
Dynamic grain models via fast heuristics for
diagram representations

Andreas Alpers, Maximilian Fiedler,
Peter Gritzmann, Fabian Klemm

April 14, 2022

Abstract. The present paper introduces a mathematical model for
studying dynamic grain growth. In particular, we show how character-
istic measurements, grain volumes, centroids, and central second-order
moments at discrete moments in time can be turned quickly into a
continuous description of the grain growth process in terms of geo-
metric diagrams (which largely generalize the well-known Voronoi and
Laguerre tessellations). We evaluate the computational behavior of our
algorithm on real-world data.

1 Introduction

Grain growth is an important field of study in materials science as the resulting grain
structures strongly influence the mechanical and physical properties of metals, ceramics,
and other polycrystalline materials [20, 23]. Although a number of different models have
been introduced over the years, starting with works of Smith, von Neumann, and Mullins
in the 1950s [26, 18, 17], understanding and controlling grain growth remains challenging,
both in theory and practice. For instance, the recent empirical study [34] demonstrates
that neither the classical Hillert’s model [11] nor the MacPherson-Srolovitz model [16]
capture anisotropic grain growth adequately. Additional challenges are discussed in [9,
12, 22].

The present paper introduces a mathematical interpolation/extrapolation model for
quickly turning information acquired at discrete moments in time into a continuous
description of the grain growth process. It employs diagram representations of grain
maps (which will be formally introduced in Section 2) based on measured estimates
of the grain volumes, centroids, and, if available, central second-order moments. Such
characteristics can be obtained, for instance, by utilizing tomographic techniques; see [20,
21].

The diagram representations considered in this paper are generalizations of previously
used (isotropic) Laguerre and Voronoi tessellations [15, 30, 31] and allow for curved
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boundaries and non-convex grains. While these representations are based on a phe-
nomenological model whose physical foundation is still not fully understood, they have
consistently been reported to capture the physical principles governing the forming of
polycrystals quite well; see [1, 3, 19, 24, 25, 27, 28, 29]. Several sophisticated opti-
mization algorithms are available for computing or approximating such diagrams with
high accuracy, [1, 19], but they require relatively large computational cost. This can
be a bottleneck, particularly in dynamic 3D studies. We therefore focus in the present
paper on extremely fast optimization-free heuristics for fitting diagrams to measured
data. Methods for the related but generally different task of generating synthetic grain
structures that follow a given distribution are discussed in [4, 5, 8, 13, 32].

First, we use discriminant analysis to interpret a heuristic, subsequently referred to
as H1, which was introduced in [15] for the isotropic case and extended by [29] to the
anisotropic case. Our analysis leads naturally to an even simpler and faster heuristic H2,
proposed in [3], which can now be explained to perform equally well under certain con-
ditions. Also, the comparison of H1 and H2 suggests that diagram parameters may
provide additional insight into the stage of the growth process. We apply these heuris-
tics to available grain maps in order to assess their quality. Then we introduce a dynamic
grain growth model to obtain a continuous description of the process based on measure-
ments at only a few moments in time. Finally, we evaluate the computational behavior of
our algorithm on real-world data. Our study indicates that the growth process converges
towards particularly simple diagrams, which seem to be energetically favorable.

The paper is organized as follows. Section 2 introduces the relevant diagrams and for-
malizes the concept of grain scans. Sections 3 and 4 address optimization-free heuristics,
both, in terms of a theoretical analysis and a practical evaluation on real-world data.
Section 5 introduces a dynamic model which is capable of extending measurements at
a few time steps to a continuous grain growth model very quickly. The results of our
empirical study on practical grain data are then given in Section 5. Section 6 concludes
with some final remarks.

2 Diagrams and grain scans

Adequate representations of grain maps can be valuable tools for understanding the
physical principles of grain growth and the properties of the resulting material. In fact,
the diagram representations studied in this paper require only a few parameters per grain
and are thus relatively easy to process. As they exhibit geometric and combinatorial fea-
tures of grain maps which are not readily available otherwise, such representations may
contribute to predicting and, potentially, even controlling the forming of new materials.

Some or all parameters which specify a diagram can be estimated from certain tomo-
graphic measurements, and optimizing the remaining ones then constitutes an inverse
problem; see [2]. Previous studies [1, 3, 19, 24, 25, 27, 28, 29] indicate that, in particular,
grain volumes, centroids, and central second-order moments govern decisive properties
of grain maps.

Let us now formally introduce the appropriate class of diagrams. Let d ∈ N denote the
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dimension of space. Here, we are mainly interested in the 3 dimensional case. However,
our approach works for general d, and, in fact, planar sections or surfaces of polycrystals
are also relevant in practice. Further, let k ∈ N denote the number of different grains in
the underlying grain map. An anisotropic power diagram is specified by the following
data for each i ∈ [k] := {1, . . . , k}:

• a positive definite symmetric matrix Ai ∈ Rd×d,

• a site si ∈ Rd, and a

• size γi ∈ R.

For simpler reference, we collect these parameters in the two families A = {A1, . . . , Ak}
and Γ = {γ1, . . . , γk}, where repetitions of elements are permitted, and the set S =
{s1, . . . , sk}. The sites specify the positions of the grains while the matrices in A describe
characteristics of their shapes. In fact, each grain is equipped with its own ellipsoidal
norm ‖ ‖Ai given through Ai by

‖x‖Ai =
√
x>Aix, (x ∈ Rd).

The sizes γi are used to control the grain volume.
Given A, S and Γ, the anisotropic power diagram (in the following often simply

referred to as diagram)

P = P(A, S,Γ) = {P1, . . . , Pk},

is a decomposition of Rd into cells Pi defined by

Pi =
{
x ∈ Rd : ‖x− si‖2Ai + γi ≤ ‖x− s`‖2A` + γ`, ∀` ∈ [k] \ {i}

}
.

In particular, two different cells do not share interior points, i.e., int(Pi) ∩ int(P`) = ∅
for i 6= `. See [6] and [7] for examples and further properties of different classes of
diagrams.

Diagrams can be viewed as continuous (or resolution-independent) representations
of polycrystalline samples. Conventionally, the samples are represented as voxel-based
digital images at some resolution, called grain maps. More generally, given a set of
points X = {x1, . . . , xn} ⊆ Rd in the sample and labels, i.e., y1, . . . , yn ∈ [k], with
k ∈ N denoting the number of different grains in the sample, we will call the labeled
data set

{
(xj , yj) : j ∈ [n]

}
a grain scan or polycrystal scan. In the following, we refer

to it as (X,Y ) with the understanding, that the indices of the labels in the family Y =
{y1, . . . , yn} correspond to the indices of the points in X. A grain scan therefore provides
a partitioning of X into (the discretizations of) the grains Gi =

{
xj : (xj , i) ∈ (X,Y )

}
.

We can then measure the fit of the diagram in terms of the symmetric difference of Gi
and X ∩ Pi for all i ∈ [k]. (Points on the boundary of two or more cells are assigned
according to some preference criterion or, conservatively, can be viewed as classification
error, but are essentially irrelevant in our context and hence generally discarded.)
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Usual grain maps are special grain scans where the sample is assumed to be in the
range [0, 1]d and points of X are identified with the points of [0, 1]d in the grid ρZd for
some resolution ρ ∈ (0, 1). Note that, with κi = |Gi|, the term ρdκi can be regarded as
an approximation of the volume νi of the ith grain.

If a grain scan is available the computation of a best fitting diagram requires the
optimization of all three characteristics A, S and Γ. While this can indeed be done,
see [2], it is, however, too time-consuming, given current optimization technology, for
dynamic 3D applications. Hence, we will in the following assume that A and S are
available through measurements and Γ will be determined by a heuristic which may,
additionally, use grain volume information, i.e., (approximations of) ν1, . . . , νk. As such
heuristics abstain from any optimization, they are computationally fast but potentially
result in a higher misclassification error.

3 Optimization-free heuristics

This section considers two heuristics that derive all characteristic parameters A, S,Γ
for an anisotropic power diagram directly from given measurements. These heuristics
avoid optimization routines altogether, are fast and, as we will see, already provide a
reasonable classification accuracy. More specifically, we provide a new interpretation
of the heuristics introduced in [15, 29] and [3] within the framework of discriminant
analysis.

Choices for A and S

Discriminant analysis is a popular classification technique in statistics and provides a
different perspective on the a priori choices for the characteristic parameters (A, S,Γ);
see e.g. [10]. Within its realm, the grain scan is regarded as a sample of the multivariate
random variable (X ,Y) where X specifies a point in [0, 1]d and Y gives the index i ∈
[k] of the corresponding grain. Discriminant analysis estimates the distribution of the
multivariate random variable from samples and assigns a point to the class with the
highest probability p. Hence, the decision boundary between two classes i, ` consists of
those points x that have an equal conditional probability of lying in either class, i.e.,{

x ∈ Rd : p(Y = i|X = x) = p(Y = `|X = x)
}
.

For its estimation, discriminant analysis applies the maximum likelihood principle under
the assumption that the members from each class are normally distributed. As each
normal distribution N (µi,Σi) is fully determined by its d-dimensional mean vector µi
and its (d×d)-covariance matrix Σi, it is these characteristics that need to be estimated.
It is well known that the maximum likelihood principle results in the choices of the
sites S as the centroids and the matrices A as the inverse of the covariance matrices of
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the sample, i.e., more precisely,

µi = ci =
1

|Gi|
∑
xj∈Gi

xj ,

Ai =
(
Σ(Gi)

)−1
=

(
1

|Gi|
(xj − ci : xj ∈ Gi)(xj − ci : xj ∈ Gi)T

)−1
for i ∈ [k]. Note that the latter requires that the matrices Σ(Gi) have full rank d. This
can be assumed here as, in the underlying model, grains that are degenerate to volume 0
do not matter. The above maximum likelihood setting is precisely the choice for A and S
suggested in [1], and subsequently also used in [29]. Also, estimates for these parameters
are available through tomographic measurement.

Let us point out that, in practice, discriminant analysis is often applied even when
the underlying assumption of a normal distribution is only met approximately (as is the
case here). This is justified as the procedure is generally reported to be quite robust;
see, e.g., [14].

Choices for Γ

We will now turn to the third set of characteristics, i.e., the sizes Γ. We show first
that the choice of Γ in heuristic H1 can also be interpreted within the paradigm of
discriminant analysis with a specific prior. Building on this interpretation, a different
natural choice will lead to H2.

To begin with, let us briefly recall the volume argument of [15] and (in its anisotropic
generality) [29] that leads to the specific choice for Γ in heuristic H1.

Let A ∈ Rd×d be positive definite and symmetric. As A can be diagonalized there
exist an orthogonal matrix U ∈ Rd×d and a diagonal matrix D = diag(λ1, . . . , λd) ∈
Rd×d with λ1, . . . , λd > 0 such that A = UDUT . Then, using the abbreviation D1/2 =
diag(

√
λ1, . . . ,

√
λd), we have for the unit ball BdA and ρ ∈ (0,∞)

ρBdA =
{
x ∈ Rd : ‖x‖A ≤ ρ

}
=
{
x ∈ Rd : xTAx ≤ ρ2

}
=
{
x ∈ Rd : xTUDUTx ≤ ρ2

}
= ρUD−

1/2Bd2.

Hence, the volume vol
(
ρBdA

)
of this ellipsoid is given by

vol
(
ρBdA

)
= ρd vol

(
UD−

1/2Bd2
)

= ρd det(A)−
1/2 vol

(
Bd2
)
.

Regarding the ellipsoid ci + ρBdAi as an approximation of the ith grain, it is now natural
to choose γi according to the volume condition

vol
({
x ∈ Rd : ‖x‖2Ai + γi ≤ 0

})
= νi

involving the available approximation νi for the volume of the ith grain. A simple
computation yields

γi = −ρ2 = −

(
νi

vol
(
BdAi

))2/d

= −

(
νi
√

det(Ai)

vol
(
Bd2
) )2/d
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For d = 3, and with the specific setting of Ai =
(
Σ(Gi)

)−1
, this yields the choice

γi = −

(
3νi

4π
√

det(Σ(Gi))

)2/3

from [15, 29]. In order to interpret this choice via discriminant analysis, we determine
which probability distribution, called prior, will lead to the same decision boundaries
between the classes. So, let

π1, . . . , πk ∈ [0,∞), N =

k∑
i=1

πi 6= 0.

Then (π1, . . . , πk) specifies the a priori “belief” about the prior probability πi/N that a
point (regardless of its position) belongs to cluster i, i.e.,

πi
N

= p(Y = i), (i ∈ [k]).

The computation of the decision boundary is then facilitated via Bayes’ Theorem. As
each class is assumed to be normally distributed, Bayes’ Theorem involves the conditional
density functions

fX|Y=i(x) =
det(Ai)

1/2

(2π)d/2
· exp

(
−1

2
(x− ci)>Ai(x− ci)

)
of the k estimated normal distributions N (µi,Σi), i.e., with

µi = ci, Σi = Σ(Gi) = A−1i .

In this situation, Bayes’ Theorem states that

p(Y = i|X = x) =
fX|Y=i(x)πi∑k
`=1 fX|Y=`(x)π`

.

Therefore, the maximum likelihood decision boundaries between two classes i, ` can be
determined by solving the equation

fX|Y=i(x) · πi = fX|Y=`(x) · π`.

Taking the logarithm, using that (x− ci)>Ai(x− ci) = ‖x− ci‖2Ai , and simplifying, this
condition turns into the equation

‖x− ci‖2Ai − log
(
det(Ai)

)
− 2 log(πi) = ‖x− c`‖2A` − log

(
det(A`)

)
− 2 log(π`).

Hence, these decision boundaries coincide with that of the diagram with the parameters
(A, S,Γ) if and only if

γi = γ
(1)
i = − log

(
det(Ai)

)
− 2 log(πi) + γ, (i ∈ [k]),
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where γ ∈ R is an arbitrary constant. (Recall that the diagrams are invariant under
such common additions to the sizes.) For the above choice of the sizes in H1, we hence
obtain

πi = π
(1)
i =

eγ/2√
det(Ai)

· exp

1

2

(
νi
√

det(Ai)

vol(Bd2)

)2/d
 , (i ∈ [k]).

Since
1√

det(Ai)
=
√

det(Σ(Gi)) =
1

vol(Bd2)
· vol(BdAi),

the first factor is proportional to the volume of the ellipsoid BdAi . The second factor

is a “correction term” which increases exponentially if the measured grain volume ρdκi
exceeds vol(BdAi). The first term seems natural while the second is quite unusual.

Within the realm of discriminant analysis it appears reasonable to simply set γi = 0
for all clusters i. Then we obtain the priors

πi = π
(2)
i =

eγ/2√
det(Ai)

, (i ∈ [k]),

which are proportional to the volumes of the ellipsoids corresponding to the covariance
matrices of the grains. Thus, this simpler prior distribution encodes the assumption that
the ellipsoid volumes already represent the grain volumes well. This justifies the choice

γ
(2)
1 = . . . = γ

(2)
k = 0,

proposed in [3]. We will refer to the respective heuristic as H2.
In the next section we compare the behavior of H1 and H2 on available real-world

grain scans.

4 Comparison of H1 and H2

We compare the two heuristics H1 and H2 on a real-world 3D grain scan and indicate how
their difference can be interpreted. This may be of particular interest for understanding
the state of a grain growth process and will be taken up in Section 5.

Experimental evaluation

We compare the methods with a data set taken from [15] that has been obtained by
a synchrotron micro-tomograph experiment conducted on a metastable beta titanium
alloy (Ti β21S). The material was scanned with the volume of 240µm × 240µm × 420µm
at a resolution corresponding to a voxel size of 0.7 µm. This scan resulted in a 3D voxel
image of size 339 × 339 × 599 composed of a total of 591 grains. All our computations
are carried out in 3D, i.e., d = 3.
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In the following, we assess the quality of fit by means of different measures. Let
P = {P1, . . . , Pk} be a diagram (obtained by H1, H2, or, for that matter, any other
algorithm). We set

Ĉi =
{
xj ∈ X : xj ∈ int(Pi)

} (
i ∈ [k]

)
, Ĉ = (Ĉ1, . . . , Ĉk).

Note that Ĉ is not a clustering of X but only of X ∩
⋃k
i=1 int(Pi); this is indicated by

writing Ĉ rather than C.
A natural measure how well P captures the grain scan G = (G1, . . . , Gk) is the relative

fit or accuracy ΦG of Ĉ defined by

ΦG(Ĉ) =
1

n

∣∣∣∣∣
k⋃
i=1

(
Gi ∩ Ĉi

)∣∣∣∣∣ .
Let us point out that, as they are not assigned within Ĉ, all points on the cell boundaries
count as misclassified.

In Table 1 we will also report on the behavior with respect to the relative cluster
weight error

ΨG(Ĉ) =
1

n

k∑
i=1

∣∣κi − |Ĉi)|∣∣,
and the relative deviation of the centroids c(Gi) and c(Ĉi), and the covariance matrices
A−1i = Σi = Cov(Gi) and Cov(Ĉi), respectively. Formally, the relative centroid error
and the relative covariance error are defined as

1

n

k∑
i=1

κi‖c(Gi)− c(Ĉi)‖2 and
1

n

k∑
i=1

κi‖Σi − Cov(Ĉi)‖2.

For the latter, we used the spectral norm. This matrix norm measures the largest singular
value of the covariance differences and, thus, intuitively captures the difference in the
largest singular vectors of the covariance matrices. Note that, as defined, the latter two
measures depend on the original physical dimensions of the sample. We refrain from any
additional normalization as we do not conduct inter-sample studies here.

We will also address combinatorial features. More precisely, we consider the percentage
of grains with a correct neighborhood, i.e., with all grain neighbors in the ground truth
being also neighbors in the representation. Here, a grain is a neighbor of another grain
if a voxel of the former grain is adjacent (face-connected, edge-connected or vertex-
connected) to a voxel of the later grain. We also provide this percentage when one and,
respectively, two errors in the neighborhood are allowed, i.e., when there is either one
additional or one missing voxel.

The results of our evaluation are shown in Table 1.
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Performance Characteristics H1 H2

Accuracy (in %) 92.98652 92.98658
Relative Cluster Weight Error 0.02869 0.02869
Relative Centroid Error (in µm) 0.64346 0.64347
Relative Covariance Error (in µm2) 15.25372 15.25376
Correct Neighborhoods (in %) 42.30118 42.30118
Correct Neighborhoods up to 1 Error (in %) 80.54146 80.54146
Correct Neighborhoods up to 2 Errors (in %) 94.92386 94.92386
Running Time (in s) 1.49641 0.00000

Table 1: Comparison of H1 and H2.

Let us point out that the displayed running times involve the heuristics but, for a
fairer comparison, do not include the computation of the performance criteria. Hence,
the entry 0 for the running time of H2 refers to the fact that all parameters defining P
are given upfront. Also, while we exercised appropriate care for the implementations,
we do not claim that our code is fully optimized.

In terms of fit, we observe that both heuristics perform extremely well, in fact, almost
identical, on the given real-world data set. We will now offer an explanation for the
latter behavior.

Similarity and difference

While both heuristics, H1 and H2, employ the same matrices A and sites S, they gen-
erally differ in the sizes Γ of the resulting diagrams. Hence, the nearly identical perfor-
mance depicted in Table 1 for all applied quality criteria may come as a surprise. As

observed before, the priors underlying H1 and H2 denoted π
(1)
i and π

(2)
i , as before, differ

by a factor that depends exponentially on the deviation of vol(BdAi) from the measured
grain volume νi.

Now, let αi be a positive real number such that

νi = αi · vol(BdAi) = αi ·
vol(Bd2)√
det(Ai)

.

Then, for each i ∈ [k],

π
(1)
i =

eγ/2√
det(Ai)

· exp

1

2

(
νi
√

det(Ai)

vol(Bd2)

)2/d
 =

eγ/2√
det(Ai)

· exp

(
1

2
α

2/d
i

)

= π
(2)
i · exp

(
1

2
α

2/d
i

)
,

and, expressed in terms of the sizes γ
(1)
i used in H1, we obtain

γ
(1)
i = −

(
νi

vol
(
BdAi

))2/d

= −α2/d
i .
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Now, suppose that all factors αi are identical, i.e., νi = α · vol(BdAi) for some positive
real number α independent of i. Then, of course,

π
(1)
i = π

(2)
i · exp

(
1

2
α

2/d

)
, γ

(1)
i = −α2/d, (i ∈ [k]).

Hence, the (normalized) priors for H1 and H2 coincide, which implies that the maximum
likelihood decision boundaries for the two heuristics are the same. Further, since dia-
grams are invariant under the addition of a constant to each size, the diagrams produced
by H1 and H2 are identical.

We suspect that grain structures for which the volumes of the unit balls BdAi with

respect to Ai =
(
Σ(Gi)

)−1
are nearly proportional to the grain volumes νi might turn

out to be energetically favorable. According to the above reasoning, the former may be

quantified by the variance of the powers Γd/2 = (γ
d/2
1 , . . . , γ

d/2
k ) computed in H1, i.e.,

var(Γ
d/2) = E

(
Γ
d/2 − E(Γ

d/2)
)

=
1

k

k∑
i=1

(
γ
d/2
i −

1

k

k∑
i=1

γ
d/2
i

)2

.

As an example, we will in Section 5 compute the evolution of var(Γ3/2) at different
moments in time for a real-world 3D grain growth process. In terms of H1 and H2,
we might expect that if the two heuristics perform differently in practice, the current
grain structure will not be energetically minimal, and further growth will result in an
improved structure.

We close this section with a “constructed” theoretical example which sheds some
additional light on the behavior of the two heuristics. Since the general principle of the
construction is the same in higher dimension and can, hence, already be illustrated in
2D we restrict the following description to the case d = 2.

As depicted in the top row of Fig. 1, the image consists of two grains G1 and G2; one
(orange) is the square [0, β]× [0, β] for different values of β ∈ (0, 1), the other (blue) is its
complement in [0, 1]× [0, 1]. Of course, one would not expect such samples to originate
from real-world grain scans. The bottom row of Fig. 1 shows the corresponding ellipses
ci + B2

Ai
with respect to Ai =

(
Σ(Gi)

)−1
.

As argued before, the variance of the ratios νi/ vol
(
B2
A1

)
is a relevant parameter.

Figure 2 therefore provides plots of

β2

vol
(
B2
A1

) and
1− β2

vol
(
B2
A2

)
as a function of β.

Note that these ratios differ considerably for larger values of β. Hence, we would
expect that the heuristics H1 and H2 behave quite differently in these cases. This is
confirmed by the resulting diagrams depicted in Fig. 3.

The behavior for β = 0.9 suggests that H1 tries to preserve the areas of the grains,
while H2 seems to favor their shapes. If the relevant volume ratios are close, as is the
case for small β, both heuristics achieve both aims and perform similarly.
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Figure 1: A family of grain scans involving a parameter β to illustrate differences between
H1 and H2. Top, from left to right: Grain scans for β = 0.1, β = 0.5, and
β = 0.9. Grain G1 (orange) fills the square [0, β] × [0, β], G2 (blue) fills the
rest of the unit square. The bottom row shows the computed ellipses ci + B2

Ai

with Ai =
(
Σ(Gi)

)−1
for i = 1, 2.

Figure 4 shows the ratios of the grain volume νi and the areas of the diagram cells
under the two models H1 and H2, respectively.

5 Dynamic grain growth

We now describe a simple interpolation/extrapolation model that is capable of quickly
turning information acquired at a few moments in time into a continuous description of
the grain growth process. Then we report on the results of an empirical evaluation on a
real-world grain scan time series. Finally, we study the correlation between the diagram
size parameters Γ and the disappearance of grains in the process.

The model

Since well-chosen diagrams have been demonstrated to yield high-quality representa-
tions of grain structures of many types of polycrystalline materials, it is natural to
exploit their rather low-dimensional parameter space for deriving continuous models
from data measured at discrete times. Recall that a diagram is fully characterized by
the triple (A, S,Γ). In order to simulate the dynamic evolution of grain structures over
time, we can fit a polynomial (or any other desired type of function) for each diagram
parameter extracted from a discrete-time series polycrystal data set. These functions

11



Figure 2: Ratios νi/ vol
(
B2
Ai

)
of the areas of the grain and the corresponding ellipsoid

for i = 1 (orange) and i = 2 (blue) as a function of β.

then represent the continuous change in diagram parameters during the growth process.
Understanding the evolution of the diagram parameters over time may help predict
changes in the material during an annealing process and may provide further insights
into the material characteristics.

Suppose, that 3D-grain scans (or at least appropriate characteristic measurements)
are available at the discrete times t0, t1, . . . , tm. Then we compute, for each t = t`, the
parameters of an anisotropic power diagram Pt = P(At, St,Γt) which represent the grain
scans. Subsequently, we select a class F of parameterized functions and determine one
that best fits the data At, St,Γt. In our experimental setting we choose polynomials
of a small degree to avoid overfitting, and we measure the fit in terms of least-squares
deviation.

In 3D, the interpolation/extrapolation involves ten functions of F for each grain,
three for the coordinates of the diagram sites, three for the rotation part of the grains’
covariance matrix, three for the length of the principal axis of the covariance matrix,
and one for the size parameter. Of course, in order to set up the computation of the
functions, we need to “track” each grain, i.e., we need to identify which grain corresponds
to which at the different moments t in time.

During the grain growth process, grains may disappear. We assume, however, that
no new grains emerge. In the experimental series that will be described in more detail
below, about 40% of all initially present grains disappeared throughout the process.
Hence we distinguish between such non persistent grains and persistent grains that exist
throughout the observed time interval. Of, course, for non persistent grains, the functions
are fitted only as long as the grain “definitely exists”. More specifically, if a previously
existing grain disappears from the measurement, we choose as last diagram parameters
the covariance matrix from the previous time step and compute a size parameter such
that its grain volume is essentially zero. If, on the other hand, for some moment in time
our prediction generates a covariance matrix and a size parameter which result in a grain
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Figure 3: Diagrams for the family of grain scans from Fig. 1 obtained via H1 (top row)
and H2 (bottom row).

volume close to zero, we exclude the grain from further consideration.
The diagrams Pt can, in principle, be computed by any suitable method. In addi-

tion to the obvious criteria that any employed algorithm should be computationally fast
and produce diagrams of appropriate accuracy, one has to pay attention to its behavior
concerning the invariances within the parameter space to avoid corruption of the in-
terpolation/extrapolation. As we are using the heuristic H1 described in Section 3, all
parameters are, however, uniquely determined by the measurements, and we can hence,
in the following, ignore this issue.

The data

The data used for our experimental study is taken from [34]. It comprises 15 3D scans
of a 99.9% pure polycrystalline iron sample taken at different moments in time of an
annealing process. More precisely, the material was first cold-rolled and annealed for 30
minutes at 700°C to fully recrystallize before it was first scanned (time t0). Subsequently,
the sample was annealed again at 800°C for 10 minutes to simulate grain growth, cooled
to stabilize, and then scanned again (time t1). This was repeated another 13 times with
annealing periods of 5 minutes (times t2, . . . , t14). The effect of the process is already
visible by the number of grains in the sample. While the first scan exhibits 1327 grains,
the last one contains only 776, and the number of interior grains strictly decreases
from 387 to 189; see [34, Table 1] for more details. The identification of grains over
the 15 moments in time is already provided by [34].

For this data set, we computed 15 anisotropic power diagrams. We used H1 as we
were also interested in featuring the temporal development of the corresponding sizes in
view of the relation of H1 and H2 elaborated in Section 3.
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Figure 4: Ratio of the area νi of the original grain and the area of the corresponding
diagram cell obtained by H1 (left) and H2 (right) for i = 1 (orange) and i = 2
(blue) as a function of β .

Evaluation

We apply a cross-validation to assess the quality of the model. To compute the accuracy
at time t`, we exclude the data for t` and fit the functions on the data for the remaining
times {t0, . . . , t14} \ {t`}. Then we evaluate the obtained interpolation/extrapolation
functions at time t` to compute diagram parameters Â`, Ŝ`, Γ̂`. Finally, we determine
the accuracy Φ of the resulting diagram P̂` of representing the grain scan at t`.

The results for polynomials of degree 1, 2, and 3 are depicted in Fig. 5 in yellow,
orange, and red, respectively. Let us point out that the piecewise linear curves which
connect the 15 data points for each color are only drawn for a better perception of the
trends over time.

We observe that the degree of the employed polynomials does not seem to have a
strong impact on the fit. It would be interesting to link this observation to the “uniform
setup” in terms of the actions over time of the underlying grain growth process.

As an additional reference the blue markers give an upper “orientation” for the accu-
racy that one may expect from the model. In fact, the blue markers depict the accuracy
of H1 at each of the 15 time steps. The curves are dashed at both ends to signify that
the model changes from interpolation to extrapolation at these extremes. Also, note
that the earlier annealing times differ from the latter ones.

Figure 5 shows that the accuracy of our models is generally high. With quadratic
polynomials, we obtain an initial accuracy of 74%, which increases over time to approxi-
mately 86% for later time steps. Note that this is not much below the accuracy obtained
by H1 on the ground truth. The general trend that accuracy increases with time (and
hence prediction becomes easier) for this data set is in perfect agreement of the findings
in [34, 33], which show that over time the system approaches the self-similar regime.

Figure 6 show a fixed 2D slice of the 3D polycrystal at various moments in time and
the diagrams resulting from our model (in the cross-validation scheme described above).
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Figure 5: Accuracy (within the cross-validation paradigm) of the interpola-
tion/extrapolation model plotted for each time step using polynomials
of degree 1, 2, and 3, respectively for the fit.

Size variation

In the remaining part of this section, we study how the growth process affects the size
parameters Γt. As Fig. 5 shows, the accuracy of the model increases with the duration of
the process. This may be seen as an indication that the employed diagram structures are
energetically favorable. Complementing the analysis of Section 4, we will now empirically
study how the size parameters Γ of the diagrams change as the grains grow.

Let us begin by recalling the interpretation for the similarities and differences of H1
and H2. In fact, based on the analysis of Section 4 we suspected that for persistent

grains the variances of the powers Γ
3/2
t of the sizes chosen by H1 should be significantly

smaller than for non persistent grains. As Tables 2 and 3 show, these variances are
indeed all small but significantly smaller for the persistent grains. This means, on the
one hand, that the sites do not vary much, and we might as well have employed the
simpler heuristic H2. On the other hand, in terms of the sites, non persistent grains are
less “regular” than persistent grains.

t`+0 t`+1 t`+2 t`+3 t`+4

` = 0 6.409 · 10−8 6.214 · 10−8 5.130 · 10−8 3.016 · 10−6 2.544 · 10−7

` = 5 6.719 · 10−6 5.839 · 10−6 1.057 · 10−5 7.025 · 10−4 9.815 · 10−7

` = 10 2.286 · 10−4 7.425 · 10−5 5.749 · 10−5 1.185 · 10−3 1.823 · 10−5

Table 2: Variance of Γ
3/2
t`

for ` ∈ {0, 1, . . . , 14} of persistent grains.
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Figure 6: Visual comparison of diagrams obtained from full data (available for t0, . . . , t14)
and the interpolation/extrapolation model that uses all data except for the
respective moment in time. A fixed 2D slice through the 3D data set at times
t0, t5, t9 and t13 (top row); the corresponding diagram representation obtained
via H1 (2nd row) and, respectively, via the interpolation/extrapolation model
that uses only data from the other moments in time and best-fitting quadratic
polynomials (3rd row); symmetric difference between the images from the 2nd
and 3rd row (bottom row).

t`+0 t`+1 t`+2 t`+3 t`+4

` = 0 7.570 · 10−3 1.040 · 10−2 4.915 · 10−3 1.974 · 10−2 2.993 · 10−3

` = 5 1.278 · 10−2 1.834 · 10−2 2.790 · 10−2 4.158 · 10−3 8.959 · 10−3

` = 10 2.608 · 10−2 2.804 · 10−2 2.955 · 10−2 3.541 · 10−3 −

Table 3: Variance of Γ
3/2
t`

for ` ∈ {0, 1, . . . , 14} of non persistent grains.
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A closer look at Table 2 shows that, somewhat unexpectedly, not even for persistent

grains the variance of Γ
3/2
t decreases monotonously in time. One may have anticipated

that with decreasing “system energy” the behavior of the volumes of the unit balls B3
Ai

(t)

with respect to Ai(t) =
(
Σ(Gi(t))

)−1
become increasingly similar to that of the grain

volumes νi(t). The results in Table 2, however, seem to suggest that, in the presence of
grain disappearance, the neighboring grains fill the newly available space more directly
and it requires additional energy to reach a more regular mass distribution.

Grain disappearance

Next, we use a standard logistic regression model for predicting the probability pi(t) of
the binary response variable which signifies whether grain i vanishes (response value 1)
at the next observed moment t+ 1 or not (response value 0). As predictor variables we
use the grain’s volume and its size parameter as computed by H1. Hence, we estimate
three parameters, factors β1 and β2 for each of the two variables and one parameter β0
for the intercept, i.e., we use the regression model

pi(t) =
1

1 + e−(β0+β1νi(t)+β2γi(t))
.

Note that the parameters β0, β1 and β2 are independent of t. Hence the model is iden-
tical for all time steps in the sense that it depends only on the grain characteristic.
Our null hypothesis is that the size and volume parameter do not correlate with grain
disappearance. As a significance level we choose 0.05.

Table 4 depicts the computed coefficients and p-values. Let us, in addition, point out
that the McFadden’s Pseudo R2 value is 0.322, indicating an excellent model fit.

coefficient p-value

β0 (intercept) -4.0537 <0.0001
β1 (volume) -0.0010 <0.0001
β2 (size parameter) -1.0924 <0.0001

Table 4: Coefficients estimated by maximum likelihood estimation and their p-values for
the described logistic regression model.

As it turns out, we can reject the null hypothesis at a significance level of 0.05. This
suggests that the diagram size parameter Γt is statistically significant in this model for
predicting grain disappearance.

6 Final remarks

As we have seen, measurements at discrete times of a grain growth process can be turned
into a continuous description of the process using diagram representations. Our findings

about the increasing fit of anisotropic diagrams, the variance of Γ
3/2
t and the relevance
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of the sizes for predicting grain disappearance indicate that, in the course of the growth
process, the grain scans tend towards particularly “simple” diagrams with essentially
uniform size parameters.

Since all computations are fast, and can, if necessary, generally even be speeded up
by using H2 rather than H1, we believe that the described model has the potential of
becoming a practical tool for simulation and further studies of grain growth in practice.
A next step is to evaluate the model more extensively on various types of grain scan
data. It would be desirable if a consolidating foundation of the model can be achieved
based on first principles.

Finally, let us point out that the model allows for some flexibility to incorporate
additional insight. It is possible, for instance, to incorporate available characteristics of
grain growth into the curve fitting process.
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