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Abstract

Maximum entropy network ensembles have been very successful in modelling sparse network topologies

and in solving challenging inference problems. However the sparse maximum entropy network models pro-

posed so far have fixed number of nodes and are typically not exchangeable. Here we consider hierarchical

models for exchangeable networks in the sparse limit, i.e. with the total number of links scaling linearly

with the total number of nodes. The approach is grand canonical, i.e. the number of nodes of the network is

not fixed a priori: it is finite but can be arbitrarily large. In this way the grand canonical network ensembles

circumvent the difficulties in treating infinite sparse exchangeable networks which according to the Aldous-

Hoover theorem must vanish. The approach can treat networks with given degree distribution or networks

with given distribution of latent variables. When only a subgraph induced by a subset of nodes is known,

this model allows a Bayesian estimation of the network size and the degree sequence (or the sequence of

latent variables) of the entire network which can be used for network reconstruction.
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I. INTRODUCTION

Networks [1, 2] have the ability to capture the topology of complex systems ranging from

the brain to financial networks. Network models are key to have reliable unbiased null models

of the network and to explain emergent phenomena of network evolution. Network model can

be classified in two major classes: equilibrium maximum entropy models [3–15] and growing

network models [1, 16–18]. While growing network models have a number of nodes that increases

in time, maximum entropy models are used so far only for treating networks of a given number

of nodes N. In this paper we are interested in extending the realm of maximum entropy network

models to networks of varying network size N.

Maximum entropy network ensembles are the least biased ensembles satisfying a given set of

constraints. As such maximum entropy ensembles are widely used as null models and for network

reconstruction starting from features associated to the nodes of the network. Given the profound

relation between information theory and statistical mechanics [19, 20], maximum entropy network

ensembles can be distinguished between microcanonical ensembles and canonical ensembles [3,

21, 22] similarly to the analogous distinction traditionally introduced in statistical mechanics for

ensembles of particles. Microcanonical network ensembles are ensembles of networks of N nodes

satisfying some hard constraints (such as the total number of links, or the given degree sequence).

Canonical network ensembles instead are ensemble of networks of N nodes satisfying some soft

constraints, (such as the expected total number of links or the expected degree sequence). The

canonical ensembles with expected degree sequence can be also formulated as latent variable

models where the latent variables can be associated to the nodes [5, 23].

Maximum entropy models have been very successful in solving challenging inference models

[6, 8, 24–26], however they have the limitation that they only treat networks with a given fixed

number of nodes N. Indeed in a number of scenarios, the number of nodes might not be fixed

or might not be known. In this context an important problem is to compare networks of different

network sizes. For instance in brain imaging one might choose a finer grid or a coarser grid of

brain regions and an outstanding problem in machine learning is how to build neural networks that

can generalize well when tested on network data with different network size than the network data

in the training set [27, 28].

In order to have network ensembles that can treat networks of different size, here we introduce

the grand canonical network ensembles in which the number of nodes can vary. A well-defined
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grand-canonical network ensemble necessarily needs to be exchangeable [29], i.e. needs to be

invariant under permutation of labels of the nodes of the network, so that removing or adding a

node has an effect that is independent of the particular choice of the node added or removed.

The research on exchangeable networks is currently very vibrant. The graphon model [30] is

the most well established exchangeable network model. However this model is dense, i.e. the

number of links scales quadratically with the number of nodes while the vast majority of the

network data is sparse with a total number of links scaling linearly with the network size. In other

words most of the real world networks have constant average degree. However popular models

for sparse networks such as the configuration model [31] and the exponential random graphs [4]

are not exchangeable. In fact these models treat networks of labelled nodes with given degree

or with given expected degree sequence. Therefore the network ensemble is not invariant under

permutation of the node labels, except if all the degrees of all the expected degrees of the network

are the same (for a more diffused discussion of why these networks are not exchangeable see

discussion in Ref.[32]). Several works have been proposed exchangeable network models in the

when the average degree of the network diverges sublinearly with the network size [33–38]. In

Ref. [32] a framework able to model sparse exchangeable networks in the limit of constant degree,

has been proposed. The model is very general and has been extended to treat generalized network

structures including multiplex networks [39] and simplicial complexes [40]. However the model

is well defined only for finite networks of large but finite number of nodes N as exchangeable

sparse networks need to obey the Aldous-Hoover theorem [41, 42] according to which infinite

sparse exchangeable networks must vanish. An alternative strategy for formulating exchangeable

ensembles is to consider ensembles of unlabelled networks for which several results are already

available [43].

Here we build on the recently proposed exchangeable sparse network ensembles [32] to for-

mulate hierarchical grand-canonical ensembles of sparse networks. The proposed grand-canonical

ensembles are hierarchical models [25, 44] with variable number of nodes N and with given degree

distribution or alternatively given latent variable distributions. The grand canonical approach pro-

vides a way to circumvent the limitations imposed by the Aldous-Hoover theorem because in this

framework one considers a mixture of network ensembles with finite but unspecified and arbitrary

large network sizes. In this paper we define the grand-canonical ensembles and we characterize

them with statistical mechanics methods, evaluating their entropy, the marginal probability of a

link and proposing generative algorithms to sample networks from these ensembles. [Note that
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the proposed grand canonical ensembles differ from the ensembles proposed in Refs. [45, 46], as

in our case we consider networks with undetermined number of nodes, while in Refs.[45, 46] is the

total sum of weights of weighted networks that is allowed to vary. From the statistical mechanics

perspective our approach is fully classical while in Refs. [45, 46] networks ensembles are treated

as quantum mechanical ensembles where the particles are associated to the links of the network

and the adjacency matrix elements play the role of occupation numbers.]

Finally, we use the gran-canonical network ensembles to solve an inference problem. We con-

sider a scenario in which the entire network has an unknown number of nodes, and we have

only access to a subgraph induced by a subset of its nodes. In this hypothesis we use the grand-

canonical network models to perform a Bayesian estimation of the true parameters of the network

model (given by the network size and the degree sequence or the sequence of latent variables).

This a posteriori estimate of the parameters can then be used to reconstruct the unknown part of

the network.

II. THE GRAND CANONICAL NETWORK ENSEMBLE WITH GIVEN DEGREE DISTRIBU-

TION

We consider the hierarchical grand canonical ensemble of exchangeable sparse simple networks

where we associate to every network G = (V, E) with N = |V | > N0 nodes the probability

P(G) = P(N)P(k|N)P(G|k,N) (1)

where P(N) indicates the probability that the network G has N nodes, P(k|N) indicates the con-

ditional probability that the network has degree sequence k given that the network has N nodes,

and P(G|k,N) indicates the probability of the network G with adjacency matrix a given that the

network has N nodes and degree sequence k (see Figure 1 for a schematic representation of the

model). To be specific we consider the following model giving rise to the hierarchical grand

canonical ensemble of exchangeable simple models:

(1) Drawing the total number of nodes N of the network. Let us discuss suitable choices for the

distribution of the number of nodes N with N greater or equal than some minimum number

of nodes N0. We indicate the distribution P(N) as

P(N) = π(N), for N ≥ N0. (2)
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Figure 1. Schematic representation of the hierarchical grand canonical ensemble of exchangeable sparse

simple networks. The proposed ensemble is a hierarchical model of networks in which first the total number

of nodes N is drawn from a P(N) = π(N) distribution, then a given degree sequence k = {k1, k2, . . . kN} is

drawn from the distribution P(k|N) among all the degree sequence with the total number of nodes N; finally

a network G with adjacency matrix a drawn from the distribution P(G|k,N) among all the networks with

a given total number of nodes N and degree sequence k. Panel (a) describes the hierarchical nature of

the model, panel (b) provide an example of subsequent draw of the total number of nodes, the degree

sequence and the adjacency matrix of the network, panel (c) is a visualization of the construction of a

network according to the proposed model.

While a statistical mechanics approach would suggest to take a distribution π(N) with a well

defined mean value (such as the exponential distribution)

π(N) = Ce−µN for N ≥ N0, (3)

where C is a normalization constant and µ > 0, in the context of network science it might

actually be relevant to consider also broad distributions π(N) such as power-law distributions

π(N) = DN−ν for N ≥ N0, (4)

where D is a normalization constant and ν > 1.

(2) Drawing the degree sequence of the network. In order to obtain a sparse exchangeable

network ensemble with given degree distribution p(k) having finite average degree 〈k〉, min-
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imum allowed degree m̂ and maximum allowed degree K we consider the following expres-

sion for the probability of a given degree sequence given the total number of nodes

P(k|N) =

N∏
i=1

[
p(ki)θ̂(K − ki)θ(ki − m̂)

]
δ

 N∑
i=1

ki, 〈k〉N

 , (5)

where θ̂(x) indicates the Heaviside function θ̂(x) = 1 if x ≥ 0 and θ̂(x) = 0 otherwise and

where we used the notation 〈k〉 =
∑

k kp(k). In the following we will indicate with L the

total number of links of the network given by L = 〈k〉N/2. Note that P(k|N) is independent

of the labels of the nodes, i.e. all the degree sequences that can be obtained by a permutation

of the node labels of a given degree sequence have the same probability P(k|N).

(3) Drawing the adjacency matrix of the network. The probability of a network G with adja-

cency matrix a given the total number of nodes N of the network and the degree sequence

k is chosen in the least biased way by drawing the network from a uniform distribution,

i.e. the conditional probability P(G|k,N) is equivalent to the probability of a network in

the microcanonical ensemble. Therefore, by indicating with N(k|N) the total number of

networks with N nodes and degree sequence k and with ΣN(k) = lnN(k|N) the entropy of

the ensemble we can express P(G|k,N) as

P(G|k,N) =
1

N(k|N)
= e−ΣN (k) (6)

Note that for sparse networks of N ≥ N0 nodes the entropy ΣN(k) obeys the Bender-Canfield

formula as long as the network has a structural cutoff KS , i.e. as long as ki � KS =
√
〈k〉N0

[3, 21, 22, 47]

ΣN(k) = ln
(

(2L)!!∏N
i=1 ki!

)
+ o(N) (7)

where in Eq. (7) we indicate with k = {k1, k2, . . . , kN} the degree sequence with ki, the degree

of node i, given by ki =
∑N

j=1 ai j.

It follows that the hierarchical grand canonical ensemble for exchangeable sparse networks can

be cast into an Hamiltonian ensemble with probability P(G) given by

P(G) =
1
Z

e−H(G)δ

〈k〉N/2,∑
i< j

ai j

 θ̂ (K − N
max

i=1
ki

)
θ̂

(
N

min
i=1

ki − m̂
)
, (8)
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with Hamiltonian H(G) given by

H(G) = − ln π(N) −
N∑

i=1

ln

p(ki)ki!δ

ki,

N∑
j=1

ai j


 + ln((〈k〉N)!!). (9)

This Hamiltonian is global and is invariant under permutation of the node labels, therefore this

hierarchical grand canonical ensemble is exchangeable. Indeed we have that the probability of a

network P(G) given by Eq. (8) obeys

P(G) = P(G̃) (10)

where G̃ is any network obtained from network G under a generic permutation σ of the labels of

the nodes. Moreover we note that for π(N) = δ(N, N̄), i.e. when the network size is fixed this

model reduces to the exchangeable model for sparse network ensemble proposed in Ref.[32].

III. THE GRAND CANONICAL NETWORK ENSEMBLE WITH GIVEN DISTRIBUTION OF

THE LATENT VARIABLES

The grand canonical formalism can also be easily extended to treat network models with latent

variables θ associated to the nodes of the network G = (V, E). Note that here and in the following

we assume that the latent variables take discrete values. To this end we can consider the soft

grand canonical hierarchical model associating to each network with N = |V | > N0 nodes, latent

variables θ and adjacency matrix a the probability

P(G,θ,N) = P(N)P(θ|N)P(G|θ,N) (11)

with

P(N) = π(N), (12)

where π(N) is an arbitrary prior on the number of nodes in the network defined for N ≥ N0. Typical

examples of the distribution π(N) are given by Eq. (3) and Eq. (4). The probability of the latent

variables is chosen to be exchangeable and given by

P(θ|N) =

N∏
i=1

p(θi) (13)

where p(θi) is the probability distribution of each latent variable. The distribution p(θ) can be

chosen arbitrarily, as long as the expectation of θ is finite. The probability of the network given
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the network size and the latent variables is chosen to be derived by a Bernoulli variable for each

link, with probability of observing a link between node i and node j conditioned on the value of

their latent variables given by pN(θi, θ j), i.e.

P(G|θ,N) =
∏
i< j

pN(θi, θ j)ai j(1 − pN(θi, θ j))1−ai j . (14)

To be concrete we consider the following expression for the probability pN(θi, θ j) which is the

general expression of the marginal probability of a link in canonical network ensembles (or equiv-

alently exponential random graph models),

pN(θi, θ j) =
θiθ j/N

1 + θiθ j/N
. (15)

The advantage of taking this expression for the probability pN(θi, θ j) is that pN(θi, θ j) is always

smaller or equal to one for every value of the latent variables. Therefore in this model we do not

need to impose a structural cutoff on the latent variables. In summary the grand canonical network

ensemble with given latent variable distribution is a hierarchical network model in which given

the network size and latent variables the network is drawn according to a canonical ensemble of

networks. In this ensemble the probability of a network G can be written in Hamiltonian form as

P(G) =
1
Z

e−H(G) (16)

with Hamiltonian H(G) given by

H(G) = − ln π(N) −
N∑

i=1

pN(θi) −
∑
i< j

{
ai j ln pN(θi, θ j) + (1 − ai j) ln[1 − pN(θi, θ j)]

}
. (17)

This Hamitonian is invariant under permutation of the node labels, therefore this model is ex-

changeable.

IV. THE ENTROPY OF GRAND CANONICAL ENSEMBLES

In this paragraph we show that the entropy S [3, 48] of the two proposed grand canonical

network ensembles, defined as

S =
∑

G

P(G) lnP(G), (18)

can be decomposed into contributions that reflect the uncertainty related to an increasing number

of hierarchical levels of the model. In order to show this results we discuss separately the entropy

of the two proposed grand canonical ensembles.
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A. Entropy of the grand canonical ensemble with given degree distribution

The entropy S of the ensemble fixing the degree distribution can be decomposed into the en-

tropy of the model at different levels of the hierarchy according to the following expression,

S = S π(N) + 〈S p(k)〉π(N) + 〈ΣN(k)〉π(N),p(k) (19)

where S π(N) is the entropy associated to the number of typical choices of the total number of nodes

N, 〈S p(k)〉π(N) is the entropy associated to the choice of the degree sequence averaged over the

distribution π(N) and 〈ΣN(k)〉π(N),p(k) is the average of the Gibbs entropy [3] of the networks with

given degree sequence averaged over the distribution π(N) and P(k|N). In other words we have

S π(N) = −
∑
N>N0

π(N) ln π(N),

〈S p(k)〉π(N) =
∑
N>N0

π(N)

−N
∑

k

p(k) ln p(k)

 ,
〈ΣN(k)〉π(N),p(k) =

∑
N>N0

π(N)
∑

k

P(k|N)ΣN(k). (20)

B. Entropy of the grand canonical ensemble with given latent variable distribution

Similarly to the previous case, it is easy to show that the entropy of the ensemble fixing the

distribution of the latent variables can be decomposed into the entropy of the model at different

levels of their hierarchy, according to the following expression

S = S π(N) + 〈S p(θ)〉π(N) + 〈S N(θ)〉π(N),p(θ) , (21)

where S π(N) is the entropy associated to the number of typical choices of the total number of nodes

N, 〈S p(θ)〉π(N) is the entropy associated to the choice of the latent variable distribution averaged over

the distribution π(N) and 〈S N(θ)〉π(N),p(k) is the average of the Shannon entropy [3] of the networks

with given sequence of latent variables averaged over the distribution π(N) and P(θ|N). In other

words we have

S π(N) = −
∑
N>N0

π(N) ln π(N),

〈S p(θ)〉π(N) =
∑
N>N0

π(N)

−N
∑
θ

p(θ) ln p(θ)

 ,
〈S N(θ)〉π(N),p(θ) =

∑
N>N0

π(N)
∑
θ

P(θ|N)S N(θ), (22)
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where the Shannon entropy S N(θ) of the network given the sequence of latent variables and the

network size N can be expressed as

S N(θ) = −
∑
i< j

[
pN(θi, θ j) ln pN(θi, θ j) + (1 − pN(θi, θ j)) ln(1 − pN(θi, θ j))

]
. (23)

V. MARGINAL PROBABILITY OF A LINK

A. The case of the the grand canonical ensemble with given degree distribution

The grand canonical ensemble of exchangeable sparse network ensembles is an ensemble in

which the total number of nodes is not specified. If we consider the networks of this ensemble

having a given number of nodes N, the model reduces to the exchangeable sparse network ensem-

ble proposed in Ref.[32] whose marginal probability of a link (i, j) is given by

p̃i j =
∑

k

p(k)
∑

k′
p(k′)

kk′

〈k〉N
. (24)

Since the grand-canonical ensemble of sparse exchangeable networks with given degree distribu-

tion can be interpreted as a mixture of the exchangeable sparse models proposed in Ref. [32] with

different size N, it is immediate to show that the marginal probability of a link between node i and

node j in the grand canonical ensembles is given by the exchangeable expression,

pi j =
∑
N>N0

π(N)
∑
k,k′

p(k)p(k′)
kk′

〈k〉N
=

∑
N>N0

π(N)
〈k〉
N
. (25)

Moreover the probability that two nodes are connected given that they have degree k and k′ is

given by

pi j|ki=k,k j=k′ = p(k, k′) = kk′
∑
N>N0

π(N)
〈k〉N

. (26)

Finally the probability that two nodes are connected given that they have degree k and k′ and the

actual size of the network is N is given by the uncorrelated network expression

pi j|ki=k,k j=k′,N = pN(k, k′) =
kk′

〈k〉N
. (27)

From these expressions of the marginal probability of a link it is possible to appreciate how the

hierarchical grand canonical ensemble of sparse exchangeable networks circumvents the difficul-

ties arising form the Aldous-Hoover theorem without violating it. Indeed the marginal probability

pN(k, k′) of a link conditioned on the degrees of the two linked nodes and the number of nodes N
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of the network vanishes in the limit N → ∞, however if the number of nodes of the network is

arbitrarily large but unknown the marginal probability of the link remains finite (as both pi j and

p(k, k′) are finite).
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Figure 2. The number of nodes N(t) at a function of time t in the Metropolis-Hastings simulation of an

exponential networks (panel a) and networks with more general degree distribution (panel c) are shown

together with the average degree distribution of the networks that is stable as the number of networks

varies (symbols of panel (b) and (d)). The solid lines in panel(b) and panel (d) indicate the target degree

distributions p(k) = Ce−k/m with m = 5 (for panel (b)) and p(k) = C(3 + k)−γ with γ = 3.4 (for panel (d)).

The prior on the number of nodes is taken to be exponential π(N) = Ce−N/N̄ with N̄ = 1000 with N0 = 500

and K = 16.
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B. The case of the the grand canonical ensemble with given latent variable distribution

For the grand canonical ensemble with given latent variable distribution p(θ) we have that the

marginal probability of a link is given by

pi j =
∑
N>N0

π(N)
∑
θ,θ′

p(θ)p(θ′)pN(θ, θ′). (28)

The probability of the link given the latent variable of the nodes is given by

p(θ, θ′) = θθ′
∑
N>N0

π(N)
1

N + θθ′
; (29)

the probability of a link given the network size and the latent variables is given by

pN(θ, θ′) =
θθ′/N

1 + θθ′/N
. (30)

As we discussed in the case of the grand canonical ensemble with given degree distribution also for

the grand canonical ensemble with given latent variable distribution the grand canonical approach

allows to circumvent the Aldous-Hoover theorem without violating it as the marginal probability

of a link in an arbitrarily large network of unknown size is finite.

VI. GENERATING SINGLE INSTANCES OF GRAND-CANONICAL NETWORK ENSEMBLES

In this section we describe two algorithms to generate single instances of the proposed grand

canonical ensembles. In particular we will discuss a Metropolis-Hastings ensemble to generate

single instances of networks drawn from the grand canonical ensemble with given degree distribu-

tion and a Monte Carlo algorithm to generate single instances of networks drawn from the grand

canonical ensemble with given distribution of latent variables.

A. Metropolis-Hastings algorithm for the grand-canonical ensemble with given degree distribu-

tion

The grand-canonical exchangeable ensemble of sparse networks can be obtained by imple-

menting a Metropolis-Hastings algorithm using the network Hamiltonian given by Eq.(9).

(1) Start with a network of N nodes having exactly L = 〈k〉N/2 links and in which the minimum

degree is greater of equal to m̂ and the maximum degree is smaller or equal to K.
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(2) Perform the Metropolis-Hastings algorithm for exchangeable sparse networks with N nodes

(defined below);

(3) Propose to change the number of nodes to N′ = N + 1 (addition of one node) or N′ =

N − 1 (removal of one node) with equal probability and accept the move with probability

max (1, π(N′)/π(N)) as long as N′ > N0. If the move is accepted change the number of

nodes adding or removing a node, set the number of links to L = 〈k〉N/2 and ensure that

each node has minimal degree at least m̂ and maximum degree less than K. In particular if

a node is added ensure it has at least m̂ links by rewiring randomly the existing links of the

networks and adding a number of links so that the total number of links is the integer that

better approximates 〈k〉N/2. Instead, if a node needs to be removed, choose a random node

of the network remove it and rewire/remove links in order to enforce that the total number

of links is the integer that better approximates 〈k〉N/2.

The Metropolis-Hastings algorithm for the exchangeable sparse networks with N nodes is the

same algorithm used in Ref. [32] for exchangeable networks with finite size N and is indicated

below.

(1) Start with a network of N nodes having exactly L = 〈k〉N/2 links and in which the minimum

degree is greater of equal to m̂ and the maximum degree is smaller or equal to K.

(2) Iterate the following steps until equilibration:

(i) Let a be the adjacency matrix of the network;

(i) Choose randomly a random link ` = (i, j) between node i and j and choose a pair of

random nodes (i′, j′) not connected by a link.

(ii) Let a′ be the adjacency matrix of the network in which the link (i, j) is removed and the

link (i′, j′) is inserted instead. Draw a random number r from a uniform distribution in

[0, 1], i.e. r ∼ U(0, 1). If r < max(1, e−∆H) where ∆H = H(a′) − H(a) and if the move

does not violate the conditions on the minimum and maximum degree of the network,

replace a by a′.

The Metropolis-Hastings algorithm can be used to sample the space of networks with variable

number of nodes and given (stable) degree distribution (see Figure 2).
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B. Monte Carlo generation of grand canonical network ensemble with given latent variable dis-

tribution

A single instance of the grand canonical model with given latent variable distribution can be

obtained by performing the following algorithm:

1 Draw the network size N from the π(N) distribution;

2 Draw the latent variable θi of each node i independently from the latent variable distribution

p(θ).

3 Draw each link (i, j) of the network with probability pN(θi, θ j).

VII. BAYESIAN ESTIMATION OF THE NETWORK PARAMETERS GIVEN PARTIAL KNOWL-

EDGE OF THE NETWORK

In this section we will use the grand canonical network ensembles for calculating the posterior

distribution of the network parameters given partial information of a network G = (V, E). In

particular let us assume that we only know the subgraph Ĝ(V̂ , Ê) induced by a set of nodes V̂ ⊂ V

of N̂ = |V̂ | nodes and of adjacency matrix â and we do not have access to the full network G with

adjacency matrix a. Without loss of generality let us label the nodes of the network in such a way

that the labels i with 1 ≤ i ≤ N̂ indicate the nodes in Ṽ (denote as sampled nodes) and the labels

i with i > N̂ indicate the nodes in V \ V̂ (denoted also as unsampled or unknown nodes). We

indicate with κ the degree sequence of the sampled network Ĝ. Our goal is to make a Bayesian

estimation of the network size N and the true network parameters given the observed subgraph Ĝ.

These a posteriori estimates of the true parameters of the network can then be used to reconstruct

the unknown part of the network G.

A. Inferring the true parameters with the grand canonical ensemble with given degree distribu-

tion

In this paragraph we will use the grand canonical ensemble with given degree distribution to

find the posterior probability distribution of the network parameters. For convenience we will

indicate with ki the true degree of the sampled nodes 1 ≤ i ≤ N̂ and we will indicate qi the true

14
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Figure 3. Marginal posterior probability for the true degree of sampled nodes (panel (a)) and for the true

latent variable of sampled node (panel b). The posterior probability P(ki|Ĝ, ω) (panel (a)) of the true degree

of a sampled nodes depends on the degree κ of the nodes in the sampled network Ĝ and is non-zero only

for k ≥ κ. The posterior probability P(θ|Ĝ, θ̄) of the latent variable of a sampled node can be non-zero on

the entire range of θ values allowed by the prior. Here we have plotted P(ki|Ĝ, ω) and P(θ|Ĝ, θ̄) for different

values of κ and we have chosen ω = 2 and θ̄ = 0.6. The dashed lines indicate the exponential prior on the

degrees (panel (a)) and on the latent variables (panel (b)).

degree of the remaining unsampled N − N̂ nodes N̂ + 1 ≤ i ≤ N. To this end, using the Bayes rule

we get the following expression for the posterior distribution of the network parameters given the

observed subgraph Ĝ

P(N,k,q|Ĝ) =
P(N)P(k,q|N)P(Ĝ|k,q,N)

P(Ĝ)
(31)
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Figure 4. Marginal posterior probability for the true number of nodes in the grand canonical ensemble

with given degree distribution (panel (a)) and in the grand canonical ensemble with given latent variable

distribution (panel (b)). The posterior probability P(N |Ĝ,M) in panel (a) of the true number of nodes

depends on the total number M of true but not observed links of the sampled nodes and on the total number

of sampled links L̂; the posterior probability P(N |Ĝ) in panel (b) depends instead only on the degree κ of the

nodes in the sampled network Ĝ. We took N̂ = 100 and the priors given by π(N) ∝ e−N/N0, p(k) ∝ e−k/m,

p(θ) ∝ e−θ/m with N0 = 200,and m = 7. In panel (a) we have plotted P(N |Ĝ,M) for different values of

M = (〈k〉 − n)N̂ with n = 1, 2, 3, 4 and L̂ = N̂/2; in panel (b) we have plotted P(N |Ĝ) assuming that Ĝ

is regular with all sampled nodes having sampled degree κ = 1, 2, 3, 4, 5 . The dashed lines indicate the

exponential prior π(N) on the number of nodes.
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where

P(N) = π(N),

P(k,q|N) =

N̂∏
i=1

p(ki)
N∏

i=1+N̂

p(qi),

P(Ĝ|k,q,N) = e−∆NΣ(k,q|κ), (32)

with ∆NΣ(k,q|κ) given by

∆NΣ(k,q|κ) = ΣN(k,q) − Σ̂N(k,q|κ). (33)

Here ΣNk,q) indicates the entropy of the network fo size N with degree sequence [k,q] whose

expression is given by the Bender-Canfield formula [3, 21, 22, 47] (Eq.(7)) which reads in this

case

ΣN(k,q) = (2L)!!

 N̂∏
i=1

ki!
N∏

i=1+N̂

qi!


−1

. (34)

Moreover Σ̂N(k,q|κ) indicates the logarithm of the number of networks of N nodes having Ĝ (with

adjacency matrix â and degree sequence κ) as induced subgraph between the N̂ sampled nodes.

Moreover in Eq. (31) P(Ĝ) indicates the evidence of the data given by

P(Ĝ) =
∑

N

∑
k,q

π(N)
N̂∏

i=1

p(ki)
N∏

i=1+N̂

p(qi)e−∆NΣ(k,q|κ). (35)

Calculating the entropy Σ̂N(k,q|κ) using statistical mechanics methods including the use of a

functional order parameter (see Appendix), we derive the following expression:

Σ̂N(k,q|κ) = ln

 M!(Q − M)!!∏N̂
i=1(ki − κi)!

∏N
i=1+N̂ qi!

 Q

M

 δ(Q + M, 2L + 2L̂)

 (36)

where M indicates the number of links between the sampled nodes and the unsampled nodes and

Q indicates the sum over all the degrees of the unsampled nodes, i.e.

M =

N̂∑
i=1

(ki − κi),

Q =

N∑
i=1+N̂

qi, (37)

where M and Q need to satisfy the constraint enforcing that the total number of true links is given

by L = 〈k〉N/2. Therefore, indicating with L̂ =
∑N̂

i=1 κi/2, we must impose

Q + M = 2L − 2L̂. (38)
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The expression obtained for the entropy Σ̂N(k,q|κ) implies that the asymptotic expression for

the number of networks with N nodes, degree sequence [k,q] having Ĝ as a subgraph is given by

(see Appendix for the derivation)

N(k,q|κ,N) = eΣ̂N (k,q|κ) =
M!(Q − M)!!∏N̂

i=1(ki − κi)!
∏N

i=1+N̂ qi!

 Q

M

 δ(Q + M, 2L + 2L̂). (39)

This expression admits a simple combinatorial interpretation. In fact the networks with degree

sequence [k,q] having as subgraph Ĝ can be constructed by adding (unsampled) links to the graph

Ĝ. The unsampled part of the network can be constructed by assigning to each node i with 1 ≤ i ≤

N̂ a number of stubs given by ki − κi and to each node i with i > N̂ a number of stubs given by qi.

The unsampled networks can then be obtained by matching the stubs pairwise with the constrains

that the stubs of the first N̂ nodes can be only matched with the stubs of the unsampled nodes

i > N̂. Therefore the reconstructed part of the network is formed by a bipartite network between

the sampled and the unsample nodes with a number of links given by M and a simple network

among the unsampled nodes with number of links given by (Q −M)/2. The number of matchings

of the M links of the bipartite network is given by M! the number of matching of the stubs of

the simple network among unsampled nodes is (Q − M)!!. In order to get the number of distinct

networks G with degree sequence [k,q] having as subgraph Ĝ we need to divide by the number

of permutations of the stubs belonging to the same nodes and we need to multiply by Q choose M

indicating the number of ways in which we can choose the M stubs of the unsampled nodes to be

matched with the stubs of the sampled nodes.

Given the expression for Σ̂N(k,q|κ) provided by Eq.(36), we can deduce the explicit expression

for ∆NΣ(k,q|κ):

∆NΣ(k,q|κ) = ln

 N̂∏
i=1

ki!
(ki − κi)!

M!(Q − M)!!
(〈k〉N)!!

 Q

M

 δ(Q + M, 2L − 2L̂)

 . (40)

It follows that the describe Bayesian inference assigns a probability to the model parameters a

probability

P(N,k,q|Ĝ) ∝ π(N)
N̂∏

i=1

p(ki)
N∏

i=1+N̂+1

p(qi)e−∆NΣ(k,q|κ), (41)

with ∆NΣ(k,q|κ) given by Eq. (40). From this expression, imposing with a delta function that

M =
∑N̂

i=1(ki − κi), expressing the delta in integral form and using the saddle point to evaluate the
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integral, we can calculate the marginal probability P(ki|Ĝ, ω) that a sampled node i with 1 ≤ i ≤ N̂

has true degree ki ≥ κi given M and Q, i.e.

P(ki|Ĝ, ω) ∝ p(ki)
ki!

(ki − κi)!
e−ωki θ̂(ki − κi) (42)

where ω is related to M by

M =

N̂∑
i=1

∑
k p(k)k k!

(k−κi)!
e−ωk∑

k′ p(k′) k′!
(k′−κi)!

e−ωk′
. (43)

In Figure 3 we show the difference between an exponential prior distribution p(k) on the degree of

the nodes and the posterior marginal probability of the true degree of the sampled nodes P(k|Ĝ, ω)

plotted for different values of the sampled degree κ of the same node. Finally, we can calculate the

a posteriori probability P(N |Ĝ,M) that the real networks has N nodes, conditioned to M and to

the sampled subrgraph Ĝ. To this end we sum Eq. (41) over all the possible values of the degrees

k and q such that Eqs.(37) are satisfied. Therefore, by inserting Eq. (40) into Eq.(41), enforcing

Eqs.(37) with Kronecker deltas and integrating over all the possible values of k and q we get

P(N |Ĝ,M) ∝ π(N)θ(N − N̂)CM,N I(k)(M)I(q)(M,N), (44)

where

CM,N =
M!(Q − M)!!

(〈k〉N)!!

 Q

M

 ,
I(k)(M) =

∑
k

 N̂∏
i=1

p(ki)
ki!

(ki − κi)!
δ

M,
N̂∑

i=1

ki


 ,

I(q)(M,N) =
∑

q

 N∏
i=1+N̂

p(qi)δ

Q,
N∑

i=1+N̂

qi


 , (45)

where Q = 〈k〉N − 2L̂ − M. By expressing the Kronecker deltas in an integral form according to

the expression

δ(x, y) =
1

2π

∫ π

−π

eiω(x−y), (46)

performing a Wick rotation and evaluating the integrals at the saddle point, we can express I(k)(M)

and I(q)(M,N) as

I(k)(M) =
1

2π

 N̂∏
i=1

∑
k>κi

p(k)
k!

(k − κi)!
e−ω

?k

 eω
?M,

I(q)(M,N) =
1

2π

∑
q

p(q)e−ω̄
?q


N−N̂

eω̄
?Q, (47)
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with ω? and ω̄? fixed by the saddle point equations

M =

N̂∑
i=1

∑
k>κi

p(k) k!
(k−κi)!

k e−ω
?k∑

k>κi
p(k) k!

(k−κi)!
e−ω?k

,

Q = (N − N̂)
∑

q p(q)q e−ω̄
?q∑

q p(q)e−ω̄?q
. (48)

In Figure 4 we display the marginal a posteriori distribution P(N|Ĝ,M) as function of M demon-

strating that the sampled network can modify significantly the prior assumptions on the total num-

ber of nodes in the network.

B. Inferring the true parameters with the grand canonical ensemble with given latent variable

distribution

In this section we treat the problem of Bayesian estimation of the parameters of the true net-

work G given the sampled network Ĝ using the grand canonical model with given latent variable

distribution. Let us indicate with θi the latent variables of the sampled nodes 1 ≤ i ≤ N̂ and with

φi the latent variables of the unsampled nodes i > N̂. Using Bayes rule we have

P(N,θ,φ|Ĝ) =
P(N)P(θ,φ|N)P(Ĝ|θ,φ,N)

P(Ĝ)
, (49)

where P(Ĝ|θ,φ,N) is independent of φ, i.e. P(Ĝ|θ,φ,N) = P(Ĝ|θ,N) and where

P(N) = π(N),

P(θ,φ|N) =

N̂∏
i=1

p(θi)
N∏

i=1+N̂

p(φi),

P(Ĝ|θ,N) =
∏

i< j|i, j∈V̂

pN(θi, θ j)âi j(1 − pN(θi, θ j))1−âi j (50)

with pN(θi, θ j) given by Eq. (15) and with â indicating the adjacency matrix of the sampled sub-

graph Ĝ. In Eq. (49) P(Ĝ) indicates the evidence of the data given by

P(Ĝ) =
∑

N

∑
θ

π(N)
N̂∏

i=1

p(θi)P(Ĝ|θ,N). (51)

Since, as we have observed previously, P(Ĝ|θ,φ,N) is independent of φ the Bayesian estimation

of the parameters φ reduces simply to the prior in this case. Therefore we focus here only on the

Bayesian estimate of the latent variables θ, i.e. we consider

P(N,θ|Ĝ) =
P(N)P(θ|N)P(Ĝ|θ,N)

P(Ĝ)
, (52)
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with P(N), P(Ĝ|θ,N), P(Ĝ) having the same definition as above and

P(θ|N) =

N̂∏
i=1

p(θi). (53)

Using the explicit expression of pN(θi, θ j) given by Eq. (15), we can express the likelihood

P(Ĝ|θ,N) of the sampled network as

P(Ĝ|θ,N) =

N̂∏
i=1

θκi
i

∏
i< j|i, j∈V̂

(
1 +

θiθ j

N

)−1 1
N L̂

, (54)

where L̂ is the number of links of the sampled network Ĝ. In the limit N � 1 we can approximate

this expression as

P(Ĝ|θ,N) '
∫

dθ̄
N̂∏

i=1

[
θκi

i e−θiθ̄/2
] 1

N L̂
δ

θ̄, N̂∑
j=1

θ j/N

 (55)

With this approximation we get that the posterior probability P(N,θ|Ĝ) is given by

P(N,θ|Ĝ) ∝π(N) 1
N L̂

∫
dθ̄

∏N̂
i=1

[
p(θi)θ

κi
i e−θiθ̄/2

]
δ
(
θ̄,

∑N̂
j=1 θ j/N

)
. (56)

Calculating the marginal posterior probability of a single latent variable conditional of θ̄ we get

P(θi|Ĝ, θ̄) = p(θi)θ
κi
i e−θiθ̄/2. (57)

In Figure 3 we show the difference between an exponential prior distribution p(θ) on the latent

variables of the nodes and the posterior marginal probability of the true latent variables of the

sampled nodes P(θ|Ĝ, θ̄) plotted for different values of the sampled degree κ of the same node.

Stating from Eq. (56) we can also calculate the posterior distribution P(N|Ĝ) of the true number

of nodes N > N̂. To this end we express the delta function in an integral form and we sum over all

possible latent variables θ, obtaining

P(N|Ĝ) ∝ π(N)θ(N − N̂)
1

N L̂−1

1
2π

∫
dθ̄dωeiNωθ̄I(θ)(ω, θ̄) (58)

where I(θ)(ω, θ̄) is given by

I(θ) =

N̂∏
i=1

∑
θ

p(θ)θκie−θ(θ̄/2−iω)

 . (59)

The integrals in Eq. (58) can be calculated at the saddle point getting

P(N|Ĝ) ∝ π(N)θ(N − N̂)
1

N L̂−1
eN (θ̄?)2

2

 N̂∏
i=1

∑
θ

p(θ)θκie−θθ̄
?


 (60)
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where

θ̄? =
1
N

N̂∑
i=1

∑
θ p(θ)θκi+1e−θθ̄

?∑
θ p(θ)θκie−θθ̄?

. (61)

In Figure 4 we display the marginal a posteriori distribution P(N|Ĝ) on the true number of nodes

in the simplified assumption in which Ĝ is regular and all degree κ are the same demonstrating that

the sampled network can modify significantly the prior assumptions on the total number of nodes

in the network.

VIII. CONCLUSIONS

In this paper we have proposed grand canonical network ensembles formed by networks of

varying number of nodes. The grand canonical network ensembles we have introduced are both

sparse and exchangeable, i.e. have a finite average degree and are invariant under permutation of

the node labels. The grand canonical ensembles are hierarchical network models in which first

the network size is selected, then the degree sequence (or the sequence of latent variables) and

finally the network adjacency matrix is selected. The model circumvents the difficulties imposed

by the Aldous-Hoover theorem that states that exchangeable infinite sparse network ensembles

vanish, as the network is a mixture of finite networks, although the networks can have an arbitrarily

large network size. Here we show how the grand-canonical ensembles can be used to perform a

Bayesian estimation of the network parameters when only partial information about the network

structures is known. This a posteriori estimation of the network parameters can then be used for

network reconstruction.

The grand canonical framework for sparse exchangeable network ensembles is here described

for the case simple networks but has the potential to be extended to generalized network structures

including directed, bipartite networks, multiplex networks and simplicial complexes following the

lines outlined in Ref.[32].

In conclusion we hope that this work, proposing hierarchical grand canonical network ensem-

bles able to treat networks of different size and relating network theory to statistical mechanics

will stimulate further results of mathematicians, physicists, and computer scientists working in
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network science and related machine learning problems.
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APPENDIX: DERIVATION OF Σ̂N(k,q|κ)

In this Appendix our goal is to derive the asymptotic expression of Σ̂N(k,q|κ) in the limit of

large network size of the sampled network N̂ � 1, and of the true network N = (1 + α)N̂ � 1

with α > 0.

Let us assume that the sampled subgraph G is the network between the sampled nodes 1 ≤ i ≤ N̂

and has adjacency matrix â. The true network is instead formed by N nodes with adjacency matrix

a. We assume that a has the block structure given by

a =

 â b

b> ã

 , (62)

where b indicates the N̂ × αN̂ matrix between sampled nodes and the unsampled node and ã indi-

cates tha (αN̂)×(αN̂) adjacency matrix among the unsampled nodes. As we have mentioned in the

main text Σ̂N(k,q|κ) is the logarithm of the numberN(k,q|κ,N) of networks (or adjacency matri-

ces a) with degree sequence [k,q] and admitting as a subgraph Ĝ having sampled degree sequence

κ. In statistical mechanics we also call N(k,q|κ,N) the partition function of its corresponding

statistical mechanics network model, and we indicate it by Z. In terms of the matrices b and ã the

partition function Z = N(k,q|κ) = exp
(
Σ̂N(k,q|κ)

)
can be written as

Z =
∑
b,ã

N̂∏
i=1

δ

ki −

N∑
j=1

ai j

 N∏
i=1+N̂

δ

qi −

N∑
j=1

ai j

 δ
2L −

N∑
i=1

ki

 (63)

Expressing the Kronecker deltas in the integral form and performing the sum over the elements of

the matrices b and ã we obtain

Z =

∫
Dω

∫
Dω̃

∫
dλ
2π

eG(ω,ω̃,λ) (64)
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with

G(ω, ω̃, λ) =

N̂∑
i=1

[iωi(ki − κi)] +

N∑
i=1+N̂

[iω̃iqi] +

N̂∑
i=1

N̂∑
j=1

ln(1 + e−iωi−iω̃ j−iλ)

+
1
2

N∑
i=N̂+1

N∑
j=N̂+1

ln(1 + e−iω̃i−iω̃ j−iλ) + iλ(L − L̂), (65)

and withDω =
∏N̂

i=1[dωi/(2π)] andDω̃ =
∏N

i=1+N̂[dω̃i/(2π)]. Let us now introduce the functional

order parameters [22, 49, 50]

cκ,k(ω) =
1

N̂P̂(κ, k)

N̂∑
i=1

δ(ω − ωi)δ(k, ki)δ(κ, κi),

ρq(ω̃) =
1

αN̂P̃(q)

N∑
i=1+N̂

δ(ω̃ − ω̃i)δ(q, qi), (66)

where P̂(k, κ) is the fraction of sampled nodes with degree κ in the sampled network and total

inferred degree k; P̃(q) is the fraction of unsampled nodes with degree q. Moreover we have

indicated with L = 〈k〉N/2 and with L̂ =
∑N̂

i=1 κi/2. By enforcing the definition of the order

parameters with a series of delta functions we obtain

1 =

∫
dcκ,k(ω)δ

cκ,k(ω) −
1

N̂P̂(κ, k)

N̂∑
i=1

δ(ω − ωi)δ(k, ki)δ(κ, κi)


=

∫
dĉκ,k(ω)dcκ,k(ω)

2π/(N̂P̂(κ, k)∆ω)
exp

i∆ωĉκ,k(ω)[N̂P̂(κ, k)cκ,k(ω) −
N̂∑

i=1

δ(ω − ωi)δ(k, ki)δ(κ, κi)]

 .
1 =

∫
dρq(ω̃)δ

ρq(ω̃) −
1

αN̂P̃(q)

N∑
i=1+N̂

δ(ω̃ − ω̃i)δ(q, qi)


=

∫
dρ̂q(ω̃)dρq(ω̃)

2π/(αN̂P̃(q)∆ω̃)
exp

i∆ω̃ρ̂q(ω̃)[αN̂P̃(q)ρq(ω̃) −
N∑

i=1+N̂

δ(ω̃ − ω̃i)δ(q, qi)]

 .
After inserting these expressions into the partition function in the limit ∆ω → 0, indicating

with
∑′ the sum over the allowed degree range we obtain

Z =

′∑
κ

′∑
k

′∑
q

∫ ∏
κ,k

Dcκ,k(ω)
∫ ∏

κ,k

Dĉκ,k(ω)
∫ ∏

q

Dρq(ω̃)
∫ ∏

q

Dρ̂q(ω̃)
∫

dλ
2π

eN̂ f

with f = f (c(ω, k), ĉ(ω, k), ρ(ω̃, q), ρ̂(ω̃, q), λ, h) given by
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f =
∑

m̂≤κ≤K

∑
κ≤k≤K

P̂(κ, k)i
∫

dωĉκ,k(ω)cκ,k(ω) + αi
∫

dω
∑

m̂≤q≤K

P̃(q)ρ̂q(ω̃)ρq(ω̃)

+iλ(L − L̂)/N̂ + Ψ +
∑

m̂≤κ≤K

∑
κ≤k≤K

P̂(κ, k) ln
∫

dω
2π

eiω(k−κ)−iĉκ,k(ω,k)

+α
∑

m̂≤q≤K

P̃(q) ln
∫

dω̃
2π

eiω̃q−iρ̂q(ω̃), (67)

where Ψ is given by

Ψ =
α2N̂

2

∑
m̂≤q≤K,m̂≤q′≤K

P̃(q)P̃(q′)
∫

dω
∫

dω̃′ρq(ω̃)ρq′(ω̃′) ln
(
1 + e−iω̃−iω̃′−iλ

)
+αN̂

∑
m̂≤κ≤K

∑
κ≤k≤K

P̂(κ, k)
∑

m̂≤q≤K

P̃(q)
∫

dω
∫

dω̃cκ,k(ω)ρq(ω̃) ln
(
1 + e−iω−iω̃−iλ

)
,

and where the functional measures are defined as

Dcκ,k(ω) = lim
∆ω→0

∏
ω

[dckκ(ω)
√

N̂P̂(κ, k)∆ω/(2π)]

Dĉκ,k(ω) = lim
∆ω→0

∏
ω

[dĉκ,k(ω)
√

N̂P̂(κ, k)∆ω/(2π)],

Dρq(ω̃) = lim
∆ω̃→0

∏
ω̃

[dρq(ω̃)
√

N̂α ˜P(q)∆ω̃/(2π)],

Dρ̂q(ω̃) = lim
∆ω̃→0

∏
ω̃

[dρ̂q(ω̃)
√

N̂αP̃(q)∆ω̃/(2π)]. (68)

By putting

e−iλ =
z
N̂
, (69)

and performing a Wick rotation in λ and assuming z/N̂ = e−iλ real and much smaller than one, i.e.

z/N̂ � 1 which is allowed in the sparse regime, we can linearize the logarithm and express Ψ as

Ψ = zαν
(
1
2
αν + ν̂

)
, (70)

with

ν =
∑

m̂≤q≤K

P̃(q)
∫

dω̃ρq(ω̃)e−iω̃.

ν̂ =
∑

m̂≤κ≤K

∑
κ̂,≤k≤K

P̂(κ, k)
∫

dωcκ,k(ω)e−iω. (71)
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The saddle point equations determining the value of the partition function can be obtained by per-

forming the (functional) derivative of f with respect to the functional order parameters, obtaining

−iĉκ,k(ω) = zανe−iω,

−iρ̂q(ω) = z(αν + ν̂)e−iω̃,

cκ,k(ω) = P̂(κ, k)
1

2πeiω(k−κ)−iĉκ,k(ω)∫
dω′
2π eiω′(k−κ)−iĉκ,k(ω′)

,

ρq(ω̃) = P̃(q)
1

2πeiω̃q−iρ̂q(ω̃)∫
dω̃′
2π eiω̃′q−iρ̂q(ω̃′)

,

2
L − L̂

N̂
= zαν (αν + 2ν̂) . (72)

Let us first calculate the integrals

Iκ,k =

∫
dω
2π

e−iω(k−κ)−iĉκ,k(ω) =
1

(k − κ)!
(zαν)k−κ,

Iq =

∫
dω̃
2π

e−iω̃q−iρ̂q(ω̃) =
1
q!

[z(αν + ν̂)]q, (73)

Using these expressions for the integral we can write the functional order parameters as

cκ,k(ω) = P̂(κ, k)
1

2π
eiω(k−κ)+(zαν)e−iω

Iκ,k
,

ρq(ω̃) = P̃(q)
1

2π
eiω̃q+[zν(αν+ν̂)]e−iω̃

Iq
.

(74)

With this expression, using a similar procedure we can express ν as

ν̂ =

∫
dω

∑
m̂≤κ≤K

∑
κ≤k≤K

cκ,k(ω)e−iω =
∑
κ̂≤k≤K

P̂(κ, k)(k − κ)(αzν)−1.

ν =

∫
dω̃

∑
m̂≤q≤K

ρq(ω̃)e−iω̃ =
∑

m̂≤q≤K

P̃(q)q[z(αν + ν̂)]−1. (75)

Combing these equations with the last saddle point equation it is immediate to show that z, ν and

ν̂ are given by

z = 1,

αν =

√
(Q − M)/N̂,

ν̂ =
M/N̂√

(Q − M)/N̂
. (76)
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with

2L − 2L̂ = M + Q. (77)

Calculating the free energy N̂ f at the saddle point, we get

N̂ f = −
1
2

(Q − M) − M + (L − L̂) ln N̂ + N̂
∑
~̂m≤κ≤K

∑
κ̂≤k≤K

P̂(κ, k) ln
(αν)k−κ

(k − κ)!

+αN̂
∑

m̂≤q≤K

P̃(q) ln
[αν + ν̂]q

q!
, (78)

which leads to the following asymptotic expression for Z = N(k,q|κ,N) = exp
(
Σ̂N(k,q|κ)

)
Z = N(k,q|κ,N) '

M!(Q − M)!!∏N̂
i=1 ki!

∏N
i=1+N̂ qi!

 Q

M

 . (79)
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