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Abstract

We study the symplectic Radon transform from the point of view
of the metaplectic representation of the symplectic group and its ac-
tion on the Lagrangian Grassmannian. We give rigorous proofs in the
general setting of multi-dimensional quantum systems. We interpret
the inverse Radon transform as a “demarginalization process” for the
Wigner distribution. This work completes, by giving complete proofs,
a prvious Note.
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1 Introduction

The idea of using what is today called the “Radon transform” to reconstruct
a function from partial data goes back to the 1917 work [20] by the Austrian
mathematician Johann Radon. While Radon originally only considered the
transform of two or three dimensional systems (in which case it is called the
“X-ray transform”), the theory has since then be generalized to arbitrary
Euclidean spaces. The applications of the Radon transform to quantum
mechanics and optics have been developing rapidly these last years (see for
instance the seminal paper [22] by Vogel and Risken). In [1, 2, 3, 13, 14, 17]
the authors study what they call the “symplectic Radon transform” of a
mixed quantum state; in a recent [11] some of these results are extended
to the framework of C∗ algebras. The aim of the present paper is to give
a simple rigorous approach to the theory of the quantum Radon transform
in several degrees of freedom. For this we will use systematically the the
theory of the metaplectic group as developed in our previous works [5], to-
gether with the elementary theory of Lagrangian subspaces of the standard
symplectic space. Our main observation is the following: integration of the
Wigner transform Wψ(x, p) (of a function, or of a state) along the x and
p coordinate planes give the correct probability distributions |ψ(x)|2 and
|ψ̂(p)|2 in position and momentum space. However, these are not sufficient
to reconstruct the state ψ (this is an aspect of the “Pauli problem”, see §4).
However, applying a metaplectic transform Û associated with a symplec-
tic rotation U to the state ψ transforms the Wigner transform following the
ruleW (Ûψ)(x, p) =Wψ(U−1(x, p)) (this is the “symplectic covariance prop-
erty” of the -Wigner transform, well-known in harmonic analysis, especially
in the Weyl–Wigner –Moyal approach to quantum mechanics). This use of
metaplectic transforms leads, by calculating the marginals of W (Ûψ)(x, p)
along the x and p coordinate planes to infinitely many probability distribu-
tions, and these allow the reconstruction of the state. More precisely, we
will redefine the Radon transform as being given by the formula

Rψ(X,A,B) = detΛ−1|ÛA,Bψ(Λ−1X)|2

where X ∈ R
n and ÛA,B is the metaplectic operator associated with the

symplectic rotation

UAB =

(
Λ−1A Λ−1B
−Λ−1B Λ−1A

)

where A,B are square matrices with rank(A,B) = n and Λ = (ATA +
BTB)1/2. We thereafter prove (under suitable conditions on ψ) the inversion
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formula

Wψ(x, p) = (2π~)−2n2

∫
Rψ(X,A,B)e

i
ℏ
(X−Ax−Bp)dXdAdB

which reduces for n = 1 to the usual inversion formula found in the literature
(the case n = 1 is discussed in §2 to motivate the results in the general case).
As an illustration, we apply our constructions to the generalized Gaussian
states

ψV,W (x) =
(

1
π~

)n/4
(detV )1/4e−

1
2~ (V+iW )x2 . (1)

in §, which gives us the opportunity to shortly discuss the Pauli problem for
Gaussians, thus generalizing results in [4].

2 The Case n = 1

Let ρ̂ be a mixed quantum state with one degree of freedom: ρ̂ is a positive-
semidefinite trace class operator on L2(R) with trave Tr(ρ̂) = 1. In view
of the spectral theorem there exists a sequence (ψj) with ψj ∈ L2(R) and
a sequence of non-negative numbers (λj) with

∑
j λj = 1 such that ρ̂ =∑

j λj|ψj〉〈ψj | where |ψj〉〈ψj | is the orthogonal projection of L2(R) onto the
ray Cψj.. By definition [7, 8], the Wigner distribution of ρ̂ is the convex
sum

ρ =
∑

j

λjWψj

where Wψj is the usual Wigner transform of ψj, defined for ψ ∈ L2(R) by

Wψ(x, p) =
1

2π~

∫
∞

−∞

e−
i
~
pyψ(x+ 1

2y)ψ
∗(x− 1

2y)dy.

Recall [6, 7, 8] that the marginal properties

∫
∞

−∞

Wψ(x, p)dp = |ψ(x)|2 ,

∫
∞

−∞

Wψ(x, p)dx = |ψ̂(p)|2 (2)

make sense provided that ψ and its Fourier transform are, in addition to
being square integrable, absolutely integrable: ψ, ψ̂ ∈ L1(R).

In most texts studying the tomographic picture of quantum mechanics
the symplectic Radon transform of the quantum state ρ̂ is defined by the
integral

Rρ̂(X, a, b) =

∫
ρ(x, p)δ(X − ax− bp)dpdx (3)
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where a and b are real numbers, and it is claimed that the following essential
reconstruction formula holds

ρψ(x, p) =
1

2π~

∫
Rρ̂(X, a, b)e

i
ℏ
(X−ax−bp)dXdadb. (4)

The following result is simultaneously a rigorous restatement and a justi-
fication of these formulas. It will be extended to the case of quantum states
with an arbitrary number n of freedom in the forthcoming sections. Among
other things, we see that the inverse Radon transform can be viewed as a
“demarginalization process” [18] for the Wigner distribution.

We will use the following notation: we set Ua,b =

(
a/λ b/λ
−b/λ a/λ

)
where

λ =
√
a2 + b2; clearly Ua,b is a rotation in the x, p plane.

Theorem 1 Let ρ̂ be a pure quantum state: ρ = 2π~Wψ for some ψ ∈
L2(R). We assume that in addition ψ, ψ̂ ∈ L1(R), which ensures that the
marginal properties (i) The Radon transform Rρ̂(X, a, b) is given by the for-
mula

Rρ̂(X, a, b) = λ−1|Ûa,bψ(λ−1X)|2 (5)

where Ûa,b ∈ Mp(n) is anyone of the two metaplectic operators covering the
rotation Ua,b. (ii) The inverse Radon transform is given by the formula:

Wψ(x, p) =
1

2π~

∫
Rρ̂(X, a, b)e

i
ℏ
(X−ax−bp)dXdadb. (6)

(iii)The Radon transform of ψis given by the line integral

Rρ̂(X, a, b) =

∫
∞

−

Wψ(z(t))|ż(t)|dt (7)

where t 7−→ z(t) is a parametrization of the straight line ℓXa,b in R
2 with

equation ax+ bp = X.

Proof. It is sufficient to assume that ρ̂ is a pure state, that is ρ = 2π~Wψ
for some ψ. (i) Let us make the change of variables

(
u
v

)
=

(
a/λ b/λ
−b/λ a/λ

)(
x
p

)
(8)

in the integral (3).This leads to the expression

Rρ̂(X, a, b) =

∫∫
Wψ(U−1

a,b (u, v))δ(X − λu)dudv. (9)
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Since δ(X − λu) = λ−1δ(λ−1X − u) this can be rewritten

Rρ̂(X, a, b) = λ−1

∫∫
Wψ(λ−1(au− bv, bu+ av))δ(λ−1X − u)dudv (10)

In view of the symplectic covariance property [5, 6, 16] of the Wigner trans-
form we have

Wψ(U−1
a,b (u, v)) =W (Ûa,bψ)(u, v) (11)

where Ûa,b is anyone of the two metaplectic operators (see the Appendix A)
covering U and hence (10) yields

Rρ̂(X, a, b) = λ−1

∫∫
W (Ûa,bψ)(λ

−1X, v)δ(λ−1X − u)dudv

= λ−1

∫
∞

−∞

W (Ûa,bψ)(λ
−1X, v)dv

hence formula (5) using the marginal properties (2). (ii) Let us denote A
the right-hand side of the equality (6). Using the first marginal property (2)
we have

A = λ−1 1

2π~

∫

R3

|Ûa,bψ(λ−1X)|2e i
ℏ
(X−ax−bp)dXdadb

= λ−1 1

2π~

∫

R4

W (Ûa,bψ)(λ
−1X,P )e

i
ℏ
(X−ax−bp)dXdPdadb.

Replacing X with λX and using the symplectic covariance property (11) we
get

A =
1

2π~

∫

R4

W (Ûa,bψ)(X,P )e
i
ℏ
(λX−ax−bp)dXdPdadb

=
1

2π~

∫

R4

Wψ(U−1
a,b (X,P ))e

i
ℏ
(λX−ax−bp)dXdPdadb

=
1

2π~

∫

R4

Wψ((a/λ)X − (b/λ)P, (b/λ)X + (a/λ)P ))e
i
ℏ
(λX−ax−bp)dXdPdadb.

Setting Y = (a/λ)X − (b/λ)P and Z = (b/λ)X + (a/λ)P (and hence λX =
aY + bZ) we have dXdP = dY dZ so that

A =
1

2π~

∫

R4

Wψ(Y,Z))e
i
ℏ
(a(Y −x)+b(Z−p))dY dZdadb.

In view of the Fourier inversion formula, written formally as
∫∫

e
i
ℏ
(a(Y −x)+b(Z−p))dadb = 2π~δ(Y − x,Z − p)
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we thus have

A =

∫∫
Wψ(x, p)δ(Y − x,Z − p)dY dZ =Wψ(x, p)

which was to be proven. (iii) It is sufficient to show that (7) holds for one
parametrization. In view of formula (9) we have

Rρ̂(X, a, b) = λ−1

∫∫
Wψ(U−1

a,b (u, v))δ(λ
1X − u)dudv (12)

= λ−1

∫
∞

−∞

(∫
∞

−∞

Wψ(U−1
a,b (u, v))δ(λ

1X − u)du

)
dv (13)

=

∫
∞

−∞

Wψ(U−1
a,b (λ

−1X, v))dv (14)

that is, since U−1
a,b =

(
a/λ −b/λ
b/λ a/λ

)
, and replacing v with t,

Rρ̂(X, a, b) =

∫
∞

−∞

Wψ(aλ−2X − vλ−1t, vλ−2X + aλ−1t)dt. (15)

Set now x(t) = aλ−2X − vλ−1t and p(t) = vλ−2X + aλ−1t. Then ax(t) +
bp(t) = X and ẋ(t)2 + ṗ(t)2 = 1 hence (15) implies (7).

Remark 2 The first part of the theorem above uses the physicist’s definition
(3) and can thus be taken as a mathematically correct redefinition of the
Radon transform. We will exploit this fact in next section.

3 The Multivariate Case

For n ≥ 1 we consider R
2n ≡ T ∗

R
n equipped with its standard symplectic

structure, defined by

σ(z, z′) = Jz · z′ , J =

(
0 I
−I 0

)
.

We denote by Sp(n) the symplectic group of (R2n, σ) and by Mp(n) its uni-
tary representation of its double cover (the metaplectic group; see Appendix
A).
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3.1 Definitions

A,B be two real square n × n matrices with such that ATB = BAT and
rank(A,B) = n. Setting

MAB =

(
A B
−B A

)
, Λ = (ATA+BTB)1/2

and noting that ATA+BTB is invertible, we have the factorization

MAB =

(
Λ 0
0 Λ

)(
Λ−1A Λ−1B
−Λ−1B Λ−1A

)

where

UA,B =

(
Λ−1A Λ−1B
−Λ−1B Λ−1A

)
∈ U(n) (16)

is a symplectic rotation. Note that its inverse is

U−1
A,B =

(
ATΛ−1 −BTΛ−1

−BTΛ−1 ATΛ−1

)
. (17)

Definition 3 The symplectic Radon transform of ψ is the transformation

Rψ(·, A,B) : L2(Rn) −→ L1(Rn)

defined, for ψ ∈ L2(Rn) by

Rψ(X,A,B) = detΛ−1|ÛA,Bψ(Λ−1X)|2 (18)

where ÛA,B : L2(Rn) −→ L2(Rn) is any of the two elements of Mp(n)
covering the symplectic rotation UA,B.

When detB 6= 0 the metaplectic operator ÛA,B is defined by

ÛA,Bψ(x) =
(

1
2π~

)n/2
im−n/2

√
|detB−1|

∫

Rn

e
i
~
A(x,x′)ψ(x′)dx′ (19)

A(x, x′) =
1

2
AB−1x · x−B−1x · x′ + 1

2
B−1Ax′ · x′ (20)

after one has made a choice of the integer m modulo 4.
Recall that in the multidimensional case the Wigner transform Wψ of

ψ ∈ L2(Rn) is given by the integral

Wψ(x, p) =

(
1

2π~

)n ∫

Rn

e−
i
~
pyψ(x+ 1

2y)ψ
∗(x− 1

2y)dy
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and that the marginal properties generalizing (2) hold
∫

Rn

Wψ(x, p)dp = |ψ(x)|2 ,

∫

Rn

Wψ(x, p)dx = |ψ̂(p)|2 (21)

for ψ, ψ̂ ∈ L1(Rn); the Fourier transform ψ̂ = Fψ is here given by

Fψ(p) =

(
1

2π~

)n/2 ∫

Rn

e−
i
~
p·xψ(x)dx. (22)

3.2 The Radon inversion formula

We have the following straightforward generalization of the inversion result
(ii) in Theorem 1:

Theorem 4 Viewing A and B as elements of Rn
2
we have

Wψ(x, p) = (2π~)−2n2

∫

Rn(2n+1)

Rψ(X,A,B)e
i
ℏ
(X−Ax−Bp)dXdAdB. (23)

Proof. It goes exactly as the proof of Theorem 1 (ii). Let us denote by W
the integral in the right-hand side of (23). We have, using the first marginal
condition (21),

W = detΛ−1

∫
|ÛA,Bψ(Λ−1X)|2e i

ℏ
(X−Ax−Bp)dXdAdB

= detΛ−1

∫
W (ÛA,Bψ)(Λ

−1X,P )e
i
ℏ
(X−Ax−Bp)dPdXdAdB

=

∫
W (ψ)(U−1

A,B(X,P ))e
i
ℏ
(ΛX−Ax−Bp)dPdXdAdB

=

∫
W (ψ)(U−1

A,B(X,P ))e
i
ℏ
(ΛX−Ax−Bp)dPdXdAdB,

that is, by formula (17):

W =

∫
W (ψ)(ATΛ−1X −BTΛ−1P,BTΛ−1X +ATΛ−1P ))

× e
i
ℏ
(ΛX−Ax−Bp)dPdXdAdB.

Setting Y = ATΛ−1X − BTΛ−1P and Z = BTΛ−1X + ATΛ−1P ) we have
dY dZ = dPdX and hence

W =

∫
Wψ(Y,Z)e

i
ℏ
(A(Y −x)+B(Z−p))dY dZdAdB.
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Integration of the exponential with respect to the variables A and B yields
∫

R2n2
e

i
ℏ
(A(Y −x)+B(Z−p))dAdB = (2π~)2n

2

and hence

W = (2π~)2n
2

∫
Wψ(Y,Z)δ(Y − x,Z − p)|dY dZ

= (2π~)2n
2
Wψ(x, p)

which was to be proven.

3.3 Interpretation as generalized marginals

Let us return to the definition (18) of the Radon transform:

Rψ(X,A,B) = det Λ−1|ÛA,Bψ(Λ−1X)|2.
If we choose A = I and B = 0 this reduces to the formula

Rψ(X, I, 0) = |ψ(X)|2 =

∫

Rn

Wψ(X,P )dP ;

similarly, if A = 0 and B = I we get

Rψ(X,A,B) = |Fψ(X)|2 =

∫

Rn

Wψ(P,X)dX.

definition (18) reduces to the formula

Rψ(X,A,B) = |ÛA,Bψ(X)|2

showing that the Radon transform is essentially a margin property for the
“rotated” Wigner transform of ψ. In fact, we can view Rψ(X,A,B) as the
surface integral of the Wigner transform on the (affine) Lagrangian plane
(see Appendix B)

ℓXA,B = {(x, p) ∈ R
2n : Ax+Bp = X}.

In view of the marginal properties and the symplectic covariance of the
Wigner transform, followed by the change of variables P 7−→ Λ−1P , we have

|ÛA,Bψ(Λ−1X)|2 =

∫

Rn

W (ÛA,Bψ)(Λ
−1X,P )dP

=

∫

Rn

Wψ(U−1
A,B(Λ

−1X,P ))dP

= detΛ

∫

Rn

Wψ(U−1
A,B(Λ

−1X,Λ−1P ))dP,

9



that is, explicitly,

|ÛA,Bψ(Λ−1X)|2 = detΛ

×
∫

Rn

Wψ(ATΛ−1X −BTΛ−1P,BTΛ−1X +ATΛ−1P )dP.

Using the multi-parametrization

X ′(P ) = ATΛ−1X −BTΛ−1P

P ′(P ) = BTΛ−1X +ATΛ−1P

we have

Rψ(X,A,B) =

∫

Rn

Wψ(X ′(P ), P ′(P )))dP (24)

we have AX ′(P ) +BP ′(P ) = X so we can interpret the formula above as a
surface integral

|ÛA,Bψ(Λ−1X)|2 =

∫

ℓX
A,B

Wψ(Z)dµ(Z)

where dµ(Z) is the Lebesgue measure on ℓXA,B.

4 Radon Transform of Generalized Gaussians

4.1 Generalized Gaussians

By generalized (centered) Gaussian we mean a function

ψV,W (x) =
(

1
π~

)n/4
(detV )1/4e−

1
2~ (V+iW )x2 . (25)

where V and W are real symmetric n×n matrices with V > 0 (i.e. positive
definite). Such centered Gaussians are generalizations of the usual squeezed
coherent states appearing in the physical literature; see [5, 16]. The function
ψV,W is normalized to unity: ||ψV,W ||L2 = 1 and its Wigner transform is
given by

WψV,W (z) =
(

1
π~

)n
e−

1
~
Gz·z (26)

where G is the symmetric and symplectic matrix

G =

(
V +WV −1W WV −1

V −1W V −1

)
. (27)

10



That G ∈ Sp(n) easily follows from the observation that G = STS where

S =

(
V 1/2 0

V −1/2W V −1/2

)
(28)

clearly is symplectic. Let Gauss0(n) be the set of all centered Gaussians
(25); a central (and often implicitly used) result is that the metaplectic
group Mp(n) acts transitively on Gauss0(n): we have an action

Mp(n)×Gauss0(n) −→ Gauss0(n). (29)

4.2 The Radon transform of ψV,W

Let us calculate the Radon transform

Rψ
U,V

(X,A,B) = (det Λ−1)|ÛA,BψV,W (Λ−1X)|2 (30)

of ψV,W using formula (18). For this we have to determine ÛA,BψV,W where

ÛA,B ∈ Mp(n) covers the symplectic rotation

UA,B =

(
Λ−1A Λ−1B
−Λ−1B Λ−1A

)
. (31)

The most natural (and easiest) way to determine ÛA,BψV,W is to use sym-
plectic covariance formula

W (ÛA,BψV,W )(z) =WψV,W (U−1
A,Bz)

of the Wigner transform; it yields, taking (26) into account and using the
relation U−1

A,B = UTA,B

W (ÛA,BψV,W )(z) =
(

1
π~

)n
e
−
1
~
UA,BGU

T
AB z·z.

To explicitly determineG′ = UA,BGU
T
AB is a rather lengthy (though straight-

forward) calculation; however since we have an action (29) we know (by (27))
that there will exist V ′ and W ′ such that

G′ =

(
V ′ +W ′V ′−1W ′ W ′V ′−1

V ′−1W ′ V ′−1

)

corresponding to the Gaussian

ÛA,BψV,W = ψV ′,W ′(x) =
(

1
π~

)n/4
(detV ′)1/4e−

1
2~ (V

′+iW ′)x2 .

11



Now, since it is only the (squared) modulus of ÛA,BψV,W which appears in
(30) we will have

|ÛA,BψV,W |2 =
(

1
π~

)n/2
(detV ′)1/2e−

1
2~V

′x2

so that it suffices to determine V ′, whose inverse is the lower right block of
G′. This is easily done using the relation G′ = UA,BGU

T
AB and one finds,

after a few calculations and simplifications,

V ′ = Λ
[
BV BT + (A−BW )V −1(A−BW )T

]−1
Λ. (32)

Summarizing, we have, after insertion in (30),

Rψ
V,W

(X,A,B) = C (33)

× exp
[(

− 1
2~

[
BVBT + (A−BW )V −1(A−BW )T

]−1
)
X ·X

]

C =
(

1
π~

)n/2
(detV ′)1/2 det

[
BV BT + (A−BW )V −1(A−BW )T

]−1
.
(34)

Suppose for instance ψ
V,W

is a “squeezed coherent state”; then W = 0 and
ψV = ψV,0 is

ψV (x) =
(

1
π~

)n/4
(detV )1/4e−

1
2~V x

2

.

Its Radon transform is then

RψV
(X,A,B) = C exp

[
− 1

2~(BV B
T +AV −1AT )−1X ·X

]
(35)

C =
(

1
π~

)n/2
(detV ′)1/2 det(BV BT +AV −1AT )−1 (36)

V ′ = Λ
[
BVBT +AV −1AT

]−1
Λ (37)

4.3 Application: the Pauli problem

When n = 1 the formula (33) takes the simple form (replacing A,B, V,W
with scalars a, b, v, w)

Rψv,w
(X, a, b) = C exp

[
− 1

2~

[
b2v + (a− bw)2v−1

]−1
X ·X

]
(38)

where

ψv,w(x) =
(

1
π~

)1/4
v1/4e−

1
2~ (v+iw)x

2

.

Let us apply this formula to the “Pauli problem”. This problem goes back
to the question Pauli asked in [19], whether the probability densities |ψ(x)|2

12



and |ψ̂(p)|2 uniquely determine the wavefunction ψ(x). The answer is “no”:
consider in fact the Gaussian wavepacket

ψ(x) =
(

1
2πσxx

)1/4
e−

x2

4σxx e
iσxp

2~σxx
x2 (39)

whose Fourier transform of ψ is given by

ψ̂(p) = eiγ
(

1
2πσpp

)1/4
e
−

p2

4σpp e
−

iσxp

2~σpp
p2

(40)

where γ is an unessential constant real phase. Thus,

|ψ(x)|2 =
(

1
2πσxx

)1/2
e−

x2

2σxx , |ψ̂(p)|2 =
(

1
2πσpp

)1/2
e
−

p2

2σpp (41)

and these relations imply the knowledge of σxx and of σpp, but not of the
covariance σxp (the latter can actually be determined up to a sign using the
fact that ψ saturates the Robertson–Schrödinger uncertainty principle: we
have σxxσpp − σ2xp =

1
4~

2). Let us calculate the Radon transform of ψ using
formula (38). We have here v = ~/2σxx, w = −σxp/σxx hence (38) becomes

Rψv,w
(X, a, b) = C exp


− 1

2~

[
b2~

2σxx
+

(
a+ b

σxp
σxx

)2 2σxx
~

]−1

X2. (42)

Notice that, as expected,

Rψv,w
(X, 1, 0) =

(
1

2πσxx

)1/2
e−

X2

4σxx = |ψ(x)|2

and, using the relation σxxσpp − σ2xp =
1
4~

2,

Rψv,w
(X, 0, 1) =

(
1

2πσpp

)1/2
e
−

X2

2σpp = |ψ̂(X)|2.

These relations show why we cannot recover the state ψ using the two radon
transforms Rψv,w

(X, 1, 0) and Rψv,w
(X, 0, 1): none of them allow to deter-

mine the covariance σxp. However, it suffices with one clever choice of the
parameters a and b in formula (42). Suppose indeed we have measured, for
some values of the parameters a and b, the positive quantity

K =
b2~

2σxx
+

(
a+ b

σxp
σxx

)2 2σxx
~

(43)
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appearing in the exponent of (42). Assuming that the variances σxx and
σpp are known, we can find the covariance σxp as follows: viewing (43) as a
quadratic equation in the unknown σxp we demand that this equation has
exactly one real root. This imposes the relation

K =
b2~

2σxx

and reduces (43) to the equation

a+ b
σxp
σxx

= 0

from which σxp is unambiguously determined.

5 Concluding Remarks

In this paper we outlined a novel approach to the symplectic Radon trans-
form, which we believe is conceptually very simple once one realized the
fundamental role played in quantum mechanics by the metaplectic repre-
sentation of the symplectic group. As we have discussed elsewhere [9] a
few years ago , this is the shortest bridge between classical (Hamiltonian)
mechanics, and its refinement, quantum mechanics. This being said, our
approach is somewhat sketchy since we haven’t characterized the classes of
functions (or states) to which we can apply the radon transform, limiting
ourselves, for simplicity, to the square integrable case. It is however well-
known (at least by people belonging to the harmonic analysis community),
there are function spaces invariant under metaplectic transformations which
are larger than the space of square integrable functions. We are, among other
possibilities, thinking about Feichtinger’s modulation spaces [10], which are
a very flexible tool for creating quantum states, and which can be used to-
gether with Shubin’s pseudodifferential calculus [21] to extend the theory
(one could, for instance, envisage the reconstruction of general observables
along these lines).

We will definitely come back to these topics in a near future.

APPENDIX A: The metaplectic group Mp(n)

For a detailed study of the metaplectic group Mp(n) see [5, 15]. For a rather
“soft” (but still rigorous) approach see [16].
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Let S =

(
A B
C D

)
be a real 2n×2nmatrix, where the “blocks” A,B,C,D

are n× n matrices. Let J =

(
0 I
−I 0

)
the standard symplectic matrix. We

have S ∈ Sp(n) (the symplectic group) if and only SJST = STJS = J .
These relations are equivalent to any of the two sets of conditions

ATC, BTD are symmetric, and ATD − CTB = I (44)

ABT , CDT are symmetric, and ADT −BCT = I. (45)

One says that S is a free symplectic matrix if B is invertible, i.e. detB 6= 0.
To a free symplectic matrix is associated a generating function: it is the
quadratic form

A(x, x′) =
1

2
DB−1x · x−B−1x · x′ + 1

2
B−1Ax′ · x′. (46)

The terminology comes from the fact that the knowledge of A(x, x′) uniquely
determines the free symplectic matrix S: we have

(
x
p

)
=

(
A B
C D

)(
x′

p′

)
⇐⇒

{
p = ∇xA(x, x′)
p′ = −∇x′A(x, x′)

as can be verified by a direct calculation (the quadratic form A is thus a
generating function of the free symplectic matrix S) .

Now, to every free symplectic matrix SA we associate two operators ŜA,m
by the formula

ŜA,mψ(x) =
(

1
2π~

)n/2
im−n/2

√
|detB−1|

∫
e

i
~
A(x,x′)ψ(x′)dnx′ (47)

where m (“Maslov index” [5]) corresponds to a choice of argument for
detB−1: m = 0 mod2 if detB−1 > 0 and m = 1 mod2 if detB−1 < 0
(m is defined modulo 4). It is not difficult to prove that the generalized
Fourier transforms ŜA,m are unitary operators on L2(Rn). These opera-
tors generate a group, the metaplectic group Mp(n). One shows that every
Ŝ ∈ Mp(n) can be written (non uniquely) as a product ŜA,mŜA′,m′ . This
group is a double covering of Sp(n), the covering projection being defined
by

πMp : Mp(n) −→ Sp(n) , πMp(ŜA,m) = SA. (48)
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APPENDIX B: The Lagrangian Grassmannian

A linear subspace ℓ of the symplectic space (R2n, σ) is called a Lagrangian
subspace (or plane) if it is maximally isotropic for the skew orthogonality
relation σ(z, z′) = 0. It must thus have dimension dim ℓ = n and σ van-
ishes identically on ℓ. The set of all Lagrangian planes in R

2n is called the
Lagrangian Grassmannian and is denoted by Lag(n). The symplectic group
Sp(n) acts transitively on Lag(n); in fact the action

Sp(n)× Lag(n) −→ Lag(n) (49)

thus defined induces a transitive action

U(n)× Lag(n) −→ Lag(n) (50)

where U(n) is the image in Sp(n) of the unitary group U(n,C) by the
monomorphism ι : u 7−→ U defined by U(x, p) = (x′, p′) if u(x+ip) = x′+ip′.
In matrix notation

ι(A+ iB) =

(
A B
−B A

)
.

The conditions (44), (45) are here equivalent to

ATB is symmetric, and ATA+BTB = I (51)

ABT is symmetric, and AAT +BBT = I. (52)

The elements of U(n) are the symplectic rotations of (R2n, ω):

U(n) = Sp(n) ∩O(2n,R) (53)

and the transitivity of the action (50) follows: let (ℓ, ℓ′) ∈ Lag(n)× Lag(n)
and choose two bases {e1, ..., en} and {e′1, ..., e′n} of ℓ and ℓ′, respectively.
Then {e1, ..., en;Je1, ..., Jen} and {e′1, ..., e′n; Je′1, ..., Je′n} are both symplec-
tic and orthogonal bases of (R2n, σ). The automorphism U of R2n taking
the first basis to the second is thus in Sp(n)∩O(2n,R) and we have ℓ′ = Uℓ.

Lemma 5 Let ℓ ∈ Lag(n). There exist real n×n matrices A,B with rank(A,B) =
n and ATB = BTA and ABT = BAT such that

ℓ = {(x, p) ∈ R
2n : Ax+Bp = 0}.

Proof. It is a straightforward consequence of the transitivity of the action
(50) of U(n) on Lag(n)
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