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1. Introduction

1.1 Conceptual problems with QFT approach to QG

Recent efforts to describe on quantum level all fundamental interactions, with quantum gravity

(QG) included, suggest that for such a purpose we should change the classical concept of commu-

tative continuous space-time and canonical quantum phase spaces as well as modify the classical

Lie-algebraic symmetries. The historical development provided various arguments that quanti-

zation of gravity requires introduction of noncommutative (NC) quantum space-time as well as

quantum-deformed noncanonical phase space coordinates. Such nonclassical structures of quan-

tum space -times follows from the dynamical role of space-time in general relativity (GR). One can

argue (see e.g. [1],[2]) that due to gravitational Einsteinian dynamics it is not possible to observe

effectively the distances smaller than the Planck length _% ≃ 10−33cm, i.e _% defines an absolute

resolution limit in measurements of space-time distances. NC structure of quantum space-time can

be linked with gravitational creation of microscopic black holes, effectively replacing the notion of

space-time points known from classical theories.

Already in 1935 M. Bronstein wrote [3] "We can not localize arbitrarily large amount of mass

or energy in very small volume - we will be not able to observe it because the action of gravitational

forces will make such an observation impossible."

The gravitational forces due to quantum-mechanical effects represented by Heisenberg uncer-

tainty relations will cause during the localization measurement the atomization of space-time, what

leads effectively to quantum space-time described by NC operators

reaction of below 10−33 cm

dynamical space-time to ⇔ the notion of classical space-time

quantum measurement process looses its operational meaning.

Since almost hundred years it is well-known that in QM the limits of measurability of positions

and momenta are determined by the NC structure of quantum-mechanical phase space algebra. In

particular, the QG effects introduce changes of geometric space-time structure and leads to NC

algebras for quantum space-time coordinates (see e.g. [4]-[6]).

One can introduce in relativistic physics three basic dynamical frameworks, which are reflected

in three different structure of phase space geometries:

1. In classical relativistic theories (ℏ = 0, 2 ≠ 0) i.e classical mechanics and classical field

theory, the space-time (G`) and relativistic phase space coordinates (G`, ?`) are classical,

and we should use commutative geometric framework.

2. One can consider relativistic quantum theories, but without QG interactions (ℏ ≠ 0, 2 ≠ 0,

� = 0, where � defines the Newton constant describing gravity coupling). In such a

way we arrive at relativistic quantum field theories (RQFT)1, however without dynamically

coupled gravitational fields. In such a case we deal with commutative space-times, but

quantum-mechanical Heisenberg algebra which describes noncommutativity of coordinates

and momenta leads the canonical NC structure of quantum-mechanical phase space.

1Unfortunately, the present status of relativistic quantum mechanics describing many interacting relativistic particles

is not satisfactory.
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3. If we consider relativistic quantum field theories with coupled QG (ℏ ≠ 0, 2 ≠ 0, � ≠ 0) we

study in principle the dynamical scheme which describes our present physical understanding

of Universe. Besides NC space-time Ĝ`, with QG corrections taken into consideration, we

arrive in this third geometric framework also at the algebra of noncanonical NC phase spaces,

described by the NC basis (Ĝ`, ?̂`)2.

One can describe schematically the passage from second to third framework as follows

classical
&�
===⇒ NC quantum

space-time G` space-time Ĝ`

canonical NC
&�
===⇒ QG-deformed noncanonical

phase space quantum phase space

In field-theoretic formalism the passage from second to third dynamical framework is quite difficult

because the quantized geometrodynamics described by QG can not be incorporated into the standard

framework of QFT, with quantum fields defined on static (quite often flat) space-time manifolds.

The standard quantum free fields are schematically described as a sum (integral) of quantized field

oscillators 0̂(?), with classical Fourier exponentials as linear coefficients

q̂(G) =
∫

0̂(?)48?G . (1)

However, due to QG modification of classical space-time the space-time coordinates G` appearing

in (1) become quantized, i.e we should replace in (1) G` → Ĝ`. Because for quantum space-times

we get

[Ĝ`, Ĝa] ≠ 0 (2)

in the presence of QG one can not work effectively with the formalism of standard quantum fields.

1.2 Quantum space-times - three � = 4 examples

First task which one should consider is the description of possibly physically motivated ex-

amples of quantum space-times and quantum-deformed relativistic phase spaces. We list below

three the most popular models of NC quantum space-times, which has been also extended to the

respective quantum deformed relativistic phase spaces

1. Snyder and Yang models

Snyder model [8] was proposed still before invention of the renormalization procedure in 50’s,

in order to provide the regularization of infinities in QFT. In 60’s, however, the perturbative

renormalization theory has been established and only recently the interest in Snyder model has

been revived due to other reasons in particular studying QG models. It provides an important

example of Lorentz-covariant quantum space-time with Hermitean (real) NC coordinates Ĝ`, which

are described by the coset generators of classical Lie algebra. If we decompose � = 4 dS

2One gets the NC momenta already without QG effects, e.g. for particle moving in a gauge field background described

by covariant gauge derivatives (e.g. in EM field background)
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>(4, 1) algebra generators "̂01 into � = 4 Lorentz algebra and
$ (4,1)
$ (3,1) coset generators (0, 1 =

0, 1, 2, 3, 4; ` = 0, 1, 2, 3)
"̂01 = ("̂`a, "̂`4) (3)

after the identification

"̂`4 ≡ Ĝ` (4)

one obtains the basic Snyder relation, describing space-time noncommutativity at ultrashort dis-

tances

[Ĝ`, Ĝa] = 8;2% "̂`a (5)

where ;% ≃ 10−33 cm denotes the Planck length.

Following old ideas of Dirac and Zeldovich [9],[10], who advocated structural link between

cosmological and microworld physics, if we use the quantum version of Born duality relation

(Ĝ` ↔ ?̂`) [11], after supplementing ;% ↔ 1
'2 and identification (4) one obtains standard � = 4

de-Sitter algebra describing space-time at cosmological distances

[ ?̂`, ?̂a] = 8
1

'2
"̂`a (6)

where NC generators ?̂` describe curved dS space-time translations and ' ≃ 1029 cm describes the

radius of the Universe.

Almost simultaneously, in 1947 [12], Yang extended Snyder model in order to obtain � = 4

quantum-deformed relativistic phase space (Ĝ`, ?̂`), with NC coordinates described by (5)-(6). In

Yang model one uses the coset generators of � = 5 dS Lie algebra, with >(5, 1) algebra decomposed

into � = 4 Lorentz algebra and the
$ (5,1)
$ (3,1) coset generators which provide the quantum-deformed

relativistic phase space algebra. We decompose >(5, 1) as follows

"̂�� = ("̂`a, "̂`4, "̂`5, "̂45) (7)

where �, � = 0, 1, . . . , 5; besides (4) we postulate

"̂`5 ≡ ?̂`, "̂45 ≡ ℎ̂ (8)

where (Ĝ`, ?̂`, ℎ̂) represent the Lorentz-covariant quantum-deformed Heisenberg algebra. Its NC

structure is defined by relations (5)-(6) and

[Ĝ`, ?̂a] = 8[`a ℎ̂ (9)

where [`a = (−1, 1, 1, 1) denotes � = 4 Lorentz metric.

It should be stresses that the construction presented above implies automatically the Lorentz

covariance of both noncommutative Snyder and Yang models.

2. ^-Minkowski NC space

In late 80-ties there was discussed the question how to introduce the quantum deformation of

Poincare algebra which incorporates geometrically, besides 2 and ℏ, the third fundamental constant,

described by Planck mass <% or Planck length _% (_% =
ℏ

<%2
; if we put ℏ = 2 = 1 one gets <% =

1
_%

). The answer was provided in 1991 by ^-deformation of Poincare-Hopf algebra [13], an example

of quantum symmetry algebras which due to Drinfeld [14] are described by noncocommutative Hopf
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algebras and called quantum algebras. The ^-deformed Minkowski space-time can be obtained as

NC representation (quantum module) of ^-deformed quantum Poincare algebra [15],[16]. In its

historically first standard form the NC structure of Poincare algebra looks as follows3

[Ĝ0, Ĝ8] = 8
ℏ

^2
Ĝ8, [Ĝ8 , Ĝ 9 ] = 0 (11)

where in physical assignments to elementary particle physics we put ^ = <%.

Hopf-algebraic framework introduces dual pairs (�, �̃) of Hopf algebras, in ^-Poincare case

� describing ^-deformed Poincare algebra (^-Poincare algebra) and �̃ ^-deformation of Poincare

matrix group (^-Poincare group). The ^-deformed Minkowski space can be described by the

deformed translational sector of ^-Poincare group. From dual pair of ^-Poincare algebra and ^-

Poincare group one can construct the Heisenberg double algebra [18],[19], which describes the

generalization of ^-deformed quantum phase space [20].

3. \`a-deformed Minkowski space (DSR model)

The most popular and very simple quantum deformations of relativistic Minkowski space are

parametrized by constant antisymmetric numerical tensor \`a = −\a`, which leads to the following

commutator of NC quantum space-time

[Ĝ`, Ĝa] = 8;2\`a (12)

where ; describes the elementary length, which may be also identified with Planck length (; = ;%).
Such a model was introduced firstly as NC quantum space, but later it was obtained as the

quantum translational sector of Poincare-Hopf algebra �\ , where \ ≡ \`a describe six deformation

parameters which break Lorentz covariance. In 1994-1995 (see [1],[2]) this model was considered

in the context of QG by Dopplicher, Fredenhagen and Roberts, so often it is called DFR model of

quantum Minkowski space.

The Hopf algebra �\ belongs to simpler class of quantum groups, which is obtained by Abelian

twist quantization of classical Poincare-Hopf algebra. In �\ the Poincare algebra after twisting

remains classical, but primitive coproducts are modified. Due to Hopf algebraic duality relations

in �\ there is deformed the coalgebra and in \`a-deformed Poincare-Hopf group �̃\ the algebra

of space-time translations is becoming noncommutative (see (12)).

The advantage of twist quantization is provided by the presence of explicit formulae expressing

the local products of NC fields q8 (Ĝ) as nonlocal products of classical fields q8 (G), with the use of

nonlocal multiplication described by so-called star product (★-product)

q8 (Ĝ) · q 9 (Ĝ)
Weyl map
−−−−−−−→ q8 (G) ★ q 9 (G). (13)

In such a way the algebra of twist-deformed quantum fields can be expressed in terms of standard

fields on classical Minkowski space. In the case of \`a-deformation the ★-product (13) has been

3If 0` = (1, 0, 0, 0) the formula (11) is a special case of generalized ^-Minkowski spaces, parametrized by constant

fourvector 0` as follows [17]

[Ĝ` , Ĝa] = 8
ℏ

^2
(0` Ĝa − 0a Ĝ`). (10)

The fourvector 0` determines the ^-deformed quantum direction in Minkowski space-time (in formula (11) there is

quantum-deformed the time direction.
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introduced much earlier in statistical physics as nonlocal Moyal product ★" [7]

[Ĝ`, Ĝa] ≃ [G`, Ga]★"
≡ G` ★" Ga − Ga ★" G` = 8;2\`a . (14)

The Poincare algebra generators (?`, "`a) of �\ are classical and the generators (Ĝ`, Λ̂`a)
of �̃\ are quantum-deformed. From �\ and �̃\ can be obtained the Heisenberg double algebra

H\ = �̃\ ⋊ �\ (15)

which provides the generalized \`a-deformed phase space P10;10
\

= (Ĝ`, Λ̂`a ; ?`, "`a) and stan-

dard \`a deformed phase space P4;4
\

= (Ĝ`, ?`) described by relation (12) and

[Ĝ`, ?a] = 8[`a , [?`, ?a] = 0. (16)

It should be added that due to the appearance of 2-number as value of commutator [Ĝ`, Ĝa] (see

(12)), the standard P4;4
\

as well as generalized \`a-deformed P10;10
\

covariant relativistic phase

spaces are described by Poincare-Hopf algebroids (see e.g. [21]).

1.3 From quantum space-times to quantum deformed spinors and quantum superspaces

In several well-known geometric frameworks in physics (e.g. Penrose twistor description

or supersymmetric theories) basic coordinates are described by spinors or superspaces with both

vectorial and spinorial coordinates. In this paper we investigate the constructions of quantum-

deformed spinors as well as quantum-deformed superspaces.

In Snyder model the reinterpretation of
$ (4,1)
$ (3,1) coset generators as noncommutative coordinates

provided the first example of Lorentz -covariant quantum space-time. Analogously, in Yang model

the
$ (5,1)
$ (3,1) generators can be treated as the linear basis of relativistic � = 4 quantum phase space

algebra. These constructions one can generalize in two ways:

1. In order to describe the quantum-deformed spinorial coordinates one should use the cosets of

groups which are describing spinorial coverings $ (� − :, :) of (pseudo)orthogonal space-

time symmetry groups. Such cases provide bosonic quantum spinors which are obtained by

deformation of commuting spinorial spaces.

2. One gets quantum-deformed fermionic spinors and quantum superspaces if we consider Lie

supergroups and superalgebras, with its bosonic sector containing space-time symmetries

(e.g. Lorentz symmetries)[22]. By supergeneralization of relation (4) one can identify the

supercharges with fermionic sector of quantum superspace. We should observe that the

quantum space-time for semi-simple superalgebras due to basic superalgebra relations are

expressed as composite algebraic objects which are bilinear in terms of quantum-deformed

fermionic spinors. Because in semi-simple case the supercharges describe the algebraic basis

of superalgebra, we obtain quantum superspaces containing quantum fermions as elementary

spinor variables and composite quantum space-time coordinates.

Finally let us very briefly describe the content of this paper. In Sect. 2 we describe � = 4

Lorentz-covariant Snyder and Yang models which provide Snyder quantum space-times and Yang

quantum-deformed relativistic phase spaces. In Sect. 3 we provide the supersymmetric extension
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of � = 4 Snyder quantum-deformed space-times. In Sect. 4 we consider the supersymmetric � = 4

Yang model providing the supersymmetric quantum-deformed phase superspaces with composite

bosonic sector. In last Sect. 5 we provide on outlook, in particular as novelty we indicate how one

can introduce quantum-deformed Snyder models as obtained from twist-deformed quantum � = 4

AdS or dS algebras.

2. Snyder quantum space-times and Yang quantum phase spaces

2.1 Snyder dS and AdS quantum space-times

D=4 dS and AdS algebras are described by the following five-dimensional pseudo-orthogonal

algebras (A=0,1,2,3,4)

["��, "��] = 8([��"�� + [��"�� − [��"�� − [��"��) (17)

with signature [�� = 3806(−1, 1, 1, 1, n) and n = [44 = ±1, where n = 1 for dS algebra and n = −1

for AdS algebra. Following (4) we postulate that "`4 =
1
_
Ĝ`, where _ is an elementary length,

in physical applications often identified with the Planck length _? =

√

~�

23 ≃ 1.6 · 10−33cm. We

obtain besides the Lorentz algebra generators "`a (` = 0, 1, 2, 3) the following relations defining

NC Snyder space-times4 and described by
$ (4,1)
$ (3,1) and

$ (3,2)
$ (3,1) cosets

["`a , Ĝd] = 8([adĜ` − [`dĜ[) (18)

[Ĝ`, Ĝa] = 8n V"`a V = _2 > 0 (19)

The difference between NC dS and AdS Snyder space-times consists only in difference of sign on

rhs of relation (19).

The algebra with the basis ("`a, Ĝd) describes an elementary relativistic quantum object,

namely D=4 quantum (A)dS space-times Ĝ` as Lorentz algebra module and classical Lorentz

transformations generated by "`a providing the D=4 relativistic covariance of Snyder equations

(18-19). Snyder models (see (17-19)) are Born-dual (Ĝ` ↔ ?̂`, "`a unchanged, _ → 1
'

) to

the momentum space realizations ("`a, ?̂`) of >(4, 1) or >(3, 2) algebras, with their generators

describing the automorphisms of five-dimensional pseudospheres (n = ±1)

G�[��G
�
= −G2

0 + G2
1 + G2

2 + G2
3 + nG2

4 = '2 (20)

where "`4 = '?̂` are the NC generators of curved translations on the pseudospheres
$ (4,1)
$ (3,1) or

$ (3,2)
$ (3,1) 5.

In fact Snyder constructed his model as aimed at the description of NC geometry at ultra

short (Planckian) distances, in order to regularize geometrically the ultraviolet divergencies of

renormalization procedure for locally interacting quantized fields. Born duality formalizes physical

as well as some philosophical concept that one can relate in physics the micro and macro world

phenomena - the first ones due to quantum nature described by NC geometry, and the second linked

with classical de-Sitter dynamics in general relativity at very large cosmological distances.

4In the paper we choose ℏ = 2 = 1 with only length or mass dimensionalities taken into consideration.

5Snyder construction was already in sixties applied to the description of de-Sitter Universe (n = 1), with R describing

the cosmological de-Sitter radius (see e.g. [23],[24]).
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2.2 Yang � = 4 quantum phase spaces

Already in 1947 C.N. Yang [12] observed that by considering D=6 rotations algebras (i.e.

putting in (17) � = 0, 1, 2, 3, 4, 5) one can interpret the presence of rotation generators "5` as

adding to Snyder model the NC fourmomenta ?̂`. The sixth dimension can be added to dS or AdS

Snyder model in two-fold way, by postulating that [55 = n ′ = ±1. Assuming that "`5 = '?̂` one

gets the following extension of Snyder equations (18)-(19):

["`a, ?̂d] = 8([ad ?̂` − [`d ?̂`) (21)

[ ?̂`, ?̂a] = 8n ′W"`a W =
1

'2
(22)

Additionally besides (19) and (22) one gets the quantum-deformed noncanonical phase space

commutator

[Ĝ`, ?̂a] = 8
_

'
[`a"45 = 8[`a 3̂ (23)

with operator-valued substitution of Planck constant ~ by rescaled dilatation generator 3̂ =
_
'
"45,

which is a � = 4 Lorentz scalar (["`a, 3̂] = 0). The generator "45 commutes with Ĝ` and ?̂` as

follows

[3̂, Ĝ`] = 8n_'?̂` (24)

[3̂, ?̂`] = 8
n ′

_'
Ĝ` (25)

and describes internal symmetry generators (>(2) if n = −n ′ or >(1, 1) if n = n ′).

In such a way we can obtain four types of Yang models, with two dychotomic parameters

n = ±1 (see(19)) and n ′ = ±1 (see (22)), which could be called dS-dS, dS-AdS, AdS-dS, AdS-AdS

Yang models.

The scheme presented above has been very recently generalized (see [25]), where in particular

it is generalized basic quantum phase space commutator (23).

2.3 Snyder quantum phase spaces

� = 4 Snyder model described in Sect.2.1 is defined by ten independent generators ("`a, Ĝ` ≡
"4`) of� = 4 de-Sitter >(4, 1) algebra, and in order to obtain the algebra of noncanonical relativistic

quantum phase space one should enlarge the set of >̂(4, 1) Lie algebra generators. In � = 4 Yang

model (see Sect. 2.2) the noncommutative fourmomentum generators ?̂` are obtained by adding

the fifth space dimension to the generators of � = 4 Snyder model, i.e we deal with � = 5 de-Sitter

algebra >(5, 1), where ?̂` = "5`. In order to obtain quantum phase space Snyder in [8] did

not use any group-theoretic techniques, but extended the algebra (17)-(19) by supplementing the

Lorentz-covariant classical fourmomenta ?` satisfying the relations

["`a, ?d] = 8([ad?` − [`d?a) (26)

[?`, ?a] = 0. (27)

Further in [8] there were added also the deformed Heisenberg algebra relation

[Ĝ`, ?a] = 8([`a + V?`?a) (28)

8
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in a way consistent with Jacobi identities.

The relations (17)-(19) and (26)-(28) define Lorentz-covariant noncanonical Snyder quantum

phase algebra, with the generators "`a and Ĝ` which can be represented in terms of classical

Heisenberg algebra basis (G`, ?`) [26]

[G`, ?a] = 8[`a , [G`, Ga] = [?`, ?a] = 0. (29)

It should be stressed that in this paper we consider the generators (Ĝ`, "`a) of Snyder model and

(Ĝ`, ?`, "`a, 3̂) of Yang model as algebraically independent, however in Snyder quantum phase

algebra there is used the representation in which the Lorentz algebra generators can be realized in

terms of classical phase space coordinates (29) in standard way

"`a = 8(G`?a − Ga ?`). (30)

The choice (28) can be consistently extended as follows [27],[28]

[Ĝ`, ?a] = 8{[`a (1 + V?2) − V′?`?a} (31)

however in such a case the relation (19) should be modified in the following way [29] (both

parameters V and V′ have the length square dimension)

[Ĝ`, Ĝa] = 8
(2V − V′) + (2V + V′)b

1 + b "`a. (32)

The general modification of the relations (28)-(31) given by the formula (b = [?2 is dimensionless)

[Ĝ`, ?a] = 8(� (b)[`a1 + V?`?a� (b)) (33)

require the following generalization of the formula (32)

[Ĝ`, Ĝa] = 8Ψ(b)"`a (34)

where from the Jacobi identities it follows that [26],[30]

Ψ(b) = � (b)� (b) − 2(� (b) + b� (b)) 3�
3b
. (35)

The Snyder choice (28) corresponds to Ψ = � = � = 1. Other solutions of (34) were provided by

choosing � = 0 what leads to the formula Ψ(b) = 3
3b
�2(b); in particular one gets [32]

[Ĝ`, ?a] = 8[`a
√

1 − V(?2 + <2). (36)

It should be added that recently the Snyder models with algebraically independent operators "`a

and (Ĝ`, ?`) are called the extended Snyder models [32],[33].

It should be added that the quantum phase spaces which similarly like in Yang models are

described by noncommutative fourmomenta ?̂ (see Sect. 2.2) were introduced as algebraic charac-

terization of so-called Triple Special Relativity models [34],[35].

9
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3. Supersymmetric Snyder models and quantum superspaces

3.1 From quantum spaces to quantum superspaces

It is known that in Snyder type models the quantum-deformed spaces are described by Lie-

algebraic coset generators. In particular in � = 4 relativistic case there are chosen
$ (4,1)
$ (3,1) (dS) and

$ (3,2)
$ (3,1) (AdS) coset generators, which provide irreducible NC vectorial representations of � = 4

Lorentz algebra describing quantum space-times.

One can generalize in natural way such constructions to Lie superalgebras [22] with supercoset

generators describing quantum-deformed superspaces. The relativistic quantum superspaces are

the particular reducible graded NC representations of Lorentz algebra, with bosonic (vectorial) even

and fermionic (spinorial) odd sectors. In special cases of supercosets
$(? (1,2: |')

(? (2:) and
$(? (1,2: |�)
(? (2:;�)

we get the irreducible quantum-deformed fermionic (Grassmanian) spinors: in real case one obtains

only quantum-deformed � = 3 Lorentz spinors (: = 1) and � = 4 AdS spinors (: = 2); in complex

case for (: = 1) one gets only � = 4 complex quantum-deformed Weyl spinors.6 Other example of

spinorial coset is described by the generators of the coset
(* (2,2 |1)
* (2,2) , describing NC � = 4 conformal

spinors which can be identified as fermionic quantum-deformed � = 4 twistors [38].

In following subsection of Sect. 3 we describe by supersymmetrization of AdS Snyder model

the quantum � = 4 superspace (Sect. 3.2) and from � = 4 dS superalgebra (Sect. 3.3) one gets

the quantum � = 4 dS superspaces. In Sect. 4 we will discuss quantum phase spaces obtained

by supersymmetrization of � = 4 AdS and � = 4 dS quantum-deformed phase spaces described

by Yang models in Sect. 2.2. It should be added that the supersymmetrization of � = 4 Snyder

quantum phase spaces, considered in Sect. 2.3, is an interesting task which should be studied

by choosing proper postulates for the supersymmetric counterpart of the phase space variables

(Ĝ`, ?`).

3.2 Supersymmetric � = 4 Snyder models describing � = 4 quantum AdS superspaces

In >B?(1|4) superalgebra the generators "`a and Ĝ` = _"`4 form the � = 4 AdS >(2, 3) ≃
B?(4) subalgebra, with the generators "`a describing its � = 4 Lorentz subalgebra. The >B?(1|4)
superalgebra is obtained by adding to � = 4 AdS algebra the four additional real Majorana

supercharges &U which are interpreted as quantum NC fermionic real components of D=4 AdS

spinors b̂U. The >B?(1|4) superalgebra is described by the following supersymmetric extension of

relations (17)-(19) with n = −1 with the dimensionality [V] = !2

["`a, "df] = 8([`f"ad + [ad"`f − [`d"af − [af"`d) (37)

["`a, Ĝd] = 8([adĜ` − [`dĜa) (38)

[Ĝ`, Ĝa] = −8V"`a (39)

6If we choose quaternionic coset
$(? (1,2: |� )

$ (1 |� ) ⊗(? (2: |� ) the : = 1 case provides the quantum-deformed NC 2-component

$ (4, 1) = (?(2|�) quaternionic Weyl spinors, with additional for$ (1|�) ≃ $ (1, 1) group describing internal symmetry

(see [36],[37],[22]).

10
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{

b̂U, b̂V
}

= −2(�W`)UVĜ` + V 1
2 (�W`a)UV "`a (40)

["`a , b̂U] = − 8
2
b̂V

(

W`a
)V

U
(41)

[Ĝ`, b̂U] = − 8
2
V

1
2 b̂V

(

W`
)V

U
. (42)

where the quantum spinors b̂U appearing in the place of supercharges have (see(40)) the length

dimensionality [b̂U] = !
1
2 . The parameter V is the �3(4 radius usually identified in QG appli-

cations with Planckian length square and W` are � = 4 Dirac $ (3, 1) matrices in real Majorana

representation; W`a =
1
2
(W`Wa−WaW`). Further, by�UV = (W0)UV we denote the charge conjugation

matrix with the properties �) = −�, (W`�−1)) = −W`�−1, �2 = −1

The superalgebra (37)-(42) describes graded associative quantum superspace (Ĝ�3(` ; b̂U)

X
(4,4)
�3(

= (Ĝ�3(` ; b̂U |"`a) (43)

where six generators "`a describe the � = 4 Lorentz covariance algebra (see (38) and (41)). Alter-

natively, by considering the coset
$(? (1;4)
(? (4) one can consider in ˆ>B? (1; 4) only the supercharges, and

obtain in such a way purely spinorial model of Snyder type (b̂�3(U |"��), with anticommuting � = 4

AdS quantized spinors b̂�3(U , which are covariant under the � = 4 AdS $ (3, 2) transformations.

3.3 Quantum � = 4 dS superspace from � = 4 SUSY dS Snyder model

For � = 4 dS algebra >(4, 1) the supercharges should be described by fundamental spinor

realizations of the quaternionic spinorial covering of � = 4 dS group $ (4, 1) = * (1, 1;�) ≡
$(?(1, 2;�) [36]-[37]. The # = 1 supersymmetrization of � = 4 dS algebra requires a pair of

quaternionic supercharges, which following isomorphism D(1, 1|�) = DB?(2, 2;�) can be equiv-

alently represented by the pair of four-component complex spinors &̂8
�
(8 = 1, 2; � = 1 . . . 4) with

their quaternionic structure represented by symplectic (* (2) Majorana condition [39]-[40].

The simple (# = 1) � = 4 dS quaternionic superalgebra is described as the intersection of two

complex superalgebras7

DDU (1, 1; 1|�) = BD(2, 2; 2) ∩ >B?(4; 2|�) (44)

with bosonic sector D(1, 1;�) ⊕ DU (1;�) ≡ DB?(2, 2) ⊕ >(2). Using complex spinors notation the

superalgebra (44) is described by the following set of (anti)commutators (�, � = 0, 1, 2, 3, 4; U, V =

1, 2, 3, 4; 8, 9 = 1, 2)

["��, "��] = 8([��"�� + [��"�� − [��"�� − [��"��) (45)

{

&̂8
U, &̂

9

V

}

= X8 9 (Σ���)UV"�� + n 8 9�UV) (46)

["��, &̂
8
U] = −(Σ��)UV&̂8

V (47)

7We use the notation, where N denotes the number of 2-component irreducible quaternionic D=4 dS supercharges

(see e.g. [39], [40]).

11
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["��, ) ] = 0 (48)

[), &̂8
U] = −n 8 9&̂ 9

U (49)

where [�� = 3806(−1, 1, 1, 1, 1), i.e "�� are >(4; 1) generators, ) is a scalar internal >(2)
symmetry generator and Σ�� =

1
2
[W�, W�] represents the 4×4 complex matrix realization of >(4, 1)

algebra (45). The complex >(4, 1) Dirac matrices can be chosen for A=0,1,2,3 as real (W3(` = W`)
and for � = 4 the choice W3(

4
= 8W5 is purely imaginary. The fermionic supercharges &̂8

U satisfy the

following quaternionic (* (2)-symplectic Majorana condition

&̂8
U = n 8 9 (W5

ˆ̄& 9)U, ˆ̄& = &̂†�. (50)

We substitute the generators in the coset
**U (1,1;1 |� )

(; (2;C) by quantum D=4 dS superspace coordinates

as follows

k̂U =
√
8V−

1
4 &̂1

U, k̂†
U = −

√
8V−

1
4 (W5&̂

2)U, Ĝ` = V
1
2 "`4, (51)

and we obtain the following superalgebra defining quantum D=4 dS superspace

["`a, "df] = 8([`f"ad + [ad"`f − [`d"af − [af"`d) (52)

["`a, Ĝd] = 8([adĜ` − [`dĜa) (53)

[Ĝ`, Ĝa] = 8V"`a (54)

{

k̂U, k̂V

}

= −8(W`�)UVĜ` + 8V (W`a�)kV "`a (55)

{

k̂★
U, k̂

★
V

}

= −8(W`�)UVĜ` − 8V (W`a�)UV "`a (56)

{

k̂U, k̂
★
V

}

= −(W5)UV) (57)

["`a, k̂U] = −
(

W`a
)V

U
k̂V (58)

[Ĝ`, k̂U] = 8V
1
2
(

W`
)V

U
k̂V (59)

[), k̂U] = W5k̂
★
U (60)

with the length dimensionalities

["`a] = 0, [Ĝ`] = 1, [k̂U] = [k̂U] =
1

2
, [) ] = 1. (61)

The superalgebraic relations define the quantum � = 4 dS superspace

X
(5;4+4̄)
3(

= (Ĝ3(` ; k̂U, k̂
★
U |"`a, ) ) (62)

where "`a are� = 4 Lorentz generators and) describes the generator of internal$ (2) symmetries.

12



Noncommutative spaces and superspaces from Snyder and Yang type models Jerzy Lukierski

It follows from relation (57) and traceless W5 matrix that by putting U = V in (57) one gets
∑4

U=1 |k̂U |2 = 0. The nonvanishing quantum spinors can be therefore only realized in Hilbert-

Krein space of states with indefinite metric (see e.g. [41],[42]) and local gauging of quaternionic

superalgebra (44) leads to � = 4 dS supergravity which contains necessarily gauge ghost fields

[43].

4. # = 2 supersymmetric Yang models and quantum phase superspaces

4.1 Quantum � = 3 Yang AdS phase superspace from >B?(2; 4) superalgebra

In order to obtain � = 3 SUSY AdS Yang model we add to the >(3, 2) generators "�� (see

(17), n = −1) describing � = 3 AdS Yang model the pair of real $ (3, 2) spinorial supercharges

&8
U (8 = 1, 2;U = 1 . . . 4) and >(2) internal symmetry generator ) . The underlying >B?(2; 4)

superalgebra looks as follows (see e.g. [44])

{&8
U, &

9

V
} = X8 9 (W���)UV"�� − n 8 9�UV) (63)

["��, &
8
U] = −(W��) V

U &
8
V (64)

[),&8
U] = −n 8 9& 9

U (65)

where W�� =
1
2
[W�, W�] and W� denotes the real $ (3, 2) Dirac-Majorana matrices. Part of the

generators in (63)-(65) describe the � = 3 Lorentz covariance generators "AB (A, B = 0, 1, 2),
internal covariance generator) and generator"34 = >(1, 1) interchanging coordinates and momenta

"AB ⊕ "34 ⊕ ) ≃ >(2, 1) ⊕ >(1, 1) ⊕ >(2). (66)

The remaining generators are assigned to the � = 3 AdS quantum-deformed superphase space

coordinates as follows

"3A ⊕ "4A ⊕ &̃1
U ⊕ &̃2

U ≃ 1

_
ĜA ⊕ '?̂A ⊕ b̂U ⊕ ĉU (67)

where (ĜA , ?̂A ) and (b̂U, ĉU) describe even and odd canonical pairs of vectorial and spinorial

positions and momenta. Introducing the generator 3̂ =
_
'
"34 we obtain the following SUSY-

extended quantum-deformed Heisenberg algebra

i) odd-odd relations

{b̂U, b̂V} = {ĉU, ĉV} = (WAB�)UV"AB +
1

_
(W3A�)UVĜA + '(W4A�)UV ?̂A + (W34�)UV 3̂

{ĉU, b̂V} = �UV) (68)

ii) even-even relations describing deformed Heisenberg algebra

[ĜA , ĜB] = _2"AB, [ ?̂A , ?̂B] =
1

'2
"AB, [ ?̂A , ĜB] = 8[AB 3̂

iii) crossed even-odd relations

[ĜA , b̂U] = (W3A ) V
U b̂V [ ?̂A , b̂U] = (W4A ) V

U b̂V

[ĜA , ĉU] = −(W3A ) V
U ĉV [ ?̂A , ĉU] = −(W4A ) V

U ĉV. (69)

13
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The relations above can be supplemented by � = 3 version of relations (24)-(25). We see that the

relations (68)-(69) depend on the quantum superspace coordinates (67) as well as the covariance

symmetry generators (66). We add that using 6 × 6 graded matrix representation of >B?(2; 4) one

obtains the matrix realization of the � = 3 phase superspace superalgebra.

4.2 � = 4 AdS quantum phase superspace BD(2, 2; 2)

Using # = 2 superextension of � = 4 Minkowskian conformal algebra

>(4, 2) ≃ BD(2, 2) SUSY−−−−→ BD(2, 2; 2) (70)

one can define by the coset
(* (2,2;2)

(* (2,2)×* (2) generators the spinorial coordinates and momenta which

span the odd sector of relativistic � = 4 supersymmetric Heisenberg algebra. The full covariance

algebra is described by the following extension od � = 4 Lorentz algebra (`, a = 0, 1, 2, 3)

"`a → ("`a, "45, �, �A ) ≃ >(3, 1) ⊕ >(1, 1) ⊕ >(2) ⊕ >(3) (71)

where (�, �A ) (A = 1, 2) describe the internal D(2) symmetries commuting with conformal >(4, 2)
algebra. The remaining generators introduce the quantum-deformed superspace coordinates of

� = 4 AdS phase superspace 8:

("3`, "4`, &̃
0
U, (̃

0
U)

(−→ ( 1

_
Ĝ`, ' ?̂`, k̂

0
U, ĉ

0
U). (72)

The fermionic sector of BD(2, 2; 2) can be conveniently described by two pairs of four com-

ponent real Majorana supercharges &0
U, (

0
V
(0 = 1, 2;U, V = 1 . . . 4), satisfying the following basic

superalgebraic relations (we use standard notation ("`a, %`,  `, �) for the � = 4 conformal

algebra generators; see [45],[46])

{&0
U, &

1
V} = 2X01 (W`�)UV%`

{(0U , (1V} = −2X01 (W`�)UV ` (73)

{&0
U, (

1
V} = X01 [(W`a�)UV"`a + 28�UV�] + n01�UV �2 + 8g (01):

(W5�)UV�:

where : = 0, 1, 3, three 2 × 2 symmetric matrices are g
(01)
:

= (12, f1, f3) and generators

(�0, �1, �2, �3) describe internal symmetry algebra D(2) ≃ >(2) ⊕ >(3). In order to reexpress

%`,  ` by generators "3`, "4` we proceed with the Snyderization procedure using the following

formulae

"4` =
1
√

2
('%` +

1

_
 `)

(−→ 1
√

2_
Ĝ` (74)

"5` =
1
√

2
('%` −

1

_
 `)

(−→ '
√

2
?̂`. (75)

The supercharges &̃0
U, (̃

0
U employed in the Snyderization procedure (72) are defined in terms of

supercharges &0
U, (

0
U (see (73)) as follows ([&0

U] = [&̃0
U]) = − 1

2
, [(0U] = [(̃0U] = − 1

2
are length

dimensionalities)

&̃0
U =

1
√

2
(&0

U + (_')− 1
2 (0U) (̃0U =

1
√

2
((0U − (_') 1

2&0
U). (76)

8We call the operation
(−→ the Snyderization procedure of Lie algebra generators (see [22]).
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The algebra (73) after using relations (74)-(76) can be rewritten in term of the supercharges (76) in

the following way

{&̃0
U, &̃

1
V} = X01 [(W`�)UV

1

'
"5` + (W`a�)UV"`a] + n01�UV �2 (77)

{(̃0U , (̃1V} = −X01 [(W`�)UV_"4` + (W`a�)UV"`a] − n01�UV �2 (78)

{&̃0
U, (̃

1
V} = −X01�UV� + 8g (01)

:
(W5�)UV �: . (79)

Using relations (72) we obtain from algebra (77)-(79) the following fermionic odd-odd sector of

� = 4 AdS quantum-deformed phase superspace

{k0
U, k

1
V} = X01 [(W`�)UV ?̂` + (W`a�)UV"`a] + n01�UV�2 (80)

{c0U, c1V} = −X01 [(W`�)UVĜ` + (W`a�)UV"`a] − n01�UV�2 (81)

{c0U, k1
V} = X01�UV� + 8g (01)

:
(W5�)UV�: . (82)

We see that in the above relations besides the "bosonic" (Ĝ`, ?̂`) and "fermionic" (k0
U, c

0
U) phase

space coordinates, enter as well all the generators of covariance algebra (71) (we recall that � =

"45).

4.3 � = 4 dS superphase space from � = 4 SUSY dS Yang model

Following the supersymmetrization of >(5, 1) ≃ B; (2;�) algebra, in order to obtain � = 4

supersymmetric dS Yang model one should consider the following # = 1 quaternionic superalgebra

isomorphic to # = 2 complex superalgebra

B; (2|�) ≃ BD★(4) SUSY−−−−→ B; (2; 1|�) ≃ BD★(4, 2) (83)

with bosonic sector

B; (2|�) ⊗ 6; (1|�) ≃ BD★(4) ⊗ D★(2) (84)

where BD★(4) ≃ >(5, 1) and D★(2) = >(2) ⊕ >(2, 1). We see that due to quaternionic structure for

our � = 4 SUSY Yang models we should employ in complex notation the complex superalgebra

BD★(4, 2).
The superalgebras BD★(4; 2#) can be obtained by so called Weyl trick (see e.g. [23]) from

B̂D (4; 2#) superalgebra which supersymetrizes B̂D (4) ≃ >̂(6). For B̂D (4; 2#) superalgebra one can

introduce the following /4-graded superalgebra containing covariance algebra !0 and the coset

generators:

!0 !1 !2 !3

*(?(4) ⊕ *(?(2#) &+ (* (4)
*(? (4) ⊕

* (2# )
*(? (2# ) &− (85)

where &+, &− are the generators of the odd coset
(* (4;2# )

*(? (4) ⊗*(? (2# ) and

[!A , !B} = !A+B A = 0, 1, 2, 3 <>3 4. (86)

One passes from BD(4; 2#) to BD★(4; 2#) by multiplication of the generators from sectors (85)

according to the following compact formula

BD(4; 2#)  BD★(4; 2#) ↔ !A  exp( 8Ac
2

)!A . (87)
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We choose for � = 4 SUSY dS phase space the following covariance algebra (compare with (71))

("AB ⊕ "45 ⊕ � ⊕ �̃A ) ≃ >(3, 1) ⊕ >(2) ⊕ >(2) ⊕ >(2, 1). (88)

The remaining generators, which include all supercharges, define via Snyderization procedure the

� = 4 dS quantum-deformed phase superspace

("4`, "5`, I
0
U, D

1
V)

(−→ ( 1

_
Ĝ`, ' ?̂`, j

0
U, d

0
U) (89)

where due to quaternionic (* (2)-symplectic Majorana condition (see (50)) it follows that all

independent degrees of freedom are described by IU ≡ I1U, ĪU ∼ I2U and DU ≡ D1
U, D̄U ∼ D2

U and

after Snyderization by jU ≡ j1
U, j̄U ∼ j2

U and dU ≡ d1
U, d̄U ∼ d2

U.

The � = 5 dS superalgebra is the same as � = 4 Euclidean conformal superalgebra, which

has been studied earlier in explicit form (see e.g. [33]). The fermionic odd-odd sector (� = � =

0, 1, 2, 3, 4, 5; Σ̄�� =
1
2
[W�, W�]�, where � is a charge conjugation matrix for � = 5 + 1) is the

following

{IU, D̄V} = 2[(Σ̄��W5)UV"�� + �UV ( �̃1 + 8 �̃2)] (90)

{IU, ĪV} = {DU, D̄V} = 0 (91)

{IU, DV} = 8(W5�)UV (� + �̃3) (92)

and � ⊕ �̃A (A = 1, 2, 3) describe the internal symmetry >(2) ⊕ >(2, 1).
After Snyderization given by formulae (89) we get the algebra of complex spinors jU, dU and

j̄U, d̄U representing the odd sector of � = 4 dS phase superspace. The relations (90)-(92) depend

on the covariance algebra generators (88) and bosonic phase space coordinates Ĝ`, ?̂` are described

by generators "`4, "`5.

It should be mentioned that putting U = V in relations (57) one gets that (see [47])
∑

U |IU |2 =
∑

U |DU |2 = 0 or equivalently
∑

U |jU |2 =
∑

U |dU |2 = 0. One can conclude that after quantization,

similarly as in Sect. 3.2, the local gauging of superalgebra BD★(4; 2) leads to � = 5 dS supergravity

which contains ghost gauge fields.

5. Final Remarks and Outlook

The Snyder dS and AdS models of NC Lorentz-covariant quantum space-time coordinates Ĝ`

are described by the algebras

>G (4, 1)
(−→ 1

_
Ĝ3(` ⊕ "`a >G (3, 2)

(−→ 1

_
Ĝ�3(` ⊕ "`a (93)

Performing semi-dual Born mapp Ĝ` ↔ ?̂`, _ ↔ 1
'

one gets analogous algebraic structure with

Lorentz-covariant quantum NC four-momenta ?̂`

>? (4, 1)
(−→ '?̂3(` ⊕ "`a >? (3, 2)

(−→ '?̂3(` ⊕ "`a (94)

Subsequently in dS and AdS Yang models the pairs of algebras (93), (94) are embedded in D=6

pseudo-orthogonal quantum deformed Yang algebras >� (5, 1) and >� (4, 2), where subindex �

16



Noncommutative spaces and superspaces from Snyder and Yang type models Jerzy Lukierski

denotes that they contain the basic generators Ĝ`, ?̂` of quantum-deformed relativistic Heisenberg

algebra. We have the following two diagrams denoting the chains of subalgebras

>� (5, 1)
⋃

⋃

>G (4, 1) ⊃ >(3, 1) ⊂ >? (4, 1)

>� (4, 2)
⋃

⋃

>G (3, 2) ⊃ >(3, 1) ⊂ >? (3, 2)
(95)

which imply the relativistic covariance of considered Snyder and Yang models.

In this paper we introduced in Sect. 3 the # = 1 SUSY generalizations of � = 4 de-Sitter

and anti-de-Sitter algebras and in Sect.4 the # = 2 supersymmetric extensions of >� (5, 1) and

>� (4, 2) algebras. In such a way we defined the pairs of # = 1 and # = 2 SUSY Snyder models in

order to introduce for # = 1 the 3( and �3( quantum superspaces and for # = 2 the corresponding

Lorentz-covariant quantum deformed Heisenberg superalgebras.

In the outlook we would like to comment on some possible directions of future studies, namely:

i) Snyder and Yang type models are constructed from algebraic structures of classical Lie

algebras. Before further development of such ideas one can pose the following two questions:

1. Can one repeat the above construction for quantum-deformed Lie algebras, in particular

for quantum >(4, 1) and >(5, 1) algebras with noncocommutative Hopf-algebraic coal-

gebra sector and Hopf subalgebra describing the Lorentz symmetry? For such purpose

one can employ the results obtained by Ballesteros et all [48]. In such a way one can

obtain quantum-deformed Snyder and Yang models.

2. Snyder and Yang type models are based on the decomposition of Lie algebras into

the covariance subalgebra and the symmetric coset generators describing NC space-

times (Snyder case) and NC quantum phase spaces described by quantum-deformed

Heisenberg algebras (Yang case). Because the tangent space at every point of symmetric

coset space has the structure of Lie triple system the algebraic description of symmetric

cosets is provided by ternary algebras (see e.g [49],[50]). Can be therefore formulated

quantum-deformed Snyder and Yang models in terms of respective quantum-deformed

ternary algebras?

The answer to these two questions is now considered by present authors.

ii) If one uses superalgebras for obtaining via Snyderization the spinorial degrees of freedom,

the spinors will appear necessarily as Grasmannian, what is desirable in the framework of

QFT. One can however employ also the "bosonic" cosets of matrix groups which describe

the spinorial covering of space-time symmetry groups - in such a case one obtains curved

bosonic spinors. A good example is provided by the case of conformal Penrose twistors

(C� ∈ C; � = 1 · · · 4), which are described by the fundamental representations of � = 4

conformal group (* (2, 2). Defining twistors by bosonic cosets of (* (2, 3) or as # = 1

� = 4 superconformal odd cosets one gets the following two different choices of twistors

(see e.g. [50],[51])

Penrose twistors C
(�)
�

Fermionic twistors C
(� )
�

C
(�)
�

=
(* (2,3)

(* (2,2) ⊗* (1) ↔ C
(� )
�

=
(* (2,2;1)

(* (2,2) ⊗* (1) .
(96)
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iii) It is known since eighties [43],[47] that local gauging of � = 4 quaternionic dS superalgebras

leads necessarily to the appearance of field-theoretic models with gauge ghost fields (see e.g

[43]). Recently, however, did appear an interesting proposal (see e.g. [52]) that � = 4 dS

supergravity can be obtained without ghost fields from spontaneously broken coset
$ (4,2)
$ (4,1) ≃

(* (2,2)
*(? (2,2) in � = 4 superconformal gravity. Further algebraic understanding of this idea is

still desired.
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