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Abstract

Prediction models are typically optimized independently from decision optimization. A ‘smart
predict then optimize’ (SPO) framework optimizes prediction models to minimize downstream de-
cision regret. In this paper we present dboost, the first general purpose implementation of smart
gradient boosting for ‘predict, then optimize’ problems. The framework supports convex quadratic
cone programming and gradient boosting is performed by implicit differentiation of a custom fixed-
point mapping. Experiments comparing with state-of-the-art SPO methods show that dboost can
further reduce out-of-sample decision regret.
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1 Introduction

Recently there has been a growing body of research on decision-aware predictive modelling (see for
example [5, 4, 15, 16, 18, 21, 25]). A traditional ‘predict, then optimize’ framework treats the prediction
estimation and decision optimization problem independently. As such, an ‘objective mismatch’ [20] can
occur whereby improved prediction accuracy does not result in improved decision accuracy.

Conversely, the smart ‘predict, then optimize’ (SPO) [15] framework optimizes prediction models in
order to minimize the final downstream decision regret. To date, the SPO framework has been studied
in a general setting for linear and decision tree regression models [15, 16]. In this paper we present
dboost, a general purpose framework that combines the strength of gradient boosting with the SPO
framework. Previous work [19] considers gradient boosting for integrated prediction and optimization
problems but only considers a small subset of optimization problems with linear inequality constraints.
In contrast, the dboost framework is capable of supporting any optimization problem that can be cast
as a convex quadratic cone program (QCP); and thus supports linear 1, quadratic and second-order
cone programming with general convex cone constraints. We present a novel fixed-point implicit dif-
ferentiation algorithm for computing the gradient of the SPO loss with respect to all of the cone pro-
gram variables. The dboost framework is provided as an open-source Python package, available here:
https://github.com/ipo-lab/dboost py.

The remainder of the paper is outlined as follows. We begin with a brief overview of related work
on integrated prediction and optimization. In Section 2 we present convex quadratic cone programming
in the context of the SPO framework and provide the fixed-point implicit differentiation algorithm. We
then present the dboost framework as a general extension of the gradient boosting algorithm proposed by
Friedman [17]. Experimental results are provided in Section 3 and demonstrate that training prediction

1We refer the reader to the Supplementary Material for a discussion on the limitations of strict lower-level linear
programming.
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models with dboost can reduce decision regret by anywhere from 15% − 90% in comparison to existing
solutions.

1.1 Related work

The dboost framework applies gradient boosting [17] to the SPO loss function [15], described in more
detail in Section 2. Optimizing the SPO loss by gradient descent methods is challenging as it requires
computing the gradient of the optimal solution with respect to predicted costs. Local gradient based
methods [21, 24] and convex approximations [9, 15] have proven to be effective in comparison to a
traditional ‘predict, then optimize’ approach and growing empirical evidence supports a fully integrated
estimation approach (see for example [3, 13, 21, 24, 25]).

Related, Amos and Kolter [2] provide a framework for learning linear constrained QPs in an end-to-end
trainable neural network. Backpropagation is performed by implicit differentiation of the KKT optimality
conditions. Similarly, Agrawal et al. [1] present a differentiable optimization layer for linear convex cone
programs and compute gradients by implicit differentiation of the residual map of the conic homogeneous
self-dual embedding. In contrast, we present an alternative differentiation technique, customized to the
QCP program, that implicitly differentiates a fixed-point mapping of the Douglas-Rachford splitting
iterations [14].

Most relevant is the work of Elmachtoub et al. [16] who present SPO trees (SPOT) for optimizing
regression trees to minimize downstream decision regret. The authors also consider a random forest [7]
implementation, but do not consider a gradient boosting ensemble approach. Konishi and Fukunaga [19]
consider gradient boosting problems under the SPO framework for a subset of optimization problems;
namely with linear inequality constraints, but do not consider more general convex optimization problems.
To our knowledge, dboost is the first ‘smart’ gradient boosting implementation that supports a more
general class of convex quadratic cone programs.

2 Methodology

We consider convex quadratic cone programs (QCP) with the following primal-dual form [23]:

minimize
1

2
zT Pz+ cT z maximize − 1

2
zT Pz−bT y

subject to Az+ s = b subject to Pz+AT y+ c = 0

s ∈ K y ∈ K∗ (1)

where z ∈ Rdz , y ∈ Rdy and s ∈ Rdy denote the primal, dual and slack variables, respectively. The
objective input variables are a symmetric positive semi-definite matrix P ∈ Rdz×dz and cost vector
c ∈ Rdz . The feasible region is defined by the matrix A ∈ Rdy×dz , the vector b ∈ Rdy and the nonempty
convex cone K with associated dual cone K∗. We denote the optimal solution to Program (1) as ζ∗ =
(z∗,y∗, s∗) ∈ S ⊂ Rdz×K×K∗ with feasible region: S = {ζ ∈ Rdz×K×K∗ | Az+ s = b,Pz+AT y+ c =
0}.

In practice, the true cost, c, is not directly observable at decision time, and rather an associated
feature vector x ∈ Rdx is observed. Given a training dataset D = {(x(i), c(i))}mi=1 we seek to estimate

a prediction model f : Rdx × Rdθ → Rdz such that: ĉ(i) = f(x(i),θ). We consider ‘additive’ prediction

models of the form: f(x,θ) =
∑N

n=0 βnh(x,αn), with parameter θ = {(βn,αn)}Nn=1 and non-negative
weight βn ≥ 0 ∀n. In particular, we focus on the case where the functions, h(x,αn), are regression trees
and therefore the parameters αn encode the feature component and splitting information.

A traditional ‘predict, then optimize’ approach would estimate θ by minimizing a prediction loss (such

as least-squares) and then ‘plug-in’ the estimate ĉ(i) to Program (1) in order to retrieve the ‘optimal’
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decision. In contrast, a ‘smart predict, then optimize’ (SPO) approach estimates the prediction model
parameters by minimizing the decision regret:

ℓQSPO(ĉ, c) =
1

2
z∗(ĉ)T Pz∗(ĉ) + cT z∗(ĉ)− 1

2
z∗(c)T Pz∗(c)− cT z∗(c). (2)

The SPO estimation process can be posed as a bi-level optimization:

minimize
θ

1

m

m∑
i=1

ℓQSPO(ĉ
(i), c(i))

subject to z∗(ĉ(i)) = argmin
z∈Sz

1

2
zT Pz+

T

ĉ(i) z .

(3)

We approximate a local solution to Program (3) by applying functional gradient descent [17]. Specifi-
cally, at each iteration of gradient descent we must first solve m QCPs to optimality and the gradient,
∇ĉ(i)ℓQSPO, is obtained by specialized argmin differentiation described below.

2.1 Fixed-point argmin differentiation

Program (1) is solved by applying a Douglas-Rachford splitting to a homogeneous embedding of the QCP
as described in O’Donoghue [23]. Specifically, we define the convex cone C = Rdz ×K∗ and denote:

u =

[
z
y

]
, v =

[
0
s

]
, M =

[
P+ Iz AT

−A 0

]
, q =

[
c
b

]
, (4)

where Iz denotes the identity matrix of same dimension as z. O’Donoghue [23] demonstrates that a direct
application of operator splitting produces the following procedure; from any initial u0 and v0 then the
following iterations converge to the optimal ζ∗ (if it exists):

ũk+1 = (Iu +M)−1(uk +vk −q) (5a)

uk+1 = ΠC(ũ
k+1 − vk) (5b)

vk+1 = vk +uk+1 −ũk+1, (5c)

where ΠC denotes the Euclidean projection operator onto the set C.
We recast the iterative procedure (12) as a fixed-point iteration over variable wk = ũk+1 − vk and

apply the implicit function theorem [12] to compute the required gradients. We begin with the following
proposition. Note that all proofs are available in the Supplementary Material report.

Proposition 1 Let wk = ũk+1 − vk and define F : Rdz+dy × Rdθ → Rdz+dy . Then the iterations in
Equation (12) can be cast as a fixed-point iteration of the form F (w,θ) = w given by:

wk+1 = (Iw +M)−1(2ΠC(w
k)−wk −q) +wk −ΠC(w

k). (6)

We denote the derivative of the projection operator as DΠC and for ease of notation we drop the index
k. The Jacobian, ∇wF , is therefore defined as:

∇wF = (Iw +M)−1(2DΠC(w)− Iw) + Iw −DΠC(w). (7)
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Direct application of the implicit function theorem gives the desired Jacboian, ∇θ w
∗(θ), with respect to

the parameter θ at optimality w∗:

∇θ w
∗(θ) = [Iw −∇wF (w∗(θ),θ)]−1∇θF (w∗(θ),θ). (8)

From the definition of w∗ we have that u∗ = ΠC(w
∗) and therefore ∇w∗ u∗ = DΠC(w

∗).
Finally, learning θ by gradient boosting ultimately requires computing the gradient ∂ℓ/∂ c. From

the chain rule we have ∂ℓ/∂ c = ∂ℓ/∂ z∗ ·∂ z∗ /∂ c. In practice, however, it is computationally inefficient
to form the Jacobian, ∂ z∗ /∂ c, directly and instead we compute the action of the left matrix-vector
product of the Jacobian with respect to the relevant gradient, ∂ℓ/∂ z∗, by solving the following system
of equations.

Proposition 2 Denote the matrix G = (Iw +M)DΠC(w
∗) + Iw −2DΠC(w

∗) and define d̂z and d̂y as:[
d̂z

d̂y

]
= G−T DΠC(w

∗)T
[
−( ∂ℓ

∂ z∗ )
T

0

]
(9)

Then the gradients of the loss function, ℓ, with respect to problem variables P, c, A and b are given by:

∂ℓ

∂P
=

1

2

(
d̂z z

∗T + z∗ d̂
T

z

) ∂ℓ

∂ c
= d̂z

∂ℓ

∂A
= y∗ d̂

T

z − d̂y z
∗T ∂ℓ

∂ b
= d̂y (10)

We now present the dboost algorithm which applies gradient boosting to minimize decision regret. We
highlight two important differences between Algorithm 1 and the standard gradient boosting algorithm.
First, on line 8 we compute the gradient of the decision regret, ℓQSPO, with respect to the estimated

costs by first solving the optimal decisions, {z∗(ĉ(i))}mi=1, and then performing implicit differentiation as
described above. Similarly, the line search on line 10 is with respect to the decision regret, ℓQSPO, and

therefore we must solve {z∗(ĉ(i) +βh(x(i),αn))}mi=1 at each candidate value β. These differences make
Algorithm 1 several orders of magnitude more computationally demanding than the typical gradient
boosting algorithm. We refer the reader to the Supplementary Material report for a detailed discussion
on computational efficiency.

Algorithm 1 gradient boosting for min ℓQSPO :

1: procedure dboost
2: f0(x,θ) = argminθ Program(3)
3: Set n = 0
4: Set 0 < ϵβ < 1 and 0 < ϵℓ < 1
5: while run = TRUE do
6: n = n+ 1
7: ĉ(i) = fn−1(x

(i),θ), i = 1, 2, ...,m

8: c̃(i) = −∂ℓQSPO

∂ ĉ(i) , i = 1, 2, ...,m

9: αn = argminα
∑m

i=1(c̃
(i) −h(x(i),α))2

10: βn = argminβ
∑m

i=1 ℓQSPO(ĉ
(i) +βh(x(i),αn), c

(i))

11: fn(x,θ) = fn−1(x
(i),θ) + βnh(x

(i),αn)

12: ℓn =
∑m

i=1 ℓQSPO(fn(x,θ)
(i)
, c(i))

13: ∆ℓ = (ℓn − ℓn−1)/ℓn−1

14: if βn < ϵβ or ∆ℓ < ϵℓ or n = N then
15: run = FALSE
16: end

4



The dboost algorithm focuses explicitly on learning the cost vector c. Indeed, in applications such
as portfolio optimization, accurate cost vector estimation is shown to be an order of magnitude more
important than estimation of P [6, 11]. From Proposition 2, however, it is possible to generalize dboost in
order to learn the other input variables: P, A and b. For example, in optimal control it is often desirable
to learn all input parameters jointly [3]. Recent work in network flow optimization [24] and finance
[10] advocate for data-driven approaches for learning regularization and constraint variables and is an
interesting area of future research.

3 Experiments

We present three experiments comparing out-of-sample decision cost of dboost to 5 alternatives:

1. CART: classification and regression tree optimized for prediction MSE [8].

2. CART Forest: A random forest [7] implementation of CART.

3. SPOT: SPO tree [16] optimized for SPO loss (2).

4. SPOT Forest: random forest implementation of SPOT.

5. MSE Boosting: traditional gradient boosting [17] optimized for MSE.

The CART and SPOT methods contain a single prediction tree whereas ensemble-based approaches use
a maximum of 100 trees. All methods consider maximum tree depths: {0, 1, 2} with a minimum split size
of 50 observations. Random forest implementations also consider an unlimited tree depth specification
and perform bagging across feature variables and training data observations with a 50% sampling rate.
Experiments are evaluated over 10 independent trials. Each trial consists of randomly generated training
and out-of-sample datasets each with m = 1000 observations. Performance is evaluated with respect to
the total excess decision cost, given by: ∑m

i=1 ℓQSPO(ĉ
(i), c(i))

|
∑m

i=1
1
2 z

∗(c(i))T Pz∗(c(i)) + c(i)
T
z∗(c(i)) |

(11)

We consider three optimization problems: a noisy network-flow, a noisy quadratic program and a noisy
portfolio optimization with noise levels: τ ∈ {0.0, 0.5, 1.0}. See the Supplementary Material report for
implementation details.

3.1 Results

Figure 1 reports the out-of-sample excess cost for the noisy network flow problem. Gradient boosting
models produce excess costs that are on average 50% lower than the corresponding CART and SPOT
costs. In all cases the dboost model most effectively minimizes the decision cost, further reducing the
excess cost of the MSE Boosting model by 30%−60%, on average. We observe that the reduction in cost
is greatest when the noise level is low and in general deeper tree models tend to produce smaller costs.

Figure 2 reports the out-of-sample excess cost for the noisy quadratic program problem. Again, we
observe that both gradient boosting models produce the smallest out-of-sample costs with excess costs
that are 25% − 75% smaller than the corresponding CART and SPOT costs. When τ = 0, the average
excess cost of the MSE Boosting model is approximately 22.2% whereas dboost produces an average
excess cost of approximately 5.8%; a further 75% reduction in excess cost over the traditional gradient
boosting model. In general the dboost model produces the smallest excess cost, however, as the noise level
increases the difference in excess costs is less substantial. In fact, when τ = 1 and tree depth is greater
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than zero, the MSE Boosting and unlimited CART Forest models produces marginally lower excess costs.
Finally, observe that when the noise level is high (τ = 1) both gradient boosted models with tree depth
0 produce the smallest excess cost.
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(c) τ = 1.0.

Figure 1: Out-of-sample excess cost for network flow problem with noise level τ ∈ {0.0, 0.5, 1.0}.
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(b) τ = 0.50.
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Figure 2: Out-of-sample excess cost for quadratic program problem with noise level τ ∈ {0.0, 0.5, 1.0}.

Lastly, Figure 3 reports the out-of-sample excess cost for the noisy portfolio optimization program
problem. We observe that both gradient boosting models produce excess costs that are anywhere from
15%−90% smaller than the corresponding CART and SPOT costs. In contrast to the prior experiments,
in this experiment, dboost provides no benefit over traditional gradient boosting and instead produces
marginally higher costs on average. We observe that as the noise level increases, MSE Boosting and
dboost produce very similar excess costs. Across all noise levels, MSE Boosting with tree depth 0 produces
the smallest excess cost.

3.2 Conclusion

We presented dboost, a general purpose framework for building ‘smart’ gradient boosting prediction
models. Experimental results should be interpreted as a proof-of-concept and the author’s acknowledge
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Figure 3: Out-of-sample excess cost for portfolio optimization problem with noise level τ ∈ {0.0, 0.5, 1.0}.

that further testing is required in order to better determine the efficacy of a ‘smart’ gradient boosting
approach. Nonetheless the experimental results demonstrate that dboost is competitive with existing
models and in many cases results in reduced out-of-sample decision regret. The dboost algorithm is
significantly more computationally demanding than the typical gradient boosting algorithm. Improving
the performance and scalability of dboost is an important area of future research.
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A Proof of Proposition 1

O’Donoghue [23] demonstrates that a direct application of operator splitting produces the following
procedure; from any initial u0 and v0 then the following iterations converge to the optimal ζ∗ (if it
exists):

ũk+1 = (Iu +M)−1(uk +vk −q) (12a)

uk+1 = ΠC(ũ
k+1 − vk) (12b)

vk+1 = vk +uk+1 −ũk+1, (12c)

where ΠC denotes the Euclidean projection operator onto the set C. The iterations in Equation (12) can
be cast as a fixed-point iteration as follows. Let wk = ũk+1 − vk, then:

uk+1 = ΠC(ũ
k+1 − vk) = ΠC(w

k), (13)

and:
vk+1 = vk +uk+1 −ũk+1 = ΠC(w

k)−wk . (14)

Substituting Equations (13) and (14) into Equation (12a) gives the desired fixed-point iteration:

wk+1 = ũk+2 − vk+1

= (Iu +M)−1(uk+1 +vk+1 −q)− vk+1

= (Iw +M)−1(2ΠC(w
k)−wk −q) +wk −ΠC(w

k).

(15)

B Proof of Proposition 2

We begin with the following definitions.

Definition 1 Let F : Rdw × Rdθ → Rdw be a continuously differentiable function with variable w and
parameter θ. We define w∗ as a fixed-point of F at (w∗,θ) if:

F (w∗,θ) = w∗ .

Definition 2 The residual map, G : Rdw × Rdθ → Rdw of a fixed point, (w∗,θ), of F is given by:

G(w∗,θ) = F (w∗,θ)−w∗ = 0.

The implicit function theorem, as defined by Dontchev and Rockafellar [12], then provides the con-
ditions on G for which the Jacobian of the solution mapping with respect to θ is well defined.

Theorem 1 Let G : Rdw × Rdθ → Rdw be a continuously differentiable function in a neighborhood of
(w∗,θ) such that G(w∗,θ) = 0. Denote the non-singular partial Jacobian of G with respect to w∗ as
∇w∗G(w∗,θ). Then w∗(θ) is an implicit function of θ and is continuously differentiable in a neighbor-
hood, Θ, of θ with Jacobian:

∇θ w
∗(θ) = −[∇w∗G(w∗(θ),θ)]−1∇θG(w∗(θ),θ) ∀ θ ∈ Θ. (16)

Corollary 1 Let F : Rdw ×Rdθ → Rdw be a continuously differentiable function with fixed-point (w∗,θ).
Then w∗(θ) is an implicit function of θ and is continuously differentiable in a neighborhood, Θ, of θ with
Jacobian:

∇θ w
∗(θ) = [Iw −∇w∗F (w∗(θ),θ)]−1∇θF (w∗(θ),θ) ∀ θ ∈ Θ. (17)
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We define F : Rdz+dy × Rdθ → Rdz+dy as:

F (w∗,θ) = (Iw +M)−1(2ΠC(w
∗)−w∗ −q) +w∗ −ΠC(w

∗). (18)

The Jacobian, ∇w∗F , is therefore defined as:

∇w∗F = (Iw +M)−1(2DΠC(w
∗)− Iw) + Iw −DΠC(w

∗). (19)

We perform the left multiplication of F by (Iw +M) and compute the partial derivative of F with respect
to all other problem variables at the fixed-point w∗ as follows:

(Iw +M)∂F (w∗) = −∂ q+∂Mw∗ −∂MΠC(w
∗)− ∂MF

= −∂ q+∂M(w∗ −ΠC(w
∗)− F (w∗))

= −∂ q−∂M(Iw +M)−1(2ΠC(w
∗)−w∗ −q)

= −∂ q−∂Mu∗

(20)

It follows then that ∂F (w∗) is given by:

∂F (w∗) = −
[
Iw +M

]−1
[
∂ c+ 1

2 (∂P+∂PT ) z∗ +∂AT y∗

∂ b−∂Az∗

]
(21)

Applying Corollary 1 we compute the gradient action of Equation (21) and the left matrix-vector product
of the transposed Jacobian with the gradient, ∂ℓ

∂ z∗ , to arrive at the desired result.[
d̂z

d̂y

]
=

[
Iw +M

]−T [
DΠC(w

∗)− (Iw +M)−1(2DΠC(w
∗)− Iw)

]−T
DΠC(w

∗)T
[
−( ∂ℓ

∂ z∗ )
T

0

]
=

[
(Iw +M)DΠC(w

∗)− (2DΠC(w
∗)− Iw)

]−T
DΠC(w

∗)T
[
−( ∂ℓ

∂ z∗ )
T

0

] (22)

Finally, the gradients of the loss function, ℓ, with respect to problem variables P, c, A and b are given
by:

∂ℓ

∂P
=

1

2

(
d̂z z

∗T + z∗ d̂
T

z

) ∂ℓ

∂ c
= d̂z

∂ℓ

∂A
= y∗ d̂

T

z − d̂y z
∗T ∂ℓ

∂ b
= d̂y

(23)

C Implementation details

Experiments are conducted on an Apple Mac Pro computer (2.7 GHz 12-Core Intel Xeon E5,128 GB 1066
MHz DDR3 RAM) running macOS ‘Catalina’. All computations are run on an unloaded, single-threaded
CPU. The software was written using the R programming language (version 4.0.0).

Synthetic data is generated as follows. Feature variables, x, are generated by randomly drawing from
the Uniform distribution U(−1, 1). The cost values, c, are generated according to the polynomial model:

c = H0 +

p∑
j=1

Hj x
j +τϵ, (24)

with intercept H0 and regression coefficients Hj ∈ Rdz×dx . The parameter p controls the polynomial
degree. Regression coefficients are sparse with each element of Hj having a 50% probability of being 0
and 50% probability of being nonzero U(−1, 1). We let ϵ ∼ N (0,1) and the scalar value τ controls the
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amount of noise in the data. All experiments consider three noise levels: τ ∈ {0.0, 0.5, 1.0} and maximum
tree depths: {0, 1, 2} with a minimum split size of 50 observations. Random forest implementations
also consider an unlimited tree depth specification and perform bagging across feature variables and
training data observations with a 50% sampling rate. We present three optimization problems: a noisy
network-flow, a noisy quadratic program and a noisy portfolio optimization, described below.
1. Noisy network-flow. We consider a continuous network flow problem over a directed graph with 5
nodes. Network edges are randomly generated with the probability that node i flows to node j given by
Pr(i → j) = 0.75|i−j−1|. The number of decision variables, dz, is determined by the number of edges.
Cost values are generated according to (24) with H0 ∼ N (−1,1), p = 3 and dx = 5. We consider a
linear objective, ℓQSPO(ĉ, c) = cT z∗(ĉ) − cT z∗(c), with a lower-level L2-norm regularized network-flow
optimization program:

minimize ĉT z+
1

2
∥z∥22

subject to Az = b,0 ≤ z ≤ 1 .
(25)

2. Noisy quadratic program. We consider a quadratic objective,

ℓQSPO(ĉ, c) =
1

2
z∗(ĉ)T Pz∗(ĉ) + cT z∗(ĉ)− 1

2
z∗(c)T Pz∗(c)− cT z∗(c)

with lower-level equality constrained quadratic program of the form:

minimize ĉT z+
1

2
zT P̂ z

subject to Az = b
(26)

with number of decision variables dz = 25 and randomly generated constraint matrix A ∈ R3×dz where
Pr(Ajk = 0) = Pr(Ajk = 1) = 0.50. The vector b is chosen to guarantee that the problem is non-empty.
Cost values are generated according to (24) with H0 = 0, p = 3 and dx = 5. The positive definite

matrix, P, is subject to estimation error: P̂ = P+0.1Ξ where Ξ = 1
n LT L, L ∈ R10dz×dz and entries of

L ∼ N (0,1).
3. Noisy portfolio optimization. We consider a linear objective, ℓQSPO(ĉ, c) = cT z∗(ĉ) − cT z∗(c),
with lower-level Markowitz [22] mean-variance optimization program:

minimize ĉT z

subject to 1T z = 1, z ≥ 0
√
zT Vz ≤ σ,

(27)

where zj denotes the proportion of capital allocated to asset j. The cost values, c, are the negative asset
returns and are generated according to (24) with H0 =∼ N (0,1), p = 3 and dx = 5. The covariance
matrix, V, is generated according to a linear factor model V = LT L+ε Iz, with ε = 0.01 and factor
matrix L ∈ R4×dz with entries L ∼ U(−1, 1). The second-order cone constraint limits the maximum risk

of the portfolio. In each trial we set σ = d−1
z

√
1T V1.

D Motivating example

We are motivated by the work of [15, 16] who demonstrate that optimizing prediction model parameters to
minimize decision regret produces prediction models with lower complexity and improved out-of-sample
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performance. Below, we provide a motivating example to help illustrate the behaviour of dboost in
comparison to a traditional gradient boosting model trained to minimize prediction mean-square error
(MSE). We seek to maximize the return (minimize the cost) of a portfolio of two assets subject to linear
constraints:

minimize
z

− z1 r1 − z2 r2 +
1

2
∥z∥22

subject to z1 + z2 = 1

z ≥ 0

(28)

where z1 and z2 denote the proportion of capital allocated to asset 1 and 2, respectively. Here, the
norm penalty ∥z∥22 enforces portfolio diversification when differences in returns are small. We generate
a dataset of 500 observations where the feature, x, is drawn from the standard uniform distribution and
the return of each asset is given by r1 = x+ϵ and r2 = x+sin(3x) + ϵ where ϵ ∼ N (0, 0.10).
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Figure 4: In-sample excess decison cost and return forecasts for MSE and dboost prediction models.

Figure 4a plots the total excess decision cost at each iteration of gradient boosting. Recall, that
the traditional model is unaware as to how the predictions will ultimately be used in the context of
the final downstream optimization model, and as such continues to add trees to the ensemble in an
effort to minimize the prediction MSE. In contrast, the dboost model explicitly minimizes decision regret;
the boosting algorithm terminates after 5 iterations with equal decision accuracy. Figure 4b plots the
predictions model forecasts as a function of the feature variable x. In this example there are two decision
boundaries: x ≈ 1 and x ≈ 2, where the optimal decision changes from favouring one asset over the other.
The dboost prediction model correctly identifies these approximate decision boundaries with substantially
fewer trees and therefore avoids having to overfit the training dataset.
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E Limitations

A potential limitation of the SPO framework occurs when the lower-level program is strictly linear as the
solution to the linear program may not be continuously differentiable with respect to ĉ [25]. Elmachtoub
and Grigas [15] proposed replacing the SPO loss with a sub-differentiable convex surrogate loss (SPO+).
Alternatively, in many practical settings it is sufficient to augment the lower-level program with an
L2-norm penalty [25], or a log-barrier term and apply an early stopping criteria [21].

F Computational efficiency

We consider learning the cost vector for the noisy portfolio optimization problem. In general, we find
that the computation time required to fit a dboost model scales linearly with the number of trees in the
ensemble. Furthermore, the computation time is expected to scale linearly with the number of obser-
vations, m, in the training dataset. Indeed, the dominant computational effort in the dboost Algorithm
occurs on line 8, where in order to compute the gradient of the decision regret, ℓQSPO, with respect to the

estimated costs, we must first solve for the optimal decisions, {z∗(ĉ(i))}mi=1. Similarly, the line search on
line 10 is with respect to the decision regret, ℓQSPO, and therefore we must solve for the optimal decisions

{z∗(ĉ(i) +βh(x(i),αn))}mi=1 at each candidate value β. As such, the dominant computational effort in the
dboost algorithm is in repeatedly solving for m optimal decisions at each iteration.

Figure 5 reports the computation time (in seconds) and 95%-ile confidence interval of training
dboost relative to MSE Boosting for the noisy portfolio optimization problem, evaluated over 10 in-
dependent trials. Here we consider training dataset sizes of m ∈ {50, 250, 1000} and decision variables
in the range of 5 − 100. In all cases, we limit the number of trees in the ensemble to 10. In general we
observe that training the dboost algorithm requires 20x−600x more computation time than a traditional
MSE Boosting algorithm. Indeed, for m = 1000, the average computation time for training a MSE
Boosting model is anywhere from 0.44−3.26 seconds, whereas the average computation time for training
the dboost model ranges from 95 − 2000 seconds. As expected, the computation time increases linearly
as a function of the size of the training dataset. For example, when m = 50 and dz = 100 the average
computation time is 100 seconds, whereas when m = 1000 and dz = 100, the average computation time is
approximately 2000 seconds; a 20x increase. Improving the computational efficiency of dboost to support
larger scale optimization problems is therefore an important area of future research.
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Figure 5: Computation time and 95%-ile confidence interval of training dboost relative to MSE Boosting
for the noisy portfolio optimization problem, evaluated over 10 independent trials.
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