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Second Order Regret Bounds Against Generalized

Expert Sequences under Partial Bandit Feedback
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Abstract—We study the problem of expert advice under partial
bandit feedback setting and create a sequential minimax optimal
algorithm. Our algorithm works with a more general partial
monitoring setting, where, in contrast to the classical bandit
feedback, the losses can be revealed in an adversarial manner.
Our algorithm adopts a universal prediction perspective, whose
performance is analyzed with regret against a general expert
selection sequence. The regret we study is against a general
competition class that covers many settings (such as the switching
or contextual experts settings) and the expert selection sequences
in the competition class are determined by the application at
hand. Our regret bounds are second order bounds in terms
of the sum of squared losses and the normalized regret of our
algorithm is invariant under arbitrary affine transforms of the
loss sequence. Our algorithm is truly online and does not use
any preliminary information about the loss sequences.

I. INTRODUCTION

In machine learning literature [1], [2], the field of online

learning [3] is heavily studied in a myriad of fields from

control theory [4] and computational learning theory [5], [6]

to decision theory [7], [8]. Especially, algorithms pertaining

to the universal prediction perspective [9] have been utilized

in many signal processing applications [10]–[13], and in

sequential estimation/detection problems [14]–[17] such as

density estimation or anomaly detection [18]–[22]. Some of

its most popular applications are in multi-agent systems [23]–

[27] and more prominently in reinforcement learning problems

[28]–[39], where the famous exploration and exploitation trade

off is commonly encountered [40].

In many sequential decision making problems, the setting

of imperfect feedback is most generally encompassed by the

framework of partial monitoring [41]; where the goal is to se-

quentially select one of existing M actions (e.g., expert advice

and parallel running algorithms) and minimize (or maximize)

some loss (or reward) whilst observing the outcomes of the

actions in a limited partial manner [42]. Various interesting

problems can be modeled by the partial monitoring framework,

such as dynamic pricing [43], label efficient prediction [44],

linear/convex optimization with full/bandit feedback [45]–

[47], the dark pool problem [48] and the popular multi-

armed bandit problem [29], [31], [32], [36], [39], [40], [49],

[50], which is (in some sense) a limited feedback version

of the traditional prediction with expert advice [11], [12],

[15], [17], [51], [52]. This setting is applicable in a wide

range of problems from recommender systems [23], [53]–[55],

cognitive radio [56], [57] and clinical trials [58] to online

advertisement [59]. We study this problem in an online setting,

where we sequentially operate on an adversarial observation

stream [60] and investigate the problem from a competitive

algorithm perspective [9], [26], [30], [33], [51], [61], [62].

The competitive perspective is achieved by the utilization

of regret bounds. In this perspective, the performance of our

selections are compared against a competition class of expert

selection strategies. Given a loss sequence, the aim of an

algorithm is to achieve a total loss that is as good as the total

loss of the competitor selections (e.g., for fixed competitions,

we compare against the single expert selection with the best

cumulative loss) [63]. The difference between the total loss of

our selections and the best strategy is called regret [42].

The regret bounds of the partial monitoring problems are on-

going research subjects. A special case of partial monitoring,

the adversarial multi-armed bandit problem, has a regret lower

bound of Ω(
√
T ) in a T round game against the best fixed

selection [40]. This regret lower bound implies a minimax

bound of Ω(
√
W∗T ), where W∗ is the sequence complexity

of an expert selection strategy in an arbitrary competition

class [36], [64], [65]. This complexity can be dependent on

either the number of switches in the sequence [29], [31], [39],

[40], [66], the number of contextual regions [67]–[73], or

any other complexity definition that implies a prior on the

expert sequences [5], [64], [65]. With some alterations, there

exist state of the art algorithms [64], [65] that can achieve

a regret bound of O(
√
WT ) when competing against the

expert sequence with complexities upper bounded by W . In

a more general partial monitoring setting we have a regret

lower bound of Ω(T
2
3 ) in a T round game against the best

fixed selection [74]. Hence, a regret bound of O(W
1
3T

2
3 ) is

implied, which is addressed in this work.

Moreover, it is a popular topic of study to create fundamen-

tal, translation/scale-free regret bounds. Against fixed com-

petitions, the algorithm of exponentially weighted averaging

[51], [62] provides a zeroth order regret bound. In one-sided

games (i.e., all losses have the same sign), [7] showed that

the algorithm of [51] obtains a first order regret bound. A

direct study on the signed games in the work of [75] finds

that weighted majority achieves the first order regret without

a need for one-sided losses. Although these approaches are

scale equivariant, they are not translation invariant. The work

in [63] solves these shortcomings by creating second order

regret bounds that requires no a priori knowledge. Their regret

bounds are translation, scale invariant and also parameter-free.

However, their competition class is limited and focused on best

fixed selection. The approaches in [64], [65] address this issue

by extending the second order regret bounds to generalized

competition classes that are able to arbitrarily compete against

different choices of competitions in the problem of prediction

with expert advice and multi-armed bandits. In this work, we

aim to extend these regret results to the harder problem of

prediction in the presence of partial limited feedback.

http://arxiv.org/abs/2204.06660v1
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II. PROBLEM DESCRIPTION

In this work, we study the mixture of experts problem

under partial monitoring. We have M experts such that m ∈
{1, . . . ,M} and randomly select one of them at each round t

according to our selection probabilities [64], [65]

qt , [qt,1, . . . , qt,M ]. (1)

Based on our online selection {it}t≥1, it ∈ {1, 2, . . . ,M},

we incur the loss of the selected expert {lt,it}t≥1, where we

do not assume anything about the losses before selecting our

expert at time t. Because of the partial monitoring setting,

we observe the losses {lt,m}t≥1 randomly (i.e., they may be

hidden). Let Pt(m,m′) be the possibility of observing the loss

of mth expert when (m′)th expert is selected at time t.

Remark 1. When Pt(m,m′) = 1, ∀m,m′; we have the full

feedback setting.

For a more general analysis, we assume that Pt(·, ·) can be

arbitrary and can even change in each round t. Therefore, it

can even be chosen in an adversarial manner. However, for

observability of every expert, we make the following notion:
∑

m′

Pt(m,m′) = 1, ∀m (2)

Example 1. In the special case of when Pt(m,m′) = 1 if

m = m′ and 0 otherwise; we have the classic bandit feedback.

In a T round game, we define IT as the row vector

containing the user selections up to time T and its loss

sequence LIT , i.e.,

IT = [i1, . . . , iT ], LIT = [l1,i1 , . . . , lT,iT ]. (3)

Similarly, we define ST as the row vector representing a

deterministic expert selection sequence of length T and its

loss sequence LST
, i.e.,

ST = [s1, . . . , sT ], LST
= [l1,s1 , . . . , lT,sT ]. (4)

such that each st ∈ {1, 2, . . . ,M} for all t. In the rest of

the paper, we refer to each such deterministic expert selection

sequence, ST , as a competition. We denote the cumulative

losses at time T of IT and ST by

CIT =

T
∑

t=1

lt,it , CST
=

T
∑

t=1

lt,st . (5)

Since we assume no statistical assumptions on the loss se-

quence, we define our performance with respect to a com-

petition ST that we want to compete against. We use the

notion of universal regret to define our performance against

any competition ST as

RST
, CIT − CST

=

T
∑

t=1

lt,it −
T
∑

t=1

lt,st , (6)

where we denote the regret accumulated in T rounds against

ST as RST
. Our goal is to create an algorithm with minimax

optimal expected regret bounds that are translation and scale

free against ST that depends on how hard it is to learn the

competition ST [64], [65].

III. THE FRAMEWORK

Our framework starts by assigning a weight wSt
to each

competition St, which are implicitly calculated with equiva-

lence classes (same class sequences are updated together) [36],

[64], [65]. We define the equivalence classes with

λt = [m, . . .], (7)

where the first parameter λt(1) is expert selection m at time

t. Together with the omitted parameters in (7), λt determines

the competitions that are included in that equivalence class,

which consists of the competitions St whose behavior match

with the parameters λt. The parameters of λt determine the

number of equivalence classes and how many competitions

each class represents. We define Ωt as the set of all λt as

λt ∈ Ωt, ∀λt. Ωt may not represent all possible sequences

at time t, but instead the sequences of interest (competition).

We define Λt as the parameter sequence up to t as

Λt , {λ1, . . . , λt}, (8)

where each sequence St will correspond to only one Λt. We

define wλt
as the weight of the equivalence class parameters

λt at time t. The weight of an equivalence class is simply the

summation of the implicit weights of the sequences whose

behavior conforms with its class parameters λt, such that

wλt
=

∑

Fλ(St)=λt

wSt
, (9)

where Fλ(·) is the mapping from sequences St to the auxiliary

parameters λt. Similar to [64], [65], we update the weights

wλt
using the following two-step approach. First, we define an

intermediate variable zλt
(which incorporates the exponential

update as in the exponential weighting [42]) such that

zλt
, wλt

e−ηt−1φt,λt(1) , (10)

where φt,λt(1) is a measure of the performance (λt(1))
th

expert at time t, which we discuss more in the next section.

Secondly, we create a probability sharing network among

the equivalence classes (which also represents and assigns a

weight to every individual sequence St implicitly) at time t as

wλt+1 =
∑

λt∈Ωt

T (λt+1|λt)z
ηt

ηt−1

λt
, (11)

where T (λt+1|λt) is the transition weight from the class

parameters λt to λt+1 such that
∑

λt+1∈Ωt+1
T (λt+1|λt) = 1

(which is a probability distribution itself). The power normal-

ization on zλt
is necessary for adaptive learning rates [64],

[65]. Using wλt
, we construct the expert weights as

wt,m =
∑

λt(1)=m

wλt
. (12)

The probabilities are constructed by normalization, i.e.,

pt,m =
wt,m

∑

m′ wt,m′

, (13)

and selection probabilities qt,m are given by mixing pt,m with

a uniform distribution (similarly to [64], [65]) as

qt,m = (1− ǫt)pt,m + ǫt
1

M
, (14)

where ǫt is a time dependent uniform mixing parameter.
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IV. ALGORITHM DESIGN AND REGRET BOUNDS

In this section, we study the performance of our algorithm.

We first provide a summary of some important notations and

definitions, which will be heavily used. Then, we study the

regret bounds by successively designing the learning rates

ηt, the performance measures φt,m and the uniform mixture

coefficients ǫt.

A. Preliminaries

Before starting our design and analysis, we provide some

relevant definitions and notations below.

1) qt,m is the probability of selecting m at t as in (14).

2) Eft,m [xt,m] is the convex sum of xt,m with the coeffi-

cients ft,m, i.e.,
∑M

m=1 ft,mxt,m.

3) E[x] is the expectation of x when user selection {it}t≥1

is drawn from {qt,m}t≥1.

4) 1t,m is the indicator function for observation, i.e., 1t,m
is 1 if the loss of m is observed at time t and 0 otherwise.

5) ηt is the learning rate used in (10).

6) φt,m is the performance metric used in (10).

7) dt , maxm φt,m −minm φt,m.

8) vt , Ept,mφ
2
t,m.

9) Dt , max1≤t′≤t dt,.
10) Vt ,

∑t

t′=1 vt.

11) log(·) is the natural logarithm.

12) λt is an equivalence class parameter at time t as in (7).

13) Ωt is the set of all λt at time t.

14) ΛT , {λt}Tt=1 as in (8).

15) zλt
is as in (10).

16) T (·|·) is the transition weight used in (11).

17) T ({λt}Tt=1) ,
∏T

t=1 T (λt|λt−1).
18) W (ΛT ) , log(max1≤t≤T |Ωt−1|)− log(T (ΛT )), which

corresponds to the complexity of a competition.

We start our algorithmic design similar to [64], [65], where

there exist three design components in our framework. Specif-

ically, these are the learning rates ηt, performance measures

φt,m and the uniform mixture ǫt. We will gradually construct

these in our analysis.

• We start by setting the following learning rates [65]

ηt =
γ

√

Vt +D2
t

, (15)

which are non-increasing and γ is a user-set parameter.

• We set the performance measure φt,m as

φt,m =

{

lt,m−ψt

ot,m
, 1t,m = 1

0, otherwise
, (16)

– lt,m is the loss of the mth expert,

– ot,m is the observation probability of the expert m

at time t, i.e.,

ot,m =
∑

m′

Pt(m,m′)qt,m′ (17)

– ψt is the minimum loss observed so far, i.e.,

ψt =min(ψt−1, min
m:1t,m=1

lt,m). (18)

B. Analysis of Performance Measure

The performance analysis starts similarly to [64], [65],

where we have

Lemma 1. We have

T
∑

t=1

(

Ept,mφt,m − φt,λt(1)

)

≤1

2

T
∑

t=1

ηtEpt,mφ
2
t,m

+
T
∑

t=1

(

1− ηt

ηt−1

)

dt

+
log(max1≤t≤T |Ωt−1|)

ηT−1

− 1

ηT−1
log(T (ΛT )),

where T (ΛT ) = T ({λt}Tt=1); φt,m ≥ 0, for all t,m; ηt is

non-increasing with t.

Proof. The proof follows from [64], [65], where we use the

inequality e−x ≤ 1− x+ 1
2x

2 for x ≥ 0.

Lemma 1 provides us an upper bound on the cumulative

difference on the performance variable φt,m in terms of the

learning rates ηt and the performance measures φt,m. Next,

we have some result from the selection of the learning rates

ηt in (15).

Lemma 2. When using the learning rates in (15), we have

1

2

T
∑

t=1

ηtEpt,mφ
2
t,m ≤ γ

√

VT ,

where γ is a user-set parameter.

Proof. Proof is from [65].

Lemma 3. When using the learning rates in (15), we have

T
∑

t=1

(

1− ηt

ηt−1

)

dt ≤
√

VT +D2
T .

Proof. Proof follows [65].

Lemma 4. When using the learning rates in (15), we have

T
∑

t=1

Ept,mφt,m − φt,st ≤
W (ΛT ) + γ

γ

√

VT +D2
T + γ

√

VT ,

where γ is a user-set parameter and st , λt(1).

Proof. Similarly with [65], the proof comes from combining

Lemma 1 with Lemma 2 and Lemma 3 and the definition of

W (ΛT ).

Lemma 4 provides us an upper bound on the cumulative

difference on the performance variable φt,m in terms of the

isolated parameter γ which needs to be set at the beginning.

However, this does not invalidate the fact that our algorithm is

truly online since γ will be straightforwardly set based on the

competition class, which is available at the start of the design

of our algorithm.
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C. Second Order Regret

Here, we construct the second order bounds for the regret

of our algorithm. To do this, we first need to create the regret

with respect to the expert selection probabilities qt,m instead

of the algorithmic probabilities pt,m.

Proposition 1. When qt,m is constructed by mixing pt,m with

uniform probabilities, we have

Ept,mφt,m = Eqt,mφt,m + ǫt
[

Ept,mφt,m − Euφt,m
]

,

where Eu is expectation with uniform probability.

Proof. The proof is straightforward from (14).

‘ Next, we provide a result for the expectation of the

performance measures and show its relation to the losses.

Proposition 2. For the expectation of the performance vari-

able φt,m in (16), we have

E[φt,m] = E[lt,m]− E[ψt|1t,m = 1].

Proof. We have

E[φt,m] =E[E[φt,m|1t,m]], (19)

=ot,mE

[

lt,m − ψt

ot,m
|1t,m = 1

]

(20)

=E[lt,m]− E[ψt|1t,m = 1], (21)

which concludes the proof.

Next, we relate the regret with respect to the algorithmic

probabilities to the regret with respect to the expert selection

probabilities.

Lemma 5. We have

E

[

T
∑

t=1

Ept,m [φt,m]− φt,st

]

≥ E

[

T
∑

t=1

(Eqt,m [lt,m]− lt,st)

]

−
T
∑

t=1

E[Eqt,mE[ψt|1t,m = 1]]

+

T
∑

t=1

E[ψt|1t,st = 1]−
T
∑

t=1

ǫt(A−B),

where [B,A] is the range of losses lt,m.

Proof. The proof comes from combining Proposition 1 and

Proposition 2.

By utilizing these results, we have the following second

order regret bound.

Theorem 1. The expected regret of our algorithm is given by

E[RST
] ≤W (ΛT ) + γ

γ

√

E[VT ] + E[D2
T ] + γ

√

E[VT ]

+
T
∑

t=1

ǫt(A−B) + E[ΨT ],

where

E[ΨT ] ,

T
∑

t=1

E[Eqt,mE[ψt|1t,m = 1]]−
T
∑

t=1

E[ψt|1t,st = 1].

Proof. The proof comes from Lemma 4 and Lemma 5.

D. Bounding VT and DT

To bound the expected regret, we need to bound both of

the expectations of Vt and D2
t . For this, we first utilize the

following result.

Proposition 3. The observation probabilities ot,m are lower

bounded as

ot,m ≥ ǫt

M
, ∀t,m.

Proof. We have qt,m ≥ ǫt
M

from (14). Since
∑

m′ P(m,m′) =
1, we have ot,m ≥ ǫt

M
, which concludes the proof.

Then, we create a bound on the expectation of VT .

Lemma 6. For φt,m as in (16), ψt as in (18) and ot,m as in

(17), the expectation of VT is bounded as follows:

E[VT ] ≤M(A−B)2
∑

t

1

ǫt
,

where [B,A] is the range of losses lt,m for all t,m.

Proof. From the definition of vt, we have

E[vt] = E

[

∑

m

pt,m
(lt,m − ψt)

2

ot,m

]

, (22)

≤ E

[

∑

m

pt,m

ot,m
(A−B)2

]

(23)

From Proposition 3, we have

1

ot,m
≤ M

ǫt
(24)

Thus, combining (23) and (24) gives

E[vt] ≤
M(A−B)2

ǫt
, (25)

Thus,

E[VT ] ≤M(A−B)2
∑

t

1

ǫt
, (26)

which concludes the proof.

Similarly, we also create a bound on the expectation of D2
T .

Lemma 7. For φt,m as in (16), ψt as in (18) and ot,m as in

(17), the expectation of D2
T is bounded as follows:

E[D2
T ] ≤

M2(A−B)2

ǫ2T
(27)

where [B,A] is the range of losses lt,m for all t,m.

Proof. The proof is straightforward from the definition of DT

DT = max
1≤t≤T

lt,it − ψt

ot,it
, (28)

≤ M(A−B)

ǫT
, (29)

which concludes the proof.
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E. Bounding ψt

In this section, we construct the expected regret bound. To

this end, we need to bound the expectation of the expression

ΨT . To do this, we first bound the expectation of ψt.

Proposition 4. We have

E[ψt|1t,m = b] ≤E[ψt−1],

for any b ∈ {0, 1}.

Proof. Since ψt ≤ ψt−1 by definition, we have

E[ψt|1t,m = b] ≤E[ψt−1|1t,m = b], (30)

≤E[ψt−1], (31)

since ψt−1 is not a function of 1t,m.

Next, we bound the cumulative sum of the expectation of

ψt.

Lemma 8. For φt,m as in (16), ψt as in (18) and qt,m as in

(14), we have the following expectation result

T−1
∑

t=1

E[ψt] ≤
T−1
∑

t=2

(Qt −Qt−1 + 1)E[ψt|1t,st = 1]

+Q1E[ψ1],

for any {st}Tt=1 expert selection sequence, where [B,A] is the

range of losses lt,m for all t,m and Qt ,
∑T−t
τ=1(1− δ)τ−1,

where δ ≤ ot,m for all t,m.

Proof. For any m, we have

E[ψt] =ot,mE[ψt|1t,m = 1] + (1− ot,m)E[ψt|1t,m = 0],
(32)

≤ot,mE[ψt|1t,m = 1] + (1− ot,m)E[ψt−1], (33)

≤δE[ψt|1t,m = 1] + (1− δ)E[ψt−1]. (34)

By the telescoping rule, we have

E[ψt] ≤ δE[ψt|1t,st = 1]

+ (1− δ)δE[ψt−1|1t−1,st−1 = 1]

+ . . .

+ (1− δ)t−2δE[ψ2|12,s2 = 1]

+ (1− δ)t−1
E[ψ1], (35)

for any {sτ}tτ=2 sequence, where δ ≤ ot,m, ∀t,m. By rear-

ranging, we have

T−1
∑

t=1

E[ψt] ≤
T−1
∑

t=2

δQtE[ψt|1t,st = 1] +

T−1
∑

t=1

(1− δ)t−1
E[ψ1],

(36)

where Qt ,
∑T−t

τ=1(1− δ)τ−1. Hence, Qt−1 = (1− δ)Qt +1
and δQt = Qt −Qt−1 + 1. Thus, we have

T−1
∑

t=1

E[ψt] ≤
T−1
∑

t=2

(Qt −Qt−1 + 1)E[ψt|1t,st = 1]

+Q1E[ψ1], (37)

which concludes the proof.

F. Bounding ΨT and the Normalized Regret

We combine these results to bound the expression Ψt.

Lemma 9. We have

E[ΨT ] ≤
1 + δ

δ
(A−B),

where [B,A] is the range of losses lt,m and δ ≤ ot,m.

Proof. Using Proposition 4 and Lemma 8, we have

T
∑

t=1

(E[Eqt,m [E[ψt|1t,m = 1]]− E[ψt|1t,m = 1]])

≤
T−1
∑

t=1

E[ψt]−
T
∑

t=1

E[ψt|1t,st = 1]

+ E[Eq1,m [E[ψ1|11,m = 1]]], (38)

≤
T−1
∑

t=2

E[ψt|1t,st = 1](Qt −Qt−1) +Q1E[ψ1]

− E[ψT |1T,sT = 1]− E[ψ1|11,s1 = 1]

+ E[Eq1,m [E[ψ1|11,m = 1]]] (39)

≤
T−1
∑

t=2

B(Qt −Qt−1) + (Q1 + 1)A−B −B, (40)

≤(QT−1 −Q1)B + (Q1 + 1)A− 2B, (41)

≤(Q1 + 1)(A−B), (42)

≤1 + δ

δ
(A−B), (43)

where we used B ≤ ψt ≤ A and 1 ≤ Qt ≤ Qt−1.

After utilizing these results, we have the following normal-

ized bounds, i.e., the expected regret divided by the loss range.

Theorem 2. We have the following normalized expected regret

bound:

E[RST
]

D
≤1 +

M

ǫT
+

T
∑

t=1

ǫt + γ

√

M
∑

t

1

ǫt

+
(WT + γ)

γ

√

M
∑

t

1

ǫt
+
M2

ǫ2T
,

where WT ,W (ΛT ), D , A−B and ǫt is nonincreasing.

Proof. The proof comes from combining the results of

Theorem 1, Lemma 6, Lemma 7 and Lemma 9.

Using this normalized regret bound, we can create the

following cleaner bound.

Corollary 1. We have the following cleaner normalized ex-

pected regret bound:

E[RST
]

D
≤1 +

T
∑

t=1

ǫt +
(WT + 2γ)

γ

M

ǫT
(44)

+
(WT + γ + γ2)

γ

√

M
∑

t

1

ǫt
, (45)

where WT ,W (ΛT ) and D , A−B.

Proof. The proof comes from using Theorem 2 with the fact

that
√
x+ y ≤ √

x+
√
y for all x, y ≥ 0.
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G. Expected Regret Bound

To construct the final version of the normalized expected

regret, we start by setting

γ =
√
W, (46)

where WT ≤W is an upper bound on the complexity.

Corollary 2. With the parameter γ in (46), we have

E[RST
]

D
≤1 +

T
∑

t=1

ǫt + (
√
W + 2)

M

ǫT
(47)

+ (2
√
W + 1)

√

M
∑

t

1

ǫt
, (48)

where WT ≤W and D , A−B.

To create the final version of the expected regret bound,

we design the only remaining parameter, the uniform mixture

coefficients, as follows:

ǫt = min(1,M
1
3W

1
3 t−

1
3 ), (49)

which is a nonincreasing sequence of mixture weights.

Corollary 3. With the uniform mixture weights in (49), we

have

E[RST
]

D
≤O(M 1

3W
1
3T

2
3 ) (50)

where WT ≤W and D , A−B.

Proof. From (49), we have

T
∑

t=1

ǫt ≤
T
∑

t=1

M
1
3W

1
3 t−

1
3 ≤ O(M

1
3W

1
3 T

2
3 ), (51)

and

T
∑

t=1

1

ǫt
≤ T

ǫT
≤ O(M− 1

3W− 1
3 T

4
3 ), (52)

which concludes the proof.

Remark 2. Our expected regret bound

E[RST
] = O

(

DM
1
3W

1
3 T

2
3

)

,

is translation invariant and scale equivariant, hence, a funda-

mental regret bound [63].

V. CONCLUSION

In conclusion, we have created a completely online, gener-

alized algorithm for the partial monitoring problem of expert

advice under arbitrary limited feedback. By designing the

competition class suitably, we can compete against a specific

subset of the expert selection sequences in relation to the

application at hand. Our normalized expected regret bounds

are translation/scale-free of the expert losses and parameter

free, i.e., the expected regret bound against a competition ST ,

E[RST
], is linearly dependent on any unknown loss range D.

Moreover, the expected regret bound is minimax optimal, i.e.,

O(W
1
3T

2
3 ) for a competition complexity of W .
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