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This study clarifies the proper criteria to assess the modeling capacity of a general tensor model. The work

analyze the problem based on the study of tensor ranks, which is not a well-defined quantity for higher order

tensors. To process, the author introduces the separability issue to discuss the Cannikin’s law of tensor mod-

eling. Interestingly, a connection between entanglement studied in information theory and tensor analysis is

established, shedding new light on the theoretical understanding for modeling capacity problems.

I. INTRODUCTION

Along with the significant growth of computing power,

complicated models becomes available for problems with

large degrees of freedom, which, in recent years, has been

further popularized along with the progress in deep learning

learning research. People are generally interested in analyz-

ing high-order tensors of large scales, and discussing their ca-

pability to capture complex relations. Efficient tensor models

are desired to solve real life problems with fewer adaptive pa-

rameters.

Despite the proliferation of related work in theoretical anal-

ysis on tensors, there actually has been a long-time mis-

understanding about the modeling power of tensors. Given a

tensor, there are two related while completely different quan-

tities: tensor complexity, and its model capacity. While the

latter is the concern of most research, studies frequently take

the problem of the former one to analyze. Briefly speaking,

tensors with large complexity is not guaranteed to be a model

with sufficient capacity. This confusion motivates the current

work, which delivers a comparison between these two per-

spective, including problem setup, theoretical analysis, and

related techniques.

More specifically, in the field of tensor analysis, in gen-

eral, people are interested in low rank efficient representations

of high order tensors. There are mainly two different sets of

problems:

1. One does not tries to approximate a specific tensor, but

is more interested in finding an efficient model space.

2. One aims at approximating a specific tensor, given exact

information about tensor entries.

For the first set of problems, one focus more on tensor model

structures, rather than an algorithm to find the optimal approx-

imation. Therefore, the model capacity would be the foremost

concern. In the second set of problems, the ultimate goal is to

find a best (or sub-optimal) estimation with direct information

on entries, therefore one would compose an explicit algorithm

for higher order tensor decompositions, which produces a re-

sulting model structure (e.g. Tucker-decomposition producing

the Tucker-format, and sequential SVD producing the tensor-

train format).

Due to the above difference, theoretic analysis associated

with the two set of problems also differs a lot. On the one

hand, to capture the model capacity, one popular choice is the

so-called canonical polyadic (CP) rank: a higher CP-rank is

usually regarded as a sign of higher capacity. On the other

hand, the task of the tensor approximation requires that the

model class forms a closed set, which rules out most model

structures containing loops, leaving tree tensor models more

popular among the community that can be optimized with

generalized versions of SVD.

The major goal of this work is to clarify a proper analy-

sis scheme for investigating tensor model capacity, and there-

fore to provide further insight for designing efficient models.

However, we would start by arguing that the CP-rank is not

a proper language for this purpose, as tensor complexity and

model capacity are conceptually different. Instead, we apply

the idea of truncating small weight Schmidt components, and

clarify assumptions of ”separability” implied by any low order

tensor model structure.

To achieve this, we start by introducing the generalized

Schmidt decomposition and finite rank truncation, along with

some popular algorithms which help to find a quasi-optimal

solution. Then we introduce the definition of CP-rank as a

generalized version of matrix rank, which can be used for ten-

sor complexity analysis. We continue by clarifying the differ-

ence between tensor complexity and model capacity, and pro-

vides a more natural capacity measure: the separability scal-

ing behavior (SSB). With this measure, different existing ten-

sor model structures are compared and further insights could

be derived for model design in black-box modeling tasks.

II. GENERALIZED SCHMIDT DECOMPOSITION AND

RELEVANT ALGORITHMS

The problem of multivariate function tensorization (MFT)

and tensor approximation (TA) problems are similar to each

other. For MFT, one is usually given a function defined on

I ⊂ RL: f (x1, x2, · · · , xL), and attempt to decompose it into a

product of single variate orthonormal basis functions. The TA

problem, on the other hand, aims at decomposing a high order

tensorAs1 s2···sL
into a product of low order tensors, where si ∈

[1,D]. In TA problems, one needs DL number of entries to

http://arxiv.org/abs/2204.07760v1


2

specify a tensor; while in MFT, one instead requires PL, where

P represents the number of single variate orthonormal basis

functions, and in general could be∞.

In general, as the complexity (for both storage and com-

putation) increase exponentially when ”order” increase, one

is interested in a ”low order decomposition” to approximate

a tensor/function, where the term ”order” means number of

modes/variables in tensors/functions.

A. General Schmidt Decomposition

In both problems, the Schmidt decomposition plays the key

role, which reveals the interplay (entanglement) between dif-

ferent modes/variables. More precisely, consider any biparti-

tion of modes/variables which leads to a matricization of the

original tensor/function:

As1 s2···sL
= Asa,sb

;

f (x1, x2, · · · , xL) = f (xa, xb). (1)

One could then apply a Schmidt decomposition on the two

separated parts, by finding the left and right singular vec-

tors/functions defined independently on the two parts:

uαsa
, vαsb

ψα(xa) , φα(xb) ∀α ∈ [1,R] (2)

where uα and vα are left and right singular vectors of the ma-

trix A, whose indices are labeled as sa and sb running from

1 to da = Dla and db = Dlb , respectively; while ψα(xa) and

φα(xb) are left and right singular functions of the bi-variable

function f (xa, xb), whose variables are labeled as xa and xb

respectively (taking values in a bounded region). The index

α labels different singular vectors/functions, where, in total,

R of them exist: R is bounded by min(da, db) in matrix case

used for TA and in general reaches ∞ in function case used

for MFT. The resulting Schmidt decomposition then follows:

Asa,sb
=

R
∑

α=1

√

λα · u
α
sa
· vαsb

;

f (xa, xb) =

R
∑

α=1

√

λα · ψ
α(xa) · φα(xb), (3)

where λα is called singular values, which is assumed to be

arranged in a descending order.

An important feature of this decomposition is that each

component are orthogonal to each other, and therefore ex-

pands in an independent dimension (subspace). With a proper

defined inner product (dot product for vectors, and L2-integral

on a bounded region for functions), the distance between two

arbitrary tensors/functions can then be expressed with merely

the coefficients λα’s, which provides a necessary criteria to

discuss tensor/function approximation.

Going back to Eq(3), instead of using all R components

which leads to an exact expression, one could use a truncated

expression up to r components as an approximation, regarding

the fact that coefficients (singular values) are in a descending

order. the resulting L2-error in both case is then:

ǫ =

R
∑

α=r+1

λα. (4)

One is usually interested in a low rank approximation, which

corresponds to a small number r. To achieve an efficient low

rank approximation, the descending sequence {λα} must van-

ish fast enough. We could consider the two extreme cases:

• in the worst scenario, all λα’s are equal without vanish-

ing, which would lead to a worst approximation (corre-

sponding to the ”maximally entangled” case);

• in the best scenario, all but the first λα are zero, meaning

the tensor/function can be written as a product of two

tensors/functions defined in orthogonal spaces (corre-

sponding to the ”disentangled” case).

In more general cases, given an error acceptance threshold

ǫ, the minimum number r of components kept to achieve the

error threshold therefore suggests the difficulty of the approx-

imation of a tensor/function: the larger r is required, the more

difficult the tensor/function approximation is.

The above discussion implies that the set of singular values

{λα} (also called entanglement spectrum in physics) actually

captures the ”separability” of two parts given a bipartition.

The information contained in the spectrum could be extracted

in multiple levels:

• the number of non-zero λα’s, i.e. matrix rank, which

also relates to the zeroth order Rényi entropy;

• the distribution of {λα}, which can be further captured

by the Ln-distance from an uniform distribution (all λα’s

are equal), related to the n-th order Rényi entropy.

This motivates one to use the entanglement entropy to catego-

rize different problems.

B. The (quasi) Optimal Approximation of Low Order

Decomposition

The above introduced Schmidt decomposition in general

setups not only provides a way to analyze the error in this

specific approach, but also implies a method to achieve a

quasi-optimal (if not the best) approximation with a low or-

der decomposition. The capability for achieving the ”quasi-

optimal” approximation is rooted in two facts: the orthogo-

nality of different components, and the exact error expression

in Eq(4). Indeed, given rank r for a bipartition approxi-

mation (express a tensor/function using two lower order

tensors/functions), the best approximation minimizing the

Frobenius norm criteria is achieved by truncating the sub-

space expanded by components indexed higher than r in

the Schmidt decomposition.
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To put it more systematically, low order decompositions

involve connecting (contracting) pieces of low order compo-

nents, i.e. lower order tensors in TA and functions with fewer

variables in MFT. There is no algorithm that could find the

best, or even the quasi-optimal, approximation (global op-

tima) for generic tensor models. For example, both the CP-

decomposition and tensor networks containing closed cycles

consist of a tensor set that is not closed, which renders the

problem of finding a best approximation ill-posed. However,

for tree tensor networks, there is indeed a general recipe to

find at least the quasi-optimal approximating tensor: a sequen-

tial Schmidt Decomposition (SSD), which corresponds to the

high-order singular value decomposition (HOSVD) in tensor

analysis field.

There are different versions of SSD that are associated with

different tensor structures. Generally speaking, a SSD con-

sists of a sequence of Schmidt decompositions acting on

different modes/variables. Each Schmidt decomposition

slices out a lower order components that connects with the

rest modes/variables through a single-leg tensor contrac-

tion.

For example, the quasi-optimal approximation of Tensor-

Train models can be achieved by slicing one mode/variable

each time through a Schmidt decomposition; the quasi-

optimal approximation of Tucker-format tensor models can be

achieved by applying Schmidt decomposition on each single

mode/variable individually; The Hierarchical-Tucker models

can be quasi-optimally approximated through a root-to-leaves

sequence of Schmidt decompositions.

The error analysis of algorithms differ in the tensor and

function cases: in MFT problems, error could be bounded

by certain constant (usually as a function of number of vari-

ables and tensor ranks); while in TA problems, given tensor

ranks, error could only be bounded by the minimum error of

the model structure itself multiplied by a constant (usually as

a function of tensor orders). Briefly speaking, this is due to

the fact that in MFT, there are usually certain extra assump-

tions on the smoothness of the function, while, in TA, for high

order tensors with finite number of entries, there are no such

constraints.

III. TENSOR-COMPLEXITY ANALYSIS: CANONICAL

POLYADIC RANK

The above discussed TA problem describes the case when

direct information (entries) is given about the target tensor,

one is interested in finding a low order tensor approximation.

The general procedure contains a sequence of SVDs that sub-

sequently slice off mode clusters, and the final approximation

are composed by a series of virtual index contractions.

Regardless of the general recipe, another important ques-

tion is the complexity of a tensor, which renders the diffi-

culty of approximation in practice. For higher order tensors,

the most popular criteria describing tensor complexity is the

canonical polyadic rank, which can be deemed as a gener-

alization of matrix rank for higher order cases. Basically, a

tensor with larger canonical polyadic rank is associated with

a higher complexity. In this section, we would introduce this

widely used concept.

A. Canonical Polyadic Rank

The Canonical Polyadic (CP) rank can be regarded as a gen-

eralized version of matrix rank in the case of higher order

(> 2) tensors. We could discuss matrix rank using Schmidt

decomposition form:

Asa,sb
=

R
∑

α=1

√

λα · u
α
sa
· vαsb

, sa,b ∈ [1, da,b]. (5)

The number R is the rank of the matrix A. As mentioned be-

fore, the rank captures the separability of two parts from a

bipartition of modes. For higher order tensors, the CP rank is

defined in a similar way, where a bipartition is replaced by a

multi-partition:

As1 s2···sL
=

R
∑

α=1

√

λα · v
α
s1

vαs2
· · · vαsL

, (6)

and R is then called the CP-rank of tensor A. As now the

system is partitioned in multiple modes, it is not clear how

to define the separability issue in this form now. In fact, CP

rank is equivalent to (up to a exp/log function) the Schmidt

measure for multipartite entanglement. In quantum infor-

mation field, it is well know that the Schmidt measure can-

not distinguish between truly multipartite entanglement and

bipartite entanglement.

B. Upper Bound Nature of CP Rank

Further more, we would like to relate the CP rank and ma-

trix rank. As used above, a popular trick for higher order ten-

sor is matricization through a mode bipartition, i.e.

As1 s2···sL
−→ Asa,sb

. (7)

One could easily prove that CP rank R is an upper bound of

matrix ranks for all possible matricizations.

Basically, we prove rank
[

A(a,b)
]

< R for any matricization

with mode bipartition (sa, sb), where A(a,b) is the matriciza-

tion partitioning the mode (s1, s2, · · · sL) into (sa, sb). For each

component in a CP decomposition, the matrix rank is 1, since

it is a direct product state and purely separable. Then due to

the linear nature of the matricization operation:

A(a,b) :=

[
R
∑

α=1

√

λα · v
α
s1

vαs2
· · · vαsL

](a,b)

=

R
∑

α=1

[

√

λα · v
α
s1

vαs2
· · · vαsL

](a,b)
, (8)

we therefore have:

rank
[

A(a,b)] = rank

[ R
∑

α=1

[

√

λα · v
α
s1

vαs2
· · · vαsL

](a,b)
]

≤

R
∑

α=1

rank

[

[

√

λα · v
α
s1

vαs2
· · · vαsL

](a,b)
]

= R (9)
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Therefore the CP rank R is an upper bound of matrix rank

among all possible matricizations.

Therefore, although CP-rank cannot be directly defined as

”separability”, it at least captures the upper bound of all possi-

ble matrix ranks. In other words, the CP-rank describes the

separability of the most inseparable mode bipartition. In

this sense, it can indeed serve as a tensor complexity measure,

although more details of interactions (entanglements) among

different modes are absent.

IV. TENSOR MODEL CAPACITY ANALYSIS:

COORDINATE SEPARABILITY

Above we introduced two important concepts:

• The sequential Schmidt decomposition provides both a

class of algorithms to construct lower order (tree) ten-

sor approximation for high order tensors and associated

error analysis;

• The CP-rank describes the complexity of a tensor,

which is usually the target tensor to be approximated.

With the help of the above discussion, we now study the

problem that is more crucial in practice: constructing a high-

capacity model. Most Deep Learning researches are more re-

lated to this category: since deep neural network models are

usually optimized using gradient based methods, the goal of

changing model structure is then not to design a model that

could be cheaply optimized by a novel algorithm, but purely

to find a novel model which, itself, could capture desired fea-

tures and dynamics of the downstream task. A meaningful

criteria to evaluate the model capacity is hence desired.

In many previous studies, the same CP-rank has been used

to describe model capacity. We would like to argue that this

may not be the best criteria for model analysis, based on

which, we would like to return to the separability property,

and describe the model capacity using the scaling behavior of

bipartition matrix ranks.

A. Difference between Model Capacity and Tensor Complexity

Firstly, we would like to clarify the difference between the

complexity of a tensor and the capacity of a model.

As we discussed earlier, the technique using lower order

pieces to construct higher order tensors relies on the separa-

bility issue. In the case where all modes a completely sep-

arable, only a linear number of basis vectors (rank-1 tensor)

are required; in the case where any two parts are inseparable,

it is quite difficult to construct a lower order representation.

Therefore, both for tensor complexity and model capacity, we

would discuss the separability issue.

On the one hand, the tensor complexity implies how diffi-

cult it is to describe a tensor. The most difficulty would ap-

pear in the bipartition with a highest matrix rank, which

in the lower order representation would result into a con-

traction with higher virtual dimension.

On the other hand, the model capacity should be evaluated

by considering ”weakness” in the structure. Given a tensor

model, one could also consider different mode bipartitions. In

this scenario, however, the bipartitions associated with lower

matrix rank should be concerned: by applying the corre-

sponding model, one has assumed a strong separability on

these mode bipartitions.

As we proved above, the CP-rank provides an upper bound

for bipartition matrix rank, and therefore could serve as a

primitive and basic description for tensor complexity. But for

model capacity, the CP rank may not be a proper criteria, as

it does not contain the information of mode bipartitions with

lower matrix ranks.

B. Black-Box Tensor Modeling Problems

Most generally, we could answer a more straightforward

question: suppose a separability assumption is made on a L-

order target tensor As1 s2···sL
, what is the minimum universal

virtual-leg dimension R that could guarantee the target tensor

being well-approximated, when using different model struc-

tures?

A black-box modeling procedure could be performed to ap-

proximate a target tensor with certain separability assump-

tion (or say, information). Given a tensor model structure

M, different modes-bipartitions could capture interplay (en-

tanglement) with different complexity, However, note as a

black-box modeling, one in general cannot arrange different

modes/variables in a way that the target tensor complexity and

the model complexity match each other. Instead, to guarantee

a solution to be found, the following relation should hold:

max
a∈Pm

rank
[

A(a,ā)] ≤ min
a′∈Pm

rank
[

A
(a′ ,ā′)

M

]

, ∀m ∈ [1, L/2], (10)

where A(a,ā) is the matricization of the target tensorA associ-

ated with the modes-partition (s1, s2, · · · , sL) = sa ∪ sā, and

A
(a′ ,ā′)

M
is the matricization of the model tensorAM associated

with the modes-partition (s1, s2, · · · , sL) = sa′∪ sā′ . AndPm is

the set of modes-bipartitions where the smaller part contains

m modes.

With the above discussion, it becomes quite clear that the

model capacity, which is captured on the right hand side, is

related to the lower bound of matricization ranks. We term

the above relation in Eq.(10) as the Cannikin’s law of tensor

modeling.

C. Strong Separability Assumption in Popular Tensor models

From the above analysis we are aware that, given any model

structure, to analyze the model capacity, one should put par-

ticular concern on the mode bipartitions associated with lower

matrix ranks. Now we analyze some popular tensor models as

a further demonstration.
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1. Tensor-Train Model

The Tensor-Train models (TT)1 construct higher order ten-

sors in the following form:

As1 s2···sL
=

r
∑

{αi}

Mα1
s1

Mα1 ,α2
s2
· · ·MαL−1

sL
, (11)

where each M is a order-3 tensor (except the boundary two

which are of order 2). For simplicity while w.l.o.g, we con-

sider the case where are virtual bonds have the same dimen-

sion r.

Firstly, consider any bipartition separating the sequence

(s1s2 · · · sL) with one cut, i.e. (s1 · · · sm) ∪ (sm+1 · · · sL),∀m ∈

[1, L − 1], where we label two disjoint sets as sa = (s1 · · · sm)

and sā = (sm+1 · · · sL). The resulting matrix rank can be cal-

culated as:

rank
[

A(a,ā)]

= rank

[ r
∑

αm

(

∑

{αi}

Mα1
s1
· · ·Mαm−1 ,αm

sm

)

·

(

∑

{α j}

Mαm ,αm+1
sm+1

· · ·MαL−1
sL

)]

= rank

[
r
∑

αm

Uαm
s1···sm

Uαm
sm+1···sL

]

= rank

[

Ua · Uā

]

, (12)

where the two matrices Ua and Uā are contracted through an

inner product of virtual bond αm, which has dimension r. We

can therefore conclude that such bipartitions produce matrix

ranks upper-bounded by r.

More generally, any cut may result the upper bound of ma-

trix ranks increase by r. Therefore, the bipartitions associated

least lowest possible matrix rank are those created by one sin-

gle cut.

Now we interpret the meaning of such mode bipartitions.

As shown above, in the matrix expression:

A(a,ā) =

r
∑

αm

Uαm
s1···sm

Uαm
sm+1···sL

, (13)

the virtual bond contraction only involves r terms. This is

equivalent to assume that the interplay between the modes

clusters (s1 · · · sm) and (sm+1 · · · sL) can be efficiently captures

by only r terms. In the case where r → ∞, this decomposi-

tion could be exact, without any error introduced. In practice,

however, we are interested in finite r case, with the hope that

the truncation in r would be accepted given an error threshold

ǫ.

More precisely, w.l.o.g, we assume m ≤ L
2

(hence Dm ≤

DL/2), and each original mode si could take D different possi-

ble values. The dimension of the space expanded by (s1 · · · sm)

is therefore Dm. The r terms summation would be sufficient to

capture the interplay between two clusters in the case where

r ≥ Dm; if Dm ≥ r, which in a high order tensor problem is

very possible, then the r terms summation in general would

miss certain interplay between modes clusters (i.e., truncated

terms in the full summation), and eventually introduce er-

rors. In other words, by implementing a TT-model with

finite virtual dimension r, one assumes each m-modes clus-

ter (starting from one end) interacts with the rest modes

through r terms summation.

To restore an arbitrary L-order tensor, the required universal

virtual dimension of a TT model would then be:

RTT = D
L
2 . (14)

2. Hierarchical-Tucker Model

A H-level Hierarchical-Tucker model constructs higher or-

der tensors in the following form:

φα(h + 1, j) =
∑

β1,β2

Λ
β1,β2
α (h + 1, j) ·

[

φβ1
(h, 2 j − 1) · φβ2

(h, 2 j)

]

.

Each (h, jh) is a coordinate in the quasi 2-dimensional tree

structure, h ∈ [0,H] representing the layer index in the tree,

and j ∈ [1, lh] represents the translational index in the layer.

The above form represents a bi-HT model: each higher

layer tensor is obtained from only two lower layer tensors

through an order-3 coefficient tensor Λ(h, jh). In this case,

one could easily derive that:

H = log2 L; lh =
L

2h
. (15)

The zero-th layer mode tensors have the following form:

φsi
(0, i), ∀i ∈ [1, L], (16)

which, together with all order-3 coefficient tensors Λ(h, jh),

determines the large L-order tensor. The last layer coefficient

tensor could be an order-2 tensor: Λβ1,β2 (H, 1).

Similar to the analysis on TT-models, again we consider all

virtual dimensions are the same, i.e. all three indices of Λ

runs within [1.r] (except the zero-th layer). The bipartitions

with only one single cut then correspond to a relatively large

truncation. In fact, a cut slicing off m = 2h modes from one

end, in general, requires r = Dm virtual dimension. The cut

on the last layer requires r = DL/2 for an exact representation

of an arbitrary L-order tensor, which is also the one that may

introduce largest errors when a finite dimension truncation is

applied. In other words, by implementing a HT-model with

finite virtual dimension r, one assumes each 2h-modes clus-

ter (starting from one end) interacts with the rest modes

through r terms summation.

To restore an arbitrary L-order tensor, the required universal

virtual dimension of a HT model would then be:

RHT = D
L
2 . (17)

D. Weaker Separability Assumptions

The above study has clarifies the separability assumptions

implied by popular tensor model structures. Generally, when
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constructing higher order tensors from lower order ones

through virtual bond contractions with finite bond di-

mension r, the model implicitly assumes the interplay be-

tween two modes-clusters could be well-approximated by

r terms. This assumptions becomes more difficult to be satis-

fied when the contracted two clusters expand a larger space.

We call a separability assumption ”strong” when the num-

ber of summed terms capturing the modes interplay is much

smaller than the total dimension of the interplay space, i.e. the

truncatable space is large.

In general, a tensor model should prevent stronger sep-

arability assumptions, unless the target tensor satisfies cer-

tain special conditions (e.g. area law functions in low-energy

states of strongly correlated system). The popular tensor mod-

els analyzed above, however, when using finite tensor rank r.

have implicitly added many strong separability assumptions

on the cuts that separate two large clusters.

When no specific information is provided about the target

tensor, e.g. modeling with deep neural networks, one in gen-

eral expect the interplay between two clusters becomes more

complicated when the cluster dimension increases. There-

fore, when the separated two clusters have a higher dimen-

sion, the model structure should also involve more summed

terms, which, given a universal virtual bond dimension, im-

plies a larger number of contracted bonds.

More specifically, one aims at finding tensor model struc-

tures that contain more bonds contractions when separated

modes-clusters expand larger spaces. Suppose the smaller

cluster in a bipartition involve m modes, then the number of

contracted indices n should increase when m increases.

There could be different scaling behaviors of n as a func-

tion of m, which in general depends on the targeted tensors.

The worst scenario corresponds to the case where n(m) is an

exponential function; in this case, however, it is impossible

to construct low rank tensor models, as any truncation would

result into large errors, and we call it as an ”irreducible prob-

lem”. The best scenario may require only a constant num-

ber n of contracted indices, which is the assumption made by

both TT and HT models; however this is apparently an ex-

tremely strong assumption that is difficult to be satisfied. One

is hence interested in model structures with weaker sep-

arability assumptions, such that n(m) is a monotonically

increasing function, but not grow exponentially. We use

the term separability scaling behavior (SSB) to describe the

function form of n(m). The TT and HT models therefore have

constant separability scaling, and the irreducible case has an

exponential separability scaling.

Two typical behaviors of n(m) are power-law n ∼ mα, and

logarithm n ∼ log m. Given a model structure, if any modes

bipartitions satisfy at least:

• an exponential separability scaling, then we call the

model an exponential separable mode;

• a power law with an exponent α separability scaling,

then we call the model a power-α separable mode;

• a logarithm separability scaling, then we call the model

a logarithm separable mode;

• a constant separability scaling, then we call the model a

constant separable mode.

Among all classes, the exponential separable models are irre-

ducible, i.e. there does not exist a efficient low rank represen-

tation.

Importantly, in the above definition, the term ”at least” im-

plies the fact that there may exist bipartitions associated with

more complicated separability scaling behaviors, and empha-

sizes that in general one should be concerned with the lower

bound of all possible scaling behaviors. This contrasts the

CP rank analysis of tensor complexity, due to the differ-

ence we emphasized earlier: the complexity analysis of a

target tensor depends on the most complicated interplay

among different modes, which corresponds to the upper

bound of bipartition matricization ranks; while the capac-

ity analysis of a model structure depends on the strongest

assumption made on the ”separability” issue, which cor-

responds to the lower bound of separability scaling.

V. TENSOR MODELS WITH WEAK SEPARABILITY

ASSUMPTIONS

In this section, we introduce a new tensor model structure

that implies a weaker separability assumption, which is easier

to be satisfied in practice compared with TT or HT models.

The model is called Multiscale Entanglement Renormaliza-

tion Ansatz (MERA), and belongs to the logarithm separable

model category.

A. Multiscale Entanglement Renormalization Ansatz

MERA is proposed in the field of quantum information, to

capture more complicated quantum states beyond an area-law

scaling of EE. We would briefly mention MERA, and more

details can be found in Evenbly and Vidal 20072 , etc. The

general idea of MERA, different from other TNs, is to use a

(d+1)-dim TN to represent a d-dim system, where the extra di-

mension in physics represents the flow of the Renormalization

Group (RG). It has been noticed before that a MERA structure

is quite similar to CNN3.

There are essentially two major types of tensor blocks in

MERA: disentangler tensors and isometry tensors. A MERA

representation of a general high-order tensor follows a hierar-

chical structure. Taking the spatial dimension to be 1, and set

the original tensor order L = 4, the MERA representation of

the tensor could be written as:

As1 s2 s3 s4
≃
∑

{qi,r j}

˜̃Vq1q2
Ṽ

q1

r1r2
Ṽ

q2

r3r4
V̂r1r2

s4 s1
V̂r3r4

s2 s3
. (18)

where each V̂ is an order-4 tensor, termed as a disentangler,

and each Ṽ is an order-3 tensor, termed as an isometry ten-

sor. The top-tensor ˜̃V is always of order 2, which could be

viewed as a coefficient tensor. For higher orders with larger

L value, the construction could be easily generalized hierar-

chically. For 1d cases, MERA describes systems whose EE
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scales with a log-correction, which enters in MERA as a re-

sult of spatial coarse-grain in RG. Hence MERA would be

a nice candidate for log-correction problems, which is more

complicated than area-law ones.

B. Separability Assumption in MERA

Suppose a universal virtual bond dimension exists, we

are interested in the modes-bipartition associated with the

least number of bond contractions, which corresponds to the

strongest separability assumption implied by the structure.

For a mode sequence (s1, s2, · · · sL), the bipartition at position

m = 2h cut at least n(m) ∝ log2 m virtual bonds (either isom-

etry bonds or reshaped disentangler bonds). As a reshaped

disentangler bond (with probability 1) has virtual dimension

r2, below we could focus on the case where all cut bonds are

isometry bonds only with virtual dimension r.

Again, as m increases, the total dimension of the (smaller)

space from a bipartition increases as Dm. As, for any form

of bipartitions, there are at least log2 m bonds, each of which

contracts r virtual dimensions, the model structure guarantees

at least rlog2 m terms in the summation capturing the interplay

between any two parts. If no truncation is allowed, then the

virtual dimension r required would be:

r(m) = D
m

log2 m . (19)

To restore an arbitrary L-order tensor, the required universal

virtual dimension of a MERA model would then be:

RMERA = D
L

2(log2 L−1) . (20)

Compared with TT and HT models, the required universal vir-

tual dimensions have the following relation:

RHT = RTT =
[

RMERA

]log2 L−1
(21)

C. Black-Box Modeling with Given Separability Assumptions

Now we provides a quantitative analysis for the question

raised in earlier sections: the black-box tensor modeling prob-

lems.

Firstly we should clarify a reasonable form of separabil-

ity assumptions about any target tensor. As discussed earlier,

without further information, one in general expects the inter-

play between two parts becomes more complicated as the size

m of two parts (or the smaller one, which determines the ma-

tricization rank) increases. The complexity of the interplay

could be captured by the number of Schmidt components,

the separability assumption could thus be represented by

the maximum number of Schmidt components N(m) as a

monotonically increasing function of m.

Now we derive the required universal virtual dimension χ

in different models given N(m). For both HT and TT models,

according to Eq.(10), we have:

N(m) = χ
HT,TT

, ∀m ∈ [1, L/2]. (22)

As the above equation should hold for any value of m, and re-

calling the monotonically increasing nature of N(m), we thus

have the final result:

χ
HT,TT
= N

(

L

2

)

, (23)

This in general is a large number, due to the weakness in the

structure of both TT and HT models: there exist single cuts

that bipartite two parts with large dimensions.

On the other hand, the situation in MERA is improved as:

N(m) = χlog2 m
MERA

, ∀m ∈ (1, L/2], (24)

which eventually requires a universal virtual dimension:

χ
MERA
= max

m∈(1, L
2

]

[

N(m)
]

1
log2 m . (25)

It is obvious that Eq.(20) is a special case of the above ex-

pression when N(m) is an exponential function Dm, i.e. the

irreducible problems. Comparing Eq.(23) and Eq.(25) by tak-

ing the (base-2) logarithm on both expressions, we have:

log2 χMERA
= max

m∈(1, L
2

]
log

(

[

N(m)
]

1
log2 m

)

= max
m∈(1, L

2
]

log2 N(m)

log2 m

≤ max
m∈(1, L

2
]
log2 N(m)

= log2 N

(

L

2

)

= log2 χHT,TT
, (26)

where the inequality has taken the fact that m > 1 in gen-

eral, as the interplay between a single mode and other parts

should rarely be the most complicated one. The above in-

equality demonstrates the advantage of MERA compared with

HT and TT structures.

VI. DISCUSSION

We discuss the problem of tensor model capacity, and clar-

ifies the difference between tensor complexity and model ca-

pacity. Importantly, a tensor with large complexity does not

guarantee sufficient model capacity, if the structure of it im-

plies a strong separability assumption on the targeted problem.

And a Cannikin’s law of modeling is proposed, which states

that in the scenario of black-box modeling, to ensure a full

description of the real world mechanism, the weakest inter-

action in the model should be stronger than the most compli-

cated interaction in the task. The concept of entanglement is

introduced to the discussion of tensor analysis, which estab-

lishes a natural connection between quantum information and

tensor analysis. Based on the proposed separability criteria,

new tensor models might be developed accordingly in future

studies.
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