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1 Introduction

A special place in mathematical physics is occupied by the problem of exact integration of
the equations of motion of a classical or quantum test particle in external electromagnetic
and gravitational fields. This problem is closely related to the study of the symmetry of
gravitational and electromagnetic fields in which a given particle moves. A necessary condition
for the existence of such symmetry is the admissibility of the algebra of symmetry operators,
given by vector and tensor Killing fields, for spacetime and the external electromagnetic field.
The algebras of these operators are isomorphic to the algebras of the symmetry operators of
the equations of motion of a test particle - Hamilton-Jacobi, Klein-Gordon-Fock, or Dirac-Fock.
At present, two methods are known for the exact integration of the equations of motion of a
test particle. These are the methods of commutative and noncommutative integration. The
first method is based on the use of a commutative algebra of symmetry operators (integrals of
motion) that form a complete set. The complete set includes linear operators of first and second
degree in momentum formed by vector and tensor Killing fields of complete sets of geometric
objects of V4. The method is known as the method of complete separation of variables
(in the Hamilton-Jacobi, Klein-Gordon-Fock, or Dirac-Fock equations). The spaces in which
the method of complete separation of variables is applicable are called Stackel spaces. The
theory of Stackel spaces was developed in [1]-[12]. A description of the theory and a detailed
bibliography can be found in [13]], [14]-[16]. The most frequently used exact solutions of the
gravitational field equations in the theory of gravity were constructed on the basis of Stackel
spaces (see, e.g., [17]-[19]). These solutions are still widely used in the study of various effects
in gravitational fields (see, e.g., [21]- [28] ).
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The second method (noncommutative integration) was developed in [29]. This method
is based on the use of an algebra of symmetry operators, which are linear in momenta and
constructed using Killing vector fields forming noncommutative groups of motion of spacetime
G3 and G4. The algebras of the symmetry operators of the Klein-Gordon-Fock equation
constructed using the algebras of the operators of the noncommutative motion group of space
V4, are complemented to a commutative algebra by the operators of differentiation of the
first order in 4 essential parameters. Among these spacetime manifolds, the homogeneous
spaces are of greatest interest for the theory of gravity (see, e.g., [30]-[37]).

Thus, these two methods complement each other to a considerable extent and have similar
classification problems (by solving the classification problem, we mean enumerating all metrics
and electromagnetic potentials that are not equivalent in terms of admissible transformations).
Among these classification problems, the most important are the following.

Classification of all metrics of homogeneous and Stackel spaces in privileged coordinate sys-
tems. For Stackel spaces, this problem was solved in building the theory of complete separation
of variables in the papers cited above. For homogeneous spaces, this problem was solved in the
work of Petrov (see [38]).

Classification of all (admissible) electromagnetic fields applicable to these methods. For
the Hamilton-Jacobi and Klein-Gordon-Fock equations, this problem is completely solved in
homogeneous spaces (see [39]-[44]). In Stackel spaces, it is completely solved for the Hamilton-
Jacobi equation and partially solved for the Klein-Gordon-Fock equation (see [14]-[16]).

Classification of all vacuum and electrovacuum solutions of the Einstein equations with
metrics of Stackel and homogeneous spaces in admissible electromagnetic fields. This problem
has been completely solved for the Stackel metric (see [17]- [21]). However, this classification
problem has not yet been studied for homogeneous spaces.

The solutions to these problems can be viewed as stages of the solution of a single classifi-
cation problem. In the first two stages, we find all relevant gravitational and electromagnetic
fields that are not connected by field equations. In the third stage, using the results of the first
two stages, we find metrics and electromagnetic potentials that satisfy the Einstein-Maxwell
vacuum equations and have physical meaning.

Thus, for the complete solution to the problem of uniform classification, it remains to
integrate the Einstein-Maxwell vacuum equations using the previously found potentials of ad-
missible electromagnetic fields and the known metrics of homogeneous spaces in privileged
(canonical) coordinate systems. This problem can also be divided into two stages. In the first
stage, all solutions of Maxwell’s vacuum equations for the potentials of admissible electromag-
netic fields should be found. The present work is devoted to this stage. In the next stage, it is
planned to use the obtained results for the integration of the Einstein-Maxwell equations. This
will be the subject of further research. The present work is organized as follows.

Section number two contains information from the theory of homogeneous spaces, which will
be used later, and definitions and conditions for the potentials of admissible electromagnetic
fields, written in canonical frames associated with motion groups of a homogeneous space.

In the third section, Maxwell’s vacuum equations are written in canonical frames.
The fourth section contains all solutions of Maxwell’s vacuum equations for homogeneous

spaces admitting groups of motions G3(I)−G3(V I).
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2 Homogeneous spaces

By the accepted definition, a spacetime manifold V4 is a homogeneous space if a three-
parameter group of motions acts on it, whose transitivity hypersurface V3 is endowed with
the Euclidean space signature. Let us introduce a semi-geodesic coordinate system [ui], in
which the metric V4 has the form:

ds2 = gijdu
iduj = −du02 + gαβdu

αduβ, det|gαβ| > 0. (2.1)

The coordinate indices of the variables of the semi-geodesic coordinate system are denoted by
the lower case Latin letters: i, j, k, l = 0, 1 . . . 3. The coordinate indices of the variables of
the local coordinate system on the hypersurface V3 are denoted by the lower case Greek
letters: α, β, γ, σ = 1, . . . 3. A 0 index denotes the temporary variable. Group indices and
indices of nonholonomic frames are denoted by a, d, c = 1, . . . 3. Summation is performed
over repeated upper and lower indices within the index range.

There is another (equivalent) definition of a homogeneous space, according to which the
spacetime V4 is homogeneous if its subspace V3, endowed with the Euclidean space
signature, admits a set of coordinate transformations (the group G3 of motions spaces V4) that
allow to connect any two points in V3. (see, e.g., [45] ). This definition directly implies
that the metric tensor of the V3 space can be represented as follows:

gαβ = eaαe
b
βηab, ||ηab|| = ||aab(u0)||, eaα,0 = 0, det||aab|| = l0

2, (2.2)

while the form
ωa = eaαdu

α

is invariant under the transformation group G3. The vectors of the frame eaα (we call
them canonical) define a nonholonomic coordinate system in V3, and their dual triplet of
vectors

eαa , eαae
b
α = δba, eαae

a
β = δαβ

define the operators of the G3 algebra group:

Ŷa = eαa∂a, [Ŷa, Ŷb] = Cc
abŶc.

The Killing vector fields ξαa and their dual vector fields ξaα form another frame in the space
V3 (we will call it the Killing frame) and another representation of the algebra of the group
G3. In the dual frame, the metric of the space V3 has the form:

gαβ = ξaαξ
b
βGab, ξαa ξ

b
α = δba, ξαa ξ

a
β = δαβ , (2.3)

where Gab are the nonholonomic components of the gαβ tensor in this framework. The
vector fields ξαa satisfy the Killing equations:

gαβ,γ ξγa = gαγξβa,γ + gβγξαa,γ (2.4)

and form the infinitesimal group operators of the algebra G3:

X̂a = ξαa ∂α, [X̂a, X̂b] = Cc
abX̂c. (2.5)
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The Killing equation in the ξαa frame has the following form:

Gab
|c = GadCb

dc +GbdCa
dc (|a = ξαa ∂α). (2.6)

Indeed, substituting the expression
gαβ = ξαa ξ

β
b G

ab

into the equation (2.4), we get

Gab((ξαa|cξ
β
b − ξαa ξ

β

c|b) + (ξαa ξ
β

b|c − ξβa ξ
α
c|b)) + ξαa ξ

β
b G

ab
|c = 0.

Substituting here the commutation relations (2.5), we get:

(Gab
|c −GadCb

dc −GbdCa
dc)ξ

α
a ξ

β
b = 0.

The Hamilton-Jacobi equation for a charged test particle in an external electromagnetic
field with potential Ai is:

H = gijPiPj = m, Pi = pi + Ai, pi = ∂iϕ. (2.7)

The integrals of motion of the free Hamilton-Jacobi equation are given using Killing vector
fields as follows:

Xa = ξiapi, (2.8)

Thus, the symmetry of the space given by the Killing vector fields is directly related to the
symmetry of the equations of the geodesics given by the integrals of motion. The Hamilton-
Jacobi method makes it possible to find these integrals and use them to integrate the geodesic
equations. Therefore, the study of the behavior of geodesics is necessary for the study of the
geometry of space.

The linear momentum integral of the equation (2.7) has the following form:

Xa = ξiaPi + γa, (2.9)

where γα are some functions of ui. The equation (2.7) admits a motion integral of the
form (2.8) if H and X̂a commute under Poisson brackets:

[H, X̂a]P =
∂H

∂pi

∂X̂a

∂xi
− ∂H

∂xi

∂X̂a

∂pi
= 0 → giσ(ξjaFji + γa,i)Pσ = 0. (2.10)

Hence:
γa,i = ξjaFij, Fji = Ai,j −Aj,i. (2.11)

Thus, the admissible electromagnetic field is determined from the equations (2.11) (see [42]).
In [40]-[41] it was proved that in the case of a homogeneous space, the conditions (2.11) can be
represented as follows:

Aa|b = Cc
baAc, (2.12)

at the same time
γa = −Aa → X̂a = ξαa ∂α.
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Here it is denoted:
Aa = ξiaAi,

It can be shown that the equations (2.12) form a completely integrable system. This system
specifies the necessary and sufficient conditions for the existence of an algebra of integrals of
motion that are linear in momenta for equation (2.7). Note that in admissible electromagnetic
fields given by the conditions (2.12), the Klein-Gordon-Fock equation

Ĥϕ = (gijP̂iP̂j)ϕ = m2ϕ, P̂k = p̂k + Ak, p̂k = −ı∇̂k

also admits an algebra of symmetry operators of the form:

X̂a = ξia∇̂i

(see [40], [42]). ∇̂i is the covariant derivative operator corresponding to the partial deriva-
tive operator - ∂̂i = ıp̂i in the coordinate field ui. ϕ is a scalar field, m = const.

All admissible electromagnetic fields for the homogeneous spacetime are found in [40]. We
will use the results of A.Z. Petrov [38]. We follow the notation used in this book with minor
exceptions. For example, the nonignorable variable x4 will be denoted u0 etc.

3 Maxwell’s equations for an admissible electromagnetic

field in a homogeneous spacetime

Consider Maxwell’s equations with zero electromagnetic field sources in a homogeneous space-
time in the presence of an admissible electromagnetic field:

1√−g
(
√−gF ij),j = 0, g = det|gαβ|. (3.1)

When i = 0 from the system (3.1), the equation follows:

1√−g
(
√
−ggαβAβ,0),α = 0. (3.2)

Using the Killing equations (2.4), (2.5), we can obtain:

g|a

g
= 2ξαa,α.

Indeed,

−g|a

g
= g

αβ

|a gαβ = Gbc
|aGbc + 2ξαa,α + 2Ca = 2ξαa,α (Ca = Cb

ab).

Substituting this expression and the relation (2.12) into the equation (3.2), we get:

GabCbAa,0 = 0. (3.3)

In the case of spaces with groups G3(I), G3(II), G3(V III), G3(IX) Ca = 0. That
is why the equation (3.3) is satisfied. In the case of the groups G3(III),−G3(V II) Ca =
constδa3, and from (3.3) it follows:

η3aÃa,0 = 0, Ãa = Aαe
α
a . (3.4)
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For i = α we have:
1√
g
(
√
ggαβFβ0),0 +

1√
g
(
√
ggαβgγσFβσ),γ = 0. (3.5)

We transform the equations (3.5) using the (2.2) frame. The first term then has the form:

1√−g
(
√
−ggαβFβ0),0 = − 1

l0
(l0η

abÃa,0),0e
α
b , (l0)

2 = det|ηab|.

The second term using the (2.3) frame, the relations (2.12), and the commutation relations
between the operators of the group can be reduced to the following form:

1√
g
(
√
ggαβgγσFβσ),γ =

1

2
Ga2b1Ca

a2b2
(2Cb1G

bb2 + Cb
a1b1

Ga1b2)ξαb ξ
β
a e

c
βÃc.

So the (3.5) equations can be written as follows:

1

l0
(l0η

abÃb,0),0 = W̃ baÃb, (3.6)

where

W̃ ab = (eaβξ
β
a1
)(eaαξ

α
b1
)W a1b1 , W ab =

1

2
Ga2b1Ca

a2b2
(2Cb1G

bb2 + Cb
a1b1

Ga1b2). (3.7)

Then Maxwell’s equations can be represented as follows:

βa
,0 = l0W̃

baÃb, (3.8)

Ãa,0 =
1

l0
βbηab. (3.9)

4 Maxwell’s equations for spaces type I-VI by Bianchi

classification

The group operators in the canonical coordinate set of homogeneous spaces type I- VI by the
Bianchi classification can be represented as follows (see [27]):

X1 = p1, X2 = p2, X3 = (ru1 + εu2)p1 + nu2p2 − p3. (4.1)

The values k ε, n for each group take the following values.

1. G(I) : k = 0, ε = 0, n = 0.

2. G(II) : k = 0, ε = 1, n = 0.

3. G(III) : k = 1, ε = 0, n = 0.

4. G(IV ) : k = 1, ε = 1, n = 1.

5. G(V ) : k = 1, ε = 0, n = 1.
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6. G(V I) : k = 1, ε = 0, n = 2.

Structural constants can be represented as follows:

Cc
ab = kδc

1
(δ1aδ

3

b − δ3aδ
1

b ) + (εδc
1
+ nδc

2
)(δ2aδ

3

b − δ3aδ
2

b ) → Ca = −(k + n)δ3a (4.2)

Find the frame vectors [ξαa ], [eαa ] and their dual vectors [ξaα], [eaα]. For this, we use
the metrics of homogeneous spaces and the group operators given in [38].

ξαa = δ1aδ
α
1
+ δ2aδ

α
2
+ δ3a(δ

α
1
(ku1 + εu2) + δα

2
nu2 − δα

3
), (4.3)

ξaα = δa
1
δ1α + δa

2
δ2α + δa

3
(δ1α(ku

1 + εu2) + δ2αnu
2 − δ3α),

eαa = δ1aδ
α
1
exp(−ku3) + δ2a(−δα

1
εu3 exp(−ku3) + δα

2
exp(−nu2)) + δα

3
δ3a, (4.4)

eαa = δa
1
δ1α exp(ku

3) + δ2a(δ
α
1
εu3 exp nu3 + δα

2
exp nu2)) + δ3αδ

3

a.

With these expressions we find the matrix W̃ ab (3.7).

W̃ ab =
1

l0
2
[δa

1
δb
1
(εg11 + ε(n− k)g12 − kng22) exp(−2nu3)+ (4.5)

−(δa
1
εu3 + δa

2
)(δb

1
εu3 + δb

2
)kng11 exp(−2ku3)+

[δb
1
(δa

1
εu3 + δa

2
)n(g12 + εg11)) + δa

1
(δb

1
εu3 + δb

2
)k(g12 − εg11)].

Here (see [38])

g11 = a11 exp 2ku
3, g12 = (εu3a11+a12) exp(n+k)u3, g22 = (εu32a11+2εa12+a22) exp 2nu

3,

Maxwell’s equation (3.8)-(3.9) becomes:

β̇b =
1

l0
[δa

1
δb
1
(εg11 + ε(n− k)g12 − kng22) exp(−2nu3)+ (4.6)

−(δa
1
εu3 + δa

2
)(δb

1
εu3 + δb

2
)kng11 exp(−2ku3)+

[δb
1
(δa

1
εu3 + δa

2
)n(g12 + εg11)) + δa

1
(δb

1
εu3 + δb

2
)k(g12 − εg11)]Ãa,

βa = l0η
abÃb,0. (4.7)

The dots denote the time derivatives. The components Ãa are defined by the solutions of the
(2.12) Ab system of equations using the formulas:

Ãa = eαaξ
b
αAb (4.8)

Further solutions of the system of equations (4.6) for homogeneous spaces with groups of
motions G3(I − V I) are given. Spatial metrics are given in the book [38]. Solutions for the
system (2.12) can be found in [39],

αa = αa(u
0).
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4.1 Group G3(I)

As the parameters k, n, ε and Ca
bc equal zero, G3(I) is an Abelian group. The

components of the vector electromagnetic potential have the form:

Aa = Ãa = Aa = αa,

Substituting these expressions into the system of equations (4.6)-(4.7), we obtain the following
system of ordinary differential equations:

β̇a = 0 → βa = ca = const;

l0α̇a = abac
b → αq =

∫

aabc
b

l0
du0, l0

2 = det|aab|.

All components of aab are arbitrary functions of u0.

4.2 Group G3(II)

For the group G3(II) the parameters k, n, ε have the following values: k = n = 0, ε =
1. The components of the vector electromagnetic potential in the frames [ξαa ] and [eαa ] have the
form:

A1 = α1, A2 = α2 + α1u
3, A3 = α1u

3 − α3; Ãa = αa.

Substituting these expressions into the system of equations (4.6)-(4.7), we obtain the following
system of ordinary differential equations:

l0β̇a = α1a11δ1a → l0β̇1 = α1a11, β2 = c2, β3 = c3 (βa = δabβ
b); (4.9)

l0α̇a = a1aβ1 + a2ac2 + a3ac3, l0
2 = det|aab| (ca = const, ). (4.10)

The (4.9)-(4.10) system of equations contains 5 equations for 11 functions:

l0, aab, αa, β1.

We should consider separately the variants α1 = 0 and α1 6= 0.

1. α1 = 0 → β1 = c1 = const. In this case, the system of equations (4.9) - (4.10) has a
quadrature solution:

αq =

∫

aqbcb1δ
bb1

l0
du0 (q = 2, 3).

For a = 0, (4.10) implies a linear dependence of the components a1q :

c1a11 + c2a12 + c3a13 = 0.

All independent components of aab are arbitrary functions of u0.

2. α1 6= 0. Consider the following equations from the system (4.9) - (4.10):

l0α̇1 = (a11β1 + c2a12 + c3a13), l0β̇1 = a11α1. (4.11)
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Let us take the function a11 out of (4.11). As a result, we obtain:

(α1
2 − β1

2),0 =
2α1

l0
(c2a12 + c3a13).

Hence:

β1 = ξ

√

α1
2 − 2

∫

α1

l0
(c2a12 + c3a13)du0 (ξ2 = 1).

From the remaining equations of the system, we get:

αq =

∫

(a1qβ1 + a2qc2 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0β̇1

α1

.

The functions l0, α1, and all components of aab, except a11, a33, are arbitrary
functions of u0. The component a33 results from the equation l0

2 = det|aab|:

a33 =
l0

2 + a11a23
2 + a22a13

2 − 2a12a13a23
a11a22 − a122

(4.12)

4.3 Group G3(III)

For the group G3(III) the parameters k, n, ε have the following values: k =
1, n = ε = 0. The components of the vector electromagnetic potential in the frames [ξαa ]
and [eαa ] have the form:

A1 = α1 exp u
3, A2 = α2, A3 = α1 exp u

3 − α3.

Substituting these expressions into the system of equations (4.6)-(4.7), we obtain the following
system of ordinary differential equations:

l0β̇a = α1a12δ2a → l0β̇2 = α1a12, β1 = c1, β3 = 0; (4.13)

l0α̇a = a2aβ2 + a1ac. (4.14)

Here and further the equation (3.4) is used, according to which β3 = 0. The system of
equations (4.9)-(4.10) contains 5 equations for 11 functions:

l0, aab, αa, β2.

We should consider separately the variants α1 = 0 and α1 6= 0.

1. α1 = 0 → β2 = c2 = const. In this case the system (4.9) - (4.10) has a solution in
quadratures:

αq =

∫

aqbcb1δ
bb1

l0
du0 (q = 2, 3).

From (4.10) it follows a linear dependence of the components a1q :

c1a13 + c2a23 = 0 → a12 = ba11, β1 = b, β2 = 1.

9



l0 and all independent components of aab are arbitrary functions of u0. The com-
ponent a33 is found from the equation (4.12)

2. Let α1 6= 0. Consider the following equations from the system (4.9) - (4.10):

l0α̇1 = a12β2 + c1a11, l0β̇2 = a12α1. (4.15)

from the system (4.15) it follows:

(α1
2 − β2

2),0 =
2α1

l0
c1a11.

Hence:

β2 = ξ

√

α1
2 − 2

∫

α1

l0
(c1a11 + c3a13)du0 (ξ2 = 1).

From the remaining equations of the system we get:

αq =

∫

(a2qβ2 + a1qc1 + a3qc3)

l0
du0 (q = 2, 3); a11 =

l0β̇2

α1

.

The functions l0, α1 and all components of aab, except a11, a33, are arbitrary
functions of u0. The component a33 results from the equation (4.12)

4.4 Group G3(IV )

For the group G3(IV ) the parameters k, n, ε have the values: k = n = ε = 1.
The components of the vector electromagnetic potential in the frames [ξαa ] and [eαa ] have
the form:

A1 = α1 exp u
3, A2 = (α2 + α1u

3) exp u3, A3 = (α1(u
1 + u2 + u2u3) + α2u

2) exp u3 − α3;

Ãa = αa.

Maxwell’s equations (3.8), (3.9) reduce to the following system:

l0β̇a = δ1a(a11(α1 + α2)− α1a22 + α2a12) + δ2a(α1a12 − a11(α1 + α2)). (4.16)

l0α̇a = β2aa2 + β1aa1, β3 = 0. (4.17)

from the system (4.17) it follows:

α̇3 =

∫

β2a32 + β1a31

l0
du0. (4.18)

Let us now consider the remaining equations.

A) β1 6= 0.
From the system (4.16) it follows:

a12 =
1

β1

(l0α̇2 − β2a22) a11 =
1

β1

2
(l0(α̇1β1 − α̇2β2) + β2

2a22), (4.19)
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Using these relations, we obtain a consequence from the remaining equations of the system
(4.16)-(4.17):

β1β̇2 − β2(β̇1 + β̇2) = α1α̇2 − (α1 + α2)α̇1. (4.20)

With the equation (4.20) the dependent functions αa, βa can be expressed in terms of the
independent functions. Let us write down the solutions.

1. (α1β1 + β2(α1 + α2))β2 6= 0.

β1 = β2(b− ln β2 −
∫

α1α̇2 − (α1 + α2)α̇1

β2

2
du0);

a22 =
l0(α̇2(α1 + α2)− β1(β̇1 + β̇2))

α1β1 + β2(α1 + α2)
.

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (4.12)

2. α1β1 + β2(α1 + α2) = 0, a22, is an arbitrary function, depending on u0.

α1 = a expϕ+ b expϕ, α2 = (1 + e)α1 β2 = a expϕ− b expϕ, β1 = eβ2 (e = const).

l0, a13, a23, ϕ are arbitrary functions of time. The function a33 is expressed in
terms of these functions using the relation (4.12).

3. β2 = 0.

α2 = α1(a+ lnα1), a12 =
l0α̇2

β1

, a11 =
l0α̇1

β1

, a22 =
l0(α̇2(α1 + α2)− β̇1β1)

α1β1

l0, a13, a23, α1, β1 are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (4.12).

B) β1 = 0. Maxwell’s equations take the form:

l0β̇2 = α1a12 − (α1 + α2)a11, l0β̇2 = −α1a22 + (α1 + α2)a12;

l0α̇1 = β2a12, l0α̇2 = β2a22.

The system has the following solution:

a) (α1 + α2) 6= 0.

β2 = ξ

√

b+ 2

∫

1

l0
(α̇1(α1 + α2)− α1α̇2)du0. a12 =

l0α̇1

β2

, a22 =
l0α̇2

β2

.

a11 =
l0(α1α̇1 − β2β̇2)

β2(α1 + α2)
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l0, a13, a23, α1, α2 are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (4.12).

b) α2 = −α1 → α1 = a expϕ− b expϕ β2 = a expϕ+ b expϕ, a12 =
l0α̇1

β2

a22 =
l0α̇2

β2

.

l0, a11, a13, a23, ϕ, β1 are arbitrary functions of time. The function a33 is
expressed in terms of these functions using the relation (4.12).

4.5 Group G3(V )

For the group G3(V ) the parameters k, n, , ε have the values: k = n = 1, ε = 0.
The components of the vector electromagnetic potential in the frames [ξαa ] and [eαa ] have
the form:

A1 = α1 exp u
3, A2 = α2 exp u

3, A3 = (α1u
1 + α2u

2) exp u3 − α3;

Ãa = αa.

Maxwell’s equations (3.6) reduce to the following system of equations:

l0α̇a = β2aa2 + β1aa1, β3 = 0. (4.21)

l0β̇a = δ1a(a12α2 − α1a22) + δ2a(a12α1 − a11α2), (4.22)

Hence:

α̇3 =

∫

β2a32 + β1a31

l0
du0,

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (4.23)

1. α1 6= 0. From the system (4.22) it follows:

a12 =
1

α1

(l0β̇2 + α2a11), a22 =
1

α1
2
(l0(β̇2α2 − β̇1α1) + a11α2

2). (4.24)

Substituting (4.24) into (4.23) , we get the corollary:

β1β̇2 − β2β̇1 = α1α̇2 − α2α̇1. (4.25)

a11(α1β1 + α2β2) = l0(α̇1α1 − β̇2β2). (4.26)

From (4.25) it follows:

α2 = α1(b+

∫

β1β̇2 − β2β̇1

α1
2

du0),

Let us consider (4.27).

a) α1β1 + α2β2 6= 0. Then we have:

a11 =
l0(α1α̇2 − α2α̇1)

α1β1 + α2β2

;
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l0, a13, a23, α1, βa are arbitrary functions of time. The function a33 is expressed
in terms of these functions using the relation (4.12).

b) α1β1 + α2β2 = 0 → α1α̇1 − β1β̇1 = 0, α1α̇2 + β2β̇1 = 0.

From this, it follows:

α1 = a expϕ+ b expϕ, β2 = a expϕ− b expϕ, α2 = −lα1, β1 = lβ2,

where a, b, l = const, ϕ = ϕ(u0). l0, a11, a13, a23 are arbitrary functions of
time. The function a33 is expressed in terms of these functions using the relation (4.12).

2. α1 = 0. From the system (4.22) it follows:

a12 =
l0β̇1

α2

, a11 = − l0β̇2

α2

, a22 =
l0(α̇2α2 − β̇1β1)

α2β2

, β1 = aβ2,

here a = const, l0, a13, a23, α2, β2 are arbitrary functions of time. The function
a33 is expressed in terms of these functions using the relation (4.12).

4.6 Group G3(V I)

For the group G3(V I) the parameters k, n, ε have the following values: k =
1 n = 2, ε = 0. The components of the vector electromagnetic potential in the frames
[ξαa ] and [eαa ] have the form:

A1 = α1 exp u
3, A2 = α2 exp 2u

3, A3 = α1u
1 exp u3 + 2α2u

2 exp 2u3 − α3;

Ãa = αa.

Maxwell’s equation (3.6) has the form:

l0α̇a = β2aa2 + β1aa1. (4.27)

l0β̇a = δ1a(a12α2 − 2α1a22) + δ2a(a12α1 − 2a11α2), β3 = 0, (4.28)

from the system (4.27) it follows:

α̇3 =

∫

β2a32 + β1a31

l0
du0.

l0α̇1 = (a11β1 + a12β2), l0α̇2 = (a12β1 + a22β2). (4.29)

I. β1 6= 0, from the system (4.27) it follows:

a12 =
1

β1

(l0α̇2 − β2a22), a11 =
1

β1

2
(l0(α̇1β1 − α̇2β2) + a22β2

2). (4.30)

Substituting (4.30) into (4.27), we get:

a22(α1β1 + 2α2β2) = l0(α2α̇2 − β̇1β1), (4.31)
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(2α1β1 + α2β2)(2α2α̇1 + β̇2β1) = (β̇1β2 + 2α̇2α1)(α1β1 + 2α2β2) = 0 (4.32)

Using this relation, we get the following solutions:

1) α1β1 + 2α2β2 6= 0. From (4.31) it follows:

a22 =
l0(α̇2α2 − β̇1β1)

(α1β1 + 2α2β2)
.

Denote:
αq = aq expϕ. βq = bq expϕ (q = 1, 2),

where aq, bq, ϕ are functions of u0. From the equation (4.32) we get:

ϕ̇ =
(ḃ1b2 + 2ȧ2a1)(a1b1 + 2a2b2)− (2a1b1 + a2b2)(2a2ȧ1 + ḃ2b1)

(2a1a2 + b1b2)(a1b1 − a2b2)
;

a12 =
l0(ϕ̇a2 + a2)− b2a22

b1
; a11 =

l0((a1b1 − a2b2)ϕ̇+ ȧ1b1 − ȧ2b2) + b2
2a22

b1
2

;

a22 =
l0((a

2

2
− b2

1
)ϕ̇+ ȧ2a2 − ḃ1b1)

2a1b1 + a2b2
.

l0, a13, a23, aq, bq are arbitrary functions dependent on time. The function a33 is
expressed by these functions using the relation (4.12)

2) α̇2α2 − β̇1β1 = 0 → α1β1 + 2α2β2 = 0. a22 - is an arbitrary function from u0;

α2 = a expϕ− b exp(−ϕ), β1 = a expϕ+ b exp(−ϕ).

From this, it follows:

a)

α1 = −β2

2
(
a expϕ− b exp(−ϕ)

a expϕ+ b exp(−ϕ)
);

a12 = l0ϕ̇− β2a22

β1

, a11 =
l0(α̇1β1 − α̇2β2) + β2

2
a22

β2

1

b) ϕ̇ = 0

β1 = 1, α2 = −2b, α1 = −bβ2, a12 = −β2a22, a11 = −bl0β̇2 + β2
2a22.

where l0, a. b = const a22, a13, a23, β2, ϕ are arbitrary functions dependent
on time.

II. β1 = 0. From (4.27)-(4.28) it follows:

a12 =
2l0α̇2α2

β2

, a22 =
l0α̇2

β2

, a11 =
l0(2b

2α̇2α2
3 − β2β̇2)

2α2β2

, α1 = bα2
2. (4.33)

l0, a22, a13, a23, α2 β2 depends arbitrarily on time functions. The function a33 is
expressed in terms of these functions using the relation (4.12).
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5 Conclusion

The performed classification of admissible electromagnetic fields will be used in the search for
electrovacuum solutions of the Einstein-Maxwell equations. As known, the components of the
Ricci tensor of a homogeneous space in the frame (2.2) depend only on time. In order for
Einstein’s equations with matter to prove to be an integrable system of ordinary differential
equations, the equations of motion of matter must be subordinated to the conditions of space
symmetry. These conditions are fulfilled first by the potentials of the electromagnetic fields
determined in this work.
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