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Abstract— Though the sharing of medical data has the
potential to lead to breakthroughs in health care, the sharing
process itself exposes patients and health care providers to
various risks. Patients face risks due to the possible loss in
privacy or livelihood that can occur when medical data is
stolen or used in non-permitted ways, whereas health care
providers face risks due to the associated liability. For medical
data, these risks persist even after anonymizing/deidentifying,
according to the standards defined in existing legislation, the
data sets prior to sharing, because shared medical data can
often be deanonymized/reidentified using advanced artificial
intelligence and machine learning methodologies. As a result,
health care providers are hesitant to share medical data.
One possible solution to encourage health care providers to
responsibly share data is through the use of cybersecurity
insurance contracts. This paper studies the problem of design-
ing optimal cybersecurity insurance contracts, with the goal
of encouraging the sharing of the medical data. We use a
principal-agent model with moral hazard to model various
scenarios, derive the optimal contract, discuss its implications,
and perform numerical case studies. In particular, we consider
two scenarios: the first scenario is where a health care provider
is selling medical data to a technology firm who is developing
an artificial intelligence algorithm using the shared data. The
second scenario is where a group of health care providers share
health data amongst themselves for the purpose of furthering
medical research using the aggregated medical data.

I. INTRODUCTION

The rapid development of new artificial intelligence al-
gorithms for health care has the potential to lead to an era
of computational precision health [1], [2], [3], [4], [5], [6],
[7]. The development of these algorithms requires access to
large sets of medical data. Nonetheless, the sharing of such
medical data poses risks to patients due to the possible loss
in privacy or livelihood that can occur when medical data
is stolen or used in non-permitted ways. New ideas for the
cybersecurity of medical data are needed to ensure that these
new advances can continue to be developed.

A. Privacy Risks from Sharing Medical Data

A unique aspect of medical data is that even when it has
been anonymized/deidentified [8], [9], [10], [11] (in accor-
dance with legislation like HIPAA [12] or GDPR [13]) prior
to sharing, the data can often be deanonymized/reidentified
[14], [15], [16], [17]. Examples include deanonymization of
a Massachusetts hospital database by joining it with a public
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voter database [18] and reidentification of a physical activity
data set from the National Health and Nutrition Examination
Survey (NHANES) using standard machine learning [19].

In addition, a recent study has revealed that more than
two-thirds of hospital data breaches include sensitive demo-
graphic and financial information that could lead not only
to fraud and identity theft but also to discrimination and
violation of fundamental rights [20]. This highlights the
necessity of developing approaches to safeguard patients and
health care providers against cybersecurity threats.

B. Cybersecurity of Medical Data

The above described privacy risks deter health care
providers from sharing their data [21], [22]. One possible
approach to mitigating some of the risks with sharing health
data is through the design of cybersecurity insurance con-
tracts. For instance, cybersecurity insurance can be used to
partially compensate for the costs involved with recovery
from a cyber-related security breach or similar incidents [23].

A growing literature studies cybersecurity insurance. For
instance, [24], [25], [26] focus on the interdependent security
problem to verify whether firms have adequate incentives to
invest in protection against a risk whose magnitude depends
on the action of others. The work in [27], [28] introduces
new models and measures for the correlation of cyber-risks
within and across independent firms, while [29] investigates
the issue of information asymmetries, namely in the form
of moral hazard, when cyber-insurers cannot observe indi-
vidual user security levels. The studies [30], [31] provide a
unifying framework to address the aforementioned hurdles
that complicate risk management via cyber-insurance.

C. Contributions and Outline

In this paper, we study the problem of incorporating
cybersecurity insurance, which has been mainly explored in
the setting of interdependent and correlated networks, into
the design of contracts that govern the sharing of medical
data. Such contracts would not only protect health care
providers against losses resulting from a cyber-attack, but
have the potential to foster the sharing of medical data.

In Sect. II, we analyze the scenario in which a health care
provider sells medical data to a technology firm that uses
the data to develop new artificial intelligence algorithms. We
provide mathematical models for both parties, formulate a
contract design problem in the setting of a principal-agent
model with moral hazard [32], derive the optimal contract,
and discuss insights gained from the optimal contract. In
Sect. III, we analyze a second scenario in which a group of
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health care providers forms a consortium to share medical
data with each other for the purpose of conducting scientific
research and improving patient care. Again, we provide a
mathematical model for the health care providers, formulate
a contract design problem, derive the optimal contract, and
discuss insights gained from the optimal contract.

II. SCENARIO A: HEALTH CARE PROVIDER SELLING
MEDICAL DATA TO TECHNOLOGY FIRM

The first scenario we study is that of a health care provider
selling medical data to a technology firm that is developing
artificial inteligence algorithms using the shared data. Here,
an important consideration to the health care provider is
the quality of cybersecurity that the technology firm uses
to protect any medical data they receive. If the firm suffers
from a data breach, then the health care provider itself will
face liability from those patients whose medical data has
been breached. Thus, the health care provider will want to
structure their contract with the firm in such a way that
the firm is incentivized to invest in the cybersecurity of the
medical data.

In this scenario that we consider, the health care provider
has two options available to mitigate the liability risks
associated with a data breach. The first is that the health
care provider is able to impose a fine or penalty on the firm
if the technology firm suffers from a data breach. If this fine
or penalty is sufficiently large, it can incentivize the firm
to invest in cybersecurity that protects the data. This fine
or penalty is in addition to the fee that the firm is charged
in return for access to the medical data. The second is that
the health care provider is able to purchase cybersecurity
insurance from an external insurance agency.

A. Technology Firm Model

The financial value to the technology firm of the shared
medical data is V . This financial value is derived from
the firm’s ability to use the data to develop new artificial
intelligence algorithms for health care, which can be sold to
various health care providers. To get this data, the firm must
pay the quantity φ to the health care provider. The technology
firm is responsible for securing the data they receive. If the
firm suffers from a data breach, they are required by the
contract to pay a fine or penalty t to the health care provider.

The technology firm chooses an investment level i in cy-
bersecurity that protects the data. The firm chooses between
a high (i = 1) or low (i = 0) level of investment. If the firm
chooses high investment, then the probability of a breach
is α ∈ (0, 1), and the firm spends ψ for this investment
level. If the firm chooses low investment, then the probability
of a breach is γ ∈ (0, 1), and (without loss of generality)
the firm has zero expenditure for this investment level. We
assume that α < γ, meaning that a high level of investment
strictly lowers the probability of a data breach. We assume
that the technology firm chooses their investment level by
maximizing their expected profit:

i∗(φ, t) = arg max
i∈{0,1}

(1− i) · F l(φ, t) + i · Fh(φ, t) (1)

where expected profit under a low level of investment is

F l(φ, t) = V − φ− γ · t, (2)

and the expected profit under a high level of investment is

Fh(φ, t) = V − φ− ψ − α · t. (3)

Note that the technology firm is risk neutral in this model.

B. Health Care Provider Model

The financial value to the health care provider of their
own medical data is W . This financial value is derived from
the provider’s ability to use the data to self-improve the
quality of its health care services through improved patient
treatment and care delivery processes, as well as through
medical research. If the technology firm suffers a data breach,
then the health care provider has to spend L to address its
various liabilities to the affected patients. Since t is a fine
or penalty on the firm in the event of a breach, we assume
t ≤ L. Having t > L is unrealistic because it would mean
the healthcare provider profits from a data breach at the firm.

Furthermore, the health care provider can choose to pur-
chase a policy to insure against their liabilities in the event of
a breach. Under the assumption of an actuarially fair policy
[31], which would be expected to occur when there are a
large number of insurers in the insurance marketplace, the
health care provider can purchase an insurance policy that
pays out Lc under the event of a data breach at the cost of
pLc, where p is the probability of a data breach.

Finally, we assume the health care provider is risk averse.
This means that if the health care provider earns a financial
revenue of x, then their utility for that revenue is U(x) for a
function U(·) that is strictly increasing and concave. Under
the additional assumption that U(·) is differentiable, this risk
aversion assumption means that U ′(·) > 0 and U ′′(·) < 0.

C. Contract Design Problem

In this scenario, the health care provider faces a contract
design problem in which their goal is to pick the purchase
price φ, the value of the fine or penalty t, and the insurance
policy payout Lc so as to maximize their own expected
utility. This contract design problem can be written as the
following bilevel program:

max
φ,t,Lc

(1− i∗(φ, t)) ·H l(φ, t, Lc) + i∗(φ, t) ·Hh(φ, t, Lc)

s.t. i∗(φ, t) = arg max
i∈{0,1}

(1− i) · F l(φ, t) + i · Fh(φ, t)

(1− i∗(φ, t)) · F l(φ, t) + i∗(φ, t) · Fh(φ, t) ≥ 0

φ ≥ 0, t ∈ [0, L], Lc ≥ 0
(4)

where we note that the health care provider’s expected utility
when the technology firm has a low level of investment in
cybersecurity of the health data is given by

H l(φ, t, Lc) = γ · U(W + φ− γ · Lc − L+ t+ Lc)+

(1− γ) · U(W + φ− γ · Lc), (5)



the health care provider’s expected utility when the technol-
ogy firm has a high level of investment is

Hh(φ, t, Lc) = α · U(W + φ− α · Lc − L+ t+ Lc)+

(1− α) · U(W + φ− α · Lc), (6)

and the second constraint in (4) is a participation constraint
that ensures the purchase cost φ and fine or penalty t are
such that the technology firm does not expect to lose money.

D. Optimal Contract

We next proceed to solve the contract design problem (4)
through a series of steps. Let φ∗, t∗, L∗c denote the optimal
contract, meaning they maximize (4). We first characterize
the optimal insurance coverage pay out.

Proposition 1: We have that L∗c = L− t∗.
Proof: We first consider the case where i∗(φ∗, t∗) = 0.

In this case, the objective function of (4) is H l(φ, t, Lc), and
the second constraint in (4) is F l(φ, t) ≥ 0. Next, note that
the first-order stationarity condition is

0 = ∂LcH
l(φ, t, Lc) =

γ · (1− γ) · U ′(W + φ− γ · Lc − L+ t+ Lc)+

− γ · (1− γ) · U ′(W + φ− γ · Lc). (7)

Since we assumed that U ′′(·) < 0, this means the above is
satisfied when W + φ − γ · Lc − L + t + Lc = W + φ −
γ · Lc. Hence at optimality we have L∗c = L− t∗, which is
feasible since t∗ < L implies L∗c ≥ 0. The proof for the case
i∗(φ∗, t∗) = 1 proceeds almost identically.

The implication of the above result is that we can rewrite
the contract design problem as

max
φ,t

(1− i∗(φ, t)) ·H l(φ, t) + i∗(φ, t) ·Hh(φ, t)

s.t. i∗(φ, t) = arg max
i∈{0,1}

(1− i) · F l(φ, t) + i · Fh(φ, t)

(1− i∗(φ, t)) · F l(φ, t) + i∗(φ, t) · Fh(φ, t) ≥ 0

φ ≥ 0, t ∈ [0, L]
(8)

where

H l(φ, t) := H l(φ, t, L− t) = U(W + φ− γ · (L− t)), (9)

and

Hh(φ, t) := Hh(φ, t, L−t) = U(W+φ−α ·(L−t)). (10)

We next use the above reformulation to characterize the
optimal purchase price and fine or penalty amount.

Proposition 2: If i∗(φ∗, t∗) = 0, then an optimal choice
solves the optimization problem

max
φ,t

φ+ γ · t

s.t. φ+ γ · t ≤ V
(γ − α) · t < ψ

φ ≥ 0, t ∈ [0, L]

(11)

If i∗(φ∗, t∗) = 1, then an optimal choice solves the opti-
mization problem

max
φ,t

φ+ α · t

s.t. φ+ α · t ≤ V − ψ
(γ − α) · t ≥ ψ
φ ≥ 0, t ∈ [0, L]

(12)

Proof: We first consider the case where i∗(φ∗, t∗) = 0.
In this case, we have that F l(φ, t) > Fh(φ, t) (which is
equivalent to ψ > (γ − α) · t), that the second constraint of
(8) is

F l(φ, t) = V − φ− γ · t ≥ 0, (13)

(which is equivalent to φ + γ · t ≤ V ), and that the
objective function of (8) is H l(φ, t). Since U ′(·) > 0, this
means H l(φ, t) is strictly increasing in φ+ γ · t. The above
observations imply that (11) provides an optimal choice. The
proof for the case i∗(φ∗, t∗) = 1 is nearly identical.

We conclude by using the above characterization to finish
deriving an optimal contract for this scenario.

Theorem 1: If ψ > (γ − α) · L or ψ > (γ − α) · V/γ,
then an optimal contract is (φ∗, t∗, L∗c) = (V, 0, L). If ψ ≤
(γ−α) ·L and ψ ≤ (γ−α) ·V/γ, then an optimal contract is
(φ∗, t∗, L∗c) = (V −γ/(γ−α)ψ,ψ/(γ−α), L−ψ/(γ−α)).

Proof: If ψ > (γ − α) · L, then this means W + V −
γ · L > W + V − ψ − α · L, which implies H l > Hh

since U ′(·) > 0. Hence, the optimal choice is i∗(φ, t) = 0.
This means the choice t∗ = 0 and φ∗ = V is optimal by
Proposition 2. If ψ > (γ − α) · V/γ, then (12) is infeasible.
This means applying Proposition 2 tells us that the optimal
choice is i∗(φ, t) = 0, and that we can again choose t∗ = 0
and φ∗ = V . Finally, if ψ ≤ (γ−α)·L and ψ ≤ (γ−α)·V/γ,
then this means W +V −γ ·L ≤W +V −ψ−α ·L, which
implies H l ≤ Hh since U ′(·) > 0. Moreover, the condition
ψ ≤ (γ−α)·V/γ implies that (12) is feasible. This means the
choice t∗ = ψ/(γ−α) (and note t∗ ≤ L since ψ/(γ−α) ≤ L
in this case) and φ∗ = V −ψ−α/(γ−α)ψ = V −γ/(γ−α)ψ
provides an optimal contract for this case.

E. Insights from the Optimal Contract

Several insights can be gained from the optimal contract
in Theorem 1. The most interesting insights are related to
the conditions that result in a contract where the technology
firm makes a high or low investment in cybersecurity:

When ψ > (γ − α) · L or ψ > (γ − α) · V/γ, the
optimal contract leads to the technology firm making a low
investment in cybersecurity. If ψ > (γ − α) · V/γ, then a
high investment ψ by the technology firm in cybersecurity
is relatively costly compared to the financial value V to the
technology firm of the medical data, and the technology firm
will not want to make a high investment in cybersecurity. If
ψ > (γ −α) ·L, then this means that a a high investment ψ
by the technology firm in cybersecurity is relatively costly
compared to the liability L of the health care provider in
the event of a data breach. It is surprising that the optimal
contract when ψ > (γ − α) · L holds also leads to the
technology firm making a low investment in cybersecurity.
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Fig. 1. This plot shows the expected utility from an optimal contract as a
function of ψ. We can observe that there exists a threshold beyond which
the cost of investment is relatively high compared to either the financial
value of the medical data or the liability in the event of a data breach, and
thus it is optimal to induce i∗ = 0 if ψ is above this threshold value.

Another interesting aspect of the optimal contract when
ψ > (γ − α) · L or ψ > (γ − α) · V/γ is that the optimal
contract is such that there is no penalty or fine t∗ = 0 to the
technology firm in the event of a data breach. In this case,
it is instead optimal to charge as much as possible for the
data, meaning it is optimal to charge φ∗ = V .

On the other hand, the optimal contract induces the
technology firm to invest in cybersecurity only when ψ ≤
(γ −α) ·L and ψ ≤ (γ −α) · V/γ. A numerical example of
these thresholds are shown in Fig. 1. Here, a high investment
ψ by the technology firm in cybersecurity is relatively cheap
compared to the financial value V to the technology firm of
the medical data and relatively small compared to the liability
L of the health care provider in the event of a data breach.

III. SCENARIO B: CONSORTIUM OF HEALTH CARE
PROVIDERS SHARING DATA

The second scenario we study is that of a group of health
care providers sharing medical data amongst themselves.
We assume that the cybersecurity level of each health care
provider is fixed, and that all health care providers have
identical models. Here, the primary consideration is each
health care provider’s decision of whether or not to join
the consortium. If any single health care provider in the
consortium suffers from a data breach, then all the health
care providers in the consortium will face liability from
those patients whose medical data has been breached. Thus,
the health care providers must decide whether any benefits
accrued from being in the consortium outweigh the increased
risks of data breach due to sharing medical data.

In this scenario that we consider, each health care provider
has two options available to mitigate the liability risks
associated with a data breach. The first is that consortium
can impose a fine or penalty on the health care provider
that suffers from a data breach, which is equally shared
by the remaining health care providers. The second is that
each health care provider is able to purchase cybersecurity
insurance from an external insurance agency.

A. Health Care Provider Model

The financial value to a health care provider of their
own medical data is W , and the financial value to a health
care provider of the medical data from a consortium of
k health care providers is v(k) · W , where the function
v(·) > 0 is strictly increasing and concave with v(1) = 1.
This financial value is derived from the provider’s ability to
use the data to self-improve its health care services through
improved patient treatment and care delivery processes, as
well as through medical research. This model says that more
quantity of data gives more financial value, but that there are
diminishing financial returns to increasing quantities of data.

If any consortium member suffers a data breach, then each
health care provider in the consoritum has to spend L to
address its various liabilities to the affected patients. The
probability of a data breach among k health care providers
is given by p(k) ∈ (0, 1). We assume that this function p(·)
is concave and increases with a sublinear growth rate such
that p(k) < k · p(1). Furthermore, the health care provider
responsible for the data breach is required to pay a fine or
penalty of (k− 1) · t that is equally divided among the (k−
1) remaining health care providers, where we assume t ≤
L. Having t > L is unrealistic because it would mean a
healthcare provider profits from a data breach elsewhere.

Each health care provider can choose to purchase a policy
to insure against their liabilities in the event of a breach.
Under the assumption of an actuarially fair policy [31], each
health care provider can purchase an insurance policy that
pays out Lc under the event of a data breach at the cost of
pLc, where p is the probability of a data breach.

Finally, we assume each health care provider is risk averse.
This means that if a health care provider earns a financial
revenue of x, then their utility for that revenue is U(x)
for a function U(·) that is strictly increasing and concave.
Under the additional assumption that U(·) is differentiable,
this assumption of risk aversion means that U ′(·) > 0 and
U ′′(·) < 0.

B. Contract Design Problem

In this scenario, the consortium faces a contract design
problem in which their goal is to pick the value of the fine
or penalty t and the insurance policy payout Lc so as to
encourage participation in the consortium and thus motivate
data sharing. This contract design problem can be written as
the following:

max
s,t,Lc

(1− s) ·H1(Lc) + s ·Hk(t, Lc)

s.t. t ∈ [0, L], Lc ≥ 0
(14)

where we note that a health care provider’s expected utility
when they do not participate in the consortium is given by

H1(Lc) = p(1) · U(W − p(1) · Lc − L+ Lc)+

(1− p(1)) · U(W − p(1) · Lc), (15)



and a health care provider’s expected utility when they do
participate in the consortium is given by

Hk(t, Lc) =

p(1) · U(v(k) ·W − p(k) · Lc − L− (k − 1) · t+ Lc)+

(p(k)− p(1)) · U(v(k) ·W − p(k) · Lc − L+ t+ Lc)+

(1− p(k)) · U(v(k) ·W − p(k) · Lc). (16)

C. Optimal Contract
We next proceed to solve the contract design problem (14)

through a series of steps. Let s∗, t∗, L∗c denote the optimal
contract, meaning they maximize (14). We first characterize
the optimal fine or penalty amount.

Proposition 3: We have that t∗ = 0.
Proof: If s∗ = 0, then the objective function of (14) is

H1(Lc). This means the objective function value does not
depend on t, and so any feasible t is optimal. Hence, we can
pick t∗ = 0 in this case. If s∗ = 1, then the objective function
of (14) is Hk(t, Lc). Now, consider the partial derivative with
respect to t:

∂tH
k(t, Lc) =

−(k−1)·p(1)·U ′(v(k)·W−p(k)·Lc−L−(k−1)·t+Lc)+
(p(k)− p(1)) · U ′(v(k) ·W − p(k) · Lc − L+ t+ Lc).

(17)

Since we assumed that U ′′(·) < 0, this means U ′(v(k) ·W −
p(k) ·Lc−L− (k− 1) · t+Lc) > U ′(v(k) ·W − p(k) ·Lc−
L+ t+Lc) since v(k) ·W −p(k) ·Lc−L−(k−1) · t+Lc <
v(k) ·W −p(k) ·Lc−L+ t+Lc. Recalling that p(k) > p(1)
and U ′(·) > 0 by assumption, we thus have

∂tH
k(t, Lc) ≤

[
− (k − 1) · p(1) + (p(k)− p(1))

]
×

U ′(v(k) ·W − p(k) · Lc − L− (k − 1) · t+ Lc). (18)

Since we assumed that p(k) < k · p(1) and U ′(·) > 0, this
means ∂tHk(t, Lc) < 0. Thus choosing t∗ = 0 is optimal
because we are constrained in (14) to choose t ∈ [0, 1].

The implication of the above result is that we can rewrite
the contract design problem as

max
s,Lc

(1− s) ·H1(Lc) + s ·Hk(Lc)

s.t. Lc ≥ 0
(19)

where H1(·) is as defined in (15), and

Hk(Lc) := Hk(0, Lc) =

p(k) · U(v(k) ·W − p(k) · Lc − L+ Lc)+

(1− p(k)) · U(v(k) ·W − p(k) · Lc). (20)

We next use the above reformulation to characterize the
optimal insurance coverage payout.

Proposition 4: We have that L∗c = L.
Proof: If s∗ = 0, then the objective function of (19) is

H1(Lc). Next, note the first-order stationarity condition is

0 = ∂Lc
H1(Lc) =

p(1) · (1− p(1)) · U ′(W − p(1) · Lc − L+ Lc)+

− p(1) · (1− p(1)) · U ′(W − p(1) · Lc). (21)

Since we assumed that U ′′(·) < 0, this means the above is
satisfied when W − p(1) · Lc − L + Lc = W − p(1) · Lc.
Hence at optimality we have L∗c = L, which is feasible
since L > 0 implies L∗c ≥ 0. The proof for the case s∗ = 1
proceeds almost identically.

The implication of the above result is that we can rewrite
the contract design problem as

max
s

(1− s) ·H1 + s ·Hk (22)

where
H1 := H1(L) = U(W − p(1) · L) (23)

and
Hk := Hk(L) = U(v(k) ·W − p(k) · L). (24)

We conclude by using the above characterization to finish
deriving an optimal contract for this scenario.

Theorem 2: If W − p(1) · L > v(k) ·W − p(k) · L, then
an optimal contract is given by (s∗, t∗, L∗c) = (0, 0, L). If
W −p(1) ·L ≤ v(k) ·W −p(k) ·L, then an optimal contract
is given by (s∗, t∗, L∗c) = (1, 0, L).

Proof: If W − p(1) ·L > v(k) ·W − p(k) ·L, then this
means H1 = U(W − p(1) ·L) > Hk = U(v(k) ·W − p(k) ·
L) since U ′(·) > 0. Hence, the optimal choice is s∗ = 0.
This means the choice t∗ = 0 and L∗c = L is optimal by
Propositions 3 and 4. If W − p(1) ·L ≤ v(k) ·W − p(k) ·L,
then this means H1 = U(W − p(1) · L) ≤ Hk = U(v(k) ·
W − p(k) · L) since U ′(·) > 0. Hence, the optimal choice
is s∗ = 1. This means the choice t∗ = 0 and L∗c = L is
optimal by Propositions 3 and 4.

D. Insights from the Optimal Contract

Several insights can be gained from the optimal contract
in Theorem 2. One interesting insight is that the optimal
contract has t∗ = 0, meaning that there is no penalty or
fine in the event of a data breach, even when the health
care providers participate in the consortium. This has an
important practical implication, which is that participation
in the data sharing consortium can only be encouraged by
the ability of a health care provider to purchase an insurance
policy from an external insurance company. Specifically, the
optimal contract has L∗c = L. This means Hk = Hk(L) >
Hk(0), or in words that purchasing insurance gives each
participating health care provider a strictly higher utility than
not purchasing insurance. Restated, the ability to purchase
insurance for the event of a data breach makes it more
likely for a health care provider to be willing to share data.
Furthermore, Fig. 2 shows that depending on the particular
functional forms, there is often a maximum consortium size
beyond which costs associated with the increased likelihood
of data breaches exceeds the value of sharing more data.

IV. CONCLUSION

In this paper, we designed contracts that help to mitigate
the risks associated with data sharing so as to encourage
health care providers to share their medical data. We first
studied a scenario where a single health care provider
sells medical data to a technology firm that is interested
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Fig. 2. The red solid line is a health care provider’s expected utility
when they participate in the consortium, and the blue dashed line is the
expected utility when they do not participate, where k is the number of
health care providers in the consortium. The black dotted line represents
the participation threshold beyond which the risks outweigh the benefits of
sharing data by participating in the consortium.

in using the data to develop new artificial intelligence
algorithms. We next studied a scenario where multiple
health care providers share data with each other for the
purpose of conducting scientific research and improving
patient care. Both cases required managing a trade-off
between the value of sharing data with the liabilities
associated with data breaches. The key concepts towards
managing the risks associated with data breaches were
the ideas of imposing a fine or penalty and purchasing
external insurance to mitigate liabilities in the event of
a data breach. Our results suggest that it is possible to
devise contracts that promote the sharing of medical data
while preserving the integrity and privacy of the data. By
implementing the correct incentives, it may be possible
to overcome the barriers to data sharing and facilitate the
use of health information for science, technology, and policy.
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