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On the Differential Properties of the Power Mapping x
p
m+2
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Abstract

Let m be a positive integer and p a prime. In this paper, we investigate the differential
properties of the power mapping xp

m

+2 over Fpn , where n = 2m or n = 2m − 1. For the
case n = 2m, by transforming the derivative equation of xp

m

+2 and studying some related
equations, we completely determine the differential spectrum of this power mapping. For
the case n = 2m− 1, the derivative equation can be transformed to a polynomial of degree
p + 3. The problem is more difficult and we obtain partial results about the differential
spectrum of xp

m

+2.

Keywords Power mapping, differential cryptanalysis, differential uniformity, differential
spectrum.
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1 Introduction

Let Fpn be the finite field with pn elements and F
∗
pn = Fpn \ {0}, where p is a prime number

and n is a positive integer. Let F (x) be a mapping from Fpn to itself. The derivative function

of F (x) at an element a in Fpn , denoted by DaF , is given by

DaF (x) = F (x+ a)− F (x).

For any a, b ∈ Fpn , let δF (a, b) = |{x ∈ Fpn | DaF (x) = b}|, where |S| denotes the cardinality

of a set S, and define

δ(F ) = max{δF (a, b) | a ∈ F
∗
pn , b ∈ Fpn}.

Nyberg defined a mapping F (x) to be differentially δ-uniform if and only if δ(F ) = δ [18], and

δ(F ) is called the differential uniformity of F (x) accordingly. The differential uniformity is
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an important concept in cryptography since it quantifies the security of the mappings used in

many block ciphers. The possible value of the differential uniformity of a mapping over finite

fields was discussed in [22]. For practical applications in cryptography, it is usually desirable

to employ mappings with differential uniformity no greater than 4. For example, the AES uses

the inverse function x 7→ x−1 over F2n , which has differential uniformity 4 for even n and 2 for

odd n. Therefore, finding functions with low differential uniformity is of great interest. Much

work has been done in this direction. Such results can be found in [7, 15, 31, 21] and references

therein.

Besides the differential uniformity, the differential spectrum of a nonlinear mapping reflects

more information about its differential property. The differential spectrum of a mapping F (x)

of Fpn to itself is defined as the multiset

{ δF (a, b) : a ∈ F
∗
pn , b ∈ Fpn }.

It can be used to analyze the resistance of a mapping against some variants of differential

cryptanalysis, especially the truncated differential attacks [2]. In addition to its importance

in cryptography, the differential spectrum of a nonlinear mapping also plays a significant role

in sequences [12, 8, 9], coding theory [6, 10] and combinatorial design [23]. One can find more

details about these applications in [29] and references therein.

When F (x) is a power mapping, i.e., F (x) = xd for a positive integer d, one can easily see

that δF (a, b) = δF (1, b/a
d) for all a ∈ F

∗
pn and b ∈ Fpn . That is to say, the differential spectrum

of F (x) is completely determined by the values of δF (1, b) as b runs through Fpn . Therefore,

the differential spectrum of a power mapping can be simplified as follows.

Definition 1 Assume that a power function F (x) = xd over Fpn has differential uniformity δ

and denote

ωi = | {b ∈ Fpn | δF (1, b) = i} |, 0 ≤ i ≤ δ.

The differential spectrum of F (x) is simply defined to be an ordered sequence

S = [ω0, ω1, . . . , ωδ].

For a mapping F (x) from Fpn to itself, in order to measure the global injectivity and

surjectivity of its derivative functions DaF = F (x + a) − F (x), a ∈ F
∗
pn, Panario et al. [20]

introduced the definitions of ambiguity and deficiency for F (x), which are closely related to

the differential spectrum of F (x).
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Definition 2 Let F (x) be a mapping over Fpn with differential uniformity δ, and define

ωi = |{(a, b) ∈ F
∗
pn × Fpn | δ(a, b) = i}|.

The ambiguity of F (x), denoted by A(F ), is defined as

A(F ) =
δ

∑

i=2

ωi

(

i

2

)

,

and the deficiency D(F ) of F (x) is defined as

D(F ) = ω0.

In fact, A(F ) is the total replication of pairs (x, x′) such that DaF (x) = DaF (x′) for some

a ∈ F
∗
pn , and it is a measure of the injective of the derivative functions DaF , a ∈ F

∗
pn : the

lower the ambiguity of F (x), the closer the functions DaF are to injective. While D(F ) is

the number of pairs (a, b) such that DaF (x) = b has no solution, and it is a measure of the

surjective of DaF , a ∈ F
∗
pn: the lower the deficiency, the closer the functions DaF are to

surjective. According to Definition 2, it is easily seen that knowing the differential spectrum

of F (x) can imply its ambiguity and deficiency.

For a nonlinear mapping with low differential uniformity, it is an interesting topic to com-

pletely determine its differential spectrum. However, this problem is relatively challenging. A

nice survey on this topic can be found in [29]. We list all the power mappings with known

differential spectra in Table 1.

In the present paper, we will investigate the differential spectrum of the power mapping

xp
m+2 over Fpn , where p is a prime, m is a positive integer, n = 2m or n = 2m − 1. When

p ≥ 3 and n = 2m, Helleseth, Rong and Sandberg studied the differential uniformity of this

mapping in [14], where they showed that the differential uniformity of xp
m+2 is equal to 2

if pm ≡ 1 (mod 3), and equal to 4 if pm ≡ 2 (mod 3). By carefully checking, we find that

their proof in [14], to some extent, is not sufficient, and more explanations should be added.

Moreover, if one wants to determine the differential spectrum of this mapping, some new

techniques should be proposed to investigate the derivative equation of xp
m+2.

The remainder of this paper is organized as follows. Section 2 gives some preliminary results

that will be needed in this paper. The result for the case n = 2m is presented in Section 3.

Section 4 deals with the case n = 2m− 1, and the concluding remarks are given in Section 5.
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Table 1: Some power mappings F (x) = xd over Fpn with known differential spectrum

p d Condition δ(F ) Ref.

2 2t + 1 gcd(t, n) = s 2s [2]

2 22t − 2t + 1 gcd(t, n) = s, n
s odd 2s [2]

2 2n − 2 n ≥ 2 2 or 4 [2]

2 22k + 2k + 1 n = 4k 4 [2, 26]

2 2t − 1 t = 3, n− 2 6 or 8 [5]

2 2t − 1 t = n−1
2 , n+3

2 , n odd 6 or 8 [4]

2 2m + 2(m+1)/2 + 1 n = 2m, m ≥ 5 odd 8 [27]

2 2m+1 + 3 n = 2m, m ≥ 5 odd 8 [27]

2 23k + 22k + 2k − 1 n = 4k 22k [17]

3 2 · 3(n−1)/2 + 1 n odd 4 [12]

5 5n−3
2 any n 4 or 5 [30]

p odd p2k − pk + 1 gcd(n, k) = e, n
e odd pe + 1 [28, 16]

p odd pk+1
2 gcd(n, k) = e pe−1

2 or pe + 1 [11]

p odd pn+1
pm+1 +

pn−1
2 p ≡ 3 (mod 4), m|n, n odd pm+1

2 [11]

p odd pn − 3 any n ≤ 5 [24, 29]

p odd pm + 2 p > 3, n = 2m 4 This paper

2 Preliminaries

In order to prove our main result in this paper, we need to make some preparations. Let

F (x) = xd be a differentially δ-uniform power mapping over Fpn . According to Definition 1,

we have the following identities

δ
∑

i=0

ωi = pn and

δ
∑

i=0

(i× ωi) = pn, (1)

which are very useful in computing the differential spectrum of F (x).

Let q be a power of a prime, and Fq[x] be the polynomial ring over Fq. The following

lemmas will be used frequently in this paper.

Lemma 1 ([24]) The polynomial Q(x) = x2 + ax+ b ∈ Fq[x], q odd, is irreducible in Fq[x] if

and only if a2 − 4b is a nonsquare in Fq. In particular, if a2 − 4b is a nonzero square in Fq,
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then Q(x) has two distinct roots in Fq.

When q is odd, for a square element s ∈ Fq, it has exactly two square roots in Fq. We will

use ±√
s to express the two square roots of s throughout this paper. The following lemma

is about the number of roots to a special linearized polynomial over Fpn . For the reader’s

convenience, we include a proof here.

Lemma 2 Let p be a prime, n and t be two positive integers, and s = gcd(n, t). Then, the

linearized polynomial xp
t
+ x has ps roots in Fpn if p = 2, and p

1+(−1)n/s

2
s roots if p is odd.

Proof: If p = 2, then we have x2
t
= x, which implies that x ∈ F2t . Since x ∈ F2n , it then

follows that x ∈ F2s . Thus in this case x2
t
+ x has 2s roots in F2n .

If p > 2, then the nonzero roots of xp
t
+ x satisfy xp

t−1 = −1. Let α be a primitive

element of Fpn and assume that x = αi. Then the equation xp
t−1 = −1 is equivalent to

the congruence i(pt − 1) ≡ pn−1
2 (mod pn − 1). This congruence has solutions if and only

if (ps − 1) |pn−1
2 , and when it has solutions, the number of its solutions is equal to ps − 1.

Note that pn−1
2 = pus−1

2 = (ps−1)(ps(u−1)+ps(u−2)+···+ps+1)
2 , where u = n/s. To ensure that

(ps − 1) |pn−1
2 , ps(u−1)+···+ps+1

2 must be an integer, which implies u must be even. Therefore,

xp
t−1 = −1 has ps − 1 solutions in Fpn if u is even, and has no solution if u is odd.

Summarizing the above discussions, we obtain the desired result. �

Lemma 3 Let p > 3 be a prime and m be a positive integer. Then, −3 is a nonsquare in Fpm

if and only if pm ≡ 2 (mod 3), and a square if and only if pm ≡ 1 (mod 3).

Proof: Note that since p > 3 is a prime, either pm ≡ 1 (mod 3) or pm ≡ 2 (mod 3). Thus,

we only need to prove that −3 is a nonsquare in Fpm if and only if pm ≡ 2 (mod 3). It is

easily seen that if −3 is a nonsquare in Fpm , then it is a nonsquare in Fp and m is odd. Let
(

·
p

)

denote the Legendre symbol from elementary number theory. By the law of quadratic

reciprocity [19], we have
(

3

p

)

= (−1)
p−1
2

(p

3

)

.
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Then, we have
(

−3
p

)

=
(

−1
p

)(

3
p

)

= (−1)
p−1
2

(

3
p

)

= (−1)
p−1
2 (−1)

p−1
2

(p
3

)

=
(p
3

)

.

(2)

Since −3 is a nonsquare in Fp, we have
(

−3
p

)

= −1, which implies p ≡ 2 (mod 3) by (2). Thus,

we have pm ≡ 2 (mod 3) since m is odd.

Conversely, suppose that pm ≡ 2 (mod 3). One immediately concludes that p ≡ 2 (mod 3)

and m is odd. Then, by (2), we have
(

−3
p

)

=
(p
3

)

=
(

2
3

)

= −1. This shows that in this case

−3 is a nonsquare in Fp, and so it is a nonsquare in Fpm since m is odd. �

3 The main result for the case n = 2m

The aim of this section is to determine the differential spectrum of the power mapping

F (x) = xp
m+2 (3)

over Fpn, where p is a prime and n = 2m with m being a positive integer. For p > 3,

Hellesth, Rong and Sndberg studied the differential uniformity of this mapping in [14], where

they presented the possible values of the differential uniformity. From their proof, one cannot

find enough information to derive the differential spectrum of F (x). In order to compute the

differential spectrum, the derivative equation D1F (x) = F (x+1)−F (x) = b should be further

investigated.

Next we will consider the derivative equation of F (x), which is given below

D1F (x) = (x+ 1)p
m+2 − xp

m+2 = b, (4)

where b ∈ Fpn . For simplicity, we use δ(b) instead of δF (1, b) to denote the number of solutions

of (4) in Fpn. According to Definition 1, the problem of calculating the differential spectrum

of F (x) can be reduced to that of determining the value distribution of δ(b) as b runs through

Fpn . It is easily seen that (4) can be written as

2xp
m+1 + xp

m
+ x2 + 2x+ 1− b = 0.
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Throughout this section, we will use x̄ to denote xp
m
. Let a = b − 1, then above equation

becomes

2xx̄+ x̄+ x2 + 2x− a = 0. (5)

When p = 2, (5) is equivalent to

x̄+ x2 = a, (6)

which is an affine linearized polynomial over Fpn and its number of solutions can be easily

derived. When p > 2, with the linear transformation x = y − 1
2 , (5) becomes

8yȳ + 4y2 − c = 0, (7)

where c = 4a+ 3. If c 6= 0, then y 6= 0 and from (7) we further have

ȳ =
−y2 + c

4

2y
. (8)

Raising (7) to the power pm, we obtain

8ȳy + 4ȳ2 − c̄ = 0. (9)

Substituting (8) into (9), we get

3y4 +
2c̄− c

2
y2 − c2

16
= 0, (10)

which becomes

(ā+ a)y2 − a2 = 0 (11)

in the case p = 3. Thus, in the sequel we should distinguish three cases: p = 2, p = 3 and

p > 3.

3.1 The differential spectrum of xpm+2 for p = 2

When p = 2, the derivative equation of F (x) is given in (6). We first consider the associated

linearized polynomial L(x) = x̄ + x2, which is a linear transformation from F2n to F2n . Let

Im(L) denote the image of L(x), and Ker(L) be the kernel of L(x). Note that L(x) = x̄+x2 = 0

if and only if x2
m−1

+ x = 0. By Lemma 2, the latter equation has 2gcd(m−1,n) solutions in

7



F2n . Thus, the linearized polynomial L(x) = 0 also has 2gcd(m−1,n) solutions. This implies that

|Ker(L)| = 2gcd(m−1,n) = 2gcd(m−1,2). By the homomorphism theorem for groups, we also have

|Im(L)| = 2n−gcd(m−1,2).

For the derivative equation L(x) = x̄ + x2 = a in (6), it has 2gcd(m−1,2) solutions if a ∈
Im(L) and no solution otherwise. Thus, there are exactly |Im(L)| b’s in F2n such that δ(b) =

2gcd(m−1,2), and (2n−|Im(L)|) b’s such that δ(b) = 0 since a = b−1. Note that gcd(m−1, 2) = 1

or 2. Then, we can obtain the following result.

Theorem 1 Let F (x) be the power mapping over Fpn defined as in (3). When p = 2, its

differential spectrum is given by

[ω0 = 2n−1, ω1 = 0, ω2 = 2n−1]

for even m, and

[ω0 = 2n − 2n−2, ω1 = 0, ω2 = 0, ω3 = 0, ω4 = 2n−2]

for odd m.

Remark 1 Blondeau et al. studied the differential spectrum of the Gold function x2
t+1 over

F2n [2]. Since x2
m+2 = x2(2

m−1+1), it is clear that the power mapping x2
m+2 over F2n has the

same differential spectrum as that of the Gold-type function x2
m−1+1. Thus, we can also derive

the result in Theorem 1 from [2]. Here we give the proof to make our paper self-contained.

Moreover, by Lemma 2, one can easily compute the differential spectrum of the power mapping

xp
t+1 over Fpn for any odd prime p.

3.2 The differential spectrum of xpm+2 for p = 3

In this subsection, we will determine the differential spectrum of F (x) for the case p = 3. Note

that in this case the exponent pm +2 is of Niho-type [25]. The main result is presented in the

following theorem.

Theorem 2 Let F (x) be the power mapping over Fpn defined as in (3), and δ(b) denote the

number of solutions of the derivative equation D1F (x) = F (x + 1) − F (x) = b. When p = 3,

we have that δ(1) = 3m and δ(b) ∈ {0, 2} for any b ∈ Fpn \ {1}. Moreover, the differential

8



spectrum of F (x) in this case is given by

[ω0 =
3n + 3m

2
− 1, ω1 = 0, ω2 =

3n − 3m

2
, ω3 = 0, · · · , ω3m−1 = 0, ω3m = 1].

Proof: When p is odd, the derivative equation (4) is equivalent to (7), which can be further

rewritten as

− ȳy + ȳ2 − ā = 0 (12)

in the case p = 3, where a = b− 1. If b = 1, then the above equation becomes −yȳ + y2 = 0,

which implies ȳ = y, i.e., y ∈ F3m. This shows that δ(1) = 3m.

Next we consider the case b 6= 1, i.e., a 6= 0. Then by the discussions prior to Subsection

3.1 the solutions of (12) must satisfy (11). Note that for given a 6= 0, (11) has 0 or 2 solutions

in F3n . Thus, in this case (12) has at most two solutions. If y0 is a solution of (12), then y0 6= 0

since a 6= 0 and −y0 is also a solution of (12). This shows that the solutions of (12) come in

pairs. Hence, in this case the possible numbers of solutions of (12) are 0 and 2. So we have

δ(b) ∈ {0, 2} for b 6= 1.

The above discussions imply that in the differential spectrum of F (x) = x3
m+2, the com-

ponent ωi is equal to 0 if i /∈ {0, 2, 3m}. Since ω3m has been already known, we now only need

to determine ω0 and ω2. According to the identities in (1), we get























ω0 + ω2 + ω3m = pn,

2ω2 + 3mω3m = pn,

ω3m = 1.

Solving this equation system, the differential spectrum of F (x) for p = 3 is obtained. �

3.3 The differential spectrum of xpm+2 for p > 3

In this subsection the differential spectrum of F (x) for p > 3 will be determined. With the

notation in Theorem 2, we have the following result.

Lemma 4 When p > 3, for each given b ∈ Fpn, δ(b) ∈ {0, 1, 2, 4}. Especially, δ(b) = 1 if and

only if b = 1
4 .
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Proof: According to the discussions presented at the beginning of Section 3, when p > 3, the

derivative equation D1F (x) = b in (4) is equivalent to (7), where c = 4a + 3 = 4b − 1 and

y = x − 1
2 . If c = 0, i.e., b = 1

4 , then (7) becomes 8yȳ + 4y2 = 0, which leads to y = 0 or

2ȳ + y = 0. For the latter case, it is equivalent to 2yp
m−1 + 1 = 0 if y 6= 0. Then, one gets

yp
m−1 = −1

2 . By raising this identity to the power (pm +1), we get (yp
m−1)p

m+1 = (−1
2)

pm+1,

which leads to 1 = 1
4 , a contradiction. Thus, if c = 0, then (7) has exactly one solution y = 0.

Next we consider that case c 6= 0. In this case the solutions of (7) are also solutions of (10).

Note that (10) has at most four solutions in Fpn since it is of degree four. Thus, when c 6= 0,

(7) has at most four solutions as well. On the other hand, if y0 is a solution of (7), then −y0

is also a solution of (7). When c 6= 0, y0 6= −y0 and so the solutions of (7) come in pairs. This

shows that when c 6= 0, the possible numbers of solutions of (7) are 0, 2 and 4.

Based on the above discussion and the relationship between (4) and (7), the desired result

follows. �

According to Lemma 4, when p > 3 the differential uniformity δ(F ) of F (x) is at most 4.

In order to determine the differential spectrum of F (x), we need to count the numbers of b

such that (4) has 0, 2 and 4 solutions, respectively. To do this, we should further investigate

the equations in (7) and (10). The following lemma will be needed.

Lemma 5 Let p > 3, n = 2m, and α a primitive element of Fpn. Assume that D = c̄2− c̄c+c2

with c ∈ F
∗
pn. Then D satisfies the following properties:

(i) when pm ≡ 1 (mod 3), D 6= 0 for any c ∈ F
∗
pn;

(ii) when pm ≡ 2 (mod 3), D = 0 if and only if c = α
pm+1

6
+j(pm+1) or c = α

5(pm+1)
6

+j(pm+1)

with j ∈ {0, 1, · · · , pm − 2}.

Proof: Define

U =
{

x |xpm+1 = 1, x ∈ Fpn
}

.

Then U is a cyclic subgroup of order pm + 1 in the multiplicative group F
∗
pn with generator

β = αpm−1, and it can be expressed as

U =< β >=
{

α0, αpm−1, α2(pm−1), · · · , αpm(pm−1)
}

.

For any c ∈ F
∗
pn , D = c̄2 − c̄c + c2 = 0 implies that ( c̄c)

2 − ( c̄c) + 1 = 0. The latter equation

is equivalent to
(

c̄
c

)3
+ 1 = 0 with c̄

c 6= −1. Note that α
p2m−1

2 = β
pm+1

2 = −1 and c̄
c ∈ U . Let

10



u = c̄
c and suppose that u = βi for some i ∈ {0, 1, · · · , pm}. Then, u3 + 1 = 0 is equivalent to

the following congruence

3i ≡ pm + 1

2
(mod pm + 1). (13)

Since gcd(3, pm+1) = gcd(3, p
m+1
2 ) | pm+1

2 , the congruence (13) has gcd(3, pm+1) solutions in

Zpm+1. In order to exclude the case u = −1, the solution i = pm+1
2 of (13) should be removed.

When gcd(3, pm + 1) = 1, i.e., pm ≡ 1 (mod 3), (13) has exactly one solution i = pm+1
2 in

Zpm+1. So in this case there is no c ∈ F
∗
pn such that D = 0. This means when pm ≡ 1 (mod 3),

D 6= 0 for any c ∈ F
∗
pn .

When pm ≡ 2 (mod 3), gcd(3, pm + 1) = 3. In this case, besides i = pm+1
2 , (13) also

has other two solutions in Zpm+1: i = pm+1
6 and i = 5(pm+1)

6 . Thus, we get u = β
pm+1

6 or

u = β
5(pm+1)

6 . Let c = αt with t ∈ {0, 1, · · · , pn−2}. Then, the problem of finding the solutions

of D = 0 in this case is identical with that of obtaining all solutions of

t(pm − 1) ≡ (pm − 1)
pm + 1

6
(mod pn − 1)

and

t(pm − 1) ≡ (pm − 1)
5(pm + 1)

6
(mod pn − 1).

Solving the above congruences, we obtain t = pm+1
6 + j(pm + 1) or t = 5(pm+1)

6 + j(pm + 1)

with j ∈ {0, 1, · · · , pm − 2}. The desired result then follows immediately. �

Recall that the derivative equation D1F (x) = b has been transformed to 8yȳ+ 4y2 − c = 0

in (7), which can induce the quartic equation 3y4 + 2c̄−c
2 y2 − c2

16 = 0 in (10) when c 6= 0. The

following lemma gives some elaborate properties about the equation (7).

Lemma 6 With the notation introduced above, we have the following results:

(i) when pm ≡ 2 (mod 3), for each c ∈ F
∗
pn such that D 6= 0, the equation (7) cannot have two

solutions in Fpn;

(ii) when pm ≡ 1 (mod 3), for any c ∈ Fpn, the equation (7) cannot have four solutions.

Proof: By Lemma 4, when c = 0, the equation (7) has exactly one solution in Fpn, which is

y = 0. When c 6= 0, (7) have 0, 2 or 4 solutions in Fpn , and all its solutions satisfy (10). Thus,

11



we first investigate the solutions of (10) under the condition that c 6= 0. Let z = y2, then (10)

becomes

3z2 +
2c̄− c

2
z − c2

16
= 0, (14)

which is a quadratic equation in variable z. The discriminant of (14) is D
9 . It is obvious that

D ∈ Fpm since D = D̄. If D 6= 0, then the discriminant is a nonzero square in Fpn and (14)

has exactly two distinct solutions z1, z2 in F
∗
pn due to Lemma 1. Thus, we can rewrite (14) as

(z − z1)(z − z2) = 0, where z1 and z2 satisfy

{

z1 + z2 = −2c̄−c
6 ,

z1z2 = − c2

48 .
(15)

Note that − c2

48 is always a square in F
∗
pn . Thus, z1 and z2 are either both squares in F

∗
pn , or

both nonsquares in F
∗
pn .

Now we suppose that z1 and z2 are both squares in F
∗
pn , that is, zi = y2i for some yi ∈ F

∗
pn ,

where i ∈ {1, 2}. Then, (10) has four solutions in F
∗
pn , which are ±yi, i = 1, 2. If yi is a

solution of (7), so is −yi. Next we should decide whether yi satisfies (7), i = 1, 2. To this end,

we compute 8y1ȳ1 · 8y2ȳ2 as follows

8y1ȳ1 · 8y2ȳ2 = 64(y21y
2
2)

pm+1
2 = 64(z1z2)

pm+1
2 ,

which together with (15) implies that

8y1ȳ1 · 8y2ȳ2 = 64(− c2

48
)
pm+1

2 = −4

3
(−1

3
)
pm−1

2 · c̄c. (16)

On the other hand, we compute

(c− 4y21)(c− 4y22) = 16y21y
2
2 − 4c(y21 + y22) + c2 = 16(z1z2)− 4c(z1 + z2) + c2 =

4

3
c̄c. (17)

Note that (−1
3)

pm−1
2 = (−3)

pm−1
2 , and it is equal to 1 or −1 depending on whether −3 is a

square in Fpm or not. Next we consider the following two cases.

Case 1: pm ≡ 2 (mod 3). This means −3 is a nonsquare in Fpm due to Lemma 3. Then

(−1
3)

pm−1
2 = −1. In this case, we assume that for c ∈ F

∗
pn such that D 6= 0, (7) has exactly

12



two solutions. Accordingly, the corresponding equation (14) has two distinct solutions z1 and

z2, which are both squares in F
∗
pn . Furthermore, from (16) and (17) we obtain

8y1ȳ1 · 8y2ȳ2 =
4

3
c̄c = (c− 4y21)(c− 4y22). (18)

On the other hand, since (7) has exactly two solutions, one can conclude that one and only one

of {y1, y2} satisfies (7). It then follows that 8y1ȳ1 ·8y2ȳ2 6= (c−4y21)(c−4y22), which contradicts

(18). Therefore, under the given conditions, (7) cannot have two solutions.

Case 2: pm ≡ 1 (mod 3). This holds if and only if −3 is a square in Fpm . Then we

get (−1
3)

pm−1
2 = 1. In this case, D 6= 0 for any c ∈ F

∗
pn due to Lemma 5. We have already

known that (14) has exactly one solution if c = 0. Now we assume that for c 6= 0, (7) has four

solutions. Then, (14) has two solutions z1 and z2 that are both squares in F
∗
pn. Similarly, from

(16) and (17), we have

8y1ȳ1 · 8y2ȳ2 = −4

3
c̄c = −(c− 4y21)(c − 4y22). (19)

Since (7) has four solutions, it then follows that y1 and y2 both satisfy (7), which implies

8y1ȳ1 · 8y2ȳ2 = (c− 4y21)(c− 4y22),

a contradiction to (19). Thus, in this case (7) cannot have four solutions. �

Remark 2 According to the Lemmas 4 and 6, we can conclude that

(i) when pm ≡ 1 (mod 3), the differential uniformity of F (x) = xp
m+2 is at most 2;

(ii) when pm ≡ 2 (mod 3), the equation (7) can have two solutions only for c ∈ F
∗
pn that makes

D = 0.

Now we assume that the differential spectrum S of F (x) is given by

S = [ω0, ω1, · · · , ω4]. (20)

By Lemma 4, we have ω1 = 1 and ω3 = 0. Moreover, when pm ≡ 1 (mod 3), we also have

ω4 = 0 by Remark 2 (i). Therefore, for the case pm ≡ 1 (mod 3), based on the identities (1),

the differential spectrum of F (x) can be computed. However, for the case pm ≡ 2 (mod 3)

13



we need more conditions to compute the differential spectrum. Next we will deal with this

problem by determining the value of ω2.

In what follows, we always assume that pm ≡ 2 (mod 3) unless otherwise stated. Let α be

a primitive element of Fpn and define

D = {αt | t = pm + 1

6
+j(pm+1) or t =

5(pm + 1)

6
+j(pm+1) with j = 0, 1, · · · , pm−2}. (21)

By Lemma 5, for c ∈ F
∗
pn , D = c̄2 − c̄c+ c2 = 0 if and only if c ∈ D. According to Remark 2

(ii), the value of ω2 is equal to the number of c in D such that (7) have exactly two solutions

in Fpn .

For any c ∈ D, all the solutions of (7) satisfy (10). Since D = 0, (10) can be further

simplified as (y2 − (−2c̄+c
12 ))2 = 0, that is, y2 = −2c̄+c

12 . Substituting y2 = −2c̄+c
12 into (7), one

gets ȳy = c̄+c
12 . Thus, for any c ∈ D, the equation (7) is equivalent to

{

y2 = −2c̄+c
12 ,

ȳy = c̄+c
12 ,

(22)

and now ω2 is equal to the number of c ∈ D such that (22) has exactly two solutions in Fpn .

To make sure (22) holds, we should first verify that −2c̄+c
12 is a square in Fpn. Since the

element 12 is already a square in Fpn , we only need to check that −2c̄ + c is a square in Fpn .

The result is given as follows.

Lemma 7 With the same notation as in Lemma 5, assume that pm ≡ 2 (mod 3) and D is the

set defined as in (21). Then −2c̄+ c is always a square in Fpn for any c ∈ D.

Proof: When pm ≡ 2 (mod 3), −3 is a nonsquare in Fpm due to Lemma 3, and thus (−3)
pm−1

2

= −1. Note that for any c ∈ D, we have (−2c̄ + c)2 = −3c2. Then, −2c̄ + c is a square in

Fpn if and only if −3c2 is a fourth power in Fpn , that is, if and only if (−3c2)
p2m−1

4 = 1. Note

that (−3c2)
p2m−1

4 = (−3)
pm−1

2
pm+1

2 ·c pn−1
2 = (−1)

pm+1
2 ·c pn−1

2 . We should distinguish two cases

accordingly.

Case 1: pm ≡ 1 (mod 4). Then pm+1
2 is odd and thus (−1)

pm+1
2 = −1. Therefore, for any

c ∈ D, −2c̄+c is a square in Fpn if and only if c
pn−1

2 = −1, that is, if and only if c is a nonsquare

14



in Fpn . By the definition of D in (21), it can be easily checked that when pm ≡ 1 (mod 4)

every element c = αt ∈ D is a nonsquare since in this case t is always odd. Hence, in this case

−2c̄+ c is a square in Fpn for any c ∈ D.

Case 2: pm ≡ 3 (mod 4). Then (−1)
pm+1

2 = 1, and −2c̄ + c is a square if and only if

c
pn−1

2 = 1. In this case pm+1
6 is even, and thus every element c ∈ D is a square in Fpn . So

−2c̄+ c is also a square in Fpn for any c ∈ D in this case.

Based on the above discussion, one can conclude that for any c ∈ D, −2c̄+ c is a square in

Fpn . �

With the notation introduced above, we stress a simple fact that if αt is a square in Fpn

with t satisfying 0 ≤ t < pn − 1, then t must be even and the square roots of αt are ±αt/2. In

what follows, for a square element x ∈ F
∗
pn , we always write it first in the form x = αt with

the restriction t ∈ {0, 1, · · · , pn − 2}, and use the convention that x1/2 = αt/2. The following

proposition gives the value of ω2.

Proposition 1 Let F (x) = xp
m+2 be defined as in (3) and S be its differential spectrum given

in (20) for p > 3. When pm ≡ 2 (mod 3), the component ω2 in S is equal to pm − 1.

Proof: As we have shown above, when pm ≡ 2 (mod 3), ω2 is equal to the number of c ∈ D
such that (22) has exactly two solutions in Fpn. In what follows, we will determine ω2 via

studying the equation system (22). For convenience, in the sequel we always denote pm by q.

First we introduce some basic facts. For each c ∈ D, we have D = c̄2 − c̄c+ c2 = 0, which

implies

(−2c̄+ c)2 = −3c2 and (c̄+ c)2 = 3c̄c.

Let 3 = αt0 for some t0 ∈ {0, 1, · · · , pn − 2} and note that −1 = α
q2−1

2 . We can assume that

− 2c̄+ c = ǫcα
q2−1

4 α
t0
2 c, (23)

where ǫc ∈ {−1, 1} and its exact value depends on c. By the definition of D in (21), we have

c = α
q+1
6 ·αj(q+1) or c = α

5(q+1)
6 ·αj(q+1), where j = 0, 1, · · · , q−2. By taking c = α

q+1
6 ·αj(q+1),

we have

−2c̄+ c = αj(q+1)
(

−2α
q+1
6

q + α
q+1
6

)

.
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Together with (23) we get

−2α
q+1
6

q + α
q+1
6 = ǫcα

q2−1
4 α

t0
2 α

q+1
6 = ǫcα

q2−1
4 3

1
2α

q+1
6 ,

which shows ǫc is only dependent on α
q+1
6 . Similarly, by taking c = α

5(q+1)
6 · αj(q+1), one

can also show that ǫc is only dependent on α5 q+1
6 . Thus, we can conclude that ǫc in (23) is

independent of the choice of j ∈ {0, 1, · · · , q − 2}.
As for (c̄+ c)2 = 3c̄c, note that

c̄c = α
i(q+1)2

6 · α2j(q+1),

where i = 1 or 5. Then, we can assume that

c̄+ c = τc3
1
2

(

α
i(q+1)2

6

)
1
2

αj(q+1) (24)

with τc ∈ {±1}. Similarly, by taking c = α
i(q+1)

6 · αj(q+1), one can also show that τc is

independent of the choice of j.

Next it is convenient to distinguish the following two cases.

Case 1: q ≡ 1 (mod 4). Then, −1 is a square in Fq. When q ≡ 2 (mod 3), we already

know that −3 is a nonsquare in Fq by Lemma 3. Thus, 3 is a nonsquare in Fq in this case,

and we can write it as 3 = α(q+1)r , where α is r is odd. Now take c = α
q+1
6

+j(q+1), where

j ∈ {0, 1, · · · q − 2}. Then, we have

−2c̄+ c = ǫcα
q2−1

4 · α( q+1
2

)r · α
q+1
6 · αj(q+1),

where ǫc is given in (23) and it is independent of the choice of j. By Lemma 7, −2c̄+c
12 is always

a square in Fq2 . Thus, from the first equation of (22) we get

y = ±
(−2c̄+ c

12

)
1
2

= ±
(ǫc
4

)
1
2 ·

(

α
q2−1

4

)
1
2

·
(

α
q+1
6

(1−3r)
)

1
2 ·

(

αj(q+1)
)

1
2
, (25)

where we use the fact that 3 = α(q+1)r. Now we should check whether this y satisfies the

second equation of (22). Since q ≡ 1(mod 4), we can assume that q = 4k +1 for some positive
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integer k, and thus q+1
2 = 2k + 1. Next, using y given in (25) we compute

ȳy = yq+1

=
(ǫc
4

)
q+1
2 ·

(

α
q2−1

4

)
q+1
2

·
(

α
q+1
6

(1−3r)
)

q+1
2

(

αj(q+1)
)

q+1
2

=
ǫc
4
·
(

α
q2−1

4

)2k

· α q2−1
4 · α− q+1

2
q+1
2

r · α q+1
6

· q+1
2 · αj(q+1)· q+1

2

=
ǫc
4
· (−1)k · α

q2−1
4 · α− q2−1

4
r · α− q+1

2
r · α

q+1
6

· q+1
2 · αj(q+1) · (−1)j

=
ǫc
4
· α q2−1

4
(1−r) · α− q+1

2
r · α q+1

6
· q+1

2 · αj(q+1) · (−1)j+k

=
ǫc
4
· (−1)

1−r
2 · α− q+1

2
r · α

q+1
6

· q+1
2 · αj(q+1) · (−1)j+k

=
ǫc
4
· α− q+1

2
r · α q+1

6
· q+1

2 · αj(q+1) · (−1)j+k+ 1−r
2 ,

(26)

where the sixth equality holds since r is odd. Furthermore, we compute c̄+c
12 . Since

3c̄c = α(q+1)r · α
q+1
6

·(q+1) · αj(q+1)2 = α(q+1)r · α
(q+1)2

6 · α2j(q+1),

by (24) we have

c̄+ c = τcα
(q+1)r

2 α
q+1
6

· q+1
2 · αj(q+1),

where τc is independent of j. Then, we get

c̄+ c

12
=

τc
4
· α− q+1

2
r · α q+1

6
· q+1

2 · αj(q+1). (27)

Comparing (26) with (27), we conclude that for each c = α
q+1
6

+j(q+1), j ∈ {0, 1, · · · q − 2}, the
values of y given by (25) are solutions of (22) if and only if

(−1)j+k+ 1−r
2 = ǫcτc, (28)

where ǫc, τc ∈ {−1, 1}. Note that since k, r are fixed positive integers and ǫc, τc are independent

of the choice of j. Thus, when j runs through {0, 1, · · · , q − 2}, half of these j’s satisfy (28).

This shows that for c = α
q+1
6

+j(q+1) with j ∈ {0, 1, · · · q − 2}, there are half of these c’s such
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that (22) has exactly two solutions in Fpn . Similarly, in this case for c = α
5(q+1)

6
+j(q+1) with

j ∈ {0, 1, · · · q − 2}, we can obtain the same result.

Case 2: q ≡ −1 (mod 4). Then, −1 is a nonsquare in Fq. Next, without loss of generality

we take c = α
5(q+1)

6
+j(q+1) with j ∈ {0, 1, · · · q− 2}. For c = α

(q+1)
6

+j(q+1) with j ∈ {0, 1, · · · q−

2}, one can derive the same result. First assume that 3 = α(q+1)s0 , where s0 is even since 3 is

a square in Fq in this case. Then, we have −2c̄+ c = ǫcα
q+1
2

( q−1
2

+s0)α
5(q+1)

6
+j(q+1), where ǫc is

given in (23). Denote q−1
2 + s0 mod 2(q − 1) by s. We can conclude that s is odd since q−1

2 is

odd. Note that α
q+1
2

s = −3. From the first equation of (22) we obtain

y = ±
(−2c̄+ c

12

)
1
2

= ±
(

−ǫc
4

)
1
2 ·

(

α− q+1
2

s
)

1
2 ·

(

α
5(q+1)

6

)
1
2 ·

(

αj(q+1)
)

1
2
. (29)

Then, using y in (29) we compute

ȳy = yq+1

=
(

−ǫc
4

)
q+1
2 ·

(

α− q+1
2

s
)

q+1
2 ·

(

α
5(q+1)

6

)

q+1
2

(

αj(q+1)
)

q+1
2

=
1

4
· α− q2−1

4
s · α− q+1

2
s · α

5(q+1)
6

· q+1
2 · αj(q+1)(−1)j

=
1

4
· (−1)⌊

−s
2
⌋ · α

q2−1
4 · α− q+1

2
s · α

5(q+1)
6

· q+1
2 · αj(q+1) · (−1)j ,

(30)

where ⌊−s
2 ⌋ denotes the greatest integer less than or equal to −s

2 . On the other hand, by (24)

we have

c̄+ c

12
= (−τc

4
)α

q2−1
4 · α−

(q+1)
2

s · α
5(q+1)

6
q+1
2 · αj(q+1). (31)

Comparing (30) with (31), the values of y in (29) are solutions of (22) if and only if

(−1)j+⌊−s
2
⌋ = −τc.

For given q, ⌊−s
2 ⌋ is a fixed integer and τc ∈ {±1} is only dependent on α

5(q+1)
6 . Thus, one

can conclude that when j runs through {0, 1, · · · , q − 2}, the number of j satisfying the above

equation is equal to q−1
2 . For c = α

(q+1)
6

+j(q+1) with j ∈ {0, 1, · · · q − 2}, we can deduce the
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same result. Thus, in this case for c ∈ D, there are 2 · q−1
2 c’s such that (22) has exactly two

solutions in Fpn .

Based on the above discussions, we conclude that for given q = pm satisfying pm ≡
2 (mod 3), half of the elements in D make (22) have exactly two solutions in Fpn . Thus,

we obtain ω2 = q − 1. �

With the above preparations, we determine the differential spectrum of F (x) = xp
m+2 for

p > 3. The main results are given in the following theorem.

Theorem 3 Let F (x) be the power mapping over Fpn defined as in (3) with p > 3. When

pm ≡ 1 (mod 3), F (x) is a differentially 2-uniform mapping and its differential spectrum is

given by

S =

[

ω0 =
pn − 1

2
, ω1 = 1, ω2 =

pn − 1

2

]

.

When pm ≡ 2 (mod 3), F (x) is a differentially 4-uniform mapping and the differential spectrum

is given by

S =

[

ω0 =
(3pm + 1)(pm − 1)

4
, ω1 = 1, ω2 = pm − 1, ω3 = 0, ω4 =

(pm − 1)2

4

]

.

Proof: When p > 3, let S be the differential spectrum of F (x) defined as in (20). By the

discussions presented there, we have shown that ω1 = 1 and ω3 = 0. Moreover, when pm ≡
1 (mod 3), we also have ω4 = 0.

Case 1: pm ≡ 1 (mod 3). Then, the power mapping F (x) over Fpn is differentially 2-

uniform. Since ω1 = 1, according to the identities in (1), we have























ω0 + ω1 + ω2 = pn,

ω1 + 2ω2 = pn,

ω1 = 1.

Solving this equation system, the differential spectrum of F (x) is obtained.

Case 2: pm ≡ 2 (mod 3). In this case we have known that ω1 = 1 and ω3 = 0. Moreover,

by Proposition 1 we also have ω2 = pm − 1. Then, still utilizing the identities in (1), we can

obtain a equation system in unknowns ω0 and ω4. Solving the obtained equation system, we

get the desired result. �
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Utilizing the differential spectrum of F (x) in Theorems 1, 2 and 3, the ambiguity and

deficiency of F (x) can be easily computed. Here we only give the corresponding result for the

case p > 3.

Corollary 1 Let F (x) = xp
m+2 be the power mapping over Fpn with p > 3. The ambiguity

and deficiency of F (x) are denoted by A(F ) and D(F ), respectively. When pm ≡ 1 (mod 3), we

have A(F ) = (pn−1)2

2 and D(F ) = (pn−1)2

2 . When pm ≡ 2 (mod 3), A(F ) = (pn−1)(pm−1)(3pm−1)
2

and D(F ) = (pn−1)(pm−1)(3pm+1)
4 .

Proof: The results are obtained by direct computations. When pm ≡ 1 (mod 3), F (x) = xp
m+2

is differentially 2-uniform. Then, by the differential spectrum of F (x) in Theorem 3, we obtain

the ambiguity A(F ) and the deficiency D(F ) of F (x) as follows:

A(F ) = (pn − 1)ω2

(

2

2

)

= (pn − 1)ω2 =
(pn − 1)2

2
,

and

D(F ) = (pn − 1)ω0 =
(pn − 1)2

2
.

When pm ≡ 2 (mod 3), we have

A(F ) = (pn − 1)

4
∑

i=2

ωi

(

i

2

)

= (pn − 1)(ω2 + 6ω4) =
(pn − 1) (pm − 1) (3pm − 1)

2
,

and

D(F ) = (pn − 1)ω0 =
(pn − 1) (pm − 1) (3pm + 1)

4
.

�

4 Some results about the differential properties of xpm+2 when

n = 2m− 1

We have studied the differential properties of the power mapping F (x) = xp
m+2 over Fpn when

n = 2m. A natural question one would ask is whether the power mapping F (x) = xp
m+2
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over Fpn has similar differential properties when n = 2m − 1. The aim of this section is to

investigate this question.

Now we assume that n = 2m− 1 and p is a prime. When p = 2, by Remark 1, the power

mapping F (x) = xp
m+2 over Fpn is differentially 2-uniform (in this case F (x) is called an

almost perfect nonlinear function ) and its differential spectrum is

[ω0 = 2n−1, ω1 = 0, ω2 = 2n−1].

Next we assume that p is an odd prime. Setting c = 4b − 1, y = x + 1
2 and ȳ = yp

m
, the

derivative equation D1F (x) = b of F (x) = xp
m+2 over Fpn can be transformed into

8yȳ + 4y2 − c = 0. (32)

When c = 0, (32) implies that yp = 1
4y, which has exactly one solution y = 0 or p solutions in

Fpn . Note that by that fact yp = 1
4y, we can derive that ȳ = 1

4m y. Substituting this into (32),

we can conclude that (32) has p solutions in Fpn if and only if 1
4 is a (p − 1)th power in Fpn

and 1 + 2n is equal to zero in Fp. Otherwise, (32) has exactly one solution, that is y = 0. If

c 6= 0, then y 6= 0 and from (32) we further have

ȳ =
−y2 + c

4

2y
. (33)

Raising (32) to the power pm, we obtain

8ȳyp + 4ȳ2 − c̄ = 0. (34)

Substituting ȳ in (33) into (34), we have

64yp+3 − 16cyp+1 − 16y4 + (8c+ 16c̄)y2 − c2 = 0. (35)

The degree of equation (35) is p + 3, thus it has at most p + 3 solutions in Fpn and so does

(32). Thus, the differential uniformity δ(F ) of F (x) = xp
m+2 is less than or equal to p + 3.

Moreover, note that when c 6= 0, the solutions of (32) (resp. (35)) come in pairs. Therefore,

when c 6= 0, the possible numbers of solutions of (32) (resp. (35)) are 0, 2, 4, · · · , p + 3, which

are exactly the even integers between 0 and p+3. We summarize these results in the following

theorem.
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Theorem 4 Let p be an odd prime and n = 2m − 1. Denote the differential spectrum of the

power mapping F (x) = xp
m+2 over Fpn by [ω0, ω1, · · · , ωp+3]. Then, we have the following

results:

(i) the differential uniformity of F (x) = xp
m+2 is less than or equal to p+ 3;

(ii) the component ωi = 0 if i is odd and i /∈ {1, p}, where 0 < i < p+ 3;

(iii) if 1
4 is a (p− 1)th power in Fpn and 1+2n = 0 in Fp, then ωp = 1 and ω1 = 0. Otherwise,

ωp = 0 and ω1 = 1.

According to Theorem 4, in order to compute the differential spectrum of F (x) = xp
m+2 in

the case n = 2m−1, we need to determine the values of ωi with i being even and 0 ≤ i ≤ p+3.

It seems difficult to achieve this goal since the involved equations (32) and (35) have higher

degree as the value of p increases, and we cannot find an efficient method to deal with them.

Next we provide a numerical example.

Example 1 Let p = 5 and m = 4. By Magma, the differential spectrum of F (x) = xp
m+2

over F57 can be directly computed:

[ω0 = 47630, ω1 = 1, ω2 = 22710, ω3 = 0, ω4 = 7392, ω5 = 0, ω6 = 0, ω7 = 0, ω8 = 392],

which coincides with the statements in Theorem 4.

For the case n = 2m − 1, there are two many unknown components in the differential

spectrum of F (x) = xp
m+2 as the prime p increases. Thus, it is challenging to determine the

differential spectrum completely in general. When p = 3, note that 3m + 2 and 2 · 3m−1 + 1

are in the same cyclotomic coset of modulo 3n − 1. Then, the power mappings x2·3
m−1+1 and

F (x) = x3
m+2 over F3n share the same differential spectrum. Dobbertin et al. presented a

delicate and complicated method for computing the differential spectrum of x2·3
m−1+1 in [12],

where 2 · 3m−1 + 1 was called the Welch exponent. According to the results of [12], we can

obtain the differential spectrum of F (x) = x3
m+2 as follows.

Theorem 5 ([12]) Let F (x) = x3
m+2 be the power mapping over F3n with n = 2m− 1. Then

F (x) is a differentially 4-uniform mapping and its differential spectrum is given by

S = [ω0 =
5 · 3n + 1

8
, ω1 = 0, ω2 =

3n − 3

4
, ω3 = 1, ω4 =

3n − 3

8
].
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We are not sure whether the method in [12] for p = 3 can be generalized to other odd primes,

but it is really an interesting and challenging problem to determine the differential spectrum

of F (x) = xp
m+2 in Theorem 4. The readers are invited to contribute to this problem.

5 Conclusion

In this paper, for any prime p, we conduct a comprehensive investigation on the differential

spectrum of the power mapping F (x) = xp
m+2 over Fpn. For the case n = 2m, we propose

some new techniques to deal with the derivative equation of F (x), and thus the differential

spectrum is completely computed. Our results can be regarded as an improvement of that in

[14]. For the case n = 2m − 1, we derive partial results about the differential spectrum of

F (x) = xp
m+2. Since the involved equations in this case have higher degree, it seems difficult

to calculate the differential spectrum. We leave this as an open problem. The exponent studied

in this paper is very interesting: it is the Gold exponent when p = 2, the Niho exponent when

p = 3 and n = 2m, and the ternary Welch exponent when p = 3 and n = 2m− 1.
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