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Abstract— Recent developments in communication technolo-
gies, such as 5G, together with innovative computing paradigms,
such as edge computing, provide further possibilities for the im-
plementation of real-time networked control systems. However,
privacy and cyber-security concerns arise when sharing private
data between sensors, agents and a third-party computing
facility. In this paper, a secure version of the distributed
formation control is presented, analyzed and simulated, where
gradient-based formation control law is implemented in the
edge, with sensor and actuator information being secured by
fully homomorphic encryption method based on learning with
error (FHE-LWE) combined with a proposed mixed uniform-
logarithmic quantizer (MULQ). The novel quantizer is shown
to be suitable for realizing secure control systems with FHE-
LWE where the critical real-time information can be quantized
into a prescribed bounded space of plaintext while satisfying
a sector bound condition whose lower and upper-bound can
be made sufficiently close to an identity. An absolute stability
analysis is presented, that shows the asymptotic stability of the
closed-loop secure control system.

I. INTRODUCTION

Recent advances in communications technology, such as
5G, offer ultra-low latency and highly reliable wireless
information exchange paving the way for pervasive edge
computing for industrial internet-of-things (IoT) applications
[1]. In fact, the combination of 5G and high-performance
computing infrastructure can enable the deployment of real-
time networked control systems via edge servers, where
sensing and control information are exchanged in real-time
within the wireless network.

With the emergence of networked control systems, privacy
and cyber-security concerns become increasingly important
and cutting-edge solutions are highly desired [1]–[4], es-
pecially when using potentially untrustworthy third-party
computing facilities. Traditional encryption algorithms, such
as AES and RSA, can protect private data during their
transportation to edge or cloud computing devices. However,
the corresponding decryption process removes their confiden-
tiality in order to allow for further data processing in these
third-party servers [3]. Fully homomorphic encryption (FHE)
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algorithms have recently been introduced to overcome this
shortcoming as they allow for data manipulation directly on
the encrypted data, thus eliminating the need for decryption
[5]–[7]. Specifically, FHE based on Learning with Error
(FHE-LWE) allows us to perform addition and multiplication
with the encrypted data without error accumulation due to the
encryption process, thereby enabling secure control system
design [7]–[10].

When dealing with real-world actuator and sensor data,
however, a quantization process is required before FHE-
LWE can be used [10], [11]. We propose the use of the
mixed uniform-logarithmic quantizer (MULQ), derived from
the quasi-logarithmic quantizer [11], because it permits both
to quantize data in a prescribed bounded integer set and to
adjust its lower and upper-bound, as we discuss later. In
the literature, several works deal with control design and
analysis methods in presence of quantization [12]–[14]. Here
we focus on the sector bound approach [12], [14] to assess
the absolute stability of the secure feedback control system.

In this paper, we present a secure version of the distributed
formation control problem [15]–[19], in which the objective
is to guide a multi-agent system towards a desired formation
while guaranteeing privacy and cyber-security via FHE-LWE
and MULQ. As an example, this framework could be useful
when a third-party computing facility is employed to facili-
tate the usage of information coming from external sensors,
i.e. not located on-board the agents, that are essential to
the control task. Our contribution is three-fold: we describe
the distance-based secure edge control system, we discuss
the sector bound property of the mixed uniform-logarithmic
quantizer and we analyze the stability of the closed-loop
multi-agent system.

We organize the paper as follows. Preliminaries on graph
and on formation control are presented in Section II. The
discussion on MULQ is given in Section III. The main result
on secure formation control with MULQ is presented in
Section IV. A simulation result on secure formation control
of four agents forming a square is given in Section V. Finally,
the conclusions are presented in Section VI.

II. PRELIMINARIES

A. Fully Homomorphic Encryption by Learning with Error

Prior to describing the encryption method, we need to
introduce some relevant notations as used in the literature.
Throughout this work, we denote the base 10 logarithm of
x as log(x). Let the plaintext space, namely the unencrypted
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information space, be a bounded integer set [a] :=
{

b ∈
Z : − a

2 ≤ b < a
2

}
of cardinality a ∈ N. Since the plaintext

for our control application represent numbers of sensor and
control signals we can conveniently set a to be a power of
10. Furthermore, let the cyphertext space, i.e. the encrypted
information space, be the set of integers modulo Zq whose
elements are denoted in bold, q∈N. We define q=wa where
the parameter w is also a power of 10.

For the implementation of a secure formation control law
via third-party computing facility, full capability of multi-
plication and addition operations in cyphertext are desirable.
This can be achieved with Fully Homomorphic Encryption
by Learning with Error (FHE-LWE), briefly reviewed as
follows. Let m ∈ [a]n be a plaintext message of length n
to be encrypted and s ∈ ZN

q be a secret key of length N. The
encryption operation Enc(·) of m is defined by

MEnc = Enc(m) := [(−As+wm+ e) (mod q),A] (1)

where the matrix MEnc ∈ Zn×N+1
q is the resulting cyphertext

message. Furthermore, the operators [·, ·] and (mod q) refer
to the concatenation and modulo q operator respectively. The
matrix A∈Zn×N

q is sampled from a uniform distribution over
Zn×N

q , while the injected error vector e is sampled from
a uniform distribution over [r]n with r < w, such that the
following inequality holds: |ei|< w

2 for i = 1, · · · ,n.
Once the encrypted message MEnc is computed, the de-

cryption process will involve the secret key vector s and
the injected error vector e. The latter one has been shown
to be crucial for the security of the encryption [10]. Let
MEnc ∈ Zn×N+1

q be a cyphertext message and s̄ := col(1,s)
be a stacked column vector of length N + 1 constructed by
the secret key vector s. The decryption process Dec(·) of
MEnc is defined by

m = Dec(MEnc) :=
⌈
(MEncs̄) (mod q)

w

⌋
=

⌈
wm+ e

w

⌋
(2)

where vector m ∈ [a]n is the resulting plaintext message and
d·c refers to the element-wise round half away from zero1.

As briefly mentioned before, the FHE-LWE method allows
for the addition and multiplication operations to take place
in the cyphertext space. Indeed, let MEnc

1 ,MEnc
2 ∈Zn×N+1

q be
two messages in cyphertext computed via (1) and m1,m2 ∈
[a]n their decrypted vectors in plaintext. One can compute
that

Dec(MEnc
1 +MEnc

2 ) = m1 +m2 (3)

as long as m1 +m2 ∈ [a]n and
∣∣e1,i + e2,i

∣∣< w
2 holds for i =

1. · · · ,n [10].
Before defining the multiplication operation in the cypher-

text space, we need to introduce another encryption method.
Let m1 ∈ [a] be a scalar message to be encrypted. The second
encryption method Enc2(·) is define by

MEnc2
1 = Enc2(m1) := m1R+OEnc (4)

where the matrix MEnc2
1 ∈ Zlog(q)(N+1)×N+1

q is the resulting
cyphertext. OEnc = Enc(0log(q)(N+1)) refers to the encrypted

1For example, d−1.5c=−2 and d−1.4c=−1.

zero column vector 0log(q)(N+1) ∈ [a]log(q)(N+1) and R is
defined by:

R := col
(
100,101, · · · ,10log(q)−1)⊗ IN+1

where ⊗ denotes the Kronecker product and IN+1 the identity
matrix of dimension N +1.

Since any row vector c ∈ ZN+1
q can be represented as

c = ∑
log(q)−1
i=0 10ici with row vectors ci ∈ Zlog(q)(N+1)

q , whose
components are one of the single digit from 0 to 9, we can
define a function D : ZN+1

q → Zlog(q)(N+1)
q that decomposes

any row vector c ∈ ZN+1
q by its string of digits as

D(c) := [c0,c1, · · · ,clog(q)−1]

Therefore, c = D(c)R for any row vector c ∈ ZN+1
q [10].

Now we have the necessary means to define multiplication
in the cyphertext space. Let MEnc2

1 ∈ Zlog(q)(N+1)×N+1
q and

mEnc
2 ∈ ZN+1

q be two messages in cyphertext computed via
(1) and (4) respectively and m1,m2 ∈ [a] their decrypted
scalars plaintext. The multiplication operation ~ of MEnc2

1
and mEnc

2 is defined as follows

MEnc2
1 ~mEnc

2 := D(mEnc
2 )MEnc2

1 (5)

where MEnc2
1 ~mEnc

2 ∈ ZN+1
q , which is a row vector.

It can be shown now that

Dec(MEnc2
1 ~mEnc

2 ) = m1m2 (6)

as long as m1m2 ∈ [a] and
∣∣∣∣m1e2

w +
D(mEnc

2 )e1
w

∣∣∣∣< 1
2 holds [10].

The injected error vector e1 ∈ [r]log(q)(N+1) comes from the
encryption of the zero vector in (4). Note that D(mEnc

2 )e1 is
a scalar as D(mEnc

2 ) ∈ Zlog(q)(N+1)
q is a row vector.

B. Formation graph with infinitesimal rigid formation and
distance-based formation control

Following the rigidity formation framework as proposed
in [19], we will define the formation control using an
undirected graph G= (V ,E ) where V = {1,2, . . . ,n} is the
set of vertices, representing the set of n mobile agent, and
E ⊆ V ×V is the set of edges. Note that for each pair of
agents i and j we define only one edge in E , i.e. either
(i, j) or ( j, i). For the pair (i, j) the agent i is referred to
as the tail node and the agent j as the head node. The
set of neighboring agents to the i-th agent is denoted by
Ni := { j ∈ V : (i, j) ∈ E ∨ ( j, i) ∈ E }.

Associated to the graph G, we can define an incidence
matrix B ∈ R|V |×|E | whose elements bik are given by

bik =

 +1 if i = E tail
k

−1 if i = E head
k

0 otherwise ,
(7)

where E tail
k and E head

k denote the tail and the head of the
edge Ek. |V | and |E | refer to the cardinality of the sets V
and E respectively.

Each node in V can be associated to the agents’ position
vector p = col(p1, · · · , pn) by indicating the i-th agent’s
position with pi ∈ R2. Since for any k-th edge in E , with



pairing agents (i, j), we can define the relative position vector
between the agents i and j as zk = pi − p j ∈ R2. Then,
every edge in E can be associated to the vector of relative
positions z = col(z1, · · · ,z|E |). The vector z can be described,
in compact form, by

z = B̄T p

with B̄ = B⊗ I2 ∈ R2n×2|E |.
Using the above graph formalism, we can formalize the

notion of infinitesimally rigid formation as follows. With the
formation framework defined by the tuple (G, p), an edge
function fG : R2n→ R|E | is defined by

fG(p) := col(‖z1‖2, · · · ,‖z|E |‖2) = D>z z

where Dz := diag(zk)∈R2|E |×|E | for k = 1, · · · , |E | is a block
diagonal matrix. The rigidity matrix R(z) of the framework
(G, p) is given by the Jacobian of the edge function fG
R(z) = DT

z B̄T .
For the formation in 2D plane as pursued in this paper,

the framework (G, p) is said to be infinitesimally rigid if
Rank(R(z)) = 2n−3. Moreover, if |E |= 2n−3 it is said to
be minimally rigid. Roughly speaking, for an infinitesimally
and minimally rigid framework, the only group motions that
can be performed on the whole group when they are already
in the desired formation shape, are translations and rotations
[16]. In this work, we assume that the agents’ position vector
dynamics is described by

ṗ(t) = u(t) (8)

where ṗ(t) =: d
dt p(t) and u(t) = col(u1(t), · · · ,un(t)) is the

concatenated control input signal with ui(t) be the velocity
control input signal of the agent i. In the rest of the paper,
we do not write the dependence on time t in all signals when
it is clear from the context. Let

d = col
(
d1, · · · ,d|E |

)
∈ R|E | (9)

be the set of desired inter-agent distances associated to the
desired formation shape. Accordingly, we can define the set
of all equilibrium points that satisfy the desired distance
constraints by D := {p ∈ R2n : ‖zk‖= dk, ∀ k = 1, · · · , |E |}.

One of the well-known distributed formation control law
that can guarantee the local exponential stability of D is
the distance-based formation control, as expounded in [15],
[17], [18]. In particular, the distributed formation control law
is given by

u = col
i∈{1,··· ,n}

(ui) =−B̄DzDz̃e = R(z)T Dz̃e (10)

where z̃ = col(‖z1‖`−2, · · · ,‖z|E |‖`−2) and e = col
(
(‖z1‖`−

d`
1), · · · ,(‖z|E |‖`− d`

|E |)
)

with ` ∈ N [16]. In the following,
we will only consider the case with `= 2.

Note that the formation control law in (10) is written in the
most compact form. Looking at the individual control input
we see that the local control law uses only local information
available to each agent i, since

ui =− ∑
k∈Ni

B̄ikzk‖zk‖`−2ek , (11)

where B̄ik is the (i,k) element of the matrix B̄. In other words,
(11) is a distributed control law for any i-th agent. When
`= 2, (11) becomes

ui =− ∑
k∈Ni

B̄ikzkek , (12)

which we will consider throughout this paper.

III. MIXED UNIFORM-LOGARITHMIC QUANTIZER

While the use of distributed formation control as described
in Subsection II-B gives rise to distributed input signals
defined on R, it cannot directly be implemented in the
cyphertext Zq in the edge or cloud via FHE-LWE method as
presented in Section II-A. Here, we present a mixed uniform-
logarithmic quantizer method that allows the quantization
of the sensing information, which are subsequently used to
compute the formation control input in cyphertext. Although,
such quantizer has been used before in [11], its focus was
on the deployment of distributed estimator in the cloud to
compensate for sensor bias without stability analysis. In
contrast, by restricting to the standard distributed formation
control law (12), we show that the use of this quantizer can
still guarantee the local asymptotic stability of the desired
formation shape in our main result in Section IV.

More precisely, the mixed uniform-logarithmic quantizer
(MULQ) operator Q : R→ R is defined by

Q(x) :=
1

S(x)
dS(x)xc (13)

where S(x) is the base-10 scaling factor defined by

S(x) = 10(σ−blog(|x|)c−1) (14)

b·c refers to the floor function and σ ≥ 1 ∈ N is the
desired significant figures parameter, i.e. the number of
leading digits of x that will be kept after the quantization.
For example, for σ = 1 the set of quantization levels is
given by

{
aρ : a ∈ {−9,−8, . . . ,8,9}, ρ ∈ {10k}, k ∈ N

}
=

{. . . ,0.09,0.1,0.2, . . . ,0.9,1,2, . . . ,9,10,20, . . .}. This is in
contrast to that of the standard logarithmic quantizer with
coarseness parameter 0< ρ < 1 given by {±ρk : k ∈N} [14].

The significant figures parameter σ plays an important role
in guaranteeing the stability of the closed-loop system that
depends on the information on the formation rigidity matrix
and graph, as shown in Section IV. In the following lemma,
we show that the sector bound property of the proposed
MULQ operator, where the bounds depend directly on the
parameter σ . The larger σ is, the thinner the band of the
sector bound is and the closer it is to an identity operator.

Lemma 3.1: Let the MULQ Q : R→ R and S(x) with a
given σ ≥ 1 be defined according to (13) and (14). Then the
following inequalities hold for all x ∈ R:

(A1).
(

1− 0.5
10σ−1

)
|x|2 ≤ xQ(x)≤

(
1+ 0.5

10σ−1

)
|x|2

(A2). |x−Q(x)| ≤ 0.5
10σ−1 |x|

(A3). |Q(x)| ≤
(

1+ 0.5
10σ−1

)
|x|

PROOF. In the following we prove the lemma for the case
x > 0 only, since it is similar for x < 0. We first prove



(A1) with x > 0. The difference between x and Q(x) can
be rewritten as:

x−Q(x) = x− 1
S(x)
dS(x)xc= 1

S(x)
(S(x)x−dS(x)xc) .

Note, that the rounding operation gives us −0.5 ≤ S(x)x−
dS(x)xc ≤ 0.5. Hence, using the upper-bound of the rounding
operation, it follows that:

x−Q(x)≤ 0.5
S(x)

⇔ Q(x)≥ x− 0.5
S(x)

= x− 0.5
10σ−1 10blogxc

≥ x− 0.5
10σ−1 x =

(
1− 0.5

10σ−1

)
x ,

where we have used the fact that 10blogxc < x for positive
x. This implies that xQ(x)≥

(
1− 0.5

10σ−1

)
x2. Similarly, using

the lower-bound of −0.5≤ S(x)x−dS(x)xc, it follows that:

x−Q(x)≥ −0.5
S(x)

⇔ Q(x)≤ x+
0.5
S(x)

= x+
0.5

10σ−1 10blogxc

≤ x+
0.5

10σ−1 x =
(

1+
0.5

10σ−1

)
x .

(15)

In this case, the upper-bound of xQ(x) is given by xQ(x)≤(
1+ 0.5

10σ−1

)
x2, which proves (A1). Now similarly, to prove

(A2) with x > 0 we rewrite:

x−Q(x)≤ 0.5
S(x)

=
0.5

10σ−1 10blogxc ≤ 0.5
10σ−1 x ,

which implies immediately that |x−Q(x)| ≤ 0.5
10σ−1 |x|. Finally,

from (15) follows that |Q(x)| ≤
(

1+ 0.5
10σ−1

)
|x|, which proves

(A3). �

Using the MULQ operator Q as above, we can now
encrypt the digits of Q(x) by using Q(x)S(x) ∈ [a] with
a = 2(10)σ − 1 and [a] be as defined in Subsection II-A.
The cyphertext message Enc(Q(x)S(x)) or Enc2(Q(x)S(x))
can be sent to a third-party computing facility for further
computation in the cyphertext space. Recalling the previous
example with σ = 1, we have that Q(x)S(x) ∈ [19] for any
x ∈ R. Thus a static plaintext space with cardinality a = 19
can be used. The processed information in cyphertext can
then be decrypted with local secret keys and re-scaled back
by 1

S(x) to get the desired local control law. Again, using
the example with σ = 1, 1

S(x) ∈ {10k : k ∈ N}. This will be
discussed further in the following section.

IV. DISTANCE-BASED SECURE FORMATION CONTROL

A. Distributed distanced-based formation control via MULQ
and FHE-LWE

The reason to employ a third-party computing facility to
calculate the control inputs is to facilitate the use of external
sensor systems that are essential to the control task. In this
case FHE-LWE ensures that the private information, coming
from these sensors, cannot be retrieved by others. In the
previous section, we briefly discussed how Q(x) and the digit
information S(x)Q(x) can be used to deploy FHE-LWE. For

every edge k, we have to encrypt the scalars Q(zk,1)S(zk,1),
Q(zk,2)S(zk,2) and the scalar Q(ek)S(ek) to enable the use of
FHE-LWE on relative position vector zk = col(zk,1,zk,2) and
on distance error ek information. The first two are encrypted
with Enc2(·) via (4), while the last one with Enc(·) via (1)

ZEnc2
k,1 = Enc2

(
Q(zk,1)S(zk,1)

)
ZEnc2

k,2 = Enc2
(
Q(zk,2)S(zk,2)

)
EEnc

k = Enc(Q(ek)S(ek))

The scaling information will also be transmitted encrypted
or un-encrypted to the corresponding agents in edge k so that
the processed information can be re-scaled back. When UEnc

i,k
is the resulting gradient computation of formation control law
in the cyphertext for agent i in k-th edge, the applied local
control law for agent i is given by:

ui =− ∑
k∈Ni

 B̄ik
S(zk,1)S(ek)

Dec
(
UEnc

i,k

)
1

B̄ik
S(zk,2)S(ek)

Dec
(
UEnc

i,k

)
2

 , (16)

where we have used the decryption process Dec(·) in (2)
and Dec

(
UEnc

i,k

)
j refers to the j-th element of the vector

Dec(UEnc
i,k ). Following the multiplication property of FHE-

LWE as in (6), it follows from above that

ui =− ∑
k∈Ni

 B̄ik
S(zk,1)S(ek)

Dec
(

ZEnc2
k,1 ~EEnc

k

)
B̄ik

S(zk,2)S(ek)
Dec

(
ZEnc2

k,2 ~EEnc
k

)
=− ∑

k∈Ni

 B̄ik
S(zk,1)S(ek)

Q(zk,1)S(zk,1)Q(ek)S(ek)
B̄ik

S(zk,2)S(ek)
Q(zk,2)S(zk,2)Q(ek)S(ek)


=− ∑

k∈Ni

B̄ikQ(zk)Q(ek) (17)

where we define Q(zk) := col(Q(zk,1),Q(zk,2)).
In comparison to the unencrypted version in (12) the local

control law above contains the quasi-logarithmic quantized
version of zk and ek. In particular, FHE-LWE in the feedback
loop can simply be regarded as an identity operator. In
other words, FHE-LWE becomes transparent due to the
use of MULQ operator and the closed-loop system analysis
becomes an absolute stability analysis with quantizers in the
feedback loop. Consequently, for the analysis of closed-loop
systems in the following subsection, the compact form of the
whole formation control input can be written as

u =−B̄DQ(z)Q(e) (18)

where the MULQ operator Q is understood element-wise.
Let us remark on securing the information of the scaling

factor S(·) for both zk and ek. In the discussion above, this
information is transmitted directly to the agent and used to
re-scale back the computed control input. This re-scaling
operation can be secured in the following way. In addition
to encrypting the quantized information of Q(zk, j)S(zk) and
Q(ek)S(ek), the sensing node can encrypt the exponent of
S(zk, j) and of S(ek), indicated here with SEnc

z,k, j and SEnc
e,k

respectively, and send them to the remote computing facility.
The latter subsequently computes the addition operation of



both SEnc
z,k, j and SEnc

e,k and the result is transmitted to the
corresponding agents. The agent can then perform the re-
scaling operation by using the fact that

S(zk, j)S(ek) = 10Dec
(

SEnc
z,k, j+SEnc

e,k

)

for dimensions j = 1,2 for substitution in (16).

B. Absolute stability analysis of the closed-loop systems

The application of FHE-LWE (17) to the formation
control of (10) using quantized values of Q(zk,1)S(zk,1),
Q(zk,2)S(zk,2) and Q(ek)S(ek) becomes equivalent to the ones
obtained without FHE-LWE, which is compactly written in
(18). Correspondingly, in the following proposition, we will
analyze the stability of the closed-loop system where the
FHE-LWE operation is replaced by an identity operator.

Proposition 4.1: Consider the mobile robots whose dy-
namics are given by (8). Suppose that the control inputs are
given by the distributed quantized gradient-based formation
control law (18) with the desired formation shape defined
by the desired distance vector d as in (9) and the mixed
uniform-logarithmic quantization operator Q be as in (13)
with significant figures constant σ ≥ 1. Assume that the
formation graph is infinitesimally and minimally rigid and
connected. Then for sufficiently large σ , the equilibrium
point e = 0 is locally asymptotically stable.

PROOF. The proof is based on the established local asymp-
totic stability results in distance-based formation control and
we refer interested reader to [15]–[17], [19] among many
others. The dynamics of the closed-loop autonomous multi-
agent system can be written as

ż = B̄T ṗ =−B̄T B̄DQ(z)Q(e) (19)

ė = DT
z ż =−DT

z B̄T B̄DQ(z)Q(e) , (20)

where as before the MULQ operator Q is understood
element-wise when a vector is used in its argument.

Let us consider the following standard Lyapunov function
as used in the aforementioned papers

V =
1
4

eT e =
|E |

∑
k=1

Vk =
1
4

|E |

∑
k=1

(‖zk‖2−d2
k )

2 . (21)

By computing its time-derivative along the trajectory of the
closed-loop systems, we have

V̇ =− eT DT
z B̄T B̄DQ(z)Q(e)

=+
1
2
(
Dze−DQ(z)Q(e)

)T B̄T B̄
(
Dze−DQ(z)Q(e)

)
− 1

2
eT DT

z B̄T B̄Dze−
1
2

Q(e)T DT
Q(z)B̄

T B̄DQ(z)Q(e) ,

(22)

where B̄ describes the incidence matrix of formation graph
G. In this case, B̄T B̄ is positive semi-definite matrix with the
kernel being a vector of ones 1, due to the connectedness of
the undirected graph.

As established in literature of distance-based formation
control (c.f. [15]–[17], [19]), the second term on the right-
hand side is negative definite and satisfies

− 1
2

eT DT
z B̄T B̄Dze≤−λmin‖e‖2 (23)

where λmin refers to the smallest eigenvalue of the positive
definite matrix DT

z B̄B̄T Dz in the neighborhood of e = 0.
The last term of (22) is upper-bounded by zero as B̄B̄T

is positive semi-definite. We will now compute the upper-
bound of the first term in (22) as follows

1
2
(
Dze−DQ(z)Q(e)

)T B̄T B̄
(
Dze−DQ(z)Q(e)

)
=

1
2
‖B̄
(
Dze−DQ(z)Q(e)

)
‖2

≤ 1
2
‖B̄(Dze−DzQ(e))‖2 +

1
2
‖B̄
(
DzQ(e)−DQ(z)Q(e)

)
‖2

=
1
2
‖B̄Dz (e−Q(e))‖2 +

1
2
‖B̄
(
Dz−DQ(z)

)
Q(e)‖2 . (24)

By Lemma 3.1 the three inequalities: ‖e−Q(e)‖≤ 0.5
10σ−1 ‖e‖,

‖Dz − DQ(z)‖ ≤ 0.5
10σ−1 ‖z‖, and ‖Q(e)‖ ≤

(
1+ 0.5

10σ−1

)
‖e‖

hold. Combining these terms to (24) and together with (23),
it follows that (22) becomes

V̇ ≤λmax

(
0.5

10σ−1 +
0.5

10σ−1

(
1+

0.5
10σ−1

))
‖z‖2‖e‖2

−λmin‖e‖2

where λmax > 0 is the maximum eigenvalue of B̄T B̄.
Note that ‖z‖ can be expressed as a continuous function

of e, namely, ‖z‖=
√

∑k |ek +d2
k |. Thus in the neighborhood

of e = 0, e.g. in Bδ := {e : ‖e‖ < δ}, ‖z‖2 can be upper
bounded by a constant c that depends on the desired distance
d and the radius of the neighborhood δ . Correspondingly,
for a sufficiently large σ , the right-hand side of the above
inequality can be made negative in Bδ such that

V̇ ≤−k‖e‖2 (25)

for all e ∈ Bδ with 0 < k < λmin and in particular

k =λmin−λmaxc
(

0.5
10σ−1 +

0.5
10σ−1

(
1+

0.5
10σ−1

))
.

This implies that Bδ is forward invariant, so that ‖z(t)‖ is
bounded by c for all t ≥ 0 and ‖e(t)‖→ 0 as t→∞. In other
words, the formation converges to the desired shape. �

We note that a different value of σ can be assigned in
the quantization of zk, j and of ek in order to get a trade-
off between asymptotic stability and minimizing the required
plaintext space. On the one hand, as shown in the proof of
Proposition 4.1, the parameter corresponding to e (denoted
conveniently as σek ) plays a crucial role in ensuring that (25)
holds. It has to be chosen sufficiently large for asymptotic
stability. On the other hand, the parameter for zk, j (denoted as
σzk, j ) can be assigned to 1 safely. It allows us to minimize the
space of plaintext needed for the encryption and decryption.
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Fig. 1: Secure formation control simulation with four agents form-
ing a square: (a) error trajectories over time (in semi-logarithmic
scale); (b) top view of the agents’ 2D trajectories of the four
agents starting from the initial conditions (triangles) and converging
towards the desired square formation (filled circles).

V. NUMERICAL SIMULATION

In this section, we present the results of a numerical
simulation implemented in Python. Similar to [11] we used
Python to circumvent the integer overflow problem by em-
ploying arbitrary-precision integers. The task of the distance-
based secure edge controller is to guide a system of 4 agents
into a square formation with desired inter-agent distances.
The undirected graph G = (V ,E ) is defined with agents
V = {1,2,3,4} and E = {(1,2),(2,3),(1,3),(3,4),(1,4)},
while the desired distance vector is d = [1 1

√
2 1 1]T ∈R5.

The initial conditions for the agents’ position vector p(0) is
randomly generated within the basin of attraction. Regarding
the encryption, the plaintext [a] and cyphertext Zq space
available are defined by a = 1011 and q = 1022. The secret
key vector s length is N = 30, while the sampling space [r]
of the injected error vector e is defined by r = 4 so that the
conditions for (3) and (6) hold. Following the computation in
the proof of Proposition 3.1 and using the neighborhood B2.7
of e= 0, we can obtain the constants c≈ 12.04, λmin≈ 0.058
and λmax ≈ 4.11. By taking σ = 4, the condition stated after
(25) in the proof of Proposition 4.1 is satisfied.

Using the above simulation setup, the corresponding sim-
ulation result is shown in Figure 1. Figure 1a) shows the
plot of error signal ei from all five edges i = 1, . . .5. It
demonstrates that the error vector e ∈ R5 of the multi-agent
system converges to the equilibrium point e = 0 as expected
with an exponential rate of convergence. Panel 1b) presents
a top view of the agents’ position vector p ∈ R8 over time.
Each agent starts from its initial position depicted in triangle
shapes and all agents converge exponentially to the desired
shape of a square (shown as filled circles in the figure).

We remark here that the computation of (25) leads to a
conservative bound of the parameters. Indeed, in simulations,
we can assign smaller values of σ or larger values of δ than
the ones given above for which the formation goal is still
attained.

VI. CONCLUSION

In this paper, we proposed a secure distributed forma-
tion control system enabled by FHE-LWE encryption and

MULQ quantization. While a similar framework has been
presented before [11] with an empirical analysis, in this
contribution we present rigorous analysis of the closed-loop
systems. Specifically, we show the sector bound property of
the proposed MULQ and we present an absolute stability
analysis showing the asymptotic stability of the closed-loop
secure control system. Since we have shown that MULQ
can be used together with FHE in the design of secure
formation control, the combined use of MULQ with FHE can
be explored further in other secure control design problems.
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