 + e122 ⊗ e211 + e132 ⊗ e322 ,

∆(e132 ) := e121 ⊗ e132 + e112 ⊗ e221 + ζe122 ⊗ e312 − ζ2e132 ⊗ e332 ,

∆(e222 ) := e220 ⊗ e222 + e222 ⊗ e110 + e332 ⊗ e222 ,

∆(e232 ) := e221 ⊗ e232 + e232 ⊗ e211 + ζe322 ⊗ e212 − ζ2e332 ⊗ e232 ,

∆(e332 ) := e221 ⊗ e332 + e332 ⊗ e221 + ζ2e222 ⊗ e112 −
ζ3e232 ⊗ e132 − ζ3e322 ⊗ e312 + ζ4e332 ⊗ e332
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and the counit ε ∈ (ALY)∗ and the antipode S ∈ L(ALY) are given by

〈ε, eij1 〉 = 1, 〈ε, ekℓ2 〉 = 0, S(eij1 ) = eji1 and S(ekℓ2 ) = ζℓ−ke
σ(ℓ)σ(k)
2

for all i, j ∈ {1, 2} and k, ℓ ∈ {1, 2, 3}, where σ(1) := 2, σ(2) := 1, σ(3) := 3,
endowing ALY with the structure of a C*-WHA. This specification has been slightly
adapted from [5] as we will propose a tensor network description in Example 3.5
consistent with its string-net model definition.

A representation of a C*-WHA A is simply a representation of its underlying
C*-algebra, i.e. a couple (V,Φ) where V is a finite-dimensional complex vector
space and Φ ∈ L(A,L(V )) is an algebra homomorphism. If, in addition, V is a
Hilbert space and Φ(x∗) = Φ(x)† for all x ∈ A, it is said to be a ∗-representation.
A representation is faithful if the map Φ is injective. Two representations (V,Φ)
and (W,Ψ) are equivalent if there is a bijective linear map F ∈ L(V,W ) such that
Ψ(x) = F ◦ Φ(x) ◦ F−1 for all elements x ∈ A. Since A is, in particular, a finite
dimensional C*-algebra, the set Irr(A) of equivalence classes of irreducible represen-
tations, also called sectors, is necessarily finite. In what follows, we fix a complete
set {(Vα,Φα) : α ∈ Irr(A)} of pairwise non-equivalent irreducible ∗-representations
of A and let Trα := Tr ◦ Φα ∈ A∗ stand for their corresponding characters. On
account of self-duality, Irr(A∗) are labels for the sectors of the dual C*-WHA A∗,
and we fix another complete set {(Wa,Ψa) : a ∈ Irr(A∗)} of pairwise non-equivalent
irreducible ∗-representations of A∗. Let Tra := Tr ◦ Ψa ∈ A∗∗ ∼= A stand for their
characters.

Remark 2.9 (see e.g. [18, 36]). The category of ∗-representations of a C*-WHA
A has, by construction, the structure of a rigid monoidal category. The comultipli-
cation ∆ : A→ A⊗ A provides the monoidal product

V ⊠W := {z ∈ V ⊗W : ∆(1)z = z}, Φ ⊠ Ψ := (Φ ⊗ Ψ) ◦ ∆,

of any two ∗-representations (V,Φ) and (W,Ψ) of A while the counit ensures the
existence of a monoidal unit, called the trivial representation; see [6, 7].

The trivial representation has the unusual feature that it can be reducible. This
motivates the following definition.

Definitions 2.10. A C*-WHA is said to be connected if its trivial representation
is irreducible, coconnected if the dual C*-WHA is connected, and biconnected if it
is both connected and coconnected.

For the sake of simplicity, we assume from now on that (V1,Φ1) (resp. (W1,Ψ1))
corresponds to the trivial representation of A if is connected (resp. coconnected).

Definitions 2.11. Let A be a C*-WHA. Then,

AL := {x ∈ A : x(1) ⊗ x(2) = x1(1) ⊗ 1(2) = 1(1)x⊗ 1(2)},
AR := {y ∈ A : y(1) ⊗ y(2) = 1(1) ⊗ y1(2) = 1(1) ⊗ 1(2)y},

are two commuting ∗-subalgebras of A, known as the target and source counital
subalgebras of A, respectively. Moreover, Amin := ALAR ⊆ A is the minimal C*-
weak Hopf ∗-algebra contained in A containing the unit element. It is said to be
minimal if A = Amin and regular if the squared antipode restricted to Amin is the
identity, i.e. S2 ↾ Amin = Id.

For any connected C*-WHA A, its Grothendieck ring K0(A), i.e. the free Z-
module generated by the characters of representations of A with addition and mul-
tiplication defined accordingly, is a fusion ring [18]. In particular, the characters
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{Trα ∈ A∗ : α ∈ Irr(A)} form a basis satisfying

Trα · Trβ =
∑

γ

Nγ
αβTrγ

for some N c
ab ∈ N ∪ {0}, for all sectors α, β, γ ∈ Irr(A). Hence, for any ∗-represen-

tation (V,Φ) of A we can expand its character in the form TrV =
∑

γ νγTrγ , where

νa ∈ N ∪ {0} is the multiplicity of (Vα,Φα) within (V,Φ). In this context, define
the |Irr(A)| × |Irr(A)| matrix NV with coefficients (NV )βγ :=

∑

α ναN
γ
αβ , for any

two sectors β, γ ∈ Irr(A). Since K0(A) is, in particular, a transitive ring [20], NV

is a matrix with strictly positive entries. Thus, by virtue of the Frobenius-Perron
theorem, the spectral radius of NV , denoted dV , is an algebraically simple positive
eigenvalue, known as the Frobenius-Perron dimension of (V,Φ). Though it is not
needed, we remark that this notion coincides with the one of quantum dimension
from the category of ∗-representations; see [18, Proposition 8.23] for a rigorous
statement. For simplicity of notation, let dα := dVα for all sectors α ∈ Irr(A). Also,
let D2 :=

∑

α d
2
α denote the Frobenius-Perron dimension of the algebra. Dually, if A

is coconnected, let {da : a ∈ Irr(A∗)} denote the dual Frobenius-Perron dimensions
of A. It turns out that then

∑

α d
2
α =

∑

a d
2
a if A is a biconnected C*-WHA [20].

Now we recall the following result, which proves the existence of a distinguished
element satisfying a “pulling-through equation” in each connected C*-WHA. These
properties turn out to be enough to understand the properties of renormalization
fixed points.

Theorem 2.12 (cf. [33]). Let A be a biconnected C*-WHA. Then,

Ω := D
−2

∑

a

daTra ∈ A∗∗ ∼= A

is a cocentral non-degenerate positive idempotent, known as the canonical regular
element of A. Moreover, there exists a unique linear map T ∈ L(A) such that

(11) T (x)Ω(1) ⊗ Ω(2) = Ω(1) ⊗ xΩ(2)

for all elements x ∈ A, usually referred to as pulling-through identity. In particular,
T is an involutive algebra anti-homomorphism.

The canonical regular element is well-known in the literature of Z+-rings and it
satisfies an eigenvalue equation of the form

(12) Ω · Tra = Tra · Ω = daΩ

for all sectors a ∈ Irr(A∗). Equation 11 resembles the characterization of left inte-
grals in C*-WHAs; see e.g. [6]. However, these notions coincide if and only if A is a
C*-HA. In this context, Ω ∈ A is a well-known element in the literature, the Haar
integral h ∈ A, and the linear map T ∈ L(A) coincides with the antipode. In any
case, it is convenient to rewrite Equation 11 as

(13) T (Ω(1))x⊗ Ω(2) = T (Ω(1)) ⊗ xΩ(2),

for all elements x ∈ A. Both identities will be used interchangeably.
Let us interpret now representations of a given C*-WHA in terms of tensor

networks; see [33] for an exhaustive discussion. As usually done in the tensor
network literature we employ a graphical notation, briefly described in Appendix A.
Consider any sequence {(V[i],Φ[i]) : i ∈ N} of representations of a C*-WHA A. It

turns out that the endomorphisms (Φ[1]⊗· · ·⊗Φ[k])◦∆(k−1)(x) can be described in
terms of matrix product operators, for all elements x ∈ A. More concretely, there
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exist a Hilbert space W and tensors A[i] ∈ L(W ) ⊗ L(V[i]), i ∈ N, independent of
x ∈ A, such that one can write

(14)
...

b
(
x
)

A[1]

A[2]

A[k]

W

W

≡ (Φ[1] ⊗ · · · ⊗ Φ[k]) ◦ ∆(k−1)(x)

for some linear map b ∈ L(A,W ⊗W ∗), for all k ∈ N. We will usually restrict to the
translation-invariant case, for which Φ[1] = Φ[2] = · · · =: Φ and A[1] = A[2] = · · · .
Notice that the physical indices, associated to Hilbert spaces V and V ∗, are depicted
by black lines, while the virtual indices, associated to Hilbert spaces W and W ∗,
are depicted by red lines. Thus, from now on, we will drop the labels, since no
misunderstanding can arise. For instance, we can express the multiplicativity of
the coproduct (see Definition 2.1) with this simplified graphical notation as

(15)
...

...

b
(
x
)

b
(
y
)

=
...

b
(
x
y
)

.

for all elements x, y ∈ A.
We finish this section by reinterpreting the different properties of the canonical

regular element in graphical notation. First, it is easy to check by induction on
n ∈ N that the fact that Ω ∈ A is a cocentral element implies

(16) Ω(1) ⊗ Ω(2) ⊗ · · · ⊗ Ω(n) = Ω(σ(1)) ⊗ Ω(σ(2)) ⊗ · · · ⊗ Ω(σ(n))

for any shift permutation σ of {1, . . . , n}. In turn, this can be rephrased as the
translation-invariance of the associated MPOs:

(17)
...

b(Ω)

=
...

b(Ω)

= · · · =
...b(Ω)

.

In order to interpret the action of the linear map T ∈ L(A), first note that the
linear map A → L(V ∗), x 7→ (Φ ◦ T (x))t defines a representation of A, where
( · )t stands for the transpose operation. As discussed below, it is not necessarily a
∗-representation. By Equation 14, one can depict, e.g.

(18)

b
(
x
) ≡ Φ⊗3 ◦ (T ⊗ id ⊗ id) ◦ ∆(2)(x)

for all x ∈ A, for some white rank-four tensor, where all physical spaces in the
picture are V . For the sake of clarity, we have reversed the direction of the physical
arrows corresponding to the new tensor, since T ∈ L(A) is an anti-multiplicative
map. With this notation, Equations 11 and 13 can be interpreted respectively as
follows:

(19)
...

b(Ω)

=
...

...

b(Ω)

and
...

b(Ω)

=
...

...

b(Ω)

.
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Note that, since x ∈ A is arbitrary, we have dropped the tensor b(x) and reexpressed
the identities using open boundary MPOs instead; see [33].

3. Renormalization Fixed Point MPDOs

In this section we define a distinguished family of MPOs starting from a bicon-
nected C*-WHA and show that they are RFP MPDOs, as defined in [14]. More
concretely, we provide explicit expressions for both local coarse-graining and local
fine-graining quantum channels T and S for which the generating rank-four tensor
is a fixed point under the corresponding induced flows, very much in the spirit of
standard renormalization spirit. The generating tensor of the RFP MPDOs is ob-
tained here by appropiately weighting the tensor from the original MPO algebra,
described in the previous section, obtaining:

S

T

.

This weighting is done by means of the canonical regular element of the dual C*-
WHA. To this end, let us examine first the properties of this linear functional,
which formally plays the role in C*-WHAs of the character of the usual left-regular
representation.

Lemma 3.1. Let A be a connected C*-WHA. Then, the canonical regular element
ω ∈ A∗ of the dual C*-WHA A∗ is the unique trace-like, faithful, positive linear
functional on A that is idempotent, i.e. (ω ⊗ ω) ◦ ∆ = ω.

Proof. Recall Theorem 2.12 and Remark 2.2. It is easy to check that ω ∈ A∗ is a
trace-like linear functional since it is a cocentral element of A∗. Also, it is a faithful
and positive linear functional by construction. In addition, it satisfies the eigenvalue
equation Trα · ω = ω ·Trα = dαω for all sectors α ∈ Irr(A); see [20, Section 3] for a
proof. We note that this implies, in particular, that ω ∈ A∗ is idempotent. Assume
now that f ∈ A∗ is any linear functional satisfying the properties above. Since it is
trace-like, it can be expanded in the form f =

∑

α fαTrα for some numbers fα ∈ C,
α ∈ Irr(A). By evaluating f on the primitive central idempotents of A it is easy to
check that fα > 0 for all α ∈ Irr(A), since f is assumed to be also a faithful positive
linear functional. Define the |Irr(A)|× |Irr(A)| matrix Nf with complex coefficients
(Nf )βγ :=

∑

α fαN
γ
αβ , which implements the left-multiplication by f ∈ A∗ in the

basis {Trα : α ∈ Irr(A)}, i.e. it satisfies Nfψ = fψ for all ψ ∈ A∗. Then,
Nff = f2 = f and Nfω = fω =

∑

α fαdαω ∝ ω, where the first equation holds
since f ∈ A∗ is idempotent by hypothesis and the second equation follows from
the eigenvalue equation. Since A is connected, the Grothendieck ring K0(A) is, in
particular, a transitive ring, and hence Nf has strictly positive entries; see e.g. [35]
and [20, Section 3]. By virtue of the Frobenius-Perron theorem, it has only one
eigenvector with strictly positive entries, up to a constant. Therefore, f = ω, since
both are positive idempotents. �

Now, given a faithful ∗-representation of the C*-WHA, we define the appropiate
weight extending the previous linear functional to the representation space.

Remark 3.2. Let A be a connected C*-WHA and let (V,Φ) be a faithful ∗-re-
presentation of A. Let b(f) denote the boundary weight for the matrix product
operators arising from the dual C*-WHA A∗, for all f ∈ A∗. It turns out that
b(ω) = Φ(cω) for some strictly positive central element cω ∈ A. It provides an
extension of ω ∈ A∗ to the representation space L(V ) in the sense that

Tr(b(ω)Φ(x)) = Tr(Φ(cωx)) = 〈ω, x〉
for all elements x ∈ A.
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Proof. For all sectors α ∈ Irr(A), let eα ∈ A be the corresponding primitive central
idempotent of A and let να ∈ C denote the multiplicity of (Vα,Φα) within (V,Φ).
Then, define the element cω := D−2

∑

α dαν
−1
α eα ∈ A. Trivially, it is a central

invertible positive element and satisfies Tr(Φ(cωx)) = D−2
∑

α ν
−1
α dαTr(Φ(xeα)) =

D
−2

∑

α ν
−1
α dαναTrα(x) = 〈ω, x〉 for all elements x ∈ A, as we wanted to prove. �

Let us now consider the tensor obtained by multiplying the MPO tensor in
Equation 14 by b(ω) = Φ(cω) in the physical space:

b(ω)
.

Idempotence of ω ∈ A∗ implies that this tensor generates an MPO with zero cor-
relation length; see [14]:

= .

It is clear that computations of correlation functions using the MPDOs generated
by the previous tensor will be length-independent. In particular, it induces the
following family of mixed states:

Theorem 3.3. Let A be a biconnected C*-WHA and let (V,Φ) be a faithful ∗-re-
presentation of A. Then, the operators

ρ(x, n) := 〈ω, x〉−1b(ω)⊗nΦ⊗n(∆(n−1)(x)) ∈ L(V ⊗n)

are RFP MPDOs for all positive non-zero elements x ∈ A and all n ∈ N. Specifi-
cally, there are quantum channels T : L(V ) → L(V ⊗V ) and S : L(V ⊗V ) → L(V ),
known as local fine-graining and coarse-graining maps, respectively, such that

T(ρ(x, 1)) = ρ(x, 2) and S(ρ(x, 2)) = ρ(x, 1)

for all positive non-zero elements x ∈ A and all n ∈ N.

Let us illustrate the construction with an extremely modest example.

Example 3.4. Let A := CZ2 be the C*-HA arising from the group G := Z2

generated by g ∈ G; see Example 2.5. It posseses only two sectors, namely the
equivalence classes of the trivial representation and the sign representation, each
one-dimensional. Consider that both physical and virtual spaces are V := W :=
C2, with basis elements |1〉, |2〉, and consider the faithful ∗-representation of A
Φ ∈ L(A,L(C2)) defined by Φ(g) := σz, the usual Pauli-Z matrix. It is easy to
see that both Frobenius-Perron dimensions are 1 and hence the canonical regular
elements of A and A∗ are given by Ω = 2−1(e + g) and ω(x) = (x, e)V , for all
x ∈ A, respectively. A tensor generating the corresponding MPOs is specified by
the non-zero coefficients

1 1

1

1

= 1 1

2

2

= 2 2

1

1

= − 2 2

2

2

= 1.

Moreover, in this case the weight is trivially given by cω = 2−1e and thus

ρ(x, n) = 1
2n (1⊗n + (x,g)V

(x,e)V
σ⊗n
z ),

are the induced RFP MPDOs, for all positive non-zero x ∈ A. In particular,
ρ(Ω, n) = 2−n(1⊗n + σ⊗n

z ) is the boundary state of the toric code; see [14].

Example 3.5. Let ALY be the Lee-Yang C*-WHA from Example 2.8. It possesses
only two sectors, denoted 1 and τ , for which it is easy to check that d1 = 1 and
dτ = ζ−2 = 2−1(1 +

√
5), respectively. Consider that both physical and virtual

spaces are V := W := C5 and let Φ ∈ L(ALY,L(C5)) be the faithful ∗-representation
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arising from the string-net specification; see [33, 10] for a derivation. A tensor
generating the corresponding MPOs is then specified by the non-zero coefficients

1 1

1

1

= 1 2

3

3

= 2 1

4

4

= 2 2

2

2

= 2 2

5

5

= 3 3

2

1

= 3 4

4

3

= 3 5

5

3

=

4 4

1

2

= 5 4

4

5

= 5 5

2

2

= 1, 4 5

3

5

= 5 3

5

4

= ζ, 4 3

3

4

= − 5 5

5

5

= ζ2.

Finally, it is straightforward to check that Φ(cω) = 2(5 + 51/2)−112 ⊕ 5−1/213.

With the aim of giving explicit definitions of both quantum channels and prove
Theorem 3.3, we introduce the following auxiliary result.

Lemma 3.6. Let A be a biconnected C*-WHA. There exists a unique element ξ ∈ A
such that 〈ω, ξT (Ω(1))〉Ω(2) = 1. Furthermore, it satisfies the following properties:

(1) it is positive, invertible and ξ−1 = 〈ω,Ω(1)〉Ω(2) = 〈ω, T (Ω(1))〉Ω(2);
(2) it is invariant under T ∈ L(A), i.e. T (ξ) = ξ;
(3) it satisfies the relation T (x)∗ = ξT (x∗)ξ−1 for all elements x ∈ A;
(4) Trα(ξ−1) = dα〈ω,Ω〉 for all sectors α ∈ Irr(A);
(5) it can be decomposed as ξ = ξLξR for two positive elements ξL ∈ AL and

ξR = S(ξL) = S−1(ξL) ∈ AR;

Dually, if we denote ξ̂ = ξ̂Lξ̂R ∈ A∗, then:

(6) x(1)〈ξ̂L, x(2)〉 = ξ−1
L x and x(1)〈ξ̂−1

R , x(2)〉 = xξ−1
L for all x ∈ A.

Finally, if A is a C*-HA, then ξ2L = ξ2R = ξ = D2ε(1)1 = 〈ω,Ω〉−11.

See Appendix C for a proof. The fundamental property of the definition of ξ ∈ A
here, interpreted in terms of tensor networks, is provided by the following result.

Lemma 3.7. Let A be a biconnected C*-WHA. Then,

b(ω)Φ(ξ)

b(Ω)

b

a

= δab a a

for all sectors a, b ∈ Irr(A), where δab stands for the Kronecker delta.

Proof. Note that

〈f,Ω(1)〉〈ω, ξT (x)Ω(2)〉 = 〈f, T (ξT (x))Ω(1)〉〈ω,Ω(2)〉 by Equation 11

= 〈f, xξΩ(1)〉〈ω,Ω(2)〉 by Theorem 2.12

= 〈f, xξξ−1〉 = 〈f, x〉 by Lemma 3.6

for any two elements x ∈ A and f ∈ A∗. Pictorially:

b(ω)Φ(ξ)

b(f)

b(Ω)

b(x)

=

b
(
ω
)
Φ
(
ξ
)

b(f)

b(Ω)

b(x)

=

b(f)

b(1)

b(x)

=

b(f)

b(x)

=

b(x)

Ψ(f)

The results follows from the surjectivity of b and Ψ in each block. �
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We are now in the position to partially prove that the MPOs generated by the
MPO tensor presented above are RFP.

Proof of Theorem 3.3. Define the map T ∈ L(L(V ),L(V ⊗ V )) by

X 7→ Φ(ξ)
X

b(Ω)

.

Trivially, it has the property of duplicating the tensor defining the MPDO:

T7−→ Φ(ξ)

b(Ω)

=

b(Ω)

= .

In the first equality we have used that the weight Φ(cω) ∈ L(V ) can be freely moved
along the physical indices since cω ∈ A is a central element. The second equality
follows from Lemma 3.7. We postpone the proof of the fact that it is a quantum
channel and the definition of the quantum channel S to Appendix D. �

4. RFP MPDOs are boundary states of topological 2D PEPS

In this section we show that RFP MPDOs ρ(Ω, n) defined in Theorem 3.3 arise
as boundary states of topological 2D PEPS with certain properties. As commented
above, PEPS are tensor networks built using 2D arrays of tensors for the particular
case of a rectangular lattice. To construct a PEPS, one associates a tensor describ-
ing a map from some virtual vector space to the physical Hilbert space, to each site
of a lattice and performs tensor contractions on the virtual space according to the
graph of the lattice. PEPS exhibiting topological order has been constructed from
unitary fusion categories. The same approach can be reformulated using bicon-
nected C*-WHAs. See [33, Section 7] for a detailed discussion. As in the 1D case of
MPS, global properties of PEPS can be characterized locally using the virtual level
of the individual tensors. In particular, PEPS exhibiting topological order are char-
acterized by tensors with MPO symmetries acting purely at the virtual level. That
corresponds to the pulling-through condition of the MPOs on the PEPS tensors.
Finally, in this setting, the boundary state associated to the 2D PEPS is obtained
by contracting the physical indices of the 2D PEPS with open boundaries and its
conjugate transpose. Pictorially:

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

=

· · ·

· · ·

· · ·

· · ·

,

Let us prove the following theorem.

Theorem 4.1. For any regular biconnected C*-WHA, RFP MPDOs defined in
Theorem 3.3 are boundary states of topological 2D PEPS fulfilling a renormalization
fixed point property.

Proof. Fix a regular biconnected C*-WHA A and a faithful ∗-representation (V,Φ).
As commented in Section 2, the associate MPO tensors are described in terms of
another ∗-representation (W,Ψ) of A∗ in the virtual level. Let us first construct the
ansatz tensor for the 2D PEPS whose boundary state is the given matrix product
density operator ρ(Ω, n). For the sake of simplicity, we will restrict to underlying
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geometries described by square lattices, although the proof works for any 2D PEPS
defined on any directed pseudo-graph. In this case, we will consider the 2D PEPS
tensor depicted as follows:

(20) :=
b(Ω)

b(ω)
1
4

b(ω)
1
4 Φ(ξ)

1
2

Ψ(ξ̂L)

.

Here, the physical space is given by the tensor product V ⊗V ⊗V ∗ ⊗V ∗ and there
are four virtual indices, each of them corresponding to V or V ∗. If read in clockwise
direction starting from the virtual weight b(Ω) ∈ L(W ), the tensor is algebraically
described by the expresion

(b(ω)
1
4 )⊗4

(

Φ(Ω(1)) ⊗ Φ(Ω(2)) ⊗ 〈ξ̂L,Ω(3)〉Φ(ξ
1
2T (Ω(4))) ⊗ Φ(ξ

1
2 T (Ω(5)))

)

as an operator from physical to virtual spaces. Recall that b(ω) ∈ L(V ) is an invert-
ible positive central operator and hence it can be freely moved along the physical
indices. Let us now show that the boundary operator is the desired operator.

Step 1. Let us first simplify the transfer operator associated to the previous 2D
PEPS tensor, E = E(A, V,Φ) ∈ L(V ⊗ V ⊗ V ∗ ⊗ V ∗) obtained by contracting the
physical indices of the 2D PEPS tensor and its corresponding conjugate transpose
if regarded as an operator. Algebraically, it is given by the expression

E = (b(ω)
1
2 )⊗4

(

Φ(Ω(1))Φ(Ω(1′))
† ⊗ Φ(Ω(2))Φ(Ω(2′))

† ⊗ 〈ξ̂−1
L ,Ω(3′)〉〈ξ̂−1

L ,Ω(3′)〉
· Φ(T (Ω(4′)))

†Φ(ξ)Φ(T (Ω(4))) ⊗ Φ(T (Ω(5′)))
†Φ(ξ)Φ(T (Ω(5)))

)

,

where we have employed that b(ω) ∈ L(V ) is positive and central and Φ(ξ) ∈ L(V )
is positive, since Φ ∈ L(A,L(V )) is a ∗-representation and ξ ∈ A is positive. Note
that the order of composition is reversed for the terms associated to white tensors.
In order to fully describe E in terms of tensor networks, note that

〈ξ̂−1
L , x〉 = 〈(ξ̂−1

L )∗, S(x)∗〉 = 〈ξ̂−1
L , S(x)∗〉 = 〈ξ̂−1

L , S−1(x∗)〉 = 〈ξ̂−1
R , x∗〉

for all x ∈ A, where the first equality is due to Remark 2.2, the second equality

follows from the positivity of ξ̂L ∈ A∗, the third equality is due to Remark 2.3

and the fourth equality follows from the definition of ξ̂R ∈ A∗, see Lemma 3.6. In
addition, recall that Φ ∈ L(A,L(V )) is a ∗-representation and T (x)∗ξ = ξT (x∗) for
all x ∈ A, see Lemma 3.6. Therefore:

E = (b(ω)
1
2 )⊗4

(

Φ(Ω(1)Ω
∗
(1′)) ⊗ Φ(Ω(2)Ω

∗
(2′))

⊗ 〈ξ̂−1
R ,Ω∗

(3′)〉〈ξ̂−1
L ,Ω(3)〉Φ(ξT (Ω∗

(4′))T (Ω(4))) ⊗ Φ(ξT (Ω∗
(5′))T (Ω(5))).

)

Hence, the transfer operator can be represented graphically as follows:

E =

b(Ω)

b(ω)
1
2

b(Ω∗)

Φ(ξ)

Ψ(ξ̂−1
L )

Ψ(ξ̂−1
R )

=

b(Ω)

b(Ω∗)

b(ω)
1
2 Φ(ξ)

Ψ(ξ̂−1
L )

Ψ(ξ̂−1
R )
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On the other hand, Ψ(ξ̂−1
L ) and Ψ(ξ̂−1

R ) can be “moved” from the virtual to the
physical spaces using the following identities:

x(1)〈ξ̂−1
L , x(2)〉 = ξ−1

L x and x(1)〈ξ̂−1
R , x(2)〉 = xξ−1

L

for all elements x ∈ A; see Lemma 3.6. In graphical notation, the previous formulas
are rephrased in the following form:

(21)
Ψ(ξ̂−1

L )
=

Φ(ξ−1
L )

and
Ψ(ξ̂−1

R )
=

Φ(ξ−1
L )

.

By virtue of these identities, the fact that T ∈ L(A) is an algebra anti-homomorphism
and Ω∗ = Ω = Ω2 by Theorem 2.12, it follows that

b(Ω)

b(ω)
1
2

b(Ω∗)

Φ(ξ)

Ψ(ξ̂−1
L )

Ψ(ξ̂−1
R )

=

b(Ω)
Φ(ξ−1

L )

b(ω)
1
2

Φ(ξ−1
L )b(ω)

1
2

b(Ω∗)
b(ω)Φ(ξ)

=

b(Ω)
Φ(ξ−1

L )

b(ω)
1
2

Φ(ξ−1
L )b(ω)

1
2

b(ω)
1
2 Φ(ξ)

.

Applying again Equation 21, we conclude that the transfer operator takes the form:

E =

b(Ω)
Φ(ξ−1

L )

b(ω)
1
2

Φ(ξ−1
L )b(ω)

1
2b(ω)

1
2 Φ(ξ)

=

b(Ω)

b(ω)
1
2

b(ω)
1
2b(ω)

1
2 Φ(ξ)

Ψ(ξ̂−1)

.

since Ψ ∈ L(A∗,L(W )) is a ∗-representation and ξ−1 = ξ−1
L ξ−1

R .

Step 2. Let us consider the concatenation of two transfer operators. By virtue of
the pulling-through identity Equation 11,

(22)
b(ω)

1
2 Φ(ξ)

b(ω)Φ(ξ)

=

Step 3. Let us consider the concatenation of four transfer operators around the
vertices of a plaquette. In particular, we prove that the ansatz 2D PEPS tensors
gives rise to a normalized PEPS and its boundary state is the RFP MPDO de-
fined in Theorem 3.3. Consider, from a top view, the procedure of simplifying the
concatenation of transfer operators that form a whole plaquette:

Ψ(ξ̂−1)

b(Ω)

Ψ(ξ̂−1)Φ(ξ)
b(ω)

b(ω)

= = · · · =
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For the purpose of closing the plaquette, recall Lemma 3.7 and Lemma 3.6:

=
∑

a

aa

Ψ(ξ̂−1)

∝ b(Ω) .

Note that in the previous equations the inner circle representing Tra(ξ̂−1) is not
independent of the outer shape and hence it gives rise to possibly different constant
in each sector, as it is a sum over all sectors a ∈ Irr(A). As showed in Lemma 3.6,
these are precisely the Frobenius-Perron dimensions which define, in each sector,
the canonical regular element Ω ∈ A. Therefore we can rewrite it in terms of the
weight b(Ω) ∈ L(W ), as done in the last equality. Iterating this procedure for each
plaquette of the lattice proves that matrix product density operators defined in the
previous section arise naturally as boundary states of topological 2D PEPS.

Note also that Equation 22 is nothing but a natural 2D generalization of the
renormalization fixed point condition for MPS defined in [14]. In that sense, we
can conclude that the RFP MPDOs considered in this paper are boundary states
of PEPS fulfilling this renormalization fixed point property. �

5. Classification via shallow circuits of quantum channels

In this section we prove that RFP MPDOs arising from C*-HAs belong to the
trivial phase. Namely, we provide explicit definitions of depth-two circuits of finite-
range quantum channels that map the maximally mixed state to these RFP MP-
DOs. Finally, we show that our construction cannot be extended to arbitrary
biconnected C*-WHAs, which lead us to the conjecture that there are non-trivial
phases in this context.

In order to deepen the intuition towards the general case of C*-HAs, let first
examine the simplest non-trivial example.

Example 5.1. RFP MPDOs arising from the group C*-HA A := CZ2, introduced
in Example 2.5 and Example 3.4, are in the trivial phase. Specifically, we build

ρ(Ω, n) = 1
2n (1⊗n + σ⊗n

z )

via a depth-two circuit of range-two quantum channels from the maximally mixed
state Tr(1)−n1⊗n. We assume without loss of generality that n ∈ N is even and
propose the following procedure:

Step 1 (“initialization”). We first construct n/2 copies (ρ2)⊗n/2 of the mixed state
ρ2 between pairs of nearest neighbors by replacing the product states separately.
This is easily done by means of the quantum channel N : X ⊗ Y 7→ Tr(X ⊗ Y )ρ2.
In the Choi-Jamio lkowski picture, this process can be depicted as follows:

N N N N· · ·
· · ·

=
ρ2 ρ2 ρ2 ρ2· · ·

· · ·

When the system size is an odd natural number simply replace three of them with
the mixed state ρ3, for example.

Step 2 (“gluing”). Now, we “glue” together all these copies of ρ2 in order to obtain
the target mixed state ρn. This is done inductively by means of the following
quantum channel, called from now on gluing map:

(23) G : X ⊗ Y 7→ 1
22 (Tr(X ⊗ Y )1⊗ 1 + Tr(Xσz ⊗ Y σz)σz ⊗ σz)
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for all X,Y ∈ L(C2). It is easy to check that it is a quantum channel and that

Id ⊗G⊗ Id( 1
22 (1⊗2 + σ⊗2

z ) ⊗ 1
22 (1⊗2 + σ⊗2

z )) = 1
24 (1⊗4 + σ⊗4

z ).

By induction, it is clear that simultaneous applications of these quantum channels
lead to the mixed state ρn. Again, in the Choi-Jamio lkowski picture this procedure
can be depicted as follows:

ρ2 ρ2 ρ2 ρ2

G G

· · ·

· · ·
=

ρn · · ·

· · ·

The previous construction can be generalized to arbitrary C*-HAs as follows.
In the first place, the role of the previous element is replaced by the RFP MPDO
associated to the canonical regular element. In addition, we introduce a family of
quantum channels that “glue” together two RFP MPDOs associated to the canon-
ical regular element Ω ∈ A into a larger one, associated to any arbitrary positive
non-zero element of A.

Lemma 5.2. Let A be a C*-HA and let (V,Φ) be a faithful ∗-representation of
A. Then, for all positive non-zero elements x ∈ A there exists a quantum channel
Gx ∈ L(L(V ⊗ V )), called “gluing” map, such that

(24) (Id⊗m−1 ⊗Gx ⊗ Id⊗n−1)(ρ(Ω,m) ⊗ ρ(Ω, n)) = ρ(x,m+ n)

for all m,n ∈ N.

See Appendix E for a proof, but let us propose now an explicit expression for
the gluing map and check using graphical notation that Equation 24 holds. To this
end, fix any positive non-zero element x ∈ A and assume without loss of generality
that m = n = 2. Define the map Gx ∈ L(L(V ⊗ V )) by the expression

X ⊗ Y 7→ 1
〈ω,x〉

X Yb(x)

.

for allX,Y ∈ L(V ). To prove that Equation 24 holds, recall first that Φ(cω) ∈ L(V )
can be moved freely along the physical vector spaces. By virtue of Lemma 3.7:

1
〈ω,x〉

1
〈ω,Ω〉2 b(x)

b(Ω) b(Ω)

= 1
〈ω,x〉

1
〈ω,Ω〉 b(x)

b(Ω)

= 1
〈ω,x〉

b(x)

,

since Φ(ξ) = 〈ω,Ω〉−11 by Lemma 3.6.
Similar to the construction described for the boundary state of the toric code,

the existence of such a quantum channel immediately induces a finite-depth circuit
of quantum channels manifesting the triviality of these states.

Theorem 5.3. Let A be a C*-HA and let (V,Φ) be a faithful ∗-representation of
A. Then, for all positive non-zero elements x ∈ A and all n ∈ N there exists a
depth-two circuit of bounded-range quantum channels that maps Tr(1)−n1⊗n into
ρ(x, n). That is, the sequence (ρ(x, n))∞n=1 is in the trivial phase.

Proof. Assume without loss of generality that n ∈ N is even. The circuit consists
of two layers, as presented above in Example 5.1. In the first layer, we replace
the maximally mixed state Tr(1)−n1⊗n with the sequence of n/2 tensor products
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ρ(Ω, 2)⊗· · ·⊗ρ(Ω, 2) as previously done. Now, by virtue of Lemma 5.2, let Id⊗GΩ⊗
· · · ⊗GΩ ⊗Gx ⊗ Id be the second layer of quantum channels, where all subindices
are Ω ∈ A except for one, which is x ∈ A. This second layer of channels then glues
together all local MPDOs into the single MPDO ρ(x, n). �

For general RFP MPDOs constructed from biconnected C*-WHAs a straight-
forward generalization of the previous procedure is not possible anymore, since the
comultiplication is no longer unit-preserving.

Remark 5.4. There are no trace-preserving gluing maps for general biconnected
C*-WHAs such that Equation 24 holds for all elements x ∈ A.

See Appendix F for a proof. Unfortunately, the description of the phases in this
general case is still an open problem. Nevertheless, some evidence indicate the
existence of non-trivial phases, as we conjecture here.

Conjecture 5.5. RFP MPDOs arising from the Lee-Yang C*-WHA of Example 2.8
do not belong to the trivial phase.

However, these obstructions can be circumvented if one restricts to the trivial
sector. The following result establishes the existence of an special gluing map,
motivated by the characterization of simple RFP MPDO tensors in [14].

Lemma 5.6. Let A be a biconnected C*-WHA and let (V,Φ) be a faithful ∗-repre-
sentation of A. There is a quantum channel G1 ∈ L(L(V ⊗ V )), called “gluing”
map, such that

(25) (Id⊗m−1 ⊗G1 ⊗ Id⊗n−1)(ρ(1,m) ⊗ ρ(1, n)) = ρ(1,m+ n)

for all m,n ∈ N.

A proof is given in Appendix F. As an immediate corollary, similar to the case
of C*-HAs, we obtain the following result.

Theorem 5.7. Let A be a biconnected C*-WHA and let (V,Φ) be a faithful ∗-
representation of A. Then, for all n ∈ N there exist two depth-two circuits of
bounded-range quantum channels that map Tr(1)−n1⊗n into ρ(1, n) and ρ(Tr1, n).
That is, the sequences (ρ(1, n))∞n=1 and (ρ(Tr1, n))∞n=1 are in the trivial phase.
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Appendix A. Graphical notation for tensor networks

In this appendix we introduce a slightly adapted version of the usual graphical
notation from the literature of tensor networks. From now on, let V be a finite
dimensional complex vector space. First, a vector v ∈ V is depicted by a shape
(e.g. a circle) and a line sticking out of it, associated to the vector space and labeled
accordingly; we convey to draw the arrow outgoing from the shape. Second, any
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element f ∈ V ∗ is a vector from V ∗ or a linear functional on V , and we alternatively
draw it with an arrow ingoing to the shape. Pictorially,

v =
Vv

and f =
V ∗ f

=
V f

.

Note that, although we have represented the previous elements using straight hor-
izontal lines, no reading order has been prescribed. Here, we identify each (finite
dimensional complex) vector space V and its double dual V ∗∗, which are canoni-
cally isomorphic. Therefore, one can regard any vector v ∈ V as a linear functional
on V ∗ and thus, exchange the orientation of any line by labeling the dual:

Vv
=

V ∗∗v
=

V ∗v
.

Now, let V and W be two (finite dimensional complex) vector spaces. Any vector
v ∈ V ⊗W in the tensor product is depicted by a shape with two lines, e.g.:

V Wv
.

By virtue of the previous identification, one can rewrite

V Wv
=

V ∗ Wv
=

V ∗ W∗v
=

V W∗v
.

In addition, the tensor product of two vectors v ∈ V and w ∈ W is depicted by
placing both representations in the same picture, next to each other:

V Wv⊗w
=

V Wv w
.

Note that, although the labels V and W should allow to identify the corresponding
indices, even if V = W , it may not be enough. One solution, used in this paper,
consists on prescribing colors to each index. Additionally, note that we have im-
plicitly identified V ⊗W and W ⊗ V , since no order is prescribed in the previous
picture. However, these are again canonically isomorphic and no preference is con-
sidered here. In this context, it is natural to represent the action of the canonical
pairing by joining the corresponding lines, i.e.

f ⊗ v =
Vv V f

7→
Vv f

= 〈f, v〉.
On the other hand, since L(V,W ) is canonically isomorphic to V ∗⊗W , we can also
represent any linear map F ∈ L(V,W ) in the following form

V ∗ WF
=

V WF
.

Remarkably, the distinction between F ∈ L(V,W ) and its transpose F t ∈ L(W ∗, V ∗),
W ∗ ∋ g 7→ g ◦ F ∈ V ∗, is only reflected in the diagram by the arrows and their
labels.

Appendix B. The Canonical Regular Element

Here we recall additional results on the framework of C*-WHA not introduced
in the main text. As a matter of fact, we are interested in describing the canonical
regular element in terms of these. First, it is well-known that in any C*-WHA A
there exists a unique non-degenerate two-sided normalized integral h ∈ A, known
as the Haar integral of A; see Definition 3.24 and Theorem 4.5 in [6]. In particular,

(26) h2 = h∗ = h = S(h).
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By self-duality, let ĥ ∈ A∗ denote the Haar integral of the dual C*-WHA. We also

recall the existence of Λ ∈ A, known as the dual left-integral of ĥ, such that

(27) 〈ĥ,Λ(1)〉Λ(2) = 1 and S(Λ(1)) ⊗ Λ(2) = Λ(2) ⊗ Λ(1);

see e.g. Theorem 3.18 and Lemma 3.20 in [6]. Second, there is a unique positive
element g ∈ A implementing the antipode squared as an inner automorphism, i.e.

(28) S2(x) = gxg−1

for all elements x ∈ A, among other properties, known as the canonical group-like
element of A; see Proposition 4.9 in [6]. As its name implies, it is a group-like
element, i.e. it satisfies the following property:

(29) g(1) ⊗ g(2) = g1(1) ⊗ g1(2) = 1(1)g ⊗ 1(2)g.

Moreover, it can be decomposed in the form g = gLg
−1
R for two gL, gR > 0 given by

(30) gL := (〈ĥ, h(1)〉h(2))
1
2 ∈ AL and gR := S(gL) = S−1(gL) ∈ AR.

By self-duality, we denote by ĝ ∈ A∗ the canonical group-like element of the dual
C*-WHA. Finally, let us recall the following formula.

Proposition B.1. For any C*-WHA,

x(1)〈ĝ, x(2)〉 = gRxg
−1
R and 〈ĝ, x(1)〉x(2) = gLxg

−1
L

for all elements x ∈ A. In particular,

1(1)〈ĝ, 1(2)〉 = 1 = 〈ĝ, 1(1)〉1(2).
Proof. See Scholium 2.7 and Lemma 4.13 in [6] for a proof. �

Proposition B.2 (see [35]). For any connected C*-WHA A,

Trα(g) = 〈ε, 1〉dα
for all sectors α ∈ Irr(A).

Proposition B.3. In any connected C*-WHA

〈ω, x〉 = D
−2ε(1)−1〈ĥ, g−1

L g−1
R x〉 = D

−2ε(1)−1〈ĥ, xg−1
L g−1

R 〉
for all elements x ∈ A. Equivalently, for any coconnected C*-WHA,

Ω = D
−2ε(1)−1Λ(1)〈ĝ−1,Λ(2)〉 = D

−2ε(1)−1〈ĝ−1,Λ(1)〉Λ(2).

Proof. Assume first that A is a connected C*-WHA. There exists a well-known ele-
ment, called the S-invariant trace of A, see [6], given by the expression

∑

α Trα(g)Trα.
By virtue of Theorem 2.12 and Proposition B.2, one easily checks that both ele-
ments are proportional. �

Remark B.4 (see [33]). The linear map T ∈ L(A) in Theorem 2.12 is given by

T (x) = S(x(1))〈ĝ, x(2)〉 = 〈ĝ, x(1)〉S−1(x(2))

Remark B.5 (see [33]). In any coconnected C*-WHA, ω ◦ T = ω ◦ S = ω.

Finally, let us particularize the previous notions and results in the context of
C*-Hopf algebras. We refer the reader to [34] for more details.

Proposition B.6. Let A be a C*-HA. Then:

(1) S2 = Id and the canonical grouplike element is g = 1;
(2) dα = dimC(Vα) for all sectors α ∈ Irr(A);

(3) the dual left integral of the Haar measure ĥ ∈ A∗ is t = D2Ω;
(4) the canonical regular element and the Haar integral coincide, i.e. Ω = h;
(5) the linear map T ∈ L(A) coincides with the antipode S ∈ L(A);



MATRIX PRODUCT OPERATOR ALGEBRAS II 21

(6) gL = gR = D−11.

Proof. (1) It is well-known that for any C*-HA it holds that S2 = Id [39, 40].
Since the unit element 1 ∈ A satisfies the defining properties of the canonical
group-like element too, which is unique, we can conclude that g = 1. (2) Consider
that ε(1) = 1 by Definition 2.4 and hence Proposition B.2 proves that dimC(Vα) =
Trα(1) = Trα(g) = ε(1)dα = dα for all sectors α ∈ Irr(A). (3) Since the axioms
of C*-HAs are self-dual ĝ = ε and hence Ω = D

−2ε(1)−1t = D
−2t, where the first

expression follows from Proposition B.3. (4) Every C*-HA is unimodular, see [34],
i.e. every left integral is a two-sided integral, and the subspace of two-sided integrals
is one-dimensional. Hence t = ηh for some η ∈ C. Since Ω2 = Ω and h2 = h,
the only possibility left is η = D2. (5) This follows trivially as a consequence of
Remark B.4 since ĝ = ε. (6) Recall the definition of gL and gR in Equation 30 and
consider both steps (3) and (4). �

Appendix C. Proof of Lemma 3.6

Here we restate and prove the following result.

Lemma 3.6. Let A be a biconnected C*-WHA. There exists a unique element ξ ∈ A
such that 〈ω, ξT (Ω(1))〉Ω(2) = 1. Furthermore, it satisfies the following properties:

(1) it is positive, invertible and ξ−1 = 〈ω,Ω(1)〉Ω(2) = 〈ω, T (Ω(1))〉Ω(2);
(2) it is invariant under T ∈ L(A), i.e. T (ξ) = ξ;
(3) it satisfies the relation T (x)∗ = ξT (x∗)ξ−1 for all elements x ∈ A;
(4) Trα(ξ−1) = dα〈ω,Ω〉 for all sectors α ∈ Irr(A);
(5) it can be decomposed as ξ = ξLξR for two positive elements ξL ∈ AL and

ξR = S(ξL) = S−1(ξL) ∈ AR;

Dually, if we denote ξ̂ = ξ̂Lξ̂R ∈ A∗, then:

(6) x(1)〈ξ̂L, x(2)〉 = ξ−1
L x and x(1)〈ξ̂−1

R , x(2)〉 = xξ−1
L for all x ∈ A.

Finally, if A is a C*-HA, then ξ2L = ξ2R = ξ = D2ε(1)1 = 〈ω,Ω〉−11.

Proof. Since Ω ∈ A is non-degenerate there exists a linear functional f ∈ A∗ such
that 〈f,Ω(1)〉Ω(2) = 1; see Equation 5 and Theorem 2.12. On the other hand,
since ω ∈ A∗ is non-degenerate, there exists an element ξ ∈ A such that 〈ω, ξx〉 =
〈f ◦ T, x〉 for all elements x ∈ A. Therefore,

〈ω, ξT (Ω(1))〉Ω(2) = 〈f ◦ T, T (Ω(1))〉Ω(2) = 〈f,Ω(1)〉Ω(2) = 1,

where in the second equality we have used that T ∈ L(A) is involutive, i.e. T ◦T =
Id. Recall that ω ∈ A∗ is cocentral, it is a trace-like linear functional of A∗, see
Remark 2.2. It follows by the pulling-through identity in Equation 11 that

1 = 〈ω, ξT (Ω(1))〉Ω(2) = 〈ω, T (Ω(1))ξ〉Ω(2) = 〈ω, T (Ω(1))〉ξΩ(2),

and hence ξ ∈ A is invertible. Its inverse is then trivially given by the expression

ξ−1 = 〈ω, T (Ω(1))〉Ω(2) = 〈ω,Ω(1)〉Ω(2).

where the last equality follows from Remark B.5. Let us prove now (4). By virtue of
Proposition B.3, it is easy to conclude by its defining property 〈ω, ξT (Ω(1))〉Ω(2) = 1
that ξ ∈ A is necessarily given by the expression

(31) ξ = D
4ε(1)2gLgR.

Consequently, a natural choice of positive elements ξL ∈ AL and ξR ∈ AR is

(32) ξL := D
2ε(1)gL and ξR := D

2ε(1)gR = S(ξL).

Since gL, gR > 0, ξ is strictly positive, as we wanted to prove. We now prove (2), i.e.
that T (ξ) = ξ, note by the previous expressions that it turns out to be enough to
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check that T (gL) = gR and T (gR) = gL. We refer to Equations 43a and 43b below
for elementary proofs of these facts. In addition, note that (4) is straightforward
by the eigenvalue equation Equation 12. See Scholium 2.7 and Lemma 4.13 from
[6] for a proof of (6). Let us now move to the proof of (3). For simplicity, we prove
the equivalent formula ξT (x)ξ−1 = T (x∗)∗ for all x ∈ A. To this end, we recall first
that

(33) ξyξ−1 = gLgRyg
−1
L g−1

R = 〈ĝ, y(1)〉y(2)〈ĝ, y(3)〉

for all elements y ∈ A, see Proposition B.1. On the other hand, by virtue of the
the fact that S−1(ĝ) = ĝ−1 and the positivity of ĝ ∈ A∗,

(34) 〈ĝ−1, y〉 = 〈ĝ, S−1(y)〉 = 〈ĝ∗, S−1(y)〉 = 〈ĝ, S(S−1(y))∗〉 = 〈ĝ, y∗〉

for all elements y ∈ A. Thus,

ξT (x)ξ−1 = ξS(x(1))ξ
−1〈ĝ, x(2)〉 by Remark B.4

= 〈ĝ, S(x(1))(1)〉S(x(1))(2)〈ĝ, S(x(1))(3)〉〈ĝ, x(2)〉 by Equation 33

= 〈ĝ, S(x(3))〉S(x(2))〈ĝ, S(x(1))〉〈ĝ, x(4)〉 by Remark 2.3

= 〈ĝ−1, x(1)〉S(x(2))〈ĝ−1, x(3)〉〈ĝ, x(4)〉 by Equation 30

= 〈ĝ−1, x(1)〉S(x(2)) by Remark 2.2

= 〈ĝ−1, x(1)〉S−1(S2(x(2)))

= 〈ĝ−1, x(1)〉〈ĝ, x(2)〉S−1(x(3))〈ĝ−1, x(4)〉 by Equation 28

= S−1(x(1))〈ĝ−1, x(2)〉 by Remark 2.2

= S−1(x(1))〈ĝ, x∗(2)〉 by Equation 34

= S(x∗(1))
∗〈ĝ, x∗(2)〉 by Remark 2.3

= S((x∗)(1))
∗〈ĝ, (x∗)(2)〉 by Definition 2.1

= T (x∗)∗, by Remark B.4

for all elements x ∈ A, as we wanted to prove. Finally, if A is a C*-HA, it is
already known by Proposition B.6 that gL = gR = D−11. This, together with the
definition of ξ ∈ A in Lemma 3.6 and the fact that ε(1) = 1, leads to the expressions
ξL = ξR = D1 and ξ = D21, as we wanted to prove. �

Appendix D. Proof of Theorem 3.3

We now provide algebraic explicit expressions for both local coarse-graining and
fine-graining quantum channels. We restate and prove the following theorem now.

Theorem 3.3. Let A be a biconnected C*-WHA and let (V,Φ) be a faithful ∗-re-
presentation of A. Then, the operators

ρ(x, n) := 〈ω, x〉−1b(ω)⊗nΦ⊗n(∆(n−1)(x)) ∈ L(V ⊗n)

are RFP MPDOs for all positive non-zero elements x ∈ A and all n ∈ N. Specifi-
cally, there are quantum channels T : L(V ) → L(V ⊗V ) and S : L(V ⊗V ) → L(V ),
known as local fine-graining and coarse-graining maps, respectively, such that

T(ρ(x, 1)) = ρ(x, 2) and S(ρ(x, 2)) = ρ(x, 1)

for all positive non-zero elements x ∈ A and all n ∈ N.



MATRIX PRODUCT OPERATOR ALGEBRAS II 23

Proof. As previously done, let us define the local coarse-graining quantum channel

(35) T(X) := Tr(Φ(ξT (Ω(1)))X)Φ(cωΩ(2)) ⊗ Φ(cωΩ(3))

for all X ∈ L(V ). First, let us check that T(ρ(x, 1)) = ρ(x, 2) for all positive
non-zero x ∈ A. Indeed,

T(ρ(x, 1)) = 1
〈ω,x〉Tr(Φ(ξT (Ω(1))cωx))Φ(cωΩ(2)) ⊗ Φ(cωΩ(3))

= 1
〈ω,x〉〈ω, ξT (Ω(1))x〉Φ(cωΩ(2)) ⊗ Φ(cωΩ(3)) by Remark 3.2

= 1
〈ω,x〉〈ω, ξT (Ω(1))〉Φ(cωx(1)Ω(2)) ⊗ Φ(cωx(2)Ω(3)) by Equation 13

= 1
〈ω,x〉Φ(cωx(1)1(1)) ⊗ Φ(cωx(2)1(2)) by Lemma 3.6

= 1
〈ω,x〉Φ(cωx(1)) ⊗ Φ(cωx(2)) = ρ(x, 2) by Definition 2.1

Second, this map is trace-preserving:

Tr(T(X)) = Tr(Φ(ξT (Ω(1)))X)Tr(Φ(cωΩ(2)))Tr(Φ(cωΩ(3)))

= Tr(Φ(ξT (Ω(1)))X)〈ω,Ω(2)〉〈ω,Ω(3)〉 by Remark 3.2

= Tr(Φ(ξT (Ω(1)))X)〈ω,Ω(2)〉 by Lemma 3.1

= Tr(Φ(ξT (ξ−1))X) by Lemma 3.6

= Tr(Φ(ξξ−1)X)Tr(X) by Lemma 3.6

Finally, since Ω = Ω2 = ΩΩ∗ (in fact, only positivity of Ω is needed), we can rewrite
the map in the following form:

T(X) = Tr(Φ(ξT (Ω(1)(Ω
∗)(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2)(Ω
∗)(2′)))

= Tr(Φ(ξT (Ω(1)(Ω
∗)(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆((Ω∗)(2′)))

= Tr(Φ(ξT (Ω(1)Ω
∗
(1′))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆(Ω(2′))
∗)

= Tr(Φ(ξT (Ω∗
(1′))T (Ω(1)))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆(Ω(2′))
∗)

= Tr(Φ(T (Ω(1′))
∗ξT (Ω(1)))X)Φ⊗2(c⊗2

ω ∆(Ω(2))∆(Ω(2′))
∗)

= Tr(Φ(T (Ω(1′))
∗ξ

1
2 ξ

1
2T (Ω(1)))X)Φ⊗2((c

1
2
ω )⊗2∆(Ω(2))∆(Ω(2′))

∗(c
1
2
ω )⊗2)

= Tr(Φ(T (Ω(1′))
∗ξ

1
2 )Φ(ξ

1
2T (Ω(1)))X)Φ⊗2((c

1
2
ω )⊗2∆(Ω(2)))Φ

⊗2(∆(Ω(2′))
∗(c

1
2
ω )⊗2)

= Tr(Φ(ξ
1
2 T (Ω(1)))XΦ(ξ

1
2 T (Ω(1′)))

†)Φ⊗2((c
1
2
ω )⊗2∆(Ω(2)))Φ

⊗2((c
1
2
ω )⊗2∆(Ω(2′)))

†

= (Tr ⊗ Id ⊗ Id)(Q(X ⊗ 1⊗ 1)Q†)

where

Q := Φ⊗3(ξ
1
2T (Ω(1)) ⊗ c

1
2
ωΩ(2) ⊗ c

1
2
ωΩ(3))

Thus, T is completely positive. Now, let us define a local fine-graining quantum
channel S. Consider first the following hermitian projectors

(36) P := Φ⊗2(∆(1)), P⊥ := Φ⊗2(1 ⊗ 1 − ∆(1)), P + P⊥ = 1⊗ 1

and let ρ0 ∈ L(V ) be any mixed state. Define

(37) S(X) := Tr(Φ(∆(ξT (Ω(1))))X)Φ(cωΩ(2)) + Tr(P⊥X)ρ0

for all elements X ∈ L(V ⊗ V ). We first check that it satisfies S(ρ(x, 2)) = ρ(x, 1)
for all positive non-zero x ∈ A. Notice that the second summand in the right-hand
side of Equation 37 simply vanishes, i.e. P⊥ρ(x, 2) = 0, since ρ(x, 2) is supported
on the orthogonal subspace P · L(V ⊗2). Thus,

S(ρ(x, 2)) = 1
〈ω,x〉Tr(Φ⊗2(c⊗2

ω ∆(ξT (Ω(1))x)))Φ(cωΩ(2)) by Definition 2.1

= 1
〈ω,x〉〈ω ⊗ ω,∆(ξT (Ω(1))x)〉Φ(cωΩ(2)) by Remark 3.2
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= 1
〈ω,x〉〈ω, ξT (Ω(1))x〉Φ(cωΩ(2)) by Lemma 3.1

= 1
〈ω,x〉〈ω, ξT (Ω(1))〉Φ(cωxΩ(2)) by Equation 11

= 1
〈ω,x〉Φ(cωx) = ρ(x, 1) by Lemma 3.6

for all positive non-zero elements x ∈ A, as we wanted to prove. Secondly, let us
check that it is trace-preserving:

Tr(S(X)) = Tr(Φ⊗2(∆(ξT (Ω(1))))X)Tr(Φ(cωΩ(2))) + Tr(P⊥X)

= Tr(Φ⊗2(∆(ξT (Ω(1))))X)〈ω,Ω(2)〉 + Tr(P⊥X) by Remark 3.2

= Tr(Φ⊗2(∆(ξT (ξ−1)))X) + Tr(P⊥X) by Lemma 3.6

= Tr(Φ⊗2(∆(ξξ−1))X) + Tr(P⊥X) by Lemma 3.6

= Tr(PX) + Tr(P⊥X) = Tr((P + P⊥)X) = Tr(X) by Equation 36

for all X ∈ L(V ⊗ V ). That S is completely positive can be proved analogously
and we do not include it here: simply notice that the second summand in Equa-
tionby Equation 37 is clearly a completely positive map, and a similar argument to
that for T applies to the first summand. �

Appendix E. Proof of Lemma 5.2

In this appendix we derive a proof of Lemma 5.2. We first provide the following
auxiliary result, related to the trace-preserving condition of the gluing map.

Lemma E.1. Let A be a C*-HA. Then,

x(1) ⊗ 〈ω, x(2)〉x(3) = 〈ω, x〉1 ⊗ 1

for all elements x ∈ A.

Proof. Fix any x ∈ A. Since Ω ∈ A is non-degenerate, there exists f ∈ A∗ such
that

(38) x = Ω(1)〈f,Ω(2)〉.

As an immediate consequence,

(39) 〈ω, x〉 = 〈ω,Ω(1)〉〈f,Ω(2)〉 = D
−2〈f, 1〉,

where the last equality follows from Lemma 3.6. Then, it is easy to conclude that

x(1)〈ω, x(2)〉 ⊗ x(3) = Ω(1) ⊗ 〈ω,Ω(2)〉Ω(3)〈f,Ω(4)〉 by Equation 38

= Ω(4) ⊗ 〈ω,Ω(1)〉Ω(2)〈f,Ω(3)〉 by Theorem 2.12

= D
−21(3) ⊗ 1(1)〈f, 1(2)〉 by Lemma 3.6

= D
−2〈f, 1〉1 ⊗ 1 by Definition 2.4

= 〈ω, x〉1 ⊗ 1, by Equation 39

as we wanted to prove. �

Lemma 5.2. Let A be a C*-HA and let (V,Φ) be a faithful ∗-representation of
A. Then, for all positive non-zero elements x ∈ A there exists a quantum channel
Gx ∈ L(L(V ⊗ V )), called “gluing” map, such that

(24) (Id⊗m−1 ⊗Gx ⊗ Id⊗n−1)(ρ(Ω,m) ⊗ ρ(Ω, n)) = ρ(x,m+ n)

for all m,n ∈ N.
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Proof. Fix any positive non-zero element x ∈ A. We recall first the definition of
the gluing map previously given in Section 5. For simplicity, let Gx := T ◦ G for
the linear map G ∈ L(L(V ⊗ V ),L(V )) defined by the expression

(40) G(X ⊗ Y ) := 1
〈ω,x〉Tr(Φ(S(x(1)))X)Φ(cωx(2))Tr(Φ(S(x(3)))Y )

for all X,Y ∈ L(V ). Then, it is enough to check that G(ρ(Ω, 2)⊗ρ(Ω, 2)) = ρ(Ω, 3).
To this end, let us recall that, in the case of C*-HAs,

(41) 〈ω,Ω(1)〉Ω(2) = 1
D2 1 = 〈ω,Ω〉1,

where the first equality is stated in Lemma 3.6 and the second equality follows by
applying the counit in the first one, since ε(1) = 1. Then,

(Id ⊗G⊗ Id)(ρ(Ω, 2) ⊗ ρ(Ω, 2)) =

= 1
〈ω,x〉

1
〈ω,Ω〉2 Φ(cωΩ(1)) ⊗ 〈ω, S(x(1)〉Ω(2))Φ(cωx(2))〈ω, S(x(3))Ω(1′)〉 ⊗ Φ(cωΩ(2′))

= 1
〈ω,x〉

1
〈ω,Ω〉2 Φ(cωx(1)Ω(1)) ⊗ 〈ω,Ω(2)〉Φ(cωx(2))〈ω, S(x(3))Ω(1′)〉 ⊗ Φ(cωΩ(2′))

= 1
〈ω,x〉

1
〈ω,Ω〉2 Φ(cωx(1)Ω(1)) ⊗ 〈ω,Ω(2)〉Φ(cωx(2))〈ω,Ω(1′)〉 ⊗ Φ(cωx(3)Ω(2′))

= 1
〈ω,x〉Φ(cωx(1)1) ⊗ Φ(cωx(2)) ⊗ Φ(cωx(3)1) = ρ(x, 3).

This calculation can be explained as follows. In the first place, we have replaced the
trace with the canonical regular element ω ∈ A∗ since by Remark 3.2 the weight
cω ∈ A, which is central, defines a linear extension of ω to the representation
space. In the second and third steps we have applied the pulling-through identity;
see Equation 11. Finally, we apply twice Equation 41 to get rid of Ω and the
coefficients 〈ω,Ω〉−1. As an aside, note that 〈ω,Ω(1)〉Ω(2) = Ω(1)〈ω,Ω(2)〉 since Ω is
cocentral; see Equation 16. Since T is a quantum channel it only remains to prove
that G is also a quantum channel. On the one hand, that G is trace-preserving is
a straightforward consequence of Lemma E.1:

Tr(G(X ⊗ Y )) = 1
〈ω,x〉Tr(Φ(S(x(1)))X)〈ω, x(2)〉Tr(Φ(S(x(3)))Y ) by Remark 3.2

= 1
〈ω,x〉〈ω, x〉Tr(Φ(S(1))X)Tr(Φ(S(1))Y ) by Lemma E.1

= Tr(X)Tr(Y ) = Tr(X ⊗ Y ) by Remark 2.3

for all X,Y ∈ L(V ). On the other hand, in order to prove that G is completely
positive, let x = yy∗ for some element y ∈ A. Then, we can rewrite it as follows

G(X ⊗ Y ) =

= 1
〈ω,x〉Tr(Φ(S((yy∗)(1)))X)Φ(cω(yy∗)(2))Tr(Φ(S(yy∗)(3))Y )

= 1
〈ω,x〉Tr(Φ(S(y(1)y

∗
(1′)))X)Φ(cωy(2)y

∗
(2′))Tr(Φ(S(y(3)y

∗
(3′))Y )

= 1
〈ω,x〉Tr(Φ(S(y∗(1′))S(y(1)))X)Φ(cωy(2)y

∗
(2′))Tr(Φ(S(y∗(3′))S(y(3)))Y )

= 1
〈ω,x〉Tr(Φ(S(y(1′))

∗S(y(1)))X)Φ(cωy(2)y
∗
(2′))Tr(Φ(S(y(3′))

∗S(y(3)))Y )

= 1
〈ω,x〉Tr(Φ(S(y(1)))XΦ(S(y(1′))

∗))Φ(cωy(2)y
∗
(2′))Tr(Φ(S(y(3)))Y Φ(S(y(3′))

∗))

= (Tr ⊗ Id ⊗ Tr)(Q(X ⊗ 1⊗ Y )Q†)

where we have defined

(42) Q := 1
〈ω,x〉1/2

Φ⊗4(S(y(1)) ⊗ c
1
2
ωy(2) ⊗⊗S(y(3))).

Therefore, G is completely positive. Indeed, in the first step we have applied that
the comultiplication is multiplicative and the ∗-operation is a coalgebra homomor-
phism; see Definition 2.1. In the second and third steps we have used that S ∈ L(A)
is an algebra anti-homomorphism and the relation between the antipode and the ∗-
operation; see Remark 2.3. Note that, for C*-HAs, S = S−1; see Proposition B.6.
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The fourth step is a simple consequence of the fact that Φ is a ∗-representation
and the cyclic property of the trace. Finally, the middle term can be rewritten in

the form Φ(cωy(2)y
∗
(2′)) = Φ(c

1/2
ω y(2))Φ(c

1/2
ω y(2′))

† since cω ∈ A is positive central

element and Φ is a ∗-representation. �

Appendix F. Proof of Lemma 5.6

In this appendix we prove Lemma 5.6. In order to perform an analogous con-
struction of this gluing map to the one given in the C*-HA case, we first derive
an appropiate version of the usual pulling-through identity in Equation 11 to the
trivial sector.

Lemma F.1. Let A be a biconnected C*-WHA. Then,

xLS(1(1)) ⊗ 1(2) ⊗ S(1(3))yR = S(1(1)) ⊗ yR1(2)xL ⊗ S(1(3))

for all elements xL ∈ AL and yR ∈ AR.

Proof. First, recall Equations 2.31a and 2.31b from [6]:

xLS(1(1)) ⊗ 1(2) = S(1(1)) ⊗ 1(2)xL,

yR1(1) ⊗ S(1(2)) = 1(1) ⊗ S(1(2))yR.

for all xL ∈ AL and yR ∈ AR. This, together with Definitions 2.11, leads by taking
coproducts accordingly to the following identities:

xLS(1(1)) ⊗ 1(2) ⊗ 1(3) = S(1(1)) ⊗ 1(2)xL ⊗ 1(3),

1(1) ⊗ yR1(2) ⊗ S(1(3)) = 1(1) ⊗ 1(2) ⊗ S(1(3))yR,

respectively, for all elements xL ∈ AL and yR ∈ AR. Finally, since AL and AR

commute, we conclude the result by combining both identities. �

In addition, we adapt slightly Lemma 3.6 to the trivial sector, which is a key
property concerning complete positivity of the gluing map in Lemma 5.6. The
following result solves this problem.

Lemma F.2. Let A be a biconnected C*-WHA. Then,

ξRS(x∗L) = S(xL)∗ξR and S(yR)ξL = ξLS(y∗R)∗

for all elements xL ∈ AL and yR ∈ AR.

Proof. In the first place, note that T ∈ L(A) coincides with S and S−1 restricted
to AL and AR, respectively. Indeed, by virtue of Remark B.4, Proposition B.1 and
Remark 2.3,

T (xL) = S(xL1(1))〈ĝ, 1(2)〉 = S(xL),(43a)

T (yR) = 〈ĝ, 1(1)〉S−1(1(2)yR) = S−1(yR) = S(y∗R)∗,(43b)

for all xL ∈ AL and yR ∈ AR. Then, recall Lemma 3.6 to conclude that

S(x∗L) = T (x∗L) = ξ−1
L ξ−1

R T (xL)∗ξLξR = ξ−1
L ξ−1

R S(xL)∗ξLξR = ξ−1
R S(xL)∗ξR,

where in the last step we have used that S(xL) ∈ AR and AL and AR commute.
The remaining identity is proved similarly. �

The following auxiliary results arise naturally in the course of the derivation of
the properties of the gluing map.

Lemma F.3. Let A be a bicoconnected C*-WHA. Then,

〈ĥ,Ω(1)〉Ω(2) = D
−2ε(1)−11.
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Proof. It is easy to check that

D
2ε(1)〈ĥ,Ω(1)〉Ω(2) = 〈ĥ, t(1)〉t(2)〈ĝ, t(3)〉 = 1(1)〈ĝ, 1(2)〉 = 1,

where the first step is a consequence of the characterization of Ω ∈ A in Proposition B.3,
the second follows from the definition of dual left integral in Equation 27 and the
third equality is due to Proposition B.1. �

Lemma F.4. Let A be a biconnected C*-WHA. Then,

(44) 1(1)〈ĥ, 1(2)〉 ⊗ 1(3) = ε(1)−11 ⊗ 1.

Proof. Equivalently, we will check that

〈φĥψ, 1〉 = ε(1)−1〈φ, 1〉〈ψ, 1〉
for all φ, ψ ∈ A∗. Recall that ĥ ∈ A∗ is a one-dimensional projector supported on
the trivial sector [6, Lemma 4.8]. Hence,

(45) 〈φĥψĥ,Tr1〉 = 〈φĥ,Tr1〉〈ψĥ,Tr1〉 and 〈φĥ,Tra〉 = δa1

for all φ, ψ ∈ A∗ and all sectors a ∈ Irr(A∗). In particular

(46) (fĥ)(Tr1) = (fĥ)(
∑

a

d̂aTra) = D
2(fĥ)(Ω) = ε(1)−1〈f, 1〉

for all f ∈ A∗. Thus, we conclude that:

ε(1)−1〈φĥψ, 1〉 = 〈φĥψĥ,Tr1〉 = 〈φĥ,Tr1〉〈ψĥ,Tr1〉 = ε(1)−2〈φ, 1〉〈ψ, 1〉,
where the first equality follows from Equation 46 using f := φĥψ, the second equal-
ity is simply Equation 45 and the third equality follows from Equation 46 consid-
ering f := φ, ψ. �

Lemma F.5. Let A be a biconnected C*-WHA. Then,

1(1) ⊗ 〈ω, 1(2)〉1(3) = D
2ξ−1

R ⊗ ξ−1
L .

Proof. Note by the definition of AL and AR in Definitions 2.11 and the decompo-
sition ξ−1 = ξ−1

L ξ−1
R in Lemma 3.6, that

(47) (ξ−1)(1) ⊗ (ξ−1)(2) ⊗ (ξ−1)(3) = ξ−1
L 1(1) ⊗ 1(2) ⊗ ξ−1

R 1(3)

Then, the statement follows from the following calculation:

1(1) ⊗ 〈ω, 1(2)〉1(3) = D
2ε(1)〈ĥ,Ω(1)〉Ω(2) ⊗ 〈ω,Ω(3)〉Ω(4) by Lemma F.3

= D
2ε(1)〈ĥ,Ω(3)〉Ω(4) ⊗ 〈ω,Ω(1)〉Ω(2) by Equation 16

= D
2ε(1)〈ĥ, (ξ−1)(2)〉(ξ−1)(3) ⊗ (ξ−1)(1) by Lemma 3.6

= D
2ε(1)〈ĥ, 1(2)〉ξ−1

R 1(3) ⊗ ξ−1
L 1(1) by Equation 47

= D
2ξ−1

R ⊗ ξ−1
L by Lemma F.4

as we wanted to prove. �

Lemma F.6. Let A be a biconnected C*-WHA. Then,

(48) 〈ω, 1(1)〉1(2)〈ω, 1(3)〉 = D
2〈ω, 1〉ξ−1.

Proof. First, it will be useful to compute the constant 〈ω, 1〉 in a more opera-
tive way. The following calculation is a direct consequence of Proposition B.3 and
Equation 32:

(49) 〈ω, 1〉 = 1
D2ε(1) 〈ĥ, g

−1
L g−1

R 〉 = D
4ε(1)2

D2ε(1) 〈ĥ, ξ
−1
L ξ−1

R 〉 = D
2ε(1)〈ĥ, ξ−1

L ξ−1
R 〉.

Now, by an analogous reasoning as in the previous proof:

〈ω, 1(1)〉1(2)〈ω, 1(3)〉 = D
2ε(1)〈ĥ,Ω(1)〉〈ω,Ω(2)〉Ω(3)〈ω,Ω(4)〉 by Lemma F.3
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= D
2ε(1)〈ĥ,Ω(4)〉〈ω,Ω(1)〉Ω(2)〈ω,Ω(3)〉 by Equation 16

= D
2ε(1)〈ĥ, ξ−1

R 1(3)〉ξ−1
L 1(1)〈ω, 1(2)〉 by Lemma 3.6

= D
4ε(1)〈ĥ, ξ−1

R ξ−1
L 〉ξ−1

L ξ−1
R by Lemma F.5

= D
2〈ω, 1〉ξ−1

L ξ−1
R = D

2〈ω, 1〉ξ−1 by Equation 49

as we wanted to prove. �

Remark 5.4. There are no trace-preserving gluing maps for general biconnected
C*-WHAs such that Equation 24 holds for all elements x ∈ A.

Proof. Suppose by contradiction that there exists a trace-preserving linear map
G ∈ L(L(V ⊗ V )) that is a “gluing map”. In particular,

(Id ⊗G⊗ Id)(ρ(Ω, 2) ⊗ ρ(Ω, 2)) = ρ(Ω, 4).

On the one hand, after performing a partial trace on the second and third subsys-
tems, the left-hand side would be trivially given by the product state

(Id ⊗ Tr ⊗ Tr ⊗ Id)(ρ(Ω, 2) ⊗ ρ(Ω, 2)) = 〈ω,Ω〉−2Φ(cωΩ(1))〈ω,Ω(2)〉 ⊗ 〈ω,Ω(1′)〉Φ(cωΩ(2′))

= 〈ω,Ω〉−2Φ(cωξ
−1) ⊗ Φ(cωξ

−1)

by virtue of Remark 3.2 and Lemma 3.6. However, the right-hand side would take
the following form:

(Id ⊗ Tr ⊗ Tr ⊗ Id)(ρ(Ω, 4)) = 〈ω,Ω〉−2Φ(cωΩ(1)) ⊗ 〈ω,Ω(2)〉〈ω,Ω(3)〉Φ(cωΩ(4)) by Remark 3.2

= 〈ω,Ω〉−2Φ(cωΩ(1)) ⊗ 〈ω,Ω(2)〉Φ(cωΩ(3)) by Lemma 3.1

= 〈ω,Ω〉−2Φ(cωΩ(2)) ⊗ 〈ω,Ω(3)〉Φ(cωΩ(1)) by Equation 16

= 〈ω,Ω〉−2Φ(cωξ
−1
R 1(2)) ⊗ Φ(cωξ

−1
L 1(1)) by Lemma 3.6

which is not a product state. This contradicts the previous equation. �

Lemma 5.6. Let A be a biconnected C*-WHA and let (V,Φ) be a faithful ∗-repre-
sentation of A. There is a quantum channel G1 ∈ L(L(V ⊗ V )), called “gluing”
map, such that

(25) (Id⊗m−1 ⊗G1 ⊗ Id⊗n−1)(ρ(1,m) ⊗ ρ(1, n)) = ρ(1,m+ n)

for all m,n ∈ N.

Proof. For simplicity, let G1 := T ◦G, where T : L(V ) → L(V ⊗ V ) stands for the
local coarse-graining quantum channel from Section 3 and G : L(V ⊗ V ) → L(V )
is given by

G(X ⊗ Y ) := 1
D2 Tr(Φ(S(1(1))ξL)X)Φ(cω1(2))Tr(Φ(ξRS(1(3)))Y )

for all X,Y ∈ L(V ). First, assume that m = n = 2 without loss of generality and
let us check that it fulfills G(ρ(1, 2) ⊗ ρ(1, 2)) = ρ(1, 3). To this end, it turns out
to be enough to prove:

(50) G(Φ(cωxL) ⊗ Φ(cωxR)) = 〈ω, 1〉Φ(cωxLxR)

for all xL ∈ AL and xR ∈ AR. Indeed, in that case,

(Id ⊗G⊗ Id)(ρ(1, 2)⊗2) = 1
〈ω,1〉2 Φ(cω1(1)) ⊗G(Φ(cω1(2)) ⊗ Φ(cω1(1′))) ⊗ Φ(cω1(2′))

= 1
〈ω,1〉Φ(cω1(1)) ⊗ Φ(cω1(2)1(1′)) ⊗ Φ(cω1(2′))

= 1
〈ω,1〉Φ(cω1(1)) ⊗ Φ(cω1(2)) ⊗ Φ(cω1(3)) = ρ(1, 3).

by the weak comultiplicativity of the counit and the fact that 1(1)⊗1(2) ∈ AR⊗AL;
see Definition 2.1 and [6]. Thus, let us move to the proof of Equation 50:

G(Φ(cωxL) ⊗ Φ(cωxR)) = 1
D2 〈ω, S(1(1))ξLxL〉Φ(cω1(2))〈ω, ξRS(1(3))xR〉 by Remark 3.2
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= 1
D2 〈ω, ξLxLS(1(1))〉Φ(cω1(2))〈ω, S(1(3))xRξR〉

= 1
D2 〈ω, S(1(1))〉Φ(cωxRξR1(2)ξLxL)〈ω, S(1(3))〉 by Lemma F.1

= 1
D2 〈ω, 1(1)〉Φ(cωxRξR1(2)ξLxL)〈ω, 1(3)〉 by Remark B.5

= 〈ω, 1〉Φ(cωxRξRξ
−1
R ξ−1

L ξLxL) by Equation 48

= 〈ω, 1〉Φ(cωxRxL)

as we wanted to prove. Additionally, G is trace-preserving as an immediate conse-
quence of Lemma F.5:

Tr(G(X ⊗ Y )) = 1
D2 Tr(Φ(S(1(1))ξL)X)〈ω, 1(2)〉Tr(Φ(ξRS(1(3)))Y ) by Remark 3.2

= Tr(Φ(S(ξ−1
R )ξL)X)Tr(Φ(ξRS(ξ−1

L ))Y ) by Lemma F.5

= Tr(Φ(ξ−1
L ξL)X)Tr(Φ(ξRξ

−1
R )Y ) by Equation 32

= Tr(X)Tr(Y ) = Tr(X ⊗ Y ).

Finally, in order to check that G is a completely positive linear map, let us first
consider the following two calculations:

Tr(Φ(S(xRy
∗
R)ξL)X) = Tr(Φ(S(y∗R)S(xR)ξL)X) by Remark 2.3

= Tr(Φ(S(y∗R)ξLS(x∗R)∗)X) by Lemma F.2

= Tr(Φ(S(y∗R)ξ
1
2

L ξ
1
2

LS(x∗R)∗)X) by Equation 32

= Tr(Φ(S(y∗R)ξ
1
2

L )Φ(ξ
1
2

LS(x∗R)∗)X)

= Tr(Φ(ξ
1
2

LS(x∗R)∗)XΦ(S(y∗R)ξ
1
2

L ))

= Tr(Φ(ξ
1
2

LS(x∗R)∗)XΦ((ξ
1
2

LS(y∗R))∗)) by Equation 32

= Tr(Φ(ξ
1
2

LS(x∗R)∗)XΦ(ξ
1
2

LS(y∗R)∗)†)

for all xR, yR ∈ AR and, analogously,

Tr(Φ(ξRS(xLy
∗
L))Y ) = Tr(Φ(ξRS(y∗L)S(xL))Y ) by Remark 2.3

= Tr(Φ(S(yL)∗ξRS(xL))Y ) by Lemma F.2

= Tr(Φ(S(yL)∗ξ
1
2

Rξ
1
2

RS(xL))Y ) by Equation 32

= Tr(Φ(S(yL)∗ξ
1
2

R)Φ(ξ
1
2

RS(xL))Y )

= Tr(Φ(ξ
1
2

RS(xL))Y Φ(S(yL)∗ξ
1
2

R))

= Tr(Φ(ξ
1
2

RS(xL))Y Φ((ξ
1
2

RS(yL))∗)) by Equation 32

= Tr(Φ(ξ
1
2

RS(xL))Y Φ(ξ
1
2

RS(yL))†)

for all xL, yL ∈ AL. Now, recall that 1(1) ⊗ 1(2) ⊗ 1(3) ∈ AR ⊗A⊗AL; see [6]. This
allows us to rewrite G in the following form:

G(X ⊗ Y ) = 1
D2 Tr(Φ(S((1·1∗)(1))ξL)X)Φ(cω(1·1∗)(2))Tr(Φ(ξRS((1·1∗)(3)))Y )

= 1
D2 Tr(Φ(S(1(1)(1

∗)(1′))ξL)X)Φ(cω1(2)(1
∗)(2′))Tr(Φ(ξRS(1(3)1(3′)))Y )

= 1
D2 Tr(Φ(S(1(1)1

∗
(1′))ξL)X)Φ(cω1(2)1

∗
(2′))Tr(Φ(ξRS(1(3)1

∗
(3′)))Y )

= (Tr ⊗ Id ⊗ Id)(Q(X ⊗ 1⊗ Y )Q†)

where the last step follows from the previous calculations, and we have defined

(51) Q := 1
D

Φ⊗3(ξ
1
2

LS(1∗(1)) ⊗ c
1
2
ω1(2) ⊗ ξ

1
2

RS(1(3))).
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This concludes the proof. �
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[14] Cirac, J.I., Pérez-Garćıa, D., Schuch, N., Verstraete, F.: Matrix product density operators:
Renormalization fixed points and boundary theories. Annals of Physics. 378, 100-149 (2017).
doi:10.1016/j.aop.2016.12.030
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[16] Coser, A., Pérez-Garćıa, D.: Classification of phases for mixed states via fast dissipative
evolution. Quantum. 3, 174 (2019). doi:10.22331/q-2019-08-12-174

[17] Diehl, S., Rico, E., Baranov, M.A., Zoller, P.: Topology by dissipation in atomic quantum
wires. Nature Phys. 7, 971-977 (2011). doi:10.1038/nphys2106

[18] Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581-642 (2005).
doi:10.4007/annals.2005.162.581

[19] Etingof, P., Gelaki, S.: Descent and Forms of Tensor Categories. International Mathematics
Research Notices. 2012, 3040-3063 (2012). doi:10.1093/imrn/rnr119

[20] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. American Mathematical
Society, Providence, Rhode Island (2015).

[21] Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull.

Amer. Math. Soc. 40, 31-38 (2002). doi:10.1090/S0273-0979-02-00964-3
[22] Grusdt, F.: Topological order of mixed states in correlated quantum many-body systems.

Phys. Rev. B. 95, 075106 (2017). doi:10.1103/PhysRevB.95.075106
[23] Hastings, M.B., Wen, X.-G.: Quasiadiabatic continuation of quantum states: The stability of

topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B. 72, 045141
(2005). doi:10.1103/PhysRevB.72.045141

[24] Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007,
P08024-P08024 (2007). doi:10.1088/1742-5468/2007/08/P08024

[25] Kac, G.I., Paljutkin, V.G.: Finite ring groups. Trans. Moscow Math Soc., 251-294 (1966).

https://doi.org/10.48550/arXiv.2103.02492
https://doi.org/10.1007/s00220-011-1380-0
https://doi.org/10.1103/PhysRevLett.109.130402
https://doi.org/10.1088/1367-2630/15/8/085001
https://doi.org/10.1007/BF01815526
https://doi.org/10.1006/jabr.1999.7984
https://doi.org/10.1006/jabr.2000.8379
https://doi.org/10.1063/1.3490195
https://doi.org/10.1063/1.4932612
https://doi.org/10.1016/j.aop.2017.01.004
https://doi.org/10.1103/PhysRevB.82.155138
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.245134
https://doi.org/10.1016/j.aop.2016.12.030
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.22331/q-2019-08-12-174
https://doi.org/10.1038/nphys2106
https://doi.org/10.4007/annals.2005.162.581
https://doi.org/10.1093/imrn/rnr119
https://doi.org/10.1090/S0273-0979-02-00964-3
https://doi.org/10.1103/PhysRevB.95.075106
https://doi.org/10.1103/PhysRevB.72.045141
https://doi.org/10.1088/1742-5468/2007/08/P08024


MATRIX PRODUCT OPERATOR ALGEBRAS II 31
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Poincaré. 22, 563-592 (2021). doi:10.1007/s00023-020-00992-4
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