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Abstract. We describe the tropical curves in toric varieties and define the tropical Gromov–
Witten invariants. We introduce amplitudes for the higher topological quantum mechanics
(HTQM) on special trees and show that the amplitudes are equal to the tropical Gromov–
Witten invariants. We show that the sum over the amplitudes in A-model HTQM equals
the total amplitude in B-model HTQM, defined as a deformation of the A-model HTQM
by the mirror superpotential. We derived the mirror superpotentials for the toric varieties
and showed that they coincide with the superpotentials in the mirror Landau–Ginzburg
theory. We construct the mirror dual states to the evaluation observables in the tropical
Gromov–Witten theory.

Key words: mirror symmetry; Gromov–Witten invariants; tropical geometry; topological
quantum mechanics on trees

2020 Mathematics Subject Classification: 14J33; 14T20; 14N35; 81Q35

1 Introduction

The enumerative problems in algebraic geometry over complex numbers often allow complex
tropicalization. In particular, Mikhalkin [20, 22] showed that counting the complex curves on
a toric surface becomes the counting of graphs. The higher dimensional version was developed
by [24], and the intersection theoretic interpretation was done by [7] and [27]. The TQFT
formulation for the tropical multiplicities for the curve counting, including descendant invariants,
was provided by Mandel–Ruddat [18, 19].

The main focus of the present paper is the tropicalization of the Gromov–Witten invariants.
Gromov–Witten invariants are naturally related to different phenomena, such as counting of the
holomorphic maps, topological string theory, mirror symmetry, WDVV equations, and many
others. We will discuss the tropicalization of these phenomena and show that it usually leads
to simplifications.

The complex curves in toric variety X in the tropical limit become graphs embedded via
piece-wise linear maps. Hence, the counting problem for such curves, passing through the cycles
on X, becomes an enumerative problem. In particular, Gathmann and Markwig [5] used tropical
geometry to prove the Kontsevich–Manin recursive relation [12] for numbers Nd, of degree d,
genus zero curves in CP2 passing through 3d− 1 points.
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The Gromov–Witten invariants over complex numbers admit type-A topological string the-
ory [29] representation. We represent the tropical GW invariants using the higher topological
quantum mechanics (HTQM), introduced in [13]. Our HTQM naturally emerges from topologi-
cal string theory in the limit of maximally degenerate complex structure, the very long strings.
However, its ability to describe all GW invariants is surprising. Moreover, Losev and Shardin [16]
showed that the HTQM, similar to the one we describe in the present paper, provides a solution
to the WDVV equations.

In physics literature [10], the mirror symmetry is a relation between the A-model, given by
the GW invariants for toric space X, and the B-model provided by the amplitudes in Landau–
Ginzburg theory with exponential mirror superpotential. In math literature [6], the B-model
has an alternative description, given by periods of “classical” oscillatory integrals. The common
feature of the two descriptions is that the mirror superpotential and argument of exponent in
oscillatory integrals have the same function, uniquely constructed for a toric space X. Frenkel
and Losev [3] derived the mirror superpotential using two-dimensional conformal field theory
(CFT) methods to perform the sum over instantons in the A-type topological string. The
tropicalization of their construction is the amplitude resummation in the HTQM.

We show that the sum over divisor states in the HTQM describes a deformation of the HTQM
by a holomorphic superpotential. Moreover, we perform the summation explicitly and express
the mirror superpotential in terms of the compactification data for the toric space X. For
a given toric space X, our mirror superpotential matches with the mirror superpotential in LG
theory, derived using the gauged linear sigma model [10], with CFT derivation [3] from physics
literature and superpotentials in oscillatory integrals in math literature [6]. For X = P2, our
superpotential matches the mirror superpotential derived by Gross [8] using the tropical curve
counting with Mikhalkin’s vertex multiplicities.

Though we used the logic of the mirror construction from [3], the simplifications of the A-
and B-models due to the tropicalization allowed us not only to reproduce the known mirror
superpotentials but also to construct the mirror states for the evaluation observables. The
mirror states for the tropical observables on a toric variety are mixed degree differential forms.
The degree zero component of the mirror state gives K. Saito’s good section [28] for the mirror
superpotential.

The structure of the present paper is as follows. In Section 2, we briefly introduce tropical
geometry and describe tropical curves in projective space and the corresponding moduli. In
the next section, we describe the tropical Gromov–Witten theory. Section 4 presents the higher
topological quantum mechanics on trees, defines the amplitudes, and proves equality between
the tropical GW invariants and the A-model HTQM amplitudes. Section 5 shows an equality
between the amplitudes in A-and B-model HTQMs. The next section demonstrates the various
steps of the tropical mirror relation for tropical Gromov–Witten invariants on P1. In Section 7,
we briefly summarize the main results.

2 Introduction to tropical geometry

Here, we briefly review the notion of tropical curves in projective spaces. Readers familiar with
tropical curves may refer to this section for notations used in later sections. To motivate the
notations introduced in later parts of this section, we will start with a few simple examples of
tropicalization for smooth curves in projective space.

2.1 Real tropical numbers

The tropical numbers is the set [−∞,+∞) = R ∪ {−∞} with arithmetic operations

x+T y = max(x, y), x ∗T y = x+ y.
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The operations extended to include −∞ via

(−∞) +T x = x+T (−∞) = x, (−∞) ∗T x = x ∗T (−∞) = −∞.

The set of tropical numbers is a semigroup with respect to tropical addition +T . It is commu-
tative, associative and admits a tropical zero 0T = −∞, but there is no inverse, i.e.,

x+T y = 0T =⇒ x = 0T or y = 0T .

More details on bottom-up construction for tropical geometry can be found in Mikhalkin’s
work [20]. In the present paper, we will use the physicist approach to tropical numbers as
a certain scaling limit of R+, equipped with standard addition + and multiplication ∗. To
specify the limit, we introduce an exponential parametrization

X = e
x
ϵ , Y = e

y
ϵ , W = e

w
ϵ ,

with parameter ϵ > 0 and take the limit ϵ → 0. Indeed, the addition operation on R+ in
exponential parametrization after the limit ϵ→ 0 becomes the tropical addition, i.e.,

w = lim
ϵ→0

ϵ ln
(
e

x
ϵ + e

y
ϵ
)
= max(x, y) = x+T y.

Similarly, the usual multiplication on R+ through exponential parametrization becomes tropical
multiplication in the limit, i.e.,

w = lim
ϵ→0

ϵ ln
(
e

x
ϵ ∗ e

y
ϵ
)
= x+ y = x ∗T y.

2.2 Tropical curves in C2

For complex numbers, we generalize the tropical limit using the cylindrical parametrization

W = e
r
ϵ
+iϕ, r ∈ R, ϕ ∈ S1. (2.1)

The degree d complex curve in Euclidean space C2 is a zero locus of a degree d polynomial in 2
variables Pd(X,Y ) = 0. Below, we describe the tropical limit for two simple cases:

• degree 1 curve

P1(X,Y ) = Y −A(X −B) = 0; (2.2)

• degree 2 curve

P2(X,Y ) = Y −A(X −B)(X − C) = 0. (2.3)

The cylindrical parametrization for X,Y -coordinates and complex coefficients is

X = e
x
ϵ
+iϕx , Y = e

y
ϵ
+iϕy , A = e

rA
ϵ
+iϕA , B = e

rB
ϵ
+iϕB , C = e

rC
ϵ
+iϕC .

For degree 1 curve (2.2), we can solve for the radial and angular parts

y = rA + ϵ ln
∣∣ex

ϵ
+iϕx − e

rB
ϵ
+iϕB

∣∣,
ϕy = ϕA + arg

(
e

x
ϵ
+iϕx − e

rB
ϵ
+iϕB

)
.

The limit ϵ→ 0 of the curve projected to (x, y)-plane is the union of three rays:
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• x < rB region:

y(x, ϕx) = rA + lim
ϵ→0

ϵ ln
∣∣ex

ϵ
+iϕx − e

rB
ϵ
+iϕB

∣∣ = rA + rB,

ϕy(x, ϕx) = ϕA + lim
ϵ→0

arg
(
e

x
ϵ
+iϕx − e

rB
ϵ
+iϕB

)
= ϕA + ϕB + π.

• x = rB region:

y(x, ϕx) = rA + rB + lim
ϵ→0

ϵ ln

∣∣∣∣sin ϕx − ϕB
2

∣∣∣∣,
ϕy(x, ϕx) = ϕA + arg

(
eiϕx − eiϕB

)
.

For ϕx ∈ (ϕB − δ, ϕB + δ), y(ϕx) ∈ (0,−∞), hence we have a vertical line on the radial
projection of the curve.

• x > rB region:

y(x, ϕx) = rA + x, ϕy(x, ϕx) = ϕA + ϕx.

We can perform a similar analysis for the degree 2 curve (2.3). The radial shape of the curve
depends on the complex parameter B

C . The case rC > rB is almost identical to the degree one
curve(see picture below). The case rB = rC and ϕC ̸= ϕB require careful analysis for the vertical
ray x = rB. The radial coordinate is given by

y(x, ϕx) = rA + rB + rC + lim
ϵ→0

ϵ ln

∣∣∣∣sin ϕx − ϕB
2

∣∣∣∣+ lim
ϵ→0

ϵ ln

∣∣∣∣sin ϕx − ϕC
2

∣∣∣∣. (2.4)

We have two regions ϕx ∈ (ϕB − δ, ϕB + δ) and ϕx ∈ (ϕC − δ, ϕC + δ), each describing a vertical
ray y(ϕx) ∈ (0,−∞). Hence, we have two vertical rays. In order to analyze the radial coordinate
for other values of ϕC , we rewrite the expression in (2.4) in the form

y(x, ϕx) = rA + rB + rC + lim
ϵ→0

ϵ ln

∣∣∣∣cos(ϕC − ϕB
2

)
− cos

(
ϕx −

ϕB + ϕC
2

)∣∣∣∣.
The radial coordinate has two maximums: one at ϕx = ϕB+ϕC

2 + 1
2π with the radial coordinate

rA + rB + rC , the other at ϕx = ϕB+ϕC
2 with a smaller value of the radial coordinate

rA + rB + rC + 2 lim
ϵ→0

ϵ ln

∣∣∣∣sin(ϕC − ϕB
4

)∣∣∣∣.
We can consider a limit ϕB → ϕC , such that

ϕC − ϕB = e−τ/ϵ, τ > 0.

In such limit the radial coordinate of the mid point ϕx = ϕB+ϕC
2 has a finite value y = rA +

rB + rC − 2τ . The plot of the radial function for such scaling is presented in the right part of
the picture below:

rB

y

x

y

xrB rC rB

y

x
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2.3 Toric varieties

Definition 2.1. A compact toric variety X of complex dimension N is a holomorphic compact-
ification at infinity of C∗N to a compact space by a union of algebraic tori of lower dimensions.
We represent C∗N = RN × TN , the radial part with coordinates rj , and the angular part with
coordinates ϕj for j = 1, . . . , N . The radial part of codimension-1 torus is a hyperplane in RN ,
described by a N -dimensional integer primitive normal vector b⃗ =

(
b1, . . . , bN

)
∈ ZN , i.e., such

that gcd
(
b1, b2, . . . , bN

)
= 1. For a given toric variety X, we denote by BX the set of primitive

normal vectors for all its compactifying hyperplanes.

Remark 2.2. There are interesting toric varieties, thought singular, with non-primitive normal
vectors b⃗a, but we will not discuss them in the present paper.

Example 2.3. The projective space PN is the compactification of C∗N by N + 1 hyperplanes.
The corresponding primitive normal vectors are

b⃗1 = (1, 0, . . . , 0), b⃗2 = (0, 1, 0, . . . , 0), . . . , b⃗N = (0, . . . , 0, 1),

b⃗N+1 = (−1,−1, . . . ,−1).

Example 2.4. The P1 ×P1 is the compactification of C∗2 by the four lines. The corresponding
primitive normal vectors are

b⃗1 = (1, 0), b⃗2 = (0, 1), b⃗3 = (−1, 0), b⃗4 = (0,−1).

In the pictures below, we depict the compactifications and the normal vectors for P1, P2 and
P1 × P1:

b⃗1 b⃗2

b⃗1

b⃗2
b⃗3

b⃗1

b⃗2

b⃗3

b⃗4

We can express the topological data of toric variety X in terms of the compactifying data.
In particular, Proposition 4.5 of Fulton’s book [4] relates the homology H2(X) to dimension
of X and the cardinality |BX | of the set BX via

dimH2(X) = |BX | − dimX. (2.5)

2.4 Tropical curves in projective spaces

A degree one tropical curve in C2 from Section 2.2 can be turned into a tropical curve in
compactifications of C2. For P2, we add a compactifying line

(
with b⃗ = (−1,−1)

)
at infinity,

and the 450-ray of the tropical curve ends on this divisor. For P1 × P1, we add horizontal and
vertical lines at infinity, as shown in the picture. The 450-ray at some point splits into two rays,
horizontal and vertical, ending on the corresponding lines:
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Let us consider two distinct degree-one tropical curves P2, represented by the two trees below.
Two degree-one curves is a singular degree two tropical curve due to the 4-valent vertex. The
resolution of tropical singularity replaces a single 4-valent vertex with a pair of 3-valent vertices
connected by an additional edge. There are two possible ways of doing so, presented in the
picture below. The last two pictures represent the corresponding degree-two smooth tropical
curves:

Two other possible relative positions for a pair of distinct degree one tropical curves in P2.
Below, we present the possible resolutions for the 4-valent vertices:

In the case of three distinct degree-one tropical curves in P2, the resolution of singularities can
give us a tropical curve of genus one or zero.

The four 4-valent singularities on the left picture below can be resolved to get a genus one
tropical curve. In the right picture, we present a singular degree-three curve as an intersection
of a smooth degree-two tropical curve and a degree-one tropical curve. As shown in the right
part of the picture, we can resolve the singularity to get a smooth tropical curve of degree three
and genus zero:

2.5 Tropical curves via graphs

This section will briefly review the definition of the tropical curves in toric varieties. For more
details, see Mikhalkin [23].
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A graph Γ is a collection of vertices v ∈ V (Γ) and edges e ∈ E(Γ). A directed graph is a graph
with directed edges, i.e., each edge is incoming to one vertex and outgoing to another. For each
vertex v, we can introduce a set Ein(v) of incoming edges and a set Eout(v) of outgoing edges
connected to this vertex. Each vertex v has a valence, the number of edges connecting to this
vertex. We will use nk(Γ) for the number of k-valent vertices in a graph Γ. It is convenient to
decompose all edges into internal and external. An external edge e ∈ E(Γ) is an edge connected
to a 1-valent vertex. Similarly, an internal edge connects two vertices with valencies bigger
than 1. We will denote I(Γ), the set of internal edges of the graph Γ. The Euler characteristic
(genus) g(Γ) = |E(Γ)| − |V (Γ)| + 1 of a connected graph equals the number of loops of the
graph Γ. A tree is a graph without loops.

The topological data for a connected tropical curve of genus zero in general position is a tree Γ
with only 3- and 1-valent vertices. The homological class of the curve β determines the number
of 1-valent vertices.

The discrete data of a connected tropical curve in general position in toric variety X is an
equivalence class of consistent directed trees Γ⃗, consistently decorated with an integer vector
m⃗e ∈ ZN for each edge e ∈ E(Γ). The consistency conditions are the following:

• Each external edge e is outgoing for 1-valent vertex and is decorated with a vector equal
to one of the primitive normals for the compactification polytope, i.e., m⃗e ∈ BX .

• An integer vector on each internal edge e is non-vanishing m⃗e ̸= 0⃗.

• For each 3-valent vertex v the integer vectors on edges connected to it obey the vertex
balance condition:∑

e∈Ein(v)

m⃗e =
∑

e∈Eout(v)

m⃗e. (2.6)

Two directed trees are equivalent because they differ by a simultaneous flip of orientation and
a change m⃗e → −m⃗e for some internal edges.

Remark 2.5. Our definition for the integer vector m⃗e slightly differs from the tropical geom-
etry literature. For example, instead of a single vector m⃗ for each edge author [9] uses a pair
(w, u⃗), a primitive vector u⃗ in the direction of m⃗ and integer weight w, i.e., m⃗ = w · u⃗. How-
ever, the balancing condition in these notations exactly matches our balancing condition (2.6).
Moreover, our additional requirement for the integer vectors on external edges allows us to use
the balancing condition to uniquely restore the primitive vectors and weights for all internal
edges.

Remark 2.6. An equivalence relation for decorated directed graphs is well known in the scat-
tering theory in physics. The direction corresponds to particles being either incoming or out-
going, while an integer vector corresponds to the particle’s momentum. In scattering theory,
the incoming particle with incoming momentum p⃗ is equivalent to the outgoing particle with
momentum −p⃗.

The geometric data of the tropical curve with discrete data Γ⃗ is the equivalence class of
directed trees decorated with integer vectors and equipped with the following data:

• For each internal edge e ∈ E(Γ) we assign a positive number τe ∈ R+ \ {0}, compactified
by infinity, referred to as the length of the edge e and an angle φe ∈ S1, referred as the
twist of the edge e.

• We assign a distinguished vertex, vc, referred to as the sink. The sink is assigned with
a sink location, a point in toric variety X with the radial location r⃗c ∈ RN and the angular
location ϕ⃗c ∈ TN .
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• Equivalence relation: We change the sink vertex from vc to v′c with simultaneous change
in sink location

r⃗ ′c = r⃗c +
∑

e∈γ(vc,v′c)

±m⃗eτe, ϕ⃗ ′
c = ϕ⃗c +

∑
e∈γ(vc,v′c)

±m⃗eφe, (2.7)

where γΓ is the (unique) path from vc to v′c on the tree. The term in the sum over edges
is weighted +1 when the direction of the edge e is aligned with the path γΓ(vc, v

′
c) and −1

otherwise.

2.6 Moduli space of tropical curves

In this section, we will briefly review the moduli space tropical curves. For more details, see
Mikhalkin [23]. For our discussion of moduli space, we assume that the tropical curve is con-
nected, has genus 0, and non-trivial homological class β, so the corresponding graph is a tree.

The moduli space M0(X,β) of the tropical curves of homological class β ∈ H2(X), also
denoted as a degree of curve and genus zero in toric space X is a compactification of the union
of components, labeled by the discrete types of tropical curves

M0(X,β) =
⋃
Γ⃗

M0(X,β; Γ⃗).

The tropical curves with zero-length edges compactify the moduli space. There are two types
of such tropical curves: the ones with the 4-and higher-valent vertices and the ones with the
non-primitive vectors on the external edges.

Each component of the moduli space M0

(
X,β; Γ⃗

)
is a (non-compact) toric variety with the

radial part

MR
0

(
X,β; Γ⃗

)
= RdimX ×

(
R+

)I(Γ)
.

The
(
R+

)I(Γ)
-factor describes the possible values of internal edge lengths, while the RdimX

describes the radial location of the sink. The angular part of the moduli space is

Mϕ
0

(
X,β; Γ⃗

)
=

(
S1

)dimX+I(Γ)
.

The
(
S1

)I(Γ)
-factor describes the possible values of internal edge twists, while the

(
S1

)dimX

describes the angular location of the sink.

Example 2.7. The moduli space of degree one tropical curves in P2 has a single component,
while the moduli space of bi-degree (1,1) tropical curves in P1 × P1 has two components corre-
sponding to the tropical curves below. The two trees have different integer vectors assigned to
the integral edge, (1, 1) and (1,−1) correspondingly:
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Example 2.8. The moduli space M0(P2, β) of degree 2 tropical curves in P2 is a union of 7
components, corresponding to the trees below. Below the pictures, we provided the list of integer
vectors for each internal edge:

(1, 0), (1,−1), (0, 1) (1, 1), (1, 0), (0, 1) (1, 1), (1, 2), (1, 0) (1, 1), (1, 2), (0, 1)

(1, 1), (1, 2), (2, 2) (1, 0), (1,−1), (0, 2) (2, 0), (1,−1), (0, 1)

Below, we show the two smooth tropical curves of degree two and a limiting curve with zero
(dotted) internal edge length. The limiting curve is a smooth tropical curve with a non-primitive
integer vector on the external edge. By construction, such a tropical curve provides a compact-
ification of the moduli space M0

(
P2, β

)
:

2.7 Moduli space with marked points

This section will briefly review the moduli space of tropical curves with marked points in toric
varieties. For more details, see Mikhalkin [23].

We construct the moduli space M0,n(X,β) for tropical curves of degree β and genus zero
with n marked points recursively using the following fibration:

Γ⃗ //M0,n

(
X,β; Γ⃗

)
��

M0,n−1

(
X,β; Γ⃗

)
.

We already constructed the moduli space without marked points M0,0

(
X,β; Γ⃗

)
= M0

(
X,β; Γ⃗

)
.

The moduli space with a single marked point is the union

M0,1

(
X,β; Γ⃗

)
=

⋃
e∈E(Γ)

M0

(
X,β;D1

e Γ⃗
)
.

The union is taken over decorations D1
e Γ⃗ of a tree Γ by a marked point at edge e ∈ E(Γ).
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Example 2.9. A degree one tropical curve in P2 can be decorated in three ways, so the corre-
sponding moduli space is a union over the three decorations D1

e Γ⃗, depicted below:

1

1

1

The moduli space of a decorated tropical curve D1
e Γ⃗ has two additional moduli: the radial

t ∈ (0, τe) and angular φ ∈ (0, ϕe), locations of the marked point on edge e with the radial τe
and the angular moduli ϕe. Hence, the radial part of the moduli space is

MR
0

(
X,β;D1

e Γ⃗
)
= MR

0

(
X,β; Γ⃗

)
× (0, τe) = RdimX ×

(
R+

)I(Γ) × (0, τe).

The moduli space is compactified by t = 0 and t = τe for each internal edge e and just t = 0 for
external edges.

It is more convenient to give an alternative description of the moduli space M0,1

(
X,β; Γ⃗

)
using the following proposition.

Proposition 2.10. A decoration D1
e Γ⃗ of the tropical curve Γ⃗ is a tropical curve Γ⃗e, constructed

from Γ⃗ by adding an additional 2-valent vertex on the edge e ∈ Γ.

Proof. For a directed tree Γ⃗, the new tree Γ⃗e is also a directed tree if we choose directions, as
shown in the picture below. The new directed tree Γ⃗e obeys the balancing condition (2.6) at
every vertex, including the 2-valent one, if we assign the same integer vector on both incoming
and outgoing edges to the 2-valent vertex:

n⃗e

τe

e ∈ Γ⃗

n⃗e

t

D1
e Γ⃗

n⃗e n⃗e

τe− τe+

Γ⃗e

We combine the radial location of the marked point t ∈ (0, τe) and the length τe of the edge e
into lengths τe± of the two edges connected to the 2-valent vertex. In particular, τe− = t,
τe+ = τe − t. The same procedure can be applied to the angular moduli. We have successfully
decorated the directed tree Γe with the integer vectors and (radial and angular) moduli. Hence,
Γ⃗e is a tropical curve. ■

Using Proposition 2.10, we identify the moduli space for a decorated tropical curve D1
e Γ⃗ with

the moduli space of a tropical curve Γ⃗e with an additional 2-valent vertex

MR
0

(
X,β;D1

e Γ⃗
)
= MR

0

(
X,β; Γ⃗e

)
= RdimX ×

(
R+

)I(Γe). (2.8)

The relation (2.8) implies that the moduli spaces for the tropical curves Γ⃗e are the same for all
choices of edges e. Hence, it is convenient to introduce the notation Γ⃗1 for a tropical curve with
a single 2-valent vertex. In this notation, the moduli space

M0,1(X,β) =
⋃
Γ⃗

M0,1

(
X,β; Γ⃗

)
=

⋃
Γ⃗1

M0

(
X,β; Γ⃗1

)
.
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We can iterate the argument for a marked point decoration to describe the moduli space of
a tropical curve with an arbitrary number of marked points in the form

M0,n(X,β) =
⋃
Γ⃗n

M0

(
X,β; Γ⃗n

)
. (2.9)

The individual components of the moduli space (2.9) are

M0

(
X,β; Γ⃗n

)
=

(
R+ × S1

)I(Γn) × RdimX × TdimX . (2.10)

The dimension of moduli space (2.9) is

dimCM0,n(X,β) = dimCM0

(
X,β; Γ⃗n

)
= dimX + I(Γn).

For a graph Γ, the number of internal edges I(Γ) is smaller than the number of total edges E(Γ)
by the number of leaves n1(Γ), i.e., I(Γ) = E(Γ) − n1(Γ). Each edge of a graph connects two
vertices. Hence, there is a relation

3n3(Γ) + 2n2(Γ) + n1(Γ) = 2E(Γ).

All graphs are connected and have zero genus, so

0 = g(Γ) = E(Γ)− V (Γ) + 1 = E(Γ)− n2(Γ)− n3(Γ)− n1(Γ) + 1.

Hence, we express the dimension of the moduli space via

dimCM0,n(X,β) = dimX + E(Γn)− n1(Γn) = dimX + n2(Γn) + n1(Γn)− 3. (2.11)

The number of 2-valent vertices n2(Γn) is the number of marked points n, while the number
of leaves is the tropical intersection number between the tropical curve of degree β and the
compactifying hyperplanes

n1(Γn) =
∑
b∈BX

β ·Hb. (2.12)

The universal formula for the (virtual) dimension of the moduli space of complex curves is

vdimCMg,n(X,β) =

∫
β
c1(TX) + (dimX − 3)(1− g) + n.

In the case of genus zero, degree β curve in toric space X, the universal formula simplifies into

dimCM0,n(X,β) =
∑
b∈BX

β ·Hb + dimX − 3 + n. (2.13)

The moduli space dimension (2.13) for complex curves matches with the tropical moduli space
dimension (2.11) and (2.12).

3 Tropical Gromov–Witten theory

3.1 Enumerative problems

This section will briefly review the two types of invariants: the lowest component and the top
component Gromov–Witten invariants.
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Definition 3.1. The lowest component Gromov–Witten invariant, denoted as nXβ (C1, . . . , Cn)

is the number of holomorphic maps ϕ : CP1 → X of degree β, such that the image of the set of
(fixed) points z1, . . . , zn belongs to cycles C1, . . . , Cn on X, i.e., ϕ(z1) ∈ C1, . . . , ϕ(zn) ∈ Cn.

One can show that the invariant nXβ (C1, . . . , Cn) does not depend on the choice of n points
z1, . . . , zn as long as they are distinct. The key feature of the GW invariants is the existence of
the integral representation.

Proposition 3.2 (Konstevich–Manin [12]). The lowest component of the Gromov–Witten in-
variant has a representation

nXβ (C1, . . . , Cn) =

∫
M0(X,β)

n∧
α=1

ev∗αγα,

where M0(X,β) is the moduli space of stable holomorphic maps CP1 → X of degree β, equipped
with the evaluation maps

evα : M0(X,β) → X : (ϕ : CP1 → X, z1, . . . , zn) 7→ ϕ(zα).

The γα are special, sufficiently smooth representatives of the Poincaré dual classes to the cy-
cles Cα.

Example 3.3. The lowest component Gromov–Witten invariant for degree 0 curves is the
number of intersection points for collection of cycles C1, . . . , Cn on X, i.e.,

nX0 (C1, . . . , Cn) =

∫
X

n∧
α=1

γα = #(C1 ∩ C2 ∩ · · · ∩ Cn).

Definition 3.4. The top component Gromov–Witten invariant NX
β (C1, . . . , Cn) is the number

of curves of degree β, genus zero in complex space X, passing through the cycles C1, . . . , Cn.

Proposition 3.5 (Konstevich–Manin [12]). The top component Gromov–Witten invariant has
representation

NX
β (C1, . . . , Cn) =

∫
M0,n(X,β)

n∧
α=1

ev∗αγα, (3.1)

where M0,n(X,β) is the moduli space of stable holomorphic maps CP1 → X of degree β with n
marked points, equipped with the evaluation map

evα : M0,n(X,β) → X : (ϕ : CP1 → X, z1, . . . , zn) 7→ ϕ(zα).

The γα are special (sufficiently smooth) representatives of the Poincaré dual classes to the cy-
cles Cα.

3.2 Tropical observables

The observables in GW invariants are sufficiently smooth representatives of Poincaré dual classes
to the complex cycles Cα. In cylindrical parametrization (2.1), a (k, k) form in complex coor-
dinates W , W̄ becomes a (k, k) form in radial/angular coordinates. Furthermore, a smooth
differential form on X becomes a singular form on RN in tropical limit.
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Example 3.6. The Fubini–Studi form ωFS on P1 is a smooth representative for the Poincaré
dual class to the point cycle. The cylindrical parametrization for ωFS is given by

ωFS =
i

4π

dW ∧ dW

(1 + |W |2)2
=

1

ϵ2
e

2r
ϵ dr ∧ dϕ

2π
(
1 + e

2r
ϵ

)2 . (3.2)

The tropical limit ϵ → 0 turns a smooth form (3.2) into a singular one, supported at a single
point r = 0, i.e.,

lim
ϵ→0

ωFS =
1

2π
δ(r)drdϕ. (3.3)

We can use the compact U(1)N -action on toric space of complex dimension N to turn an
arbitrary form ω into U(1)N -invariant form ω̄ via averaging over the group action

ω̄ =
1

Vol[U(1)N ]

∫
U(1)N

dµ(g)g · ω.

In particular, for the differential form γP , the Poincaré dual to the point, the averaging is

γP =

N∏
i=1

δ
(
ri − rip

)
δ
(
ϕi − ϕip

)
dridϕi =⇒ γ̄P =

1

(2π)N

N∏
i=1

δ
(
ri − rip

)
dridϕi. (3.4)

More generally, the tropical limit of a complex cycle C on X is the torus fibration over the
polyhedral complex, a collection of polyhedra glued in a particular way. The tropical limit of
a smooth representative in the Poincaré dual class of C is a singular form supported on the
corresponding polyhedral complex.

Remark 3.7. A differential form on a toric varietyX has an alternative description as a function
on the superspace T [1]X. In the present paper, we will use two notations interchangeably, i.e.,

ω = ω
(
r⃗,dr⃗,dϕ⃗

)
.

3.3 Tropical evaluation map

The tropical evaluation map

evα : M0,n

(
X,β; Γ⃗

)
→ X

on the sink vertex returns is the location of the sink, i.e.,

evR : M0,n

(
X,β; Γ⃗

)
→ X :

(
r⃗c, ϕ⃗c, τ1, φ1, . . . , τI(Γ), φI(Γ)

)
7→

(
r⃗c, ϕ⃗c

)
.

We can use the sink relocation formulae (2.7) to define the tropical evaluation map for any
vertex α via the following formula

evα : M0,n

(
X,β; Γ⃗

)
→ X :

(
r⃗c, ϕ⃗c, τ1, φ1, . . . , τI(Γ), φI(Γ)

)
7→

(
r⃗α, ϕ⃗α

)
,

r⃗α = r⃗c +
∑

e∈γΓ(R,v)

±m⃗eτe, ϕ⃗α = ϕ⃗c +
∑

e∈γΓ(R,v)

±m⃗eφe, (3.5)

where γΓ(α,R) is the oriented path from sink R to vertex α. For the U(1)N -invariant form, the
pullback map is

ev∗αγ
(
r⃗,dr⃗,dϕ⃗

)
= γ

(
r⃗α,dr⃗α,dϕ⃗α

)
.
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Example 3.8. Let us consider a degree one tropical curve in P1 with 3 marked points. The
discrete data of the tropical curve Γ⃗3 with three 2-valent vertices is ordering 3 points on a line.
Let us fix the ordering and directions as shown in the picture below:

γ1

R

γ2 γ3τ1 τ2

+1 +1 −1 −1

γΓ2

γΓ1

The tropical evaluation map pullbacks for three U(1)-invariant observables are given by

ev∗1γ1 = γ1(rc,drc,dϕc),

ev∗2γ2 = γ2(rc + τ1, drc + dτ1, dϕc + dφ1),

ev∗3γ3 = γ3(rc + τ1 − τ2,drc + dτ1 − dτ2, dϕc + dφ1 − dφ2). (3.6)

The signs in the expressions (3.6) reflect the fact that an edge between points 1 and 2 is aligned
with the path γΓ1 = γΓ(R, 2), while only the first edge is aligned with the path γΓ2 = γΓ(R, 3).

Example 3.9. Let us consider a degree-one tropical curve with two marked points in P2. Let
us choose two discrete types of tropical curves with marked point locations presented in the two
pictures below:

R
γ1
γ2

b⃗3

b⃗1

b⃗2

τ1

τ2 R
γ2 γ1

b⃗3

b⃗1

b⃗2

τ1τ2

The evaluation maps for the tropical curve on the left picture are

ev∗1γ1 = γ1
(
r⃗c − b⃗1τ1, dr⃗c − b⃗1dτ1, dϕ⃗c − b⃗1dφ1

)
,

ev∗2γ2 = γ2
(
r⃗c − b⃗2τ2, dr⃗c − b⃗2dτ2, dϕ⃗c − b⃗2dφ2

)
.

The evaluation maps for the tropical curve in the right picture are

ev∗1γ1 = γ1
(
r⃗c − b⃗1τ1, dr⃗c − b⃗1dτ1, dϕ⃗c − b⃗1dφ1

)
,

ev∗2γ2 = γ2
(
r⃗c − b⃗1τ1 − b⃗1τ2,dr⃗c − b⃗1dτ1 − b⃗1dτ2, dϕ⃗c − b⃗1dφ1 − b⃗1dφ2

)
.

3.4 Tropical moduli space integral

In Section 3.1, we described the solution to an enumerative problem in terms of the moduli space
integral (3.1). In Sections 2.7 and 3.3, we defined the tropical moduli space and the tropical
evaluation map, so the tropical GW invariant TNX

β (C1, . . . , Cn) can be defined in the following
way.
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Definition 3.10. The number of tropical curves of degree β and genus zero on toric space X
passing through tropical cycles C1, . . . , Cn is given by

TNX
β (C1, . . . , Cn) =

∑
Γ⃗n

∫
Mn

(
X,β;Γ⃗n

) n∧
α=1

ev∗αγα, (3.7)

where ev is the tropical evaluation map (3.5), Mn

(
X,β; Γ⃗n

)
is the tropical moduli space and

γ1, . . . , γn are representatives of Poincaré dual classes to the cycles C1, . . . , Cn.

Although our Definition 3.7 was motivated by Proposition 3.5, we did not include the com-
pactification of the tropical moduli space. We conjecture that there is no contribution from the
codimension one and higher components due to good integrand behavior at zero edge length.
Our conjecture, at least for genus zero invariants, is later justified by matching the known results
from the compactified moduli space integrals in a complex geometry setup. We suspect that we
might need to carefully include the higher codimension integrals on the tropical moduli space
for the genus one and higher.

It is convenient to introduce another notation ⟨γ1, . . . , γn⟩Xβ for the tropical GW invari-
ant (3.7) to indicate a choice of representatives γ1, . . . , γn.

Example 3.11. The number of tropical degrees one curves in P1, passing through two distinct
point cycles, is given by

TNP1

1 (p1, p2) =
∑
Γ⃗2

∫
(S1)2

∫
R×R+

ev∗1γ1 ∧ ev∗2γ2. (3.8)

The two observables γ1 and γ2 are U(1)2-averaged representatives (3.4) of the Poincaré dual

class to a point cycle. The sum in (3.8) is taken over two trees Γ⃗
(12)
2 and Γ⃗

(21)
2 depicted below:

Γ
(12)
2

γ1

R

γ2τ

+1 +1 −1

Γ
(21)
2

γ2

R

γ1τ

+1 +1 −1

Using the evaluation map (3.6), we can evaluate the contributions for each tropical curve. The

contribution for the curve Γ
(12)
2 is

TNP1

1

(
p1, p2; Γ

(12)
2

)
=

∫
(S1)2

∫
R×R+

γ1(rc, ϕc) ∧ γ2(rc + τ, ϕc + φ)

=

∫
(S1)2

∫
R×R+

1

2π
δ(rc − r1)drcdϕc ∧

1

2π
δ(rc + τ − r2)(drc + dτ)(dϕc + dφ)

=
1

(2π)2

∫
(S1)2

dϕcdφ

∫
R
drc

∫ ∞

0
dτ δ(rc − r1)δ(rc + τ − r2)

=

∫ ∞

0
dτ δ(r1 + τ − r2) = Θ(r2 − r1), (3.9)

where we introduced the step function

Θ(a) =

∫ ∞

0
dxδ(x− a) =

{
1, a > 0,

0, a < 0.

The contribution from the tropical curve Γ
(21)
2 is

TNP1

1

(
p1, p2; Γ

(21)
2

)
=

∫
(S1)2

∫
R×R+

γ2(rc, ϕc) ∧ γ1(rc + τ, ϕc + φ) = Θ(r1 − r2).
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The tropical GW evaluates into

TNP1

1 (p1, p2) = Θ(r2 − r1) + Θ(r1 − r2) = 1 if r1 ̸= r2.

The individual contributions from the left and right graphs describe the contributions from two
distinct tropical curves labeled by the ordering of marked points. For r2 > r1, the second point
is to the left of the first point on the real line. Hence, only tropical curves that preserve this
property do contribute. There is only one such curve, represented by the left graph.

Example 3.12. The number of degree 1 tropical curves in P2 passing through two distinct
point cycles is

TNP2

1 (p1, p2) =
∑
Γ⃗2

∫
(S1)4

∫
R2×(R+)2

ev∗1γ1 ∧ ev∗2γ2. (3.10)

The two observables γ1 and γ2 are U(1)2-averaged representatives (3.4) of the Poincaré dual
class of the point. The sum is taken over 12 tropical curves Γ⃗2. There are two types of tropical
curves Γ⃗2: six with two marked points on the same edge and six with marked points on two
different edges. Below, we will show that the contributions from the tropical curves with two
marked points on the same edge vanish, so the only nontrivial contributions come from the six
tropical curves depicted below:

1

2

1
2

1

2

1

2 1
2

1

2

The tropical evaluation map from Section 3.3 for two observables on the same edge (with integer
vector b⃗) is

ev∗1γ1 ∧ ev∗2γ2 = γ1
(
r⃗c − b⃗τ1, ϕ⃗c − b⃗φ1

)
∧ γ2

(
r⃗c − b⃗(τ1 + τ2), ϕ⃗c − b⃗(φ1 + φ2)

)
. (3.11)

The radial part of the form (3.11) vanishes

2∏
i=1

δ
(
ric − biτ1 − ri1

)(
dric − bidτ1

)
∧

2∏
i=1

δ
(
ric − biτ1 − biτ2 − ri2

)(
dric − bidτ1 − bidτ2

)
∝

(
dr1c − b1dτ1

)(
dr2c − b2dτ1

)(
dr1c − b1dτ1 − b1dτ2

)(
dr2c − b2dτ1 − b2dτ2

)
= dr1c

(
−b2dτ1

)(
−b1dτ2

)
dr2c − b1dτ1dr

2
cdr

1
c

(
−b2dτ2

)
= 0.

In case two observables on different edges with integer vectors b⃗1 and b⃗2,

ev∗1γ1 ∧ ev∗2γ2 = ω1

(
r⃗c − b⃗1τ1, ϕ⃗c − b⃗1φ1

)
∧ ω2

(
r⃗c − b⃗2τ2, ϕ⃗c − b⃗2φ2

)
. (3.12)

The radial part of the form (3.12) is

2∏
i=1

δ
(
ric − bi1τ1 − ri1

)(
dric − bi1dτ1

)
∧

2∏
i=1

δ
(
ric − bi2τ2 − ri2

)(
dric − bi2dτ2

)
= −

[
2∏

i=1

δ
(
ric − bi1τ1 − ri1

)
δ
(
ric − bi2τ2 − ri2

)](⃗
b1 × b⃗2

)
dr1cdr

2
cdτ1dτ2,
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where we introduced the 2-dimensional vector product

b⃗1 ∧ b⃗2 = b11b
2
2 − b21b

1
2. (3.13)

The angular part of the form (3.12) is

1

(2π)4

2∏
i=1

(
dϕic − bi1dφ1

)
∧

2∏
i=1

(
dϕic − bi2dφ2

)
= − 1

(2π)4
(⃗
b1 ∧ b⃗2

)
dϕ1cdϕ

2
cdφ1dφ2. (3.14)

Remark 3.13. The equation (3.14) shows that the product of the pulled-back observables (3.12)
is proportional to the vector product (3.13) on the integer vectors b⃗1 and b⃗2, assigned to the edges
with the point observables. Furthermore, the moduli space integral (3.10) for a fixed discrete
type tropical curve will be proportional to the square of the vector product. In Section 2 of
Mikhalkin–Rau [23], authors introduced the weight factor for a cubic vertex w1w2|u⃗1 ∧ u⃗2| to
use it in the tropical curve counting. In our notations, b⃗1 = w1u⃗1 and b⃗2 = w2u⃗2, so the weight
factor for the cubical vertex is identical to our vector product (3.13).

The square of the vector product (3.13) for any pair of distinct unit normal vectors b⃗a ∈
BP2 = {(1, 0), (0, 1), (−1,−1)} is given by

(⃗
ba ∧ b⃗c

)2
= 1. The moduli space integral for the

tropical curve Γ⃗2 with marked points on edges with integer vectors b⃗1 = (1, 0) and b⃗2 = (0, 1)

TNP2

1

(
p1, p2; Γ⃗2

)
=

∫
(S1)4

∫
R2×(R+)2

ev∗1γ1 ∧ ev∗2γ2

=
1(

2π
)4 ∫

(S1)4
dϕ1cdϕ

2
cdφ1dφ2

∫
R2

dr1cdr
2
c

∫
(R+)2

dτ1dτ2

× δ
(
r1c − τ1 − r11

)
δ
(
r2c − r21

)
δ
(
r1c − r12

)
δ
(
r2c − τ2 − r22

)
=

∫ ∞

0
dτ1dτ2 δ

(
−τ1 − r1

)
δ
(
−τ2 + r2

)
= Θ

(
−r1

)
Θ
(
r2
)
, (3.15)

where we introduced the relative position r⃗ = r⃗1− r⃗2. Similarly to the P1 case, an individual tree
describes a tropical curve that passes through the two points with relative locations such that
the relative distance vector r⃗ belongs to the second quadrant in R2. The remaining five tropical
curves contribute to other values of the relative position r⃗. The picture below presents the
relative marked point location and the corresponding tropical curves with a nonzero contribution:

r2

r1

1

2

1

2

12

21

1

2

2

1

The sum (3.10) over tropical curves Γ⃗2 is

TNP2

1 (p1, p2) =
∑
Γ⃗2

TNP2

1

(
p1, p2; Γ⃗2

)
= Θ

(
−r1

)
Θ
(
r2
)
+Θ

(
r1
)
Θ
(
−r2

)
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+ Θ
(
r2
)(
Θ
(
r1
)
−Θ

(
r1 − r2

))
+Θ

(
r1
)(
Θ
(
r2
)
−Θ

(
r2 − r1

))
+Θ

(
−r1

)(
Θ
(
−r2

)
−Θ

(
r1 − r2

))
+Θ

(
−r2

)(
Θ
(
−r1

)
−Θ

(
r2 − r1

))
= 1, unless r1 = 0 or r2 = 0 or r1 = r2.

The tropical GW invariant equals one everywhere on R2-plane of relative positions, except
for the exceptional cases r1 = 0, r2 = 0, and r1 = r2. There is no tropical curve passing
through two points in these cases. This phenomenon was observed and discussed by Mikhalkin
and Rau in [23, Proposition 2.5.1]. The moduli space integral does not change if we replace
the single point-supported representatives γ1 and γ2 with smooth representatives in the same
cohomology class. Hence, resolving the exceptional cases issue seems plausible by using the
smeared representatives γ1 and γ2 for tropical point cycles.

4 Higher topological quantum mechanics

Higher topological quantum mechanics (HTQM) was introduced in [13] to generalize 1-dimen-
sional TQFT by including geometric data for 1-cobordisms. This section formalizes the HTQM
to describe the tropical GW invariants. In particular, we introduce an additional parity-odd
symmetry. Such symmetry is the remnant from the tropicalization of a topological string theory
description of the GW invariants.

Definition 4.1. An HTQM (V,Q,G±, g) is a collection of the following data:

1. Supervector space V = V0 ⊕ V1 with even, V0, and odd, V1 subspaces. We use notation
|v| ∈ Z2 for the parity of vector v ∈ V .

2. Differential Q : V → V , an odd operator, |Qv| = |v|+ 1, that squares to zero.

3. Quasi-homotopy G+ : V → V , an odd operator, |G+v| = |v|+ 1, that squares to zero, i.e.,
G2

+ = 0.

4. Parity-odd symmetry G− : V → V , an odd operator: |G−v| = |v|+1, such that it squares
to zero, i.e., G2

− = 0, graded commutes with differential Q, i.e., {Q,G−} = 0, and graded
commutes with quasi-homotopy G+, i.e., {G+, G−} = 0.

5. Scalar product g : V × V → R with following properties:

• parity-symmetry

g(v, w) = (−1)|v||w|g(w, v);

• Q-preservation

g(Qv,w) + (−1)|v|g(v,Qw) = 0;

• G±-preservation

g(G±v, w)− (−1)|v|g(v,G±w) = 0.

If the space V is infinite-dimensional, we impose certain consistency conditions on HTQM data
(V,Q,G±, g). We define the Hamiltonian operator H = {Q,G+} : V → V . The consistency
conditions are formulated in terms of Hamiltonian:

• The Hamiltonian H is such that the evolution operator e−tH is well defined for t ≥ 0 in
the following sense:
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– it is a solution to the ODE

(∂t +H)e−tH = 0, e−0·H = 1, t ∈ R+ ∪ {0}; (4.1)

– forms a 1-parameter semi-group with multiplication

e−t1He−t2H = e−(t1+t2)H , ∀ t1, t2 ∈ R+ ∪ {0}. (4.2)

• We require that the t → ∞ limit of the evolution operator exists and is equal to the
projector on kerH, i.e.,

lim
t→+∞

e−tH = Π0.

• The projector Π0 obeys

Π0G± = G±Π0 = 0. (4.3)

Remark 4.2. The notation G± is adopted from homotopy in string theory, where G± = G0,L±
G0,R. The G0,L/R is the Q-partner of the energy-momentum tensor for the left and right modes.

Definition 4.3. The propagator K : V → V for HTQM (V,Q,G±, g) is an operator

K = lim
T→∞

∫ T

0
dt e−tHG+ =

∫ ∞

0
dt e−tHG+. (4.4)

Note that the integral may diverge when the exponent vanishes for states from kerH. The G+

in the expression (4.4) and the HTQM property (4.3) evaluates G+v = 0 on all v ∈ kerH, hence
Kv = 0 for such states. The propagator K is a homotopy, i.e.,

{Q,K} =

∫ ∞

0
dt e−tH{Q,G+} = −

∫ ∞

0
d
(
e−tH

)
= e−tH

∣∣
0
− e−tH

∣∣
∞ = 1−Π0.

Example 4.4. The semi-group property (4.2) may only hold at some subspace of R+. An ex-
ample of such a phenomenon is the one-parameter family of diffeomorphisms for a vector field
u = x2∂x. Here vector space V = Ω1(R) with the Hamiltonian H = Lu = {ιu,d}.

4.1 Amplitudes in HTQM

Definition 4.5. An observable O in HTQM (V,Q,G±, g) is a linear operator O : V → V .

Definition 4.6. An evolution operator U(t,dt) ∈ V ⊗ V ∗ ⊗ Ω∗(R+
)
is a solution to

dU(t,dt) + [Q,U(t,dt)] = 0, U(0, dt) = 1 +G+dt.

We use the exponent (4.1) to express the evolution operator

U(t,dt) = e−tH+G+dt = e−tH(1 +G+dt).

Note 4.7. We will suppress the argument dt in evolution operator U(t,dt) to make our expres-
sions less crowded.

Definition 4.8. For the HTQM (V,Q,G±, g), a collection of n observables Oα and a pair of
states v, w the pre-amplitude on a line PAIn(O1, . . . ,On; v, w) is a differential form on the
moduli space M(In) ≃ (R+)n−1 of the n ordered marked points on a line given by

PAIn(O1, . . . ,On; v, w) = g(v,O12πU(τ2)G−O2 · · · 2πU(τn)G−Onw).
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By definition, a pre-amplitude PAIn is a mixed degree form on the moduli space M(In). The
lowest component is a function on M(In). It is well known in Euclidean quantum mechanics as
a transition amplitude (see Feynman–Hibbs–Styer [2] for more details) with observables inserted
at marked points. An example below gives a more detailed description.

Example 4.9. Let us consider two marked points on a line, so the moduli space M(I2) = R+.
The coordinate on the moduli space τ > 0 describes the relative position of the two ordered
points. For observables O1 and O2 and a pair of states v, w, the pre-amplitude is

PAI2(O1,O2; v, w) = g(v,O12πU(τ)G−O2w) ∈ Ω∗(R+). (4.5)

The degree zero component of the pre-amplitude is a function of the moduli space

PAdeg=0
I2

(O1,O2; v, w) = g
(
v,O12πe

−τHG−O2w
)
. (4.6)

We can use the (Euclidean) Heisenberg picture to replace the observables O1 and O2 with their
time-dependent versions

Oα(τ) = e−τHOαe
τH

to rewrite the pre-amplitude (4.6) in the form

PAdeg=0
I2

(O1,O2; v, w) = g
(
v,O1(0)2πO2(τ)G−e

−τHw
)
. (4.7)

An expression (4.7) is the matrix element between states v and w in Euclidean quantum me-
chanical transition amplitude on an interval [0, τ ] with observable O1 at a time 0 and observable
2πO2G− at a time τ .

The term “higher” in the higher topological quantum mechanics means we will use the full
pre-amplitude instead of the degree zero component.

Definition 4.10. Generalized amplitude AC
In

on a line In with n marked points is an integral
of the pre-amplitude PAIn over a chain C in the moduli space M(In), i.e.,

AC
In =

∫
C
PAIn .

In the present paper, we will be interested in the top-degree generalized amplitudes, i.e., the
integral over the whole moduli space

AIn(O1, . . . ,On; v, w) =

∫
M(In)

PAIn(O1, . . . ,On; v, w).

We use an integral representation for the homotopy (4.4) to rewrite the amplitude in the form

AIn(O1, . . . ,On; v, w) = (2π)n−1g(v,O1KG−O2 · · ·KG−Onw).

The generalized amplitudes are also present in standard quantum mechanics as the terms in
perturbation theory.

Example 4.11. Suppose an operator Φ: V → V in HTQM (V,Q,G±, g), is nilpotent, parity-
odd and commutes with Q and G−, i.e., {Q,Φ} = {G−,Φ} = 0. For a parity-even number λ
we can construct a family (V,Q−λΦ, G±, g) of HTQM’s deformations. The deformed evolution
operator is a solution to

dUλ(t) +
[
Q− λΦ, Uλ(t)

]
= 0, U(0) = 1 +G+dt. (4.8)
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The solution to the Cauchy problem (4.8) is written using the (formal) series in λ, i.e.,

Uλ(t) = U (0)(t) + λU (1)(t) + · · ·+ λkU (k)(t) + · · · .

The U (0)(t) is the evolution operator in the original HTQM (V,Q,G±, g), while the higher terms
are determined recursively solving

dU (k)(t) +
[
Q,U (k)(t)

]
=

[
Φ, U (k−1)(t)

]
.

The recursive solution is

U (k)(t) =

∫
t1+t2=t

U(t1)ΦU
(k−1)(t2).

The homotopy for deformed HTQMλ can be expressed as series in λ

Kλ =

∫ ∞

0
Uλ(t)

=

∫ ∞

0
U(t1) + λ

∫ ∞

0
U(t1)

∫ ∞

0
ΦU(t2) + λ2

∫ ∞

0
U(t1)

∫ ∞

0
ΦU(t2)

∫ ∞

0
ΦU(t3) + · · ·

= K + λKΦK + λ2KΦKΦK + · · · = K

∞∑
k=0

(λΦK)k. (4.9)

The (top-degree) generalized amplitude ÃI2 in deformed HTQM (V,Q− λΦ, G±, g) on a line I2
with two marked points is

ÃI2(O1,O2; v, w) = g(v,O12πKλG−O2w). (4.10)

For a special choice of operator Φ = 2π[G−,O], the perturbative expansion (4.9) for the ampli-
tude (4.10) becomes

ÃI2(O1,O2; v, w) =
∞∑
k=0

AIk+2
(O1, λO, . . . , λO︸ ︷︷ ︸

k

,O2; v, w). (4.11)

Equality (4.11) expresses an amplitude in deformed HTQM (V,Q−2πλ[G−,O], G±, g) as a sum
over amplitudes in the original HTQM (V,Q,G±, g).

Remark 4.12. The deformation of HTQM by the multiple operators ΦA was discussed [17].
In particular, it was shown that the corresponding amplitudes solve the (anti) commutativity
equation.

4.2 HTQM on special trees

In Section 2.5, we described generic tropical curves of genus zero with marked points as connected
oriented trees Γ⃗ with sink and 1-, 2- and 3-valent vertices only, equipped with integer vectors
and moduli. For a given tropical curve Γ⃗, we can construct a special tree Γ, defined below, by
forgetting the integer vectors and moduli on the edges.

Definition 4.13. A special tree Γ is a directed tree with distinct sink vertex and only 1-, 2- and
3-valent vertices. The directions are as follows: the edges are outgoing to the leaves, 2-valent
vertices have one incoming and one outgoing edge, and 3-valent vertices (except sink) have two
incoming and one outgoing edge. The sink vertex has all incoming edges.
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The line with marked points In in Section 4.1 is a generalization of a special tree with no
3-valent vertices and a sink at a 2-valent vertex.

Definition 4.14. An HTQM (V,Q,G±, g, µ2) on a special tree Γ is the decoration of a special
tree with the following data:

(1) each edge is decorated with the HTQM data (V,Q,G±);

(2) 1-valent vertices (leaves) are decorated with states, i.e., va ∈ V , a = 1, . . . , n1 = |V1(Γ)|;
(3) 2-valent vertices are decorated with observables Oα ∈ V ⊗ V ∗, α = 1, . . . , n2 = |V2(Γ)|;
(4) 3-valent vertices are decorated with the multiplication µ2 : V ⊗ V → V ;

(5) sink 3-valent vertex is decorated with the multiplication µ03 = g ◦ µ2 : V ⊗3 → R.

The multiplication µ2 obeys the following consistency properties:

• µ2 is graded commutative

µ2(v, w) = (−1)|v||w|µ2(w, v);

• µ2 is associative

µ2(µ2(v, w), u) = µ2(v, µ2(w, u));

• (µ2, Q) obeys the Leibniz rule

Qµ2(v, w) = µ2(Qv,w) + (−1)|v|µ2(v,Qw);

• (G−, µ2) obeys the 7-term relation

G−µ2(µ2(v, w), u) = µ2(G−µ2(v, w), u) + (−1)|w|(|v|−1)µ2(w,G−µ2(v, u))

+ (−1)|v|µ2(v,G−µ2(w, u))− µ2(G−v, µ2(w, u))

− (−1)|v|µ2(v, µ2(G−w, u))− (−1)|u|+|v|µ2(v, µ2(w,G−u)). (4.12)

For a special tree Γ, we can define an element of the tensor algebra equal to the tensor
product of the elements assigned to each vertex and edge of Γ. Each vertex v is assigned with
an element V ∗|Ein(v)| ⊗ V |Eout(v)|, i.e., has a factor V ∗ for each incoming edge and a factor V
for each outgoing edge. Each edge is assigned with an element V ⊗ V ∗, factor V for the vertex
it is ingoing and factor V ∗ for the vertex to wh it is outgoing. A special tree (directed graph,
more generally) defines a map from an element of tensor algebra we described earlier to the real
numbers via contraction in tensor algebra, determined by the directed edges connecting vertices.
We will denote such contraction for special tree Γ in the following way:

⟨ ⟩Γ : (V ⊗ V ∗)⊗E ⊗ V ⊗n1 ⊗ (V ∗ ⊗ V )⊗n2 ⊗ (V ∗ ⊗ V ∗ ⊗ V )⊗(n3−1) ⊗ V ∗ ⊗ V ∗ ⊗ V ∗ → R.

For a special tree Γ, we define the moduli space M(Γ), given by the lengths of internal edges, i.e.,

M(Γ) = (R+)I(Γ).

Definition 4.15. The pre-amplitude PAΓ(Oα; va) on a special tree Γ decorated with states va,
operators Oα in HTQM (V,Q,G±, g, µ2) is a contraction in tensor algebra, defined by a special
tree Γ. The leaves of a special tree are decorated with the states v1, . . . , vn1 ∈ V , internal edges
are decorated with the evolution operator U ∈ V ⊗ V ∗, external edges are decorated with the
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identity operator 1 ∈ V ⊗ V ∗, 2-valent vertices are decorated with observables Oα ∈ V ⊗ V ∗,
3-valent vertices are decorated with multiplication µ2 ∈ V ∗⊗V ∗⊗V and a sink vertex decorated
with µ03 ∈ V ∗ ⊗ V ∗ ⊗ V ∗. We will denote such contraction as

PAΓ(Oα; va) =

〈
1⊗n1(Γ) ⊗ U⊗I(Γ)

n1(Γ)⊗
a=1

va

n2(Γ)⊗
α=1

Oα ⊗ µ
⊗(n3(Γ)−1)
2 ⊗ µ03

〉
Γ

. (4.13)

Example 4.16. The pre-amplitude (4.5) is the pre-amplitude (4.13) on a special tree Γ with
n1(Γ) = 2 leaves, equipped with states v and w and n2(Γ) = 2 2-valent vertices, equipped with
observables O1 and O2.

Definition 4.17. An amplitude AC
Γ on a special tree Γ is an integral of the pre-amplitude PAΓ

over a cycle C ∈ M(Γ), i.e.,

AC
Γ =

∫
C
PAΓ.

In our analysis of tropical GW invariants, we will use the top degree amplitudes, i.e., integrals
over the whole moduli space

AΓ =

∫
M(Γ)

PAΓ. (4.14)

We can perform the moduli space integral and express the amplitude (4.14) using homotopy (4.4)
in the form

AΓ(Oα; va;Q) =

〈
1⊗n1(Γ) ⊗ (2πKG−)

⊗I(Γ)

n1(Γ)⊗
a=1

va

n2(Γ)⊗
α=1

Oα ⊗ µ
⊗(n3(Γ)−1)
2 ⊗ µ03

〉
Γ

. (4.15)

Definition 4.14 implies that the amplitude AΓ(Oα; va) is independent of the location of the sink
vertex

(
where µ2 is replaced by the µ03

)
, hence for convenience we will use the shorter notation

for the same amplitude

AΓ(Oα; va) =

〈
(2πKG−)

⊗I(Γ)

n1(Γ)⊗
a=1

va

n2(Γ)⊗
α=1

Oα ⊗ µ
⊗n3(Γ)
2

〉
Γ

. (4.16)

The expression (4.16) describes an amplitude on a special tree Γ with leaves decorated with
states va, internal edges decorated with propagators 2πKG−, 2-valent vertices decorated with
operators Oα, 3-valent vertices decorated with the multiplication µ2 and a scalar product g at
arbitrary vertex on a special tree Γ.

Example 4.18. Let us consider the three special trees depicted below:

Γ1

Ψb1
Oγ2

Oγ3

Ψb3

Oγ4

Ψb2

Oγ1

Γ2

Ψb1
Ψγ2

Ψγ3

Ψb3

Ψγ4

Ψb2

Ψγ1

Γ3

Ψγ3

Ob2

Ψγ1

Ob1

Ψγ2

Ψγ4

Ob3
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The amplitude on the first tree

AΓ1 = (2π)4µ03
(
KG−Oγ1Ψb1 ,KG−Oγ4Ψb3 ,KG−Oγ2KG−Oγ3Ψb2

)
. (4.17)

The amplitude of the second tree

AΓ2 = (2π)4µ03

×
(
KG−µ2(Ψγ1 ,Ψb1),KG−µ2(Ψγ4 ,Ψb3),KG−µ2

(
Ψγ2 ,KG−µ2

(
Ψγ3 ,Ψb2

)))
. (4.18)

The amplitude of the third tree

AΓ3 = (2π)4µ03
(
KG−Ob1Ψγ1 ,KG−Ob3Ψγ4 ,KG−µ2

(
Ψγ2 ,KG−Ob2Ψγ3

))
. (4.19)

Remark 4.19. The formal construction of HTQM on special trees has several useful applica-
tions. In particular, Losev and Shadrin [16] showed that the amplitudes in HTQM on special
trees with additional assumptions obey the WDVV equations.

4.3 A-model HTQM

Tropical Gromov–Witten theory on a compact toric variety X of complex dimension N defines
the particular HTQM on special trees. Following the string theory analogy, we will denote
HTQM as the A-model. Below, we express the HTQM data (V,Q,G±, g, µ2) in terms of geo-
metric data of X.

Definition 4.20. The A-model is the collection of the following data (V,Q,G±, g, µ2), where
the vector space V is the space of pairs

|ω, m⃗⟩, ω ∈ Ω∗
trop(X), m⃗ ∈ ZN .

The Ω∗
trop(X) is a space of U(1)N -invariant smooth differential forms on a toric variety X of

dimension N , i.e., smooth forms on C∗N , that are extendable to the compactification. An exis-
tence of continuation, in particular, implies that for all primitive normal vectors b⃗ ∈ BX , the
following holds:

lim
t→+∞

ω
(
r⃗ + b⃗t

)
= finite, lim

t→+∞
ιbj∂

ϕj
ω
(
r⃗ + b⃗t

)
= 0, lim

t→+∞
ιbj∂

rj
ω
(
r⃗ + b⃗t

)
= 0. (4.20)

The parity of a state |ω, m⃗⟩ is the parity |ω| of the form, defined as the degree of form
deg(ω) mod 2. The differential Q acts as the de Rham operator in radial direction on C∗N =
RN × TN , i.e.,

Q|ω, m⃗⟩ = |dω, m⃗⟩, d =
∑

dri
∂

∂ri
. (4.21)

The homotopy G+ and parity-odd symmetry G− are defined via interior derivatives

G+|ω, m⃗⟩ =
∣∣ιRm⃗ω, m⃗〉

=
∣∣ιmi∂ri

ω, m⃗
〉
, (4.22)

and

G−|ω, m⃗⟩ =
∣∣ιΦm⃗ω, m⃗〉

=
∣∣ιmi∂ϕi

ω, m⃗
〉
. (4.23)

The scalar product is the integration of forms

g : V × V → R : (|ω1, m⃗1⟩, |ω2, m⃗2⟩) 7→ δm⃗1+m⃗2 ,⃗0

∫
X
ω1 ∧ ω2. (4.24)

The multiplication µ2 : V ⊗ V → V is the wedge product on differential forms

µ2(|ω1, m⃗1⟩, |ω2, m⃗2⟩) = |ω1 ∧ ω2, m⃗1 + m⃗2⟩. (4.25)
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Proposition 4.21. The A-model (V,Q,G±, g, µ2) is the HTQM on special trees.

Proof. The operators Q, G± realized as operations (4.21)–(4.23) on differential forms imme-
diately imply that all three are differentials, i.e., parity-odd operators, that square to zero.
The pair of differentials G± are interior derivatives (4.22) and (4.23), hence are anti-commuting.
The graded commutator of G− and Q

{Q,G−}|ω, m⃗⟩ =
∣∣LΦ

m⃗ω, m⃗
〉
= 0,

since the form ω is invariant under the U(1)N -rotations. The A-model scalar product (4.24) is
graded-symmetric

g(|ω1, m⃗1⟩, |ω2, m⃗2⟩) = δm⃗1+m⃗2 ,⃗0

∫
X
ω1 ∧ ω2 = (−1)|ω1||ω2|g(|ω2, m⃗2⟩, |ω1, m⃗1⟩),

Q-preserving follows from compactness of X, i.e.,

g(Q|ω1, m⃗1⟩, |ω2, m⃗2⟩) + (−1)|ω1|g(|ω1, m⃗1⟩, Q|ω2, m⃗2⟩) = δm⃗1+m⃗2 ,⃗0

∫
X
d(ω1 ∧ ω2) = 0.

The G±-preservation

g(G±|ω1, m⃗1⟩, |ω2, m⃗2⟩)− (−1)|ω1|g(|ω1, m⃗1⟩, G±|ω2, m⃗2⟩)

= δm⃗1+m⃗2 ,⃗0

∫
X
ιR,Φ
m⃗1

ω1 ∧ ω2 − (−1)|ω1|δm⃗1+m⃗2 ,⃗0

∫
X
ω1 ∧ ιR,Φ

m⃗2
ω2

= δm⃗1+m⃗2 ,⃗0

∫
X
ιR,Φ
m⃗1

(ω1 ∧ ω2) = 0.

The pair (Q,µ2) for the A-model (4.21) and (4.25) is essentially an exterior derivative and
a wedge product, hence obeys the graded commutativity, associativity, and Leibniz rule. The
interior derivative and wedge product properties imply the 7-term relation (4.12). The space V
is infinite-dimensional. Hence, we need to check the properties of the Hamiltonian, which acts
as the Lie derivative in radial direction, i.e.,

H|ω, m⃗⟩ = {Q,G+}|ω, m⃗⟩ =
∣∣{d, ιRm⃗}

ω, m⃗
〉
=

∣∣LR
m⃗ω, m⃗

〉
.

The non-perturbative exponent e−tH defined as solution (4.1) is a 1-parameter family of diffeo-
morphisms Φt

m⃗ : ri 7→ ri −mit acting via pull-back on forms

e−tH |ω, m⃗⟩ =
∣∣(Φt

m⃗

)∗
ω, m⃗

〉
.

The composition property (4.2) naturally holds for diffeomorphisms. Since the vector field
m⃗ = mj∂rj is a constant vector field, the corresponding flow does not develop any singularities,
hence the composition (4.2) is valid for all values of t ∈ R+.

The kerH is a direct sum of vector spaces for each m⃗, i.e.,

kerH =
⊕

m⃗∈ZN

{
|ω, m⃗⟩| ω ∈ Ω∗

trop(X), LR
m⃗ω = 0

}
.

Let us fix m⃗ and describe the invariant forms. An U(1)N -invariant form of a particular bi-degree
ω ∈ Ωp,q

trop(X) can be written in components

ω = ωi1...ipj1...jq(r⃗)dr
i1 ∧ · · · ∧ drip ∧ dϕj1 ∧ · · · ∧ dϕjq .
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The radial Lie derivative along the constant vector field simplifies to the Lie derivative of each
component (as a function of r⃗), i.e.,

LR
m⃗ω = dri1 ∧ · · · ∧ drip ∧ dϕj1 ∧ · · · ∧ dϕjqmj∂rjωi1...ipj1...jq(r⃗).

The invariant forms have components independent of r⃗ in the direction of m⃗. An extension to
compactification (for compact toric variety X) requires further restriction for the components
of ω, given by

ιRm⃗ω = ιΦm⃗ω = 0. (4.26)

When m⃗ is proportional to one of the vectors b⃗ ∈ BX the extra conditions (4.26) immediately
follows from our definition of the tropical forms Ω∗

trop(X) on X, since the t→ ∞ limit of the form
in (4.20) equal to the form itself. For more general vectors, a more careful analysis is required.
Definitions (4.23) and (4.22) for G± action on states and extra conditions (4.26) immediately
imply G±Π0 = 0. ■

4.4 A-model states, operators, and amplitudes

The A-model HTQM on special trees is a tropicalization of the type-A topological string. The
worldsheet description of the topological string involves the 2D conformal field theory (CFT).
One of the key features of the CFT in two dimensions is the state-operator correspondence. The
state-operator correspondence in the topological string description of the GW theory becomes
the state-operator map in the HTQM description of the tropical GW theory.

Given a state v ∈ V in HTQM (V,Q,G±, g, µ2), we can construct an operator

Ov = µ2(v, ·) : V → V. (4.27)

However, not all operators O : V → V can be turned into states, but the ones relevant to the
tropical GW theory have such property!

Definition 4.22. For a compactifying hyperplane with the primitive normal vector b⃗ ∈ ZN ,
there is a divisor state Ψb =

∣∣1, b⃗〉. For a GW observable γ ∈ Ω∗
trop(X), there is an evaluation

state Ψγ =
∣∣γ, 0⃗〉.

The corresponding operators are defined below.

Definition 4.23. An evaluation observable is an operator

Oγ |ω, m⃗⟩ = |γ ∧ ω, m⃗⟩ = µ2(Ψγ , |ω, m⃗⟩),

while a divisor observable is an operator

Ob|ω, m⃗⟩ =
∣∣ω, m⃗+ b⃗

〉
= µ2(Ψb, |ω, m⃗⟩).

The divisor states describe the compactification of C∗N to the toric variety X in tropical
GW theory. Divisor states belong to kerH, moreover, G±Ψb = QΨb = 0. The evaluation states
describe the observables in tropical GW theory. Evaluation states also belong to kerH, and
G±Ψγ = 0, while QΨγ = Ψdγ . In Section 4.2, we defined amplitudes in HTQM on special trees.
Below, we provide several examples of the amplitudes in the A-model HTQM on special trees
related to the tropical GW invariants on P1 and P2.
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Example 4.24. The tropical GW invariant (3.8) for two points on P1 can be constructed using
the HTQM amplitudes on the special trees below:

Γ(12)

Ψ+

Oγ1 Oγ2

Ψ−
Γ(21)

Ψ+

Oγ2 Oγ1

Ψ−

The divisor states Ψ± describe the pair of compactification divisors with primitive normals
b± = ±1. The pair of evaluation observables Oγ1 and Oγ2 describe the tropicalized point-
cycles (3.3) located at r1 and r2. The amplitude (4.15) on a special tree Γ(12) is

AΓ(12)(Oγ1 ,Oγ2 ; Ψ+,Ψ−) = g(Ψ+,Oγ12πKG−Oγ2Ψ−)

= g(|1, 1⟩,Oγ12πKG−Oγ2 |1,−1⟩) = g(|1, 1⟩, |γ1Θ(r2 − r),−1⟩)

=

∫
S1

dϕ

∫
R
dr

1

2π
δ(r − r1)Θ(r2 − r) = Θ(r2 − r1), (4.28)

where we used

2πKG−|γk,−1⟩ = 2π

∫ ∞

0
dt e−tHG+G−

∣∣∣∣ 12πδ(r − rk)dϕdr,−1

〉
=

∫ ∞

0
dt |δ(r − rk + t),−1⟩ = |Θ(rk − r),−1⟩.

The amplitude on a special tree (4.28) is identical to the tropical GW invariant contribution (3.9)
for the same tropical curve.

Example 4.25. Let us describe the amplitudes for the graphs, corresponding to tropical curves
of degree 1 in P2 with two observables, which we used to evaluate the tropical GW invariants
in Section 3.4:

Oγ1
Oγ2

Ψb3

Ψb1

Ψb2

Oγ2 Oγ1

Ψb3

Ψb1

Ψb2

The amplitude for the left graph is

AΓ(Oγα ; Ψba) = g
(
Ψb3 , µ2

(
2πKG−Oγ1Ψb1 , 2πKG−Oγ2Ψb2

))
= Θ

(
−r1

)
Θ
(
r2
)
. (4.29)

We used the following relations:

2πKG−Oγ1Ψb1 = 2π

∫ ∞

0
dt

1

(2π)2
∣∣δ(r1 − r11 − t

)
δ
(
r2 − r21

)
dr2dϕ2, (1, 0)

〉
=

1

2π
|Θ

(
r1 − r11

)
δ
(
r2 − r21

)
dr2dϕ2, (1, 0)⟩,

2πKG−Oγ2Ψb2 = 2π

∫ ∞

0
dt

1

(2π)2
∣∣δ(r1 − r12

)
δ
(
r2 − r22 − t

)
dr1dϕ1, (0, 1)

〉
=

1

2π

∣∣δ(r1 − r12
)
Θ
(
r2 − r22

)
dr1dϕ1, (0, 1)

〉
.

Again, the amplitude (4.29) on a special tree is identical to the tropical GW invariant contribu-
tion (3.15) for the corresponding tropical curve. These examples are a consequence of a more
general relation between the A-model HTQM amplitudes and tropical GW invariants, which we
formulate and prove in the next section.
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4.5 Tropical GW invariants via HTQM amplitudes

The theorem gives the HTQM representation for tropical GW invariants.

Theorem 4.26. An individual contribution for tropical Gromov–Witten invariant of degree
β ̸= 0 on toric variety X and for n ≥ 3 from the tropical curve of a given discrete type Γ⃗ equal
to the amplitude in A-model HTQM on special tree Γ. In particular,∫

M0,n(X,β;Γ⃗)

n∧
α=1

ev∗αγα = AΓ

(
Oγ1 , . . . ,Oγn ; Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

)
, (4.30)

where the number da of divisor states Ψba is given by the tropical intersection number of the
degree class β and the corresponding hyperplane, i.e.,

da = β ·Hba .

The index a runs from 1 to cardinality B = |BX | of the set of compactifying divisors BX .

Proof. We will prove the equality (4.30) by explicit evaluation of the HTQM amplitude. By
definition (4.16), amplitude on the right-hand side is

AΓ(Oγa ; Ψba) =

〈
(2πKG−)

⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγα ⊗ µ
⊗n3(Γ)
2

〉
Γ

. (4.31)

Using homotopy representation (4.4) and an additional angular variable φ, we rewrite an integral
representation

2πKG− = 2π

∫ ∞

0
dτe−τHG+G− =

∫
S1×R+

e−τH−dτG+−dφG− .

We can introduce an operator U(τ, φ) on HTQM states such that

U(τ, φ)|ω, m⃗⟩ = exp(−τH − dτG+ − dφG−)|ω, m⃗⟩.

The amplitude (4.31) has an integral representation

AΓ(Oα; Ψba) =

∫
(R+×S1)I(Γ)

〈
U⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγα ⊗ µ
⊗n3(Γ)
2

〉
Γ

. (4.32)

Note that there is a difference between the integral representation for the amplitude in Section 4.2
and in the present proof. The operator U(τ, φ) acts as super-pullback map on differential form
part of the A-model HTQM states, i.e.,

U(τ, φ)|ω, m⃗⟩ =
∣∣exp(−τLR

m⃗ + ιRm⃗dτ + ιΦm⃗dφ
)
ω, m⃗

〉
.

Earlier, we evaluated the exponentiation of the Lie derivative along the constant vector field in
terms of a transformation F τ

m⃗ :
(
r⃗, ϕ⃗

)
7→

(
r⃗ − m⃗τ, ϕ⃗

)
e−τLR

m⃗ω
(
r⃗,dr⃗,dϕ⃗

)
=

(
F τ
m⃗

)∗
ω
(
r⃗,dr⃗,dϕ⃗

)
= ω

(
r⃗ − m⃗τ,dr⃗,dϕ⃗

)
.

The additional G+dτ +G−dφ terms in the U(τ, φ) operator modify the pullback (F τ
m⃗)∗ into

exp
(
−τLR

m⃗ + ιRm⃗dτ + ιΦm⃗dφ
)
ω
(
r⃗,dr⃗,dϕ⃗

)
= ω

(
r⃗ − m⃗τ, dr⃗ − m⃗dτ,dϕ⃗− m⃗dφ

)
. (4.33)
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We provide a geometric description for (4.33) by introducing a version of the tropical evaluation
map (3.5) on a single edge

evm :
(
r⃗, ϕ⃗, m⃗, τ, φ

)
7→

(
r⃗ − m⃗τ, ϕ⃗− m⃗φ

)
.

The action of U(τ, φ) operator evaluates into

U(τ, φ)|ω, m⃗⟩ =
∣∣ev∗mω, m⃗〉

. (4.34)

The action of the 2πG−K on an internal edge e ∈ I(Γ) is replaced by

2πKG−|ω, m⃗e⟩ =
∫
S1×R+

∣∣ev∗me
ω, m⃗e

〉
.

We use (4.34) to rearrange the HTQM amplitude according to the following rules:

• 3-valent vertex rearrangement

Uµ2(|ω1, m⃗1⟩, |ω2, m⃗2⟩) = µ2
(∣∣ev∗m1+m2

ω1, m⃗1

〉
,
∣∣ev∗m1+m2

ω2, m⃗2

〉)
; (4.35)

• 2-valent vertex rearrangement

UOγα |ω, m⃗⟩ = U|γα ∧ ω, m⃗⟩ = Oev∗mγα |ev∗mω, m⃗⟩;

• 1-valent vertices

UΨb = U
∣∣1, b⃗〉 =

∣∣ev∗b1, b⃗〉 =
∣∣1, b⃗〉 = Ψb. (4.36)

Hence, we gradually replace the U operators by the evaluation map pullbacks, starting from the
sink vertex and proceeding in the direction of leaves, recursively applying the (4.35)–(4.36) to
rearrange the form (4.32) into〈

U⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγα ⊗ µ
⊗n3(Γ)
2

〉
Γ

=

〈
1⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγ
γΓ
α

⊗ µ
⊗n3(Γ)
2

〉
Γ

. (4.37)

We introduced the modified observables defined by

γγΓα =

[ ∏
e∈γΓ(R,α)

ev∗me

]
γα.

The γΓ(R,α) is the unique path on special tree Γ from the sink vertex R to a vertex α, decorated
withOγa . The composition of evaluation maps along the path γΓ(R,α) is an evaluation map (3.5)
on the moduli space of tropical curves with marked points, i.e.,

γγΓα = ev∗αγα.

The right-hand side in (4.37) has trivial decorations on edges and hence can be immediately
evaluated into〈

1⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγ
γΓ
α

⊗ µ
⊗n3(Γ)
2

〉
Γ

=

∫
X

∧
Γ

ev∗αγα. (4.38)
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The
∧

Γ stands for a particular order in wedge product, determined by the path on a special
tree Γ. The forms γα represent the Poincaré duals to complex cycles. Hence, they are forms of
even degree, and the order of product does not affect the result, i.e.,∫

X

∧
Γ

ev∗αγα =

∫
X

n∧
α=1

ev∗αγα.

The integrals in (4.32) and (4.38) combine into the integral over the tropical moduli space (2.9)
of the tropical curve with discrete data Γ, i.e.,

AΓ(Oγα ; Ψba) =

∫
(R+×S1)I(Γ)

∫
X

n∧
α=1

ev∗αγα =

∫
M0,n

(
X,β;Γ⃗

) n∧
α=1

ev∗αγα.

The proof is complete. ■

Remark 4.27. The string theory version of Theorem 4.26 was discussed in [3]. The 2d CFT
was constructed, universal for all GW invariants of a toric target X. The GW invariant at
a fixed degree was constructed using a particular number of holomortex vertex operators and
the vertex operators for observables γα. We want to emphasize that the tropicalization of the
GW invariants modifies the 2d CFT construction to the HTQM construction, which is much
simpler, better understood, and rigorously formalized.

4.6 HTQM for tropical multiplicities

The recent progress in tropical geometry description for the GW invariants is due to the equiv-
alence of the complex curve counting to the real tropical curve counting with additional mul-
tiplicity factors. For a tropical curve Γ⃗ of genus-zero in R2, the multiplicity is a product of
multiplicities at each 3-valent vertex, i.e.,

mult
(
Γ⃗
)
=

∏
v∈V3(Γ)

mult(v). (4.39)

The multiplicity for a vertex v is a vector product of the integer vectors, that is, mult(v) =
|m⃗e1 ∧ m⃗e2 | for a pair of edges attached to this vertex. The balancing condition (2.6) ensures
that the multiplicity does not depend on the choice of a pair among the three attached edges.
The tropical GW invariant for the toric surface X in the Mikhalkin presentation is

TNX
β (C1, . . . , Cn) =

∑
Γ⃗

mult
(
Γ⃗
)
·

∣∣∣∣∣
∫
MR

0,n

(
X,β;Γ⃗

) n∧
α=1

evR∗
α γRα

∣∣∣∣∣ (4.40)

Here MR
0,n

(
X,β; Γ⃗

)
is the radial part moduli space (2.10) for the tropical curves with n marked

points of a given combinatorial type Γ⃗. We introduced a radial restriction evR of the tropical
evaluation map (3.5), introduced in Section 3.3, i.e.,

evRα : MR
0,n

(
X,β; Γ⃗

)
→ R2 :

(
r⃗c, τ1, . . . , τI(Γ)

)
7→ r⃗α = r⃗c +

∑
e∈γΓ(R,α)

±m⃗eτe.

The γRα is the radial part of the Poincaré dual for the point observable (3.4), that is, γRα =
δ2(r⃗ − r⃗α)dr

1dr2. The moduli space integral in (4.40) is the number of tropical curves with n
marked points of given combinatorial type Γ⃗, passing through the n points on R2 at r⃗1, . . . , r⃗n.

Our definition of the tropical GW invariants (3.7) is a tropicalization of the Kontsevich–Manin
construction (3.1), but it looks different from Mikhalkin’s (4.40). Using the U(1)2 averaged
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representatives (3.4) for γα the moduli space integral in (3.7) factorizes into radial and angular
part. The radial part is the moduli space integral in the sum (4.40), while the angular part
provides the weights. We will denote these weights a Kontsevich–Manin(KM) multiplicities,
multKM

(
Γ⃗
)
. By construction, the KM multiplicies are given by the angular part of the module

space integral, i.e.,

multKM
(
Γ⃗
)
=

∣∣∣∣∣
∫
MΦ

0,n

(
X,β;Γ⃗

) n∧
α=1

evΦ∗
α γΦα

∣∣∣∣∣. (4.41)

Here MΦ
0,n

(
X,β; Γ⃗

)
is the angular part moduli space (2.10) for the tropical curves with n marked

points of a given combinatorial type Γ⃗. We introduced an angular restriction evΦ of the tropical
evaluation map (3.5) introduced in Section 3.3, i.e.,

evΦα : MΦ
0,n

(
X,β; Γ⃗

)
→ S1 × S1 : (ϕ⃗c, φ1, . . . , φI(Γ)) 7→ ϕ⃗α = ϕ⃗c +

∑
e∈γΓ(R,α)

±m⃗eφe.

The γΦα is the angular part of the Poincaré dual for the point observable (3.4). Note that the
angular parts are independent of the location of the points, i.e.,

γΦα = γΦ =
1

(2π)2
dϕ1dϕ2.

We use the A-model HTQM, defined in Section 4.3 to represent the angular part of the GW
invariant. For a directed graph Γ⃗, we introduce the angular amplitudes

AΦ
Γ (Oα; va) =

〈
(2πG−)

⊗I(Γ)

n1(Γ)⊗
a=1

va

n2(Γ)⊗
α=1

Oα ⊗ µ
⊗n3(Γ)
2

〉
Γ

.

The key difference to the full amplitude (4.16) is the change of the propagator on internal edges
from KG− to just G−.

Proposition 4.28. For the tropical curve Γ⃗ of degree β in toric surface X, the KM multiplicity
equal to the angular A-model HTQM amplitude

multKM
(
Γ⃗
)
=

∣∣∣∣AΦ
Γ (OγΦ

1
, . . . ,OγΦ

n
; Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

)

∣∣∣∣, (4.42)

where the number da of divisor states Ψba is given by the tropical intersection number of the
degree class β and the corresponding hyperplane, i.e., da = β ·Hba.

Proof. The proposition is similar to Theorem 4.26, so its proof is a modified version of the
theorem proof. ■

For the toric surface and point observables, the angular A-model HTQM amplitude is simple
enough, so we can evaluate it explicitly to show that it equals to the Mikhalkin multiplicity (4.39).

Proposition 4.29. For the tropical curve Γ⃗, the KM multiplicity is identical to the Mikhalkin
multiplicity, i.e.,

multKM
(
Γ⃗
)
=

∏
v∈V3(Γ)

mult(v).
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Proof. We use the proposition to represent the KM multiplicity as angular A-model HTQM
amplitude on a special tree Γ. For a special tree Γ, we choose a 3-valent vertex v, connected to
the two 1-valent vertices. There could be some number of 2-valent vertices in between. In the
vicinity of v, the special tree Γ has the schematic form depicted on the left side below:

Γ

µ2

Ψb1OΦ
γ OΦ

γ

Ψb2

OΦ
γ

OΦ
γ

OΦ
γ

µ2

Ψb1 OΦ
γ

Ψb2

OΦ
γ

µ2

Ψb1 OΦ
γ

Ψb2

OΦ
γ

Γ′

OΦ
γ

Ψb1+b2

The filled circle starts with a 3-valent vertex, and each edge is decorated with an arbitrary
number of evaluation observables. The non-vanishing amplitudes have at most two evaluation
observables on the subtree outside the filled circle. Below, we show that all possible incoming
states for the subtrees depicted by the filled circle are proportional to G−OγΦΨb1+b2 . Hence,
there is a recursive relation between the amplitudes on special tree Γ and a smaller special tree Γ′

obtained from Γ by removing a vertex v, i.e.,∣∣AΦ
Γ

(
OγΦ

1
, . . . ,OγΦ

n
; Ψb1 , . . . ,Ψbn+1

)∣∣
= |b1 ∧ b2|

∣∣AΦ
Γ′
(
OγΦ

1
, . . . ,OγΦ

n−1
; Ψb1+b2 ,Ψb3 , . . . ,Ψbn+1

)∣∣. (4.43)

Note that the factor |b1 ∧ b2| is the vertex multiplicity for the vertex v that we removed.
The matching between the moduli space dimension (2.11) and the total degree of the form
for KM multiplicity integral (4.41) implies that the n point evaluation observables on toric hy-
persurface require n + 1 leaves. At each recursion step, we remove one 3-valent vertex, one
evaluation observable, and one tree leaf. Hence, after we eliminate all 3-valent vertices, we end
up with the special tree depicted below:

Ψ∑
bk

OΦ
γ

Ψbn+1

The corresponding amplitude vanishes unless the sum of all vectors b⃗k is zero, otherwise

AΦ
Γ

(
OγΦ ; Ψ∑

bk ,Ψbn+1

)
=

∫
S1×S1

γΦ = 1.

Hence, the recursion formula (4.43) allows us to express the amplitude as a product of vertex
multiplicities, i.e.,

AΦ
Γ

(
OγΦ

1
, . . . ,OγΦ

n
; Ψb1 , . . . ,Ψbn+1

)
=

∏
v∈V (Γ)

mult(v).

To prove the recursion formula (4.43) we first consider a state

2πG−OΦ
γ |1, m⃗⟩ = 2πG−

∣∣γΦ, m⃗〉
=

1

2π

∣∣m⃗ ∧ dϕ⃗, m⃗
〉
.

The state
∣∣m⃗ ∧ dϕ⃗, m⃗

〉
is a 1-form so a multiplication of it by OγΦ equals zero. Hence, the

angular amplitude is non-zero only for special trees with at most one 2-valent vertex between 3-
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and 1-valent ones. Therefore, special trees with non-zero amplitudes are among the five types
depicted below:

µ2

Ψb1

Ψb2

µ2

Ψb1

Ψb2

OΦ
γ

µ2

Ψb1 OΦ
γ

Ψb2

OΦ
γ

µ2

Ψb1 OΦ
γ

Ψb2

OΦ
γ

µ2

Ψb1 OΦ
γ

Ψb2

OΦ
γ

OΦ
γ

The incoming states for the first and second special trees vanish due to

2πG−µ2
(
Ψb1 ,Ψb2

)
= 2πG−Ψb1+b2 = 0.

The incoming state for the third tree

2πG−OγΦ2πG−µ2
(
2πG−OγΦΨb1 ,Ψb2

)
= 2πG−OγΦG−µ2

(∣∣⃗b1 ∧ dϕ⃗, b⃗1
〉
,
∣∣1, b⃗2〉)

= 2πG−OγΦG−
∣∣⃗b1 ∧ dϕ⃗, b⃗1 + b⃗2

〉
=

(⃗
b1 ∧

(⃗
b1 + b⃗2

))
2πG−OγΦ

∣∣1, b⃗1 + b⃗2
〉

=
(⃗
b1 ∧ b⃗2

)
· 2πG−OγΦΨb1+b2 .

Note that the state for the special tree with b1 ↔ b2 has an extra minus factor, so to make
a recursion relation universal, we need to include the absolute value. The incoming state for the
fourth special tree

2πG−µ2
(
2πG−OγΦΨb1 , 2πG−OγΦΨb2

)
=

1

2π
G−µ2

(∣∣⃗b1 ∧ dϕ⃗, b⃗1
〉
,
∣∣⃗b2 ∧ dϕ⃗, b⃗2〉)

=
1

2π
G−

∣∣⃗b1 ∧ dϕ⃗ ∧ b⃗2 ∧ dϕ⃗, b⃗1 + b⃗2
〉

=
1

2π

(⃗
b1 ∧ b⃗2

)
G−

∣∣dϕ1 ∧ dϕ2, b⃗1 + b⃗2
〉

=
(⃗
b1 ∧ b⃗2

)
· 2πG−OγΦΨb1+b2 .

The incoming states for the fifth special tree vanishes since the state G−OγΦΨb1+b2 is already

a 1-form and the further multiplication for a 2-form γΦ turns the state into a zero state. ■

The HTQM representation for the tropical multiplicities (4.42) does not include homotopyK,
i.e., the moduli integrals are trivial. Trivial moduli space integrals effectively reduce the HTQM
to a 1D TQFT. We conjecture that the emerging TQFT is identical to one used in the Mandel
and Ruddat construction [19], and we plan to investigate the details of this conjecture further.

Remark 4.30. Additional evidence for the conjecture is a natural emergence of the Batalin–
Vilkovisky (BV) bracket from second-order operator G−. The odd parity of G− implies super
skew-symmetry of the bracket. The 7-term relation (4.12) for G− implies the super Jacobi
identity for the G−-bracket. In BV formalism, the BV bracket emerges in a similar construction
using the BV Laplacian instead of G−.

5 B-model HTQM

In our construction of the tropical mirror symmetry, we will adopt an approach from [3] to the
case of HTQM on special trees.
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5.1 State-observable map for amplitudes

Using the state-operator map (4.27) to turn the evaluation operators Oγα into the corresponding
evaluation states Ψγα , we rearrange the amplitude on a special tree Γ with 2-valent vertices
into the amplitude on a special tree Γ′ without 2-valent vertices, but with additional leaves.
In particular,

AΓ

(
Oγα ; Ψba

)
=

〈
(2πKG−)

⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Oγα ⊗ µ
⊗n3(Γ)
2

〉
Γ

=

〈
(2πKG−)

⊗I(Γ)

n1(Γ)⊗
a=1

Ψba

n2(Γ)⊗
α=1

Ψγα ⊗ µ
⊗(n3(Γ)+n2(Γ))
2

〉
Γ′

= AΓ′(Ψba ,Ψγα).

A 2-valent vertex on a special tree Γ decorated with the observable Oγα becomes the 3-valent
vertex with a leaf attached to it, decorated by a state Ψγa . The new special tree Γ′ has
n1(Γ

′) = n1(Γ)+n2(Γ) leaves, no 2-valent vertices and n3(Γ
′) = n3(Γ)+n2(Γ) 3-valent vertices.

An example of such rearrangement is presented at the end of this section.

We can apply the state operator map to the divisor states Ψba to rearrange the 3-valent
vertices with leaves attached to them, decorated with Ψba into 2-valent vertices decorated with
corresponding divisor operators Oba . In particular, we have an equality

AΓ(Ψba ;Oγα) = AΓ′(Ψba ,Ψγα) = AΓ′′(Ψγα ;Oba).

The special tree Γ′′ has n1(Γ
′′) = n2(Γ) 1-valent vertices n2(Γ

′′) = n1(Γ) 2-valent vertices.

For a general, special tree with divisor states on the leaves, the rearrangement might not be
possible. An obstruction is the 3-valent vertices with two incoming divisor states. However, the
HTQM amplitudes on such special trees are equal to zero.

Lemma 5.1. An HTQM amplitude vanishes the special tree when two leaves, with either two
evaluation or two divisor states, are connected to the same 3-valent vertex.

Proof. The graphical representation of the vanishing amplitudes on special trees is presented
below:

µ2
Ψb1

Ψb2

µ2
Ψγ1

Ψγ2

The contributions from 3-valent vertices on the pictures above are equal to

KG−µ2(Ψb1 ,Ψb2) = KG−Ψb1+b2 = 0, KG−µ2(Ψγ1 ,Ψγ2) = KG−Ψγ1∧γ2 = 0.

Hence, the whole amplitude is zero. ■
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Example 5.2. The amplitude rearrangement is presented in the pictures below:

Γ1

Ψb1
Oγ2

Oγ3

Ψb3

Oγ4

Ψb2

Oγ1

Γ2

Ψb1
Ψγ2

Ψγ3

Ψb3

Ψγ4

Ψb2

Ψγ1

Γ3

Ψγ3

Ob2

Ψγ1

Ob1

Ψγ2

Ψγ4

Ob3

The special tree Γ1 has 3 leaves, decorated with Ψba , four 2-valent vertices, decorated with Oγα

and the amplitude (4.17). We use the state-operator map to represent the same amplitude
and the amplitude (4.18) on the special tree Γ2 with seven leaves, decorated with states Ψba

and Ψγα . The special tree Γ2 does not have leaves of the same type connected to the 3-valent
vertex. Hence, we can apply the state-operator map to represent the same amplitude as the
amplitude (4.19) on a special tree Γ3 with four leaves, decorated with Ψγα and three 2-valent
vertices, decorated with the operators Oba .

5.2 Total A-model amplitudes

In Theorem 4.26, we showed that the tropical GW invariants can be written as the amplitudes
on special trees. Generic special trees may not represent any tropical GW invariant, but we will
show below that the amplitudes for such special trees vanish.

Definition 5.3. The total amplitude ⟨Ψ1, . . . ,Ψn⟩Q on a special trees n leaves, decorated with
the states Ψ1, . . . ,Ψn in HTQM (V,Q,G±, g, µ2) is

⟨Ψ1, . . . ,Ψn⟩Q =
∑

Γ,σ∈Sn

AΓ

(
Ψσ(1), . . . ,Ψσ(n)

)
|Aut(Γ)|

,

where |Aut(Γ)| is the symmetry factor for the tree Γ. The summation over Γ is taken over all
distinct special trees Γ with n leaves. The summation over σ is the summation over the possible
assignment of states Ψ1, . . . ,Ψn on the leaves of Γ.

Remark 5.4. The total amplitude in Definition 5.3 is the tropical limit of an n-point genus 0
string amplitude, i.e., 2d CFT correlation function on a sphere with n marked points, integrated
over the corresponding moduli space. For more details about the string amplitudes, see [25, 26].

Lemma 5.5. The total amplitude ⟨Ψγ1 , . . . ,Ψγn ,Ψb1 , . . . ,Ψbd⟩ vanishes unless the total number d
of divisor states and the total degree of differential forms γa obey the tropical degree selection
relation

2(d+ n− 3) =
n∑

α=1

deg γα − dimRX

and the sum over vectors for the divisor states vanishes

d∑
a=1

b⃗a = 0.
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Proof. The amplitude on a special tree Γ is proportional to the µ03-product on three states
|ωj , m⃗j⟩, j = 1, 2, 3 incoming to the sink vertex. The A-model definitions (4.25) and (4.24)
imply that the µ03-product vanishes unless the sum of the three integer vectors for the incoming
states is zero, m⃗1 + m⃗2 + m⃗3 = 0, and the total degree of three forms ωj for the incoming states
add up to the dimension of X, i.e.,

3∑
j=1

degωj = dimRX.

The A-model multiplication (4.25) returns the sum of the integer vectors for the two arguments,
while the degree of the resulting form is the sum of degrees for the forms of two arguments.
The propagator 2πKG− on internal edges reduces the degree of the form by two while preserving
the integer vector. Hence, the total degree of the three arguments for the sink vertex is the total
degree of the forms γa on the leaves, adjusted by the number on internal edges, i.e.,

3∑
j=1

degωj =

n∑
α=1

deg γα − 2I(Γ). (5.1)

The sum of the integer vectors equals the sum of the integer vectors of the divisor states Ψba , i.e.,

m⃗1 + m⃗2 + m⃗3 =
d∑

a=1

b⃗a. (5.2)

The number I(Γ) of internal edges for a special tree Γ with n+ d leaves is

I(Γ) = n1(Γ)− 3 = n+ d− 3. (5.3)

Expression (5.3) and selection conditions (5.1) and (5.2) for non-zero sink vertex multiplication
complete the proof of the lemma. ■

Remark 5.6. The tropical degree selection Lemma 5.5 is equivalent to the matching between
the total degree of the form and the dimension (2.11) of the moduli space

deg
∧

ev∗αγα =
n∑

α=1

deg γα = 2dimCM0,n

(
X,β; Γ⃗

)
= 2I(Γ) + 2 dimCX.

Proposition 5.7. The sum over total amplitudes for n ≥ 3 with an arbitrary number of universal
divisor states matches with the weighted sum of tropical GW invariants over the degree of the
curve β, i.e.,

∞∑
d=0

1

d!
⟨Ψγ1 , . . . ,Ψγn ,ΨX , . . . ,ΨX︸ ︷︷ ︸

d

⟩Q =
∑

β∈H2(X)

qβ⟨γ1, . . . , γn⟩Xβ ,

where we introduced the universal divisor state

ΨX =
∑
b∈BX

qbΨb.

The Kähler moduli of X are expressed in terms of toric moduli qb for each compactifying hyper-
surface Hb

qβ =
∏
b⃗∈Sβ

qb,

where Sβ is the tropical curve of degree β with all internal length moduli equal to zero (star with
a particular number of rays).
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Proof. Lemma 5.5 tells us that the infinite sum over the number of universal divisors has only
one non-zero term with

2(d+ n− 3) =
n∑

α=1

deg γα − dimRX.

There is a special case d = 0, when we do not have any divisor states and cannot use Theo-
rem 4.26 to relate the tropical GW invariant to the A-model HTQM amplitudes. The corre-
sponding tropical GW invariant vanishes unless we have just three observables, then

⟨γ1, γ2, γ3⟩Xβ=0 =

∫
X
γ1 ∧ γ2 ∧ γ3.

According to Lemma 5.1 amplitudes ⟨Ψγ1 , . . . ,Ψγn⟩Q vanish unless the special tree has no in-
ternal edges. The only special tree with no internal edges is a Y -shaped tree with n = 3 leaves.
The total amplitude of such a tree is

⟨Ψγ1 ,Ψγ2 ,Ψγ3⟩Q = AY (Ψγ1 ,Ψγ2 ,Ψγ3) = µ03(Ψγ1 ,Ψγ2 ,Ψγ3) =

∫
X
γ1 ∧ γ2 ∧ γ3.

Hence, it matches with the tropical GW invariant.
We can write the single amplitude for a fixed d as a sum over total amplitudes with a fixed

number of boundary divisors da of each type Ψba

1

d!
⟨Ψγ1 , . . . ,Ψγn ,ΨX , . . . ,ΨX︸ ︷︷ ︸

d

⟩Q

=
∑

d1+···+dB=d

qd1b1 · · · qdBbB
d1! · · · dB!

⟨Ψγ1 , . . . ,Ψγn ,Ψb1 , . . . ,Ψb1︸ ︷︷ ︸
d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

⟩Q.

Lemma 5.5 tells us that the amplitudes in the sum vanish unless the total sum of all divisor
normal vectors equals zero. The sum can be written using the numbers da of each type of the
normal vectors

B∑
a=1

da⃗ba = 0. (5.4)

The system (5.4) is the system of dimX equations for B = |BX | variables da. For a projective
toric variety, the vectors b⃗a ∈ BX form (overcomplete) basis in ZdimX , hence the space of
possible solutions for the system (5.4) has dimension |BX | − dimX. According to (2.5), this
dimension matches with the dimension of H2(X), which is the dimension of the space of possible
degrees β, i.e.,

1

d!
⟨Ψγ1 , . . . ,Ψγn ,ΨX , . . . ,ΨX︸ ︷︷ ︸

d

⟩Q

=
∑

β∈H2(X)

qβ

d1! · · · dB!
⟨Ψγ1 , . . . ,Ψγn ,Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

⟩Q

for da = β ·Hba .
We can recursively construct all special trees: for a given special tree Γ with d leaves, we can

add a leaf to any of its 2d − 3 edges to produce a special tree with d + 1 leaves. Moreover, we
can construct all possible special trees with d + 1 leaves by adding an extra leaf to every edge
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of every special tree with d leaves. Similarly, we can construct all special trees with d+2 leaves
from special trees with d leaves. However, in addition to adding the two leaves to the edges of
every special tree with d leaves, we need to add a Y -shaped subtree with two leaves.

We can describe all contributions to the total amplitude ⟨Ψγ1 ,Ψγ2 ,ΨX ,ΨX , . . . ,ΨX⟩Q with
two evaluation state insertions starting with special trees with d leaves, decorated with the
universal divisor states ΨX and then add two leaves (on the same or two different edges) or
a Y -shaped subtree, decorated with Ψγ1 , Ψγ2 states. In Lemma 5.1, we showed that amplitudes
on special trees, constructed from adding Ψγ1 , Ψγ2 on a Y -shaped subtree vanish.

We can repeat our analysis for the amplitudes on special trees with n+ d leaves to represent
them as the amplitudes on special trees with d leaves decorated by universal divisor state ΨX

and n additional leaves decorated by the evaluation states Ψγ1 , . . . ,Ψγn distributed among the
edges of a special tree with d leaves. Since we only have evaluation states Ψγ1 , . . . ,Ψγn on leaves
(no sub-trees), we can use the state-operator map from Section 5.1 to rewrite such amplitudes as
the amplitudes with Oγα operator insertions. Moreover, since we added leaves at every possible
location on a special tree, the corresponding amplitudes have operators Oγα inserted at all
possible locations on a special tree, decorated by ΨX .

The last step of the proof is to trace the symmetry factors. With all symmetry factors
included

1

d1! · · · dB!
⟨Ψγ1 , . . . ,Ψγn ,Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

⟩Q

=
∑
Γ′
n

AΓ′
n
(Oγ1 , . . . ,Oγn ,Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

). (5.5)

The sum is taken over Γ′
n the special trees with n2(Γ

′
n) = n 2-valent vertices, decorated with

theOγa observables in arbitrary order and a fixed decoration with divisor states Ψba on the leaves.
According to Theorem 4.26, each term in the sum on the second row of (5.5) is the contribution

to the tropical GW invariant from the tropical curve associated with the special tree Γ′
n, hence

1

d1! · · · dB!
⟨Ψγ1 , . . . ,Ψγn ,Ψb1 , . . . ,Ψb1︸ ︷︷ ︸

d1

, . . . ,ΨbB , . . . ,ΨbB︸ ︷︷ ︸
dB

⟩Q = ⟨γ1, . . . , γn⟩Xβ .

To complete the proof, we need to describe the discrete data (directions, integer vector decora-
tion subject to consistency) of a tropical curve Γ⃗ using the amplitude data: special tree Γ and
its decoration by Ψba states and Oγα operators.

A special tree Γ is a directed tree, so we can identify directions on Γ with the directions on
tropical curve Γ⃗. We can equip each edge e of a directed tree Γ with an integer vector m⃗e using
an integer vector for an (incoming) state |ωe, m⃗e⟩ for the edge e. Note that the generic state in
HTQM is a linear combination of states |ω, m⃗⟩ with different vectors m⃗. Below, we show that
the incoming states on all edges of a special tree, decorated with Ψba states and Oγα operators,
are states with a single integer vector. The consistency of such choice of integer vectors follows
from the HTQM definitions in Section 4.3:

• Each external edge e is decorated with the state Ψb =
∣∣1, b⃗〉 for a primitive normal vector

b⃗ ∈ BX hence it is a state with a single integer vector m⃗e = b⃗, moreover m⃗e ∈ BX .

• The propagator KG− on edge does not change the integer vector of the incoming state.

• Each 2-valent vertex is decorated with Oγα operator, with the action

Oγα |ω, m⃗in⟩ =
∣∣γα ∧ ω, m⃗in

〉
=

∣∣ω′, m⃗out
〉
.

The outgoing state is a state with a single integer vector. The incoming and outgoing
states have m⃗in = m⃗out, hence satisfy the balance condition (2.6) at each 2-valent vertex.
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• Each 3-valent vertex is decorated with the µ2 multiplication, such that

µ2
(∣∣ω1, m⃗

in
1

〉
,
∣∣ω2, m⃗

in
2

〉)
=

∣∣ω1 ∧ ω2, m⃗
in
1 + m⃗in

2

〉
=

∣∣ω′, m⃗out
〉
,

The outgoing state is a state with a single integer vector. The three states have m⃗in
1 +m⃗in

2 =
m⃗out and hence satisfy the balance condition (2.6) at each 3-valent vertex.

• The sink vertex, decorated with the multiplication µ03, such that

µ03
(∣∣ω1, m⃗

in
1

〉
,
∣∣ω2, m⃗

in
2

〉
,
∣∣ω3, m⃗

in
3

〉)
∝ δ

(
m⃗in

1 + m⃗in
2 + m⃗in

3

)
,

Hence for non-zero amplitude the three incoming states obey m⃗in
1 + m⃗in

2 + m⃗in
3 = 0, hence

satisfy the balance condition at sink vertex. ■

5.3 Total B-model amplitudes

In Proposition 5.7, we described evaluation states as extra leaves attached to the special tree
decorated with the universal divisor states. We can perform a similar analysis while switching
between universal divisor and evaluation states’ roles.

Proposition 5.8. The sum over total A-model amplitudes is the B-model total amplitude, i.e.,

∞∑
d=0

1

d!
⟨Ψγ1 , . . . ,Ψγn ,ΨX , . . . ,ΨX︸ ︷︷ ︸

d

⟩Q =
〈
ΨX

γ1 , . . . ,Ψ
X
γn

〉
QX .

The B-model HTQM
(
V,QX , G±, g, µ2

)
has a deformed differential

QX = Q− 2π[G−,OX ]

and mirror states

ΨX
γ =

∞∑
d=0

(2πKG−OX)dΨγ .

Proof. We can recursively construct all special trees: For a given special tree Γn with n leaves,
we can add a leaf to any of its 2n−3 edges to produce a special tree with n+1 leaves. Moreover,
we can construct all possible special trees with n + 1 leaves by adding an extra leaf to every
edge of every special tree with n leaves. Similarly, we can construct all special trees with n+ 2
leaves from special trees with n leaves. To get all trees, we need to add two leaves on the edges
of every special tree with n leaves and a Y -shaped subtree with two leaves.

We can evaluate all contributions to the total amplitude ⟨Ψγ1 , . . . ,Ψγn ,ΨX ,ΨX⟩Q by treating
two universal divisor states as two additional leaves or a Y -shaped subtree on a special tree with n
leaves, decorated by evaluation states Ψγ1 , . . . ,Ψγn . In Lemma 5.1, we showed that amplitudes
on special trees, constructed from adding a Y -shaped subtree, vanish.

We can repeat our analysis for the amplitudes on special trees with n + d leaves, decorated
by d universal divisor states to express them as the amplitudes on special trees with n leaves,
decorated by evaluation states Ψγ1 , . . . ,Ψγn and d additional leaves decorated by ΨX states
distributed among edges on a special tree. The summation over d from zero to infinity with the
symmetry factor 1/d! is the same as a multivariable sum over numbers of additional leaves de
on each edge e for the special tree, weighted with the 1/de! symmetry factor.

There are two types of edges on a special tree: internal and external. The sum over additional
leaves for internal edges describes the deformation of the differential Q, while the sum for the
external edges describes the deformation of evaluation states Ψγ1 , . . . ,Ψγn . We use the state-
operator map to turn the universal divisor states into operators OX . For identical operators,
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the corresponding contributions from an edge will be the same for arbitrary orders of their
insertions. For de identical operators, there will be de! identical contributions which exactly
cancel the symmetry factor 1/de!.

For an internal edge, the sum over an arbitrary number of insertions of operators OX has
a graphical representation

= +
OX

+
OX OX

+ . . .

which evaluates into

KXG− = KG− + 2πKG−OXKG− + (2π)2KG−OXKG−OXKG− + · · ·
= (K +KΦK +KΦKΦK + · · · )G−. (5.6)

From Example 4.11, we can recognize the sum (5.6) as the deformation Q → Q − Φ of the
HTQM by an operator Φ = 2π[G−,OX ].

For an external edge, attached to a leaf decorated with the evaluation state Ψα, the sum over
an arbitrary number of insertions of operators OX

=
Ψγ

+
ΨγOX

+
ΨγOX OX

+ . . .

evaluates into

ΨX
γ = Ψγ + 2πKG−OXΨγ + (2π)2KG−OXKG−OXΨγ + · · ·

=
∞∑
d=0

(2πKG−OX)dΨγ . (5.7)

This concludes the proof. ■

Remark 5.9. The differential forms on X of complex dimension dimCX = N have degree less
or equal to 2N . Each term in the expansion (5.6) decreases the degree of the form by 2, so
the terms with N or more divisor operator insertions will act trivially on any state. Hence, we
conclude that KX is a polynomial in OX of degree N − 1.

5.4 Mirror states

Definition 5.10. The mirror state ΨX
γ for toric space X is the deformation (5.7) of an A-model

evaluation state Ψγ by the universal divisor operators OX , i.e.,

ΨX
γ =

∞∑
d=0

(2πKG−OX)dΨγ . (5.8)

Though the mirror state ΨX
γ was defined as a series in toric moduli qb, it is a polynomial

in qb due to the proposition below. We evaluated these polynomials for observables on arbitrary
complex toric surfaces in [15].

Proposition 5.11. For an A-model state ΨX
γ with γ ∈ Ωk,k

trop(X), the sum (5.8) contains at
most k + 1 terms.

Proof. The action of G−K lowers the degree of the form by (1, 1), while the action of the OX

preserves the degree. Hence, G−K can be applied at most k times. ■
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Proposition 5.12. The mirror state ΨX
γ is QX- and G−-closed if the A-model state Ψγ is Q-

and G−-closed.

Proof. The property G−Ψ
X
γ = 0 immediately follows from the relation G−KG− = −G2

−K = 0.
The other property

QXΨX
γ = 0

requires careful usage of the QM properties from Section 4.3. In particular, we can evaluate

QXΨX
γ = QΨX

γ − 2π[G−,OX ]ΨX
γ = 2πKG−OXQΨX

γ = 2πKG−OXQ
XΨX

γ (5.9)

and since 2πKG−OX ̸= 1, the equality (5.9) completes the proof of the proposition. ■

5.5 Dual variables

It is convenient to introduce mirror angular variables Yj ∈ S1 dual to the integer vector compo-
nents mj ∈ Z. We introduce a Fourier transform of a state

Ψ =
∑

m⃗∈ZN

ei⟨m⃗,Y⃗ ⟩cm⃗|ω, m⃗⟩ ∈ VB = Ω∗
trop(X)⊗ C∞(

TN
)
. (5.10)

The Fourier transform (5.10) is the tropical analog of a T-duality, in the context of the mirror
for toric varieties see [3].

We describe the differential forms on X using Grassmann variables ψj
R and ψj

Φ. The Q
and G± on the states (5.10) become

QΨ = ψk
R

∂

∂rk
Ψ, G−Ψ = −i

∂

∂Yk

∂

∂ψk
Φ

Ψ, G+Ψ = −i
∂

∂Yk

∂

∂ψk
R

Ψ. (5.11)

The multiplication µ2, on forms becomes multiplication of functions on superspace with coordi-
nates r, Y , ψR, ψΦ, i.e.,

µ2(Ψ1,Ψ2) = Ψ1 ·Ψ2,

The pairing g is the integration over superspace, i.e.,

g(Ψ1,Ψ2) =

∫
dµΨ1Ψ2.

The Berezin integration measure for dimCX = N is

dµ = dNrdNY dNψΦd
NψR.

The integrating region (for Grassmann-even variables) is the N -dimensional torus
(
S1

)N
for

Y -variables and Euclidean space RN for r-variables.
The differential operator representation (5.11) of the HTQM data (V,Q,G±, µ2, g) allows for

an easy check of HTQM definitions from Section 4.2. In particular, the 7-term relation (4.12)
for G− is a property of the second-order differential operator in representation (5.11).

The divisor state |1, b⃗⟩ becomes an exponential function of Y , i.e.,

Ψb = ei⟨⃗b,Y⃗ ⟩ = eib
kYk .

For the tropical form

γ = γi1...ikj1...jl(r)dϕ
i1 ∧ · · · ∧ dϕik ∧ drj1 ∧ · · · ∧ drjl ,
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the corresponding evaluation state is

Ψγ = γi1...ikj1...jl(r)ψ
i1
Φ · · ·ψik

Φ · ψj1
R · · ·ψjl

R.

The deformation of the A-model by the universal divisor operator OX is

QX = Q− 2π[G−,OX ] = ψj
R

∂

∂rj
+ 2πi

∑
b⃗∈BX

qb
∂Ψb

∂Yj

∂

∂ψj
Φ

.

The same differential can be written as

QX = Q+ 2πi
∂WX

∂Yj

∂

∂ψj
Φ

,

for the mirror superpotential

WX =
∑
b⃗∈BX

qbΨb =
∑
b⃗∈BX

qbe
i⟨⃗b,Y⃗ ⟩. (5.12)

We can remove some number of toric moduli qb by a redefinition of Yj to obtain a more familiar(
at least for the PN case

)
form of the superpotential with fewer parameters qb.

Our expression for the tropical mirror superpotential (5.12) for toric space X matches with
the mirror superpotentials in complex geometry, derived by Givental [6], Hori and Vafa [11],
Frenkel and Losev [3] using different methods. For X = P2, the same mirror superpotential was
derived by Gross [8] using the tropical curve counting with Mikhalkin’s vertex multiplicities.

5.6 Tropical mirror relation

Theorem 5.13. The n ≥ 3 point tropical GW invariants for toric variety X and cycles
γ1, . . . , γn equal to the total amplitude in the B-model HTQM for the corresponding mirror
states and the superpotential, defined by the compactifying divisors BX of X, i.e.,∑

β∈H2(X)

qβ⟨γ1, . . . , γn⟩Xβ = ⟨ΨX
γ1 , . . . ,Ψ

X
γn⟩QX ,

ΨX
γ =

∞∑
d=0

(2πKG−OX)dΨγ , QX = Q+ 2πi
∂WX

∂Yj

∂

∂ψj
Φ

, WX =
∑
b⃗∈BX

qbe
i⟨⃗b,Y⃗ ⟩.

Proof. The proof of the theorem follows from Propositions 5.7 and 5.8. ■

The B-model HTQM with superpotential is the quantum mechanical version of the Landau–
Ginzburg theory in 2 dimensions.

Remark 5.14. The B-model HTQM is a version of supersymmetric quantum mechanics with 4
supercharges [1], where the anti-holomorphic superpotential equals zero and Y and r are not
complex conjugates.

6 Tropical mirror for P1

The second homology H2

(
P1

)
is one-dimensional, so the degree of a curve is a single positive

integer number d. There is only one non-trivial cycle on P1, a point cycle. The genus 0 GW
invariants for P1 with 3 or more cycles are non-zero for degree one curves only. Moreover, for
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any number n ≥ 2, NP1

1 (p1, . . . , pn) = 1. The tropical correspondence theorem [21] holds for P1,
hence we can evaluate the tropical GW invariants

TNP1

1 (p1, . . . , pn) = NP1

1 (p1, . . . , pn) = 1. (6.1)

We will use the U(1)-averaged representative to the Poincaré dual to the tropical point cycle at
radial position rα is

γα =
1

2π
δ(r − rα)dϕ ∧ dr.

6.1 Tropical Gromov–Witten invariants

Our analysis for the tropical GW invariant for two points on P1 from Section 3.4 immediately
generalizes to the case of n points. The discrete data of tropical curves of degree 1 with n
marked points is the order of marked points on a line, labeled by a permutation σ ∈ Sn. The
tropical curve Γ⃗(12...n) is presented below:

γ1

R

γ2 γnτ1 τ2 τn

+1 −1 −1 −1 −1

The tropical GW invariant is a sum over permutations, i.e.,

⟨γ1, . . . , γn⟩P
1

0,1 =
∑
σ∈Sn

⟨γ1, . . . , γn⟩Γ⃗σ
=

∑
σ∈Sn

∫
(S1)n

∫
R×(R+)n−1

n∧
α=1

ev∗αγα. (6.2)

Each contribution is evaluated into

⟨γ1, . . . , γn⟩Γ⃗σ
= Θ

(
rσ(1), rσ(2), . . . , rσ(n)

)
,

where we used the multivariable Θ-function

Θ(r1, r2, . . . , rn) =

{
1 when r1 < r2 < · · · < rn−1 < rn,

0 otherwise.

The sum over permutations in (6.2) matches with the tropical correspondence theorem predic-
tion (6.1).

6.2 3-point invariant via A-model HTQM

For n = 3, we have 3! = 6 distinct tropical curves and the same number of special trees in
HTQM. For the permutation (123), the decorated special tree Γ(123) is presented in the left
picture below. In the right picture, we performed the state-operator map for the evaluation
operators Oγα :

Ψ+

Oγ1 Oγ2 Oγ3

Ψ−

Ψγ1

Ψ−

Ψγ2

Ψγ3

Ψ+
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The A-model amplitude for the special tree Γ(123) is

⟨γ1, γ2, γ3⟩Γ(123)
= g(Ψ+,Oγ12πKG−Oγ22πKG−Oγ3Ψ−)

= g(Ψ+,Oγ12πKG−|γ2Θ(r3 − r),−1⟩)
= g(|1, 1⟩, |γ1Θ(r3 − r2)Θ(r2 − r),−1⟩)

=

∫
S1

dϕ

∫
R
dr

1

2π
δ(r − r1)Θ(r3 − r2)Θ(r2 − r) = Θ(r1, r2, r3).

6.3 3-point invariant via total amplitude

We turn three evaluation observables Oγ into states Ψγ , so we have five states in total. Hence,
we need a total amplitude on a special tree Γ5 with five leaves. There is a single special tree Γ5

with 5 leaves, with symmetry factor |Aut(Γ5)| = 8. The total amplitude on Γ5 evaluates into

⟨Ψγ1 ,Ψγ2 ,Ψγ3 ,Ψ+,Ψ−⟩Q =
∑
σ∈S5

1

|Aut(Γ5)|
AΓ

(
Ψγσ(1)

,Ψγσ(2)
,Ψγσ(3)

,Ψσ(+),Ψσ(−)

)
.

Among |S5| = 120 amplitudes there are |S5|/|Aut(Γ5)|=15 distinct ones, but only 6 are non-zero.
Below, we present all 15 distinct amplitudes: 6 non-zero contributions for the first special tree
and three groups of 3 amplitudes, which vanish in the remaining special trees:

Ψγ1

Ψ−

Ψγ2

Ψγ3

Ψ+

6

Ψ−
Ψγ1

Ψγ2

Ψγ3

Ψ+

3

Ψγ1

Ψγ2

Ψ−

Ψγ3

Ψ+

3

Ψγ1

Ψγ2

Ψ+

Ψγ3

Ψ−

3

The correlation function is given by the six non-zero contributions, labeled by the permutations
of evaluation observables γ1, γ2, γ3

⟨Ψγ1 ,Ψγ2 ,Ψγ3 , q+Ψ+, q−Ψ−⟩Q =
∑
σ∈S3

AΓ(Ψγσ(1)
,Ψγσ(2)

,Ψγσ(3)
, q+Ψ+, q−Ψ−)

= q+q−
∑
σ∈S3

Θ(rσ(1), rσ(2), rσ(3)) = q+q−.

Each of the six amplitudes has the following form:

AΓ(Ψγ1 ,Ψγ2 ,Ψγ3 ,Ψ+,Ψ−) = µ03(2πKG−µ2(Ψγ1 ,Ψ+), 2πKG−(Ψγ3 ,Ψ−),Ψγ2)

=
1

2π

∫
dY

∫
dψRdψΦ

∫
dr eiY Θ(r − r1) · e−iY Θ(r3 − r) · δ(r − r2)ψΦψR

= q

∫
drΘ(r − r1)Θ(r3 − r)δ(r − r2) = Θ(r1, r2, r3).

We used the KG− action on the product of divisor state Ψ± and an evaluation state Ψγ

2πKG−µ2(Ψγ1 ,Ψ±) = 2π

∫ ∞

0
dt e−tHG+G−(Ψγ1 ,Ψ±)

= 2π

∫ ∞

0
dt e−tHG+G−

(
1

2π
δ(r − r1)ψΦψR · e±iY

)
= e±iY

∫ ∞

0
dt δ(r − r1 ∓ t) = e±iY Θ(±(r − r1)).
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6.4 Mirror map

In toric description of P1, we have BP1 = {1,−1}. The corresponding divisor operators are
O± = e±iY . The deformation of differential

QP1
= Q− 2πq+[G−,O+]− 2πq−[G−,O−] = ψR

∂

∂r
− 2π

(
q+e

iY − q−e
−iY

) ∂

∂ψΦ
.

Hence, the mirror superpotential is

WP1 = q+e
iY + q−e

−iY . (6.3)

We can shift Y and express the Kähler module q = q+q− in terms of two toric moduli q+, q− to
rewrite the superpotential to the more familiar form

WP1 = eiY + qe−iY .

The mirror state for the point cycle at r = r0

ΨP1

γ = Ψγ + 2πKG−q+O+Ψγ + 2πKG−q−O−Ψγ

= Ψγ + 2πq+

∫ ∞

0
dt e−tHG+G−

(
eiY Ψγ

)
+ 2πq−

∫ ∞

0
dt e−tHG+G−

(
e−iY Ψγ

)
=

1

2π
δ(r − r0)ψΦψR + q+e

iY Θ(r − r0) + q−e
−iY Θ(r0 − r). (6.4)

6.5 3-point invariant via B-model

The B-model total amplitude on a special tree, decorated with three mirror states ΨP1

γα , is given
by a single Y -shaped tree. The amplitude evaluates into

〈
ΨP1

γ1 ,Ψ
P1

γ2 ,Ψ
P1

γ3

〉
QP1 = µ03

(
ΨP1

γ1 ,Ψ
P1

γ2 ,Ψ
P1

γ3

)
=

∫
S1

dY

∫
dψRdψΦ

∫ +∞

−∞
drΨP1

γ1 ·ΨP1

γ2 ·ΨP1

γ3

= q+q−

∫ +∞

−∞
dr δ(r − r1)(Θ(r − r2)Θ(r3 − r) + Θ(r2 − r)Θ(r − r3)) + (c.p.)

= q+q−Θ(r2, r1, r3) + q+q−Θ(r3, r1, r2) + (c.p.)

= q+q−
∑
σ∈S3

Θ
(
rσ(1), rσ(2), rσ(3)

)
= q+q−.

Alternatively, we can express the same amplitude in A-model notations. Each mirror state ΨX
γ

is a sum of 3 terms (6.4), hence a single B-model amplitude is a sum of 27 A-model amplitudes.
We arranged the 27 amplitudes in several groups in the picture below. The number below the
special tree indicates the number of diagrams of the same type

(
different choice of vectors b⃗a

and a permutation of γ1, γ2, γ3
)
:

ΨP1

γ3

ΨP1

γ2ΨP1

γ1

=

27

Ψγ3

Ψγ2Ψγ1

+

1

Ob

Ψγ3

Ψγ2Ψγ1

+

6

Ob1

Ob2

Ψγ3

Ψγ2Ψγ1

+

12

Ob1

Ob2Ob3

Ψγ3

Ψg2Ψγ1

8
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The first special tree does not have any divisor operators, so it is a degree 0 A-model contribution,
which vanishes by Lemma 5.5, since deg γ1 + deg γ2 + deg γ3 = 6 ̸= 2 = dimR P1. The special
trees from the second and fourth groups have an odd number of divisor operators. Hence, the
sum of the corresponding normal vectors is always non-zero, and according to Lemma 5.5, the
corresponding amplitudes vanish. Six of the third group of 12 special trees are non-vanishing
and have b⃗1 + b⃗2 = 0. The state-operator map can rearrange the non-vanishing amplitudes into
a sum over 6 = 3! permutations from Section 6.2.

6.6 4-point invariant via B-model

The B-model description of the tropical GW invariant for 4 point cycles on P1 is the total
amplitude on a special tree with four leaves. There is only one such tree with the symmetry
factor |AutΓ4| = 8. Hence, the sum over 4! = 24 permutations of four states becomes the sum
of 24/8 = 3 terms〈

ΨP1

1 ,Ψ
P1

2 ,Ψ
P1

3 ,Ψ
P1

4

〉
QP1 = AΓs

(
ΨP1

γα

)
+AΓt

(
ΨP1

γα

)
+AΓu

(
ΨP1

γα

)
. (6.5)

The three special trees Γs, Γt and Γu, decorated with states ΨP1

γα are presented below:

ΨP1

γ4

ΨP1

γ1

ΨP1

γ3

ΨP1

γ2

ΨP1

γ4

ΨP1

γ1

ΨP1

γ2

ΨP1

γ3

ΨP1

γ3

ΨP1

γ1

ΨP1

γ2

ΨP1

γ4

The Γs-amplitude evaluates into

AΓs

(
ΨP1

γα

)
= g

(
µ2

(
ΨP1

γ4 ,Ψ
P1

γ3

)
, 2πKG−µ2

(
ΨP1

γ1 ,Ψ
P1

γ2

))
= q+q−Θ(min(r3, r4)−max(r1, r2)) + q+q−Θ(min(r1, r2)−max(r3, r4)). (6.6)

We used the following relation:

2πKG−µ2
(
ΨP1

γα ,Ψ
P1

αβ

)
= q+e

iY Θ(r −max(rα, rβ)) + q−e
−iY Θ(min(rα, rβ)− r).

The amplitude (6.6) describes the eight out of 24 possible permutations for positions of four
points r1, r2, r3, r4 on the real line. Indeed, the first Θ-function describes the four permutations
when the pair of points r1, r2 lies to the left of the other pair of points r3, r4 on the real line. The
second Θ-function describes the situation when the pair r1, r2 lies to the right of the pair r3, r4.
The sum of three amplitudes in (6.5) describes all 24 permutations, so the correlation function
simplifies to the familiar q+q− expression (6.1).

6.7 Hints for localization

We can add QP1
-exact term (which is also G−-closed) to turn the mirror state (6.4) into a func-

tion of Y , i.e.,

ΨP1

γ +QP1

(
− 1

2π
Θ(r0 − r)ψΦ

)
= q+e

iY . (6.7)
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Alternatively, we can use different QCP1-exact term (which is also G−-closed) to derive

ΨP1

γ +QP1

(
1

2π
Θ(r − r)ψΦ

)
= q−e

−iY . (6.8)

We can express (6.7) and (6.8) as the equality of cohomology classes[
ΨP1

γ

]
=

[
q+e

iY
]
= l[q−e

−iY
]
∈ H∗(QP1)

.

Since we used G−-closed exact terms, all three forms represent the same class in QP1
+ zG−

cohomology. Hence, we conjecture that they correspond to K. Saito’s good section in the theory
of primitive form [28] for exponential mirror superpotential (6.3).

7 Conclusion

Our paper showed that the tropical GW invariants at genus zero could be written as the ampli-
tudes in higher topological quantum mechanics on special trees. The higher topological quantum
mechanics on special trees admit an analog of the state-operator correspondence for divisor and
evaluation states. We used the state-operator map to summate over amplitudes in A-model
HTQM and showed that the result is a total amplitude in B-model HTQM. For a tropical
Gromov–Witten theory on a toric variety X, we showed that the B-model HTQM is a deforma-
tion of the A-model by an exponential mirror superpotential, written in terms of compactification
polyhedron data BX of X. For tropical observables γ, we found the mirror-dual states ΨX

γ in
the B-model and formulated the mirror relation.

We showed that the mirror states for a P1 toric variety can be written as holomorphic functions
in QP1

+ zG− cohomology and conjectured that such functions define K. Saito’s good section
for the mirror superpotential. In our work [14], we showed that a similar relation holds for
a smooth toric variety and indeed defines K. Saito’s good section for the exponential mirror
superpotential.
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