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Abstract—The notion of reproducing kernel Hilbert space
(RKHS) has emerged in system identification during the past
decade. In the resulting framework, the impulse response estima-
tion problem is formulated as a regularized optimization defined
on an infinite-dimensional RKHS consisting of stable impulse
responses. The consequent estimation problem is well-defined
under the central assumption that the convolution operators re-
stricted to the RKHS are continuous linear functionals. Moreover,
according to this assumption, the representer theorem hold, and
therefore, the impulse response can be estimated by solving a
finite-dimensional program. Thus, the continuity feature plays a
significant role in kernel-based system identification. This paper
shows that this central assumption is guaranteed to be satisfied
in considerably general situations, namely when the kernel is
an integrable function and the input signal is bounded. Fur-
thermore, the strong convexity of the optimization problem and
the continuity property of the convolution operators imply that
the kernel-based system identification admits a unique solution.
Consequently, it follows that kernel-based system identification
is a well-defined approach.

I. INTRODUCTION

System identification, the theory of generating suitable

abstract representations for dynamical systems based on mea-

surement data, is a well-established research field [1]. Due

to the importance of mathematical models in various areas

of science and technology, system identification is an active

research area with numerous developed methodologies [2–7].

On the other hand, the concept of reproducing kernel Hilbert

space (RKHS), initially introduced in [8], has emerged in

statistics, signal processing and numerical analysis [9–14], and

provided a solid foundation for estimation and interpolation

problems. The inherent features of RKHSs, such as their

fundamental relation to the positive semi-definite kernels and

the Gaussian process [15–17], led to establishing various

methodologies and opened numerous avenues of research in

statistical learning theory [18].

In the seminal work of Pillonetto and De Nicolao [19], the

kernel-based identification methods are introduced by bringing

the theory of RKHSs to the area of linear system identification,

which led to a paradigm shift in the field [20]. The kernel-

based method unifies the identification theory of continuous-

time systems and discrete-time systems, described either with

a finite or an infinite impulse response, by formulating the

identification problem as a regularized regression defined on a

RKHS of stable systems, where the regularization term is spec-

ified based on the norm of employed RKHS [21]. The resulting

formulation addresses issues of model order selection, robust-

ness, and bias-variance trade-off [21–23]. The cornerstone of

a RKHS is the associated kernel function, which highlights the

necessity of designing suitable kernels for system identifica-

tion [24]. The most frequently used kernels in the literature are

tuned/correlated (TC), diagonal/correlated (DC), stable spline

(SS), and their generalizations [25–27]. Other forms of kernels

and regularization matrices have been proposed, inspired by

machine learning, system theory, harmonic analysis of stochas-

tic processes, and filter design methods [28–30]. While in the

classical identification methods, the complexity of models is

described by the orders of system, which are integer variables

determined based on metrics such as Akaike information

criterion [3], the model complexity in kernel-based approach is

specified and regulated by the hyperparameters characterizing

the kernel and the regularization weight, which are continuous

variables to be tuned [20]. The estimation of hyperparameters

can be performed using powerful and robust methods such

as empirical Bayes, Stein unbiased risk estimator, and cross-

validation [31–34]. Moreover, the kernel-based scheme allows

the incorporation of various forms of side-information in

the identification problem by designing appropriate kernel

functions or imposing suitable constraints to the regression

problem. The forms of this side-information, studied to date,

include stability, relative degree, smoothness of the impulse

response, resonant frequencies, external positivity, oscillatory

behaviors, steady-state gain, internal positivity, exponential

decay of the impulse response, structural properties, internal

low-complexity, frequency domain features, and the presence

of fast and slow poles [35, 30, 36–51]. While kernel-based

system identification has enjoyed considerable progress in the

past decade, it is still a thriving area of research with state-

of-the-art results and recent studies [52–57]. For example, the

mathematical foundation of stable RKHSs is revisited in [55],

the sample complexity and the minimax properties of kernel-

based methods are discussed in [56], and a long-standing

question on the absolute summability of stable kernels is

addressed in [57].

The above-mentioned advantages of kernel-based methods

stand on the assumption that the formulated regression prob-

lem is well-defined, i.e., the corresponding regularized opti-

mization problem admits at least one solution. The base of this

assumption is the continuity of convolution operators when

they are restricted to the stable RKHS [21, 24]. Accordingly,

one may ask about the conditions under which the continuity

property holds. This paper shows that this central assumption

is satisfied in certain but highly general situations, namely
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when the input signal is bounded and the kernel is integrable.

As a result, kernel-based system identification admits a unique

solution according to the continuity of convolution operators

and the strong convexity of the optimization problem, which

also implies that the kernel-based approach is well-defined.

II. NOTATION AND PRELIMINARIES

The set of natural numbers, the set of non-negative integers,

the set of real numbers, the set of non-negative real numbers,

and the n-dimensional Euclidean space are denoted by N, Z+,

R, R+, and R
n, respectively. Throughout the paper, T denotes

either Z+ or R+, and T± is defined as the set of scalars t

where t ∈ T or −t ∈ T. The identity matrix/operator and

the zero vector are denoted by I and 0, respectively. Given

measurable space X , we denote by R
X as the space of

measurable functions v : X → R. The element v ∈ R
X

is shown entry-wise as v = (vx)x∈X , or v = (v(x))x∈X .

Depending on the context of discussion, L ∞ refers either to

ℓ∞(Z) or L∞(R). Similarly, L 1 is either ℓ1(Z+) or L1(R+).
For p ∈ {1,∞}, the norm in L p is denoted by ‖ · ‖p. With

respect to each u = (us)s∈T±
∈ L ∞ and t ∈ T±, the linear

operator Lut : L 1 → R is defined as Lut(g) :=
∑

s∈Z+
gsut−s,

when T = Z+, and Lut(g) :=
∫

R+
gsut−sds, when T = Z+.

III. KERNEL-BASED SYSTEM IDENTIFICATION

Consider a stable LTI system S characterized by an impulse

response g(S) := (g(S)

t )t∈T ∈ R
T, where T is Z+ or R+

respectively for the case that the system is discrete-time

or continuous-time. Suppose the system S is actuated by a

signal u ∈ L ∞, and the resulting output signal is measured

with measurement noise at nD time instants t1, . . . , tnD
. Let

the measured output of the system at time instant ti, and

the corresponding measurement uncertainty, be denoted by

yti and wti , respectively. Due to the definition of operators

{Lut|t ∈ T±}, we know that

yti = Luti(g
(S)) + wti , i = 1, . . . , nD . (1)

Therefore, we are provided with a set of input-output measure-

ment data denoted by D . Accordingly, the impulse response

identification problem is formalized as estimating g(S), the

impulse response of stable system S, based on the measure-

ment data. In the kernel-based identification framework, this

problem is formulated as an impulse response estimation in

a reproducing kernel Hilbert space (RKHS) endowed with a

stable kernel. To introduce the main result of this paper, we

need to discuss this paradigm briefly.

Definition 1 ([14]). Consider symmetric function k : T×T →
R, that is assumed to be continuous if T = R+. We say k is

a Mercer kernel when we have
n
∑

i=1

n
∑

j=1

aik(ti, tj)aj ≥ 0, (2)

for all n ∈ N, t1, . . . , tn ∈ T, and a1, . . . , an ∈ R.

Furthermore, with respect to each t ∈ T, the section of kernel

k at t is the function kt : T → R defined as kt(·) = k(t, ·).

Theorem 1 ([14]). With respect to each Mercer kernel k :
T× T → R, a unique Hilbert space H

k

⊆ R
T endowed with

inner product 〈·, ·〉
H
k

exists such that, for each t ∈ T, one

has

i) kt ∈ H
k

, and

ii) 〈g,kt〉H
k

= gt, for all g = (gs)s∈T ∈ H
k

.

In this case, we say H
k

is the RKHS with kernel k. Moreover,

the second feature is called the reproducing property.

Due to Theorem 1, one can see that each RKHS is uniquely

characterized by the corresponding Mercer kernel. Since the

to-be-estimated impulse response is known to be stable in the

bounded-input-bounded-output (BIBO) sense, the employed

kernel k is required to guarantee that H
k

⊆ L 1. The suf-

ficient and necessary condition for this property is established

by the following theorem.

Theorem 2 ([58, 59]). Consider the Mercer kernel k : T ×
T → R and the corresponding RKHS H

k

. Then, H
k

⊆ L 1

if and only if, for any u = (us)s∈T ∈ L ∞, one has

∑

t∈Z+

∣

∣

∣

∣

∑

s∈Z+

usk(t, s)

∣

∣

∣

∣

< ∞, (3)

when T = Z+, and,
∫

R+

∣

∣

∣

∣

∫

R+

usk(t, s)ds

∣

∣

∣

∣

dt < ∞, (4)

when T = R+. When this property holds, kernel k is called

stable and H
k

is said to be a stable RKHS.

Given the stable kernel k and the measurement data, the

kernel-based impulse response estimation problem is formu-

lated as

min
g∈H

k

nD
∑

i=1

(Luti(g)− yi)
2 + λ‖g‖2H

k

, (5)

where λ > 0 is the regularization weight. Based on the

same arguments as in [12, Theorem 1.3.1], one can describe

the solution of (5) in terms of the sections of the kernel

at t1, . . . , tnD
. To this end, we need vector y defined as

y =
[

yt1 , . . . , ytnD

]

T

∈ R
nD , and the output kernel matrix

O ∈ R
nD×nD formed from the input signal and defined entry-

wise as

[O](i,j)=















∫

R+

∫

R+
k(s, t)uti−sutj−t ds dt, if T+=R+,

∑

t∈Z+

∑

s∈Z+

k(s, t)uti−sutj−t, if T+=Z+,

for each i, j = 1, . . . , nD .

Theorem 3 (Representer Theorem for System Identification,

[21]). Let Luti : H
k

→ R be a continuous linear operator,

for each i = 1, . . . , nD . Then, the minimizer of (5) is g⋆ =
(g⋆t )t∈T ∈ H

k

defined as

g⋆t =

nD
∑

i=1

c⋆iL
u
ti
(kt), ∀t ∈ T, (6)

where the vector c⋆ =
[

c⋆1, . . . , c
⋆
nD

]

T

∈ R
nD is

c⋆ =
(

O+ λInD

)−1
y, (7)
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and, InD
denotes identity matrix of dimension nD .

The main assumption in Theorem 3 is the continuity of

convolution operators Lut1 , . . . ,L
u
tnD

, which depends mainly

on the input signal u and kernel k. Accordingly, a natural

question one may ask is under what conditions are the

convolution operators continuous. Indeed, one should note

that in Theorem 3, the convolution operators are restricted to

H
k

⊂ L 1, and consequently, the continuity of Lut : L 1 → R

does not imply that the restricted operator Lut : H
k

→ R is

continuous as well. We address this continuity concern in the

next section.

IV. CONTINUITY OF CONVOLUTION OPERATORS

The main result of this section is based on the notion of

integrable kernels introduced below.

Definition 2 ([21]). The Mercer kernel k : T×T → R is said

to be integrable if
∫

R+

∫

R+

|k(s, t)| dsdt < ∞, (8)

when T = R+, or, if
∑

s∈Z+

∑

t∈Z+

|k(s, t)| < ∞, (9)

when T = Z+.

The integrable kernels are the largest known interesting sub-

class of stable kernels in the context of kernel-based impulse

response identification [57, 55]. Before proceeding to the main

theorem of this paper, we need to introduce additional lemmas.

Lemma 4. Let T = R+ and kernel k be integrable. Consider

τ and τ such that 0 ≤ τ < τ ≤ ∞. Then,
∫

[τ,τ ] k(·, t)dt is a

well-defined function and belongs to H
k

for which we have

∥

∥

∥

∫

[τ,τ ]

k(·, t)dt
∥

∥

∥

2

H
k

=

∫ τ

τ

∫ τ

τ

k(s, t)dsdt. (10)

Moreover, for each g = (gt)t∈R+ ∈ H
k

, the following holds
∫

[τ,τ ]

gtdt =
〈

∫

[τ,τ ]

k(·, t)dt, g
〉

H
k

. (11)

Proof. See Appendix A. �

From this Lemma, we have the following corollary.

Corollary 5. Let T = R+ and kernel k be integrable.

Consider τ1, τ2, τ2 and τ2 such that 0 ≤ τ1 < τ1 ≤ ∞
and 0 ≤ τ2 < τ2 ≤ ∞. Then, we have

〈

∫

[τ1,τ1]

k(·, t)dt,

∫

[τ2,τ2]

k(·, s)ds
〉

H
k

=

∫

[τ1,τ1]×[τ2,τ2]

k(t, s)dsdt

=

∫ τ1

τ1

∫ τ2

τ2

k(t, s)dsdt =

∫ τ2

τ2

∫ τ1

τ1

k(t, s)dtds.

(12)

Proof. See Appendix B. �

The next lemma is the discrete-time version of Lemma 4.

Lemma 6. Let T = Z+ and kernel k be integrable. Consider

τ , τ ∈ Z+ such that 0 ≤ τ ≤ τ ≤ ∞. Then,
∑

τ≤t≤τ k(·, t) is

a well-defined function and belongs to H
k

for which we have

∥

∥

∥

∑

τ≤t≤τ

k(·, t)
∥

∥

∥

2

H
k

=
∑

τ≤s,t≤τ

k(s, t). (13)

Moreover, for each g = (gt)t∈Z+ ∈ H
k

, the following holds

∑

τ≤t≤τ

gt =
〈

∑

τ≤t≤τ

k(·, t)dt, g
〉

H
k

. (14)

Proof. See Appendix C. �

Based on Lemma 4, Corollary 5 and Lemma 6, we can

present the main theorem of this paper.

Theorem 7 (Continuity of Convolution Operators). Let k be

an integrable Mercer kernel. Then, for any u ∈ L ∞ and τ ∈
T, the operator Luτ is continuous (bounded). Moreover, there

exists ϕ(u)
τ = (ϕ(u)

τ,t)t∈T ∈ H
k

such that Luτ (g) = 〈ϕ(u)
τ , g〉, for

any g ∈ H
k

. Furthermore, for any t ∈ T, we have

ϕ
(u)
τ,t = Luτ (kt) =

{

∫

R+
k(t, s)uτ−sds, if T = R+,

∑

s∈Z+
k(t, s)uτ−s, if T = Z+.

(15)

Proof. We discuss the proof for the cases of T = R+ and

T = Z+.

Case I: Let T = R+ and define v = (vs)s∈R+ such that

vs = uτ−s, for any s ∈ R+. Accordingly, we have

Luτ (g) =

∫

R+

vsgsds, (16)

for each g = (gs)s∈R+ . Note that v ∈ L ∞, and hence,

in L ∞, there exists a sequence of step functions v(n) :=

(v
(n)
s )s∈R+ , n = 1, 2, . . . , such that ‖v(n)‖∞ ≤ ‖v‖∞, for

each n ∈ N, and, limn→∞ v
(n)
s = vs, for almost all s ∈ R+

[60]. For each n ∈ N, due to the definition of step functions

[60], we know that there exists Mn ∈ N, intervals J
(n)
i ⊆ R+,

i = 1, . . . ,Mn, and a
(n)
i ∈ R, i = 1, . . . ,Mn, such that

v(n)s =

Mn
∑

i=1

a
(n)
i 1

J
(n)
i

(s), ∀s ∈ R+. (17)

For each n ∈ N, define fn = (fn,t)t∈R+ as

fn :=

∫

R+

v(n)s k(·, s)ds =

∫

R+

Mn
∑

i=1

a
(n)
i 1

J
(n)
i

(s)k(·, s)ds, (18)

which is well-defined and belongs to H
k

according to Lemma

4. Accordingly, due to (17), for each g = (gs)s∈R+ ∈ H
k

, we
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have

∫

R+

gsv
(n)
s ds =

Mn
∑

i=1

a
(n)
i

∫

J
(n)
i

gsds

=

Mn
∑

i=1

a
(n)
i

〈

∫

J
(n)
i

k(·, s)ds, g
〉

H
k

=
〈

Mn
∑

i=1

a
(n)
i

∫

J
(n)
i

k(·, s)ds, g
〉

H
k

=
〈

∫

R+

Mn
∑

i=1

a
(n)
i 1

J
(n)
i

(s)k(·, s)ds, g
〉

H
k

=
〈

∫

R+

v(n)s k(·, s)ds, g
〉

H
k

= 〈fn, g〉H
k

,

(19)

where the second equality is due to Lemma 4. Let ε be an

arbitrary positive real scalar. Define l as

l :=

∫

R+×R+

vtk(t, s)vsdtds, (20)

and, for any n ∈ N, ln as

ln :=

∫

R+×R+

v
(n)
t k(t, s)vsdtds. (21)

For almost all s, t ∈ R+, we have

lim
n→∞

v
(n)
t k(t, s)vs = vtk(t, s)vs. (22)

Moreover, for any n ∈ N, we know that
∣

∣v
(n)
t k(t, s)vs

∣

∣ ≤ ‖v‖∞|k(t, s)|. (23)

Since k is integrable, from the dominated convergence theo-

rem [60], we have

lim
n→∞

ln = lim
n→∞

∫

R+×R+

v
(n)
t k(t, s)vsdsdt

=

∫

R+×R+

lim
n→∞

v
(n)
t k(t, s)vsdsdt

=

∫

R+×R+

vtk(t, s)vsdsdt = l.

(24)

Therefore, there exist Nε ∈ N such that |ln−l| ≤ 1
8ε

2, for each

n ≥ Nε. Define ln,m as ln,m := 〈fn, fm〉
H
k

, for each m,n ∈
N. Accordingly, from (18), Corollary 5 and the linearity of

integration and inner product, it follows that

ln,m =

Mn
∑

i=1

Mm
∑

j=1

a
(n)
i a

(m)
j

〈

∫

J
(n)
i

k(·, s)ds,

∫

J
(m)
j

k(·, t)dt
〉

H
k

=

Mn
∑

i=1

Mm
∑

j=1

a
(n)
i a

(m)
j

∫

J
(n)
i

∫

J
(m)
j

k(s, t)dsdt

=

∫

R+×R+

Mn
∑

i=1

Mm
∑

j=1

a
(n)
i a

(m)
j 1

J
(n)
i

(t)1
J
(m)
j

(s)k(s, t)dsdt.

Therefore, due to the definition of vn and vm, we have

ln,m = 〈fn, fm〉
H
k

=

∫

R+×R+

v(n)s k(s, t)v
(m)
t dsdt. (25)

Accordingly, since ‖vn‖∞, ‖vm‖∞ ≤ ‖v‖∞, one can see that

|ln,m − ln|=

∣

∣

∣

∣

∫

R+×R+

v
(n)
t

[

k(t, s)(v(m)
s −vs)

]

dtds
∣

∣

∣

≤‖v‖∞

∫

R+×R+

∣

∣

∣
k(t, s)(v(m)

s −vs)
∣

∣

∣
dtds.

(26)

From ‖vn‖∞, ‖vm‖∞ ≤ ‖v‖∞, we have

|k(t, s)(v(m)
s − vs)| ≤ 2‖v‖∞|k(t, s)|. (27)

Moreover, for almost all s ∈ R+, we know that

lim
m→∞

|k(t, s)(v(m)
s − vs)| = 0. (28)

Since k is integrable, from the dominated convergence theo-

rem [60], it follows that

lim
m→∞

∫

R+×R+

|k(t, s)(v(m)
s − vs)|dsdt = 0. (29)

Therefore, due to (26), there exists Mε such that, for any m ≥
Mε, we have |ln,m − ln| ≤

1
8ε

2. Accordingly, from triangle

inequality, we have |lm,n − l| ≤ 1
4ε

2, for any m,n ≥ Kε :=
max{Mε, Nε}. Subsequently, it follows that

‖fn − fm‖2 = 〈fn, fn〉H
k

− 2〈fn, fm〉
H
k

+ 〈fm, fm〉
H
k

= ln,n − 2ln,m + lm,m

≤ (l +
1

4
ε2)− 2(l −

1

4
ε2) + (l +

1

4
ε2) = ε2.

(30)

Hence, for any m,n ≥ Kε, we have ‖fn − fm‖H
k

≤ ε.

Therefore, {fn}
∞
n=1 is a Cauchy sequence in H

k

, and there

exists f = (fs)s∈R+ ∈ H
k

such that limn→∞ fn = f.
Accordingly, due to the reproducing property, for any t ∈ R+,

we have

lim
n→∞

fn,t = lim
n→∞

〈kt, fn〉H
k

= 〈kt, f〉H
k

= ft. (31)

For any n ∈ N and for almost all s, t ∈ R+, we have
∣

∣

∣
k(t, s)v(n)s

∣

∣

∣
≤ ‖v‖∞|k(t, s)|, (32)

and

lim
n→∞

k(t, s)v(n)s = k(t, s)vs. (33)

Accordingly, since k is integrable, from the dominated con-

vergence theorem [60], (18) and (31), it follows that

ft = lim
n→∞

∫

R+

k(t, s)v(n)s ds

=

∫

R+

lim
n→∞

k(t, s)v(n)s ds

=

∫

R+

k(t, s)vsds,

(34)

i.e., we have

f =

∫

R+

k(·, s)vsds. (35)

For almost all s ∈ R+, we know that limn→∞ gsv
(n)
s = gsvs.

Moreover, one has that |gsv
(n)
s | ≤ ‖v‖∞|gs|, for each n ∈

N. Since g = (gs)s∈R+ ∈ H
k

and each element of H
k

is
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integrable, due to the dominated convergence theorem [60],

(19) and limn→∞ fn = f, we have
∫

R+

gsvsds = lim
n→∞

∫

R+

gsv
(n)
s ds

= lim
n→∞

〈fn, g〉H
k

= 〈f, g〉
H
k

.

(36)

Let ϕ(u)
τ = (ϕ(u)

τ,t)t∈R+ be defined such that for any t ∈ R+,

we have

ϕ
(u)
τ,t =

∫

R+

k(t, s)uτ−sds, (37)

i.e., ϕ(u)
τ =

∫

R+
k(·, s)uτ−sds. Due to (34) and the fact that

vs = uτ−s, for s ∈ R+, we know that ϕ(u)
τ = f ∈ H

k

.

Accordingly, from (36), we have

Luτ (g) =

∫

R+

vsuτ−sds

=
〈

∫

R+

k(·, s)uτ−sds, g
〉

H
k

= 〈ϕ(u)
τ , g〉

H
k

,

which implies that Luτ is a continuous (bounded) operator on

H
k

. This concludes the proof for the case of T = R+.

Case II: Let T = Z+ and, similarly to the previous case,

define v = (vs)s∈Z+ as vs = uτ−s, for any s ∈ Z+.

One can easily see that ‖v‖∞ = ‖u‖∞. For any g =
(gs)s∈Z+ ∈ H

k

, we know that
∑

s∈Z+
|gs| < ∞, which

implies that Luτ (g) =
∑

s∈Z+
gsvs is absolutely convergent

due to ‖v‖∞ = ‖u‖∞ < ∞. Let ε be an arbitrary positive

real scalar. Since k is summable, there exists Nε ∈ N such

that
∑

s,t≥Nε+1

|k(t, s)| ≤
1

‖v‖2∞
ε2. (38)

For any n ∈ N, let fn = (fn,t)t∈Z+ be defined as

fn,t =

n
∑

s=0

k(t, s)vs, ∀t ∈ Z+. (39)

One can see that fn ∈ H
k

. Let n,m ∈ N such that n,m ≥
Nε. Without loss of generality, assume n ≥ m. Due to the

reproducing property, we have

‖fn − fm‖2H
k

=
∥

∥

∥

m
∑

s=n+1

k(·, s)vs

∥

∥

∥

2

H
k

=

m
∑

s,t≥n+1

k(s, t)vsvt

≤ ‖v‖2∞
∑

s,t≥Nε+1

|k(s, t)|

≤ ε2,

(40)

i.e., ‖fn − fm‖H
k

≤ ε. Therefore {fn}
∞
n=1 is a Cauchy

sequence in H
k

, and there exists f = (ft)t∈Z+ such that

limn→∞ fn = f. Note that, we have

ft = 〈kt, f〉H
k

= lim
n→∞

〈kt, fn〉H
k

= lim
n→∞

fn,t, (41)

for any t ∈ Z+. Accordingly, from the reproducing property,

one can see that

ft = lim
n→∞

〈

kt,

n
∑

s=0

k(·, s)vs

〉

H
k

= lim
n→∞

n
∑

s=0

k(t, s)vs

=

∞
∑

s=0

k(t, s)vs,

(42)

where the last equality is due to
∑∞

s=0 |k(t, s)vs| < ∞, for

any t ∈ Z+. Hence, we have f =
∑∞

s=0 k(·, s)vs. For any

g = (gs)s∈Z+ ∈ H
k

, we know that
∑

s∈Z+
|gs| ≤ ∞, which

implies that Luτ (g) =
∑

s∈Z+
gsvs is absolutely convergent

due to ‖v‖∞ = ‖u‖∞ < ∞. Therefore, one can see that

∑

s∈Z+

gsvs = lim
n→∞

n
∑

s=0

vs〈ks, g〉H
k

= lim
n→∞

〈

n
∑

s=0

k(·, s)vs, g
〉

H
k

= lim
n→∞

〈fn, g〉H
k

= 〈f, g〉
H
k

.

(43)

Let ϕ(u)
τ = (ϕ(u)

τ,t)t∈Z+ be defined as

ϕ
(u)
τ,t = ft =

∑

s∈Z+

k(t, s)vs, (44)

for any t ∈ Z+. Accordingly, we have

Luτ (g)=
∑

s∈Z+

gsvs=〈ϕ(u)
τ , g〉H

k

=
〈

∑

s∈Z+

k(·, s)vs, g
〉

H
k

,

for any g ∈ H
k

. This concludes the proof. �

From this theorem, we have the following corollary.

Corollary 8. Let k be an integrable kernel and u ∈ L ∞.

Then, the kernel-based impulse response estimation problem

(5) admits a unique solution introduced in (6).

Proof. From Theorem 7, it follows that the objective in (5) is

function J : H
k

→ R defined as

J (g) =

nD
∑

i=1

(

〈ϕ(u)
ti
, g〉

H
k

− yti
)2

+ λ‖g‖2H
k

, (45)

for any g ∈ H
k

. This implies that J is a quadratic continuous

function. Since λ > 0, we know that J is strongly convex.

Accordingly, from J (0) = ‖y‖2, it follows that J is a

proper continuous strongly convex function. Therefore, due

to [61, Theorem 2.19], we know that ming∈H
k

J (g) has a

unique solution, which implies the existence and uniqueness

for the solution of (5). The proof concludes from (15) and [12,

Theorem 1.3.1]. �
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V. CONCLUSION

The kernel-based system identification stands on the central

assumption that the convolution operators restricted to the cho-

sen RKHS are continuous linear functionals. Current research

work in the literature assumes, implicitly or explicitly, that

this continuity property holds without elaborating the required

conditions. In this work, we have addressed this long-standing

question by specifying these conditions: the boundedness of

the input signal and the integrability of the kernel function.

Furthermore, owing to the strong convexity of the optimization

problem and the resulted continuity feature of the convolution

operators, we have shown that the kernel-based approach is

well-defined by guaranteeing the existence and uniqueness

properties for the solution of the identification problem.

APPENDIX

A. Proof of Lemma 4

First we show the claims when τ < ∞, and then, extend

the result to the general case.

Let ∆τ be defined as ∆τ = τ − τ . For each n ∈ N, define

Nn and ∆n respectively as Nn := 2n and ∆n := 2−n∆τ .

Also, let function fn := (fn,s)s∈R+ ∈ H
k

be defined as

fn,s = ∆n

Nn
∑

i=1

k(t
(n)
i , s), ∀s ∈ R+, (46)

where t
(n)
i = τ + (i − 1)∆τ , for i = 1, . . . , 2n. Let ε be an

arbitrary positive real scalar. Since k is continuous, we know

that it is uniformly continuous on compact region [τ, τ ]×[τ , τ ].
Therefore, there exists positive real scalar δ such that for any

(s1, t1), (s2, t2) ∈ [τ , τ ]× [τ , τ ] where |s1−s2|+ |t1−t2| ≤ δ,

we have

|k(s1, t1)− k(s2, t2)| ≤
1

4

ε2

∆τ2
. (47)

Let δε be the largest scalar in (0, 1) with such property and

define Nε as the smallest integer such that

Nε ≥ max(− log2(
δε

∆τ
), 0) + 1. (48)

Consider arbitrary integers n and m such that n,m ≥ Nε.

From the reproducing property of the kernel, one can see that

〈fn, fm〉
H
k

=
〈

∆n

Nn
∑

i=1

k(t
(n)
i , ·),∆m

Nm
∑

j=1

k(t
(m)
j , ·)

〉

H
k

=∆n∆m

Nn
∑

i=1

Nm
∑

j=1

k(t
(n)
i , t

(m)
j ).

(49)

Define I
(n,m)
i,j as region [t

(n)
i , t

(n)
i +∆n)× [t

(m)
j , t

(m)
j +∆m),

for i = 1, . . . , 2n and j = 1, . . . , 2m. Also, let I be the value

defined as

I :=

∫

[τ,τ ]×[τ,τ ]

k(s, t)dsdt. (50)

Note that I is a well-defined integral due to integrability of k.

From (49) and the triangle inequality, we have

|〈fn,fm〉H
k

−I|

=

∣

∣

∣

∣

Nn
∑

i=1

Nm
∑

j=1

∫

I
(n,m)
i,j

k(t
(n)
i , t

(m)
j )− k(s, t)dsdt

∣

∣

∣

∣

≤

Nn
∑

i=1

Nm
∑

j=1

∫

I
(n,m)
i,j

∣

∣

k(t
(n)
i , t

(m)
j )− k(s, t)

∣

∣dsdt

≤

Nn
∑

i=1

Nm
∑

j=1

1

4

ε2

∆τ2
∆n∆m

=
1

4
ε2,

where the inequality is due to (47). Subsequently, one can see

that

I −
1

4
ε2 ≤ 〈fn, fm〉 ≤ I +

1

4
ε2. (51)

From (51), it follows that

‖fn − fm‖2H
k

= 〈fn, fn〉H
k

− 2〈fn, fm〉
H
k

+ 〈fm, fm〉
H
k

≤ (I +
1

4
ε2)− 2(I −

1

4
ε2) + (I +

1

4
ε2)

= ε2,

and, hence, we have ‖fn−fm‖H
k

≤ ε. Therefore, {fn}
∞
n=1 is a

Cauchy sequence in H
k

, and there exists f = (fs)s∈R+ ∈ H
k

such that limn→∞ ‖fn − f‖H
k

= 0. For any s ∈ R+, due to

the Cauchy-Schwartz inequality and the reproducing property,

we have

|fn,s − fs| = |〈ks, fn − f〉
H
k

| ≤ k(s, s)
1
2 ‖fn − f‖H

k

, (52)

which implies that limn→∞ fn,s = fs. On the other hand,

from (47), one can see that

∣

∣

∣

∣

fn,s −

∫

[τ,τ ]

k(s, t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∆n

Nn
∑

i=1

k(t
(n)
i , s)−

∫ τ

τ

k(s, t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

Nn
∑

i=1

∫

I
(n)
i

k(t
(n)
i , s)− k(s, t)dt

∣

∣

∣

∣

≤

Nn
∑

i=1

∫

I
(n)
i

∣

∣

k(t
(n)
i , s)− k(s, t)

∣

∣dt

≤

Nn
∑

i=1

1

4

ε2

∆τ2
∆n

=
1

4

ε2

∆τ
,

where, for i = 1, . . . , Nn, interval I
(n)
i is defined as

[t
(n)
i , t

(n)
i +∆n). Accordingly, we have

fs = lim
n→∞

fn,s =

∫

[τ,τ ]

k(s, t)dt, (53)

which says that f =
∫

[τ,τ ]
k(·, t)dt ∈ H

k

. Moreover, from

limn→∞ fn = f, we know that

‖f‖2H
k

= lim
n→∞

‖fn‖
2
H
k

= lim
n→∞

〈fn, fn〉H
k

. (54)
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Therefore, from (51) and the definition of f and I , it follows

that

∥

∥

∥

∫

[τ,τ ]

k(·, t)dt
∥

∥

∥

2

H
k

= lim
n→∞

〈fn, fn〉H
k

=

∫

[τ,τ ]×[τ,τ ]

k(s, t)dsdt.

(55)

Note that, for any s such that t + s ∈ R+, due to the

reproducing property of the kernel, we have

‖kt+s − kt‖
2
H
k

= k(t + s, t+ s)

− k(t, t+ s)− k(t+ s, t) + k(t, t),

which implies that lims→0 ‖kt+s − kt‖H
k

= 0 due to conti-

nuity of the kernel. Meanwhile, for each g = (gt)t∈R+ ∈ H
k

,

from the Cauchy-Schwartz inequality and the reproducing

property, one has

|gt+s − gt| = |〈kt+s − kt, g〉H
k

|

≤ ‖kt+s − kt‖H
k

‖g‖H
k

.

Accordingly, we have lims→0 |gt+s − gt| = 0, which says

that g = (gt)t∈R+ is a continuous function of t. Hence, the

Riemann integral of g exists, and we have

∫

[τ,τ ]

gtdt = lim
n→∞

2n
∑

i=1

g
(

τ + (i− 1)2−n∆τ
)

2−n∆τ

= lim
n→∞

Nn
∑

i=1

g(t
(n)
i )∆n

= lim
n→∞

〈fn, g〉H
k

,

where the last equality is due the definition of fn in (46) and

the reproducing property. Therefore, from limn→∞ fn = f, one

can see that

∫

[τ,τ ]

gtdt = lim
n→∞

〈fn, g〉H
k

= 〈f, g〉
H
k

=
〈

∫

[τ,τ ]

k(·, t)dt, g
〉

H
k

.

(56)

Now, we consider the case where τ = ∞. For each integer

n ≥ τ , let hn = (hn,s)s∈R+ be function hn =
∫

[τ,n] k(·, t)dt
which is well-defined and belongs to H

k

. Let ε be an arbitrary

positive real scalar. Since k is absolutely integrable, we know

that

lim
τ→∞

∫ ∞

τ

∫ ∞

τ

|k(s, t)|dsdt = 0. (57)

Let τε ≥ τ be the smallest positive real scalar such that

∫ ∞

τε

∫ ∞

τε

|k(s, t)|dsdt ≤ ε2, (58)

and n,m ∈ N be arbitrary indices such that n,m ≥ τε.

Without loss of generality, assume n ≥ m. Then, due to the

discussion above and the triangle inequality, we have

‖hn − hm‖2H
k

=
∥

∥

∥

∫ n

m

k(·, t)dt
∥

∥

∥

2

H
k

=

∫ n

m

∫ n

m

k(s, t)dsdt

≤

∫ n

m

∫ n

m

|k(s, t)|dsdt

≤

∫ ∞

τε

∫ ∞

τε

|k(s, t)|dsdt.

(59)

Accordingly, from (58), we know that ‖hn − hm‖H
k

≤ ε,

which implies that {hn}n∈N,n≥τ is a Cauchy sequence in

H
k

. Therefore, there exists h = (hs)s∈R+ ∈ H
k

such that

limn→∞ hn = h. Based on an argument similar to (52), one

can show that limn→∞ hn,s = hs, for any s ∈ R+. Since

k(s, ·) ∈ H
k

and the elements of H
k

are integrable, due to

the dominated convergence theorem [60], we have

hs = lim
n→∞

hn(s)

= lim
n→∞

∫ n

τ

k(s, t)dt

= lim
n→∞

∫ ∞

τ

k(s, t)1[τ,n](t)dt

=

∫ ∞

τ

k(s, t)dt.

(60)

In other words, one has h =
∫∞

τ
k(·, t)dt. Hence, from

limn→∞ hn = h and the above discussion, we have
∥

∥

∥

∫ ∞

τ

k(·, t)dt
∥

∥

∥

2

H
k

= lim
n→∞

‖hn‖
2
H
k

= lim
n→∞

∫ n

τ

∫ n

τ

k(s, t)dsdt

= lim
n→∞

∫ ∞

τ

∫ ∞

τ

k(s, t)1[τ,n]2(s, t)dsdt

=

∫ ∞

τ

∫ ∞

τ

k(s, t)dsdt,

(61)

where the last equality is according to the dominated conver-

gence theorem. Let g = (gt)t∈R+ be an arbitrary element of

H
k

. Based on same arguments as before, one can see that

〈

∫ ∞

τ

k(·, t)dt,g
〉

H
k

= lim
n→∞

〈hn, g〉H
k

= lim
n→∞

〈

∫ n

τ

k(·, t)dt, g
〉

H
k

= lim
n→∞

∫ n

τ

gtdt

= lim
n→∞

∫ ∞

τ

gt1[τ,n](t)dt

=

∫ ∞

τ

gtdt,

(62)

where the last equality is due to the dominated convergence

theorem and the fact that g is integrable. �
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B. Proof of Corollary 5

In (11), set τ , τ , and g respectively to τ1, τ1, g =
∫

[τ2,τ2]
k(·, s)ds. Accordingly, we have we

〈

∫ τ1

τ1

k(·, t)dt,

∫ τ2

τ2

k(·, s)ds
〉

H
k

=

∫ τ1

τ1

∫ τ2

τ2

k(t, s)dsdt.

In this equation, since the kernel is integrable, the right-hand

side is well-defined. Moreover, due to the Fubini theorem [60],

it equals to the other integrals in (12). �

C. Proof of Lemma 6

We know that k(·, t) ∈ H
k

, for each t = τ, . . . , τ . If τ is

finite, one can see that
∑

τ≤t≤τ k(·, t) belongs to H
k

, hence,

it is well-defined. Moreover, using the definition of norm and

the reproducing property, one can show (13). Similarly, (14) is

concluded from the reproducing property. Now, we consider

the case τ = ∞. For n ≥ τ , we define fn ∈ H
k

as

fn = (fn,s)s∈Z+ :=
∑

τ≤t≤n

k(·, t).

Let ε be an arbitrary positive real scalar, and Nε be the smallest

non-negative integer such that

∑

s,t≥Nε

|k(s, t)| ≤ ε.

Note that since k is integrable, there exist such Nε for any

positive ε. Now, let n,m ∈ N such that n,m ≥ Nε and

without loss of generality, we assume n ≥ m. Based on the

previous case, we know that

‖fn − fm‖2H
k

=
∥

∥

∥

n
∑

t=m+1

k(·, t)
∥

∥

∥

2

H
k

=
∑

m+1≤s,t≤n

k(s, t)

≤
∑

Nε≤s,t

|k(s, t)|

≤ ε2.

Accordingly, we have ‖fn − fm‖H
k

≤ ε, which implies that

{fn}n≥τ is a Cauchy sequence and hence convergent. Let f =
(fs)s∈Z+ denote the limit of this sequence. For any s ∈ Z+,

we know that

|fs − fn,s| = |〈f − fn,ks〉H
k

|

≤ k(s, s)
1
2 ‖f − fn‖H

k

,
(63)

and consequently, we have limn→∞ fn,s = fs. Subsequently,

since k(s, ·) is absolutely integrable, it follows that

fs = lim
n→∞

∑

τ≤t≤n

k(s, t) =
∑

τ≤t

k(s, t), (64)

i.e., f =
∑

τ≤t k(·, t). Moreover, we have

∥

∥

∥

∑

τ≤t

k(·, t)
∥

∥

∥

2

H
k

= lim
n→∞

‖fn‖
2
H
k

= lim
n→∞

∑

τ≤s,t≤n

k(s, t)

=
∑

τ≤s,t

k(s, t),

(65)

where the last equality is due to the dominated convergence

theorem [60] and being k integrable. For any g = (gt)t∈Z+ ∈
H
k

, we know that g is integrable, i.e.,
∑

t∈Z+
|gt| < ∞.

Therefore, from limn→∞ fn = f, we have
∑

τ≤t

gt = lim
n→∞

∑

τ≤t≤n

gt

= lim
n→∞

〈

∑

τ≤t≤n

k(·, t), g
〉

H
k

= lim
n→∞

〈fn, g〉H
k

= 〈f, g〉
H
k

=
〈

∑

τ≤t

k(·, t), g
〉

H
k

.

(66)

This concludes the proof. �
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