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GAUSSIAN QUANTUM INFORMATION OVER GENERAL QUANTUM

KINEMATICAL SYSTEMS I: GAUSSIAN STATES
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ABSTRACT. We develop a theory of Gaussian states over general quantum kinemat-

ical systems with finitely many degrees of freedom. The underlying phase space

is described by a locally compact abelian (LCA) group G with a symplectic struc-

ture determined by a 2-cocycle on G. We use the concept of Gaussian distributions

on LCA groups in the sense of Bernstein to define Gaussian states and completely

characterize Gaussian states over 2-regular LCA groups of the form G = F × F̂
endowed with a canonical normalized 2-cocycle. This covers, in particular, the case

of n-bosonic modes, n-qudit systems with odd d ≥ 3, and p-adic quantum systems.

Our characterization reveals a topological obstruction to Gaussian state entanglement

when we decompose the quantum kinematical system into the Euclidean part and the

remaining part (whose phase space admits a compact open subgroup). We then gen-

eralize the discrete Hudson theorem [20] to the case of totally disconnected 2-regular

LCA groups. We also examine angle-number systems with phase space Tn ×Zn and

fermionic/hard-core bosonic systems with phase space Z2n
2 (which are not 2-regular),

and completely characterize their Gaussian states.
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1. INTRODUCTION

In the phase space formulation of quantum mechanics [19, 32, 57, 58], states are rep-

resented through Wigner/characteristic functions on the underlying kinematical space,

and observables are parametrized by the Weyl representation. Primary examples in-

clude systems of n-bosonic modes, n-qudit systems, and angle-number systems, with

associated phase spaces R2n, Z2n
d and Tn × Zn, respectively. For these systems, phase

space methods underlie important concepts and techniques, such as bosonic Gaussian

states and channels [53], sharp uncertainty principles [5], finite-dimensional approx-

imations of continuous systems [10, 46], the stabilizer formalism of quantum error

correction [6, 18], and the construction of mutually unbiased bases [13, 16, 36]. Ap-

plications of phase space techniques continue to emerge in a variety of systems. In

particular, the theory of p-adic quantum mechanics [51] has seen a surge of recent

activity in connection with the anti de Sitter/conformal field theory (AdS/CFT) corre-

spondence (see e.g., [4, 21, 24]).

Mathematically, quantum kinematical systems with finitely many degrees of free-

dom are described by a locally compact abelian (LCA) group G and a cocycle σ.

The cocycle induces a symplectic structure on G, which encodes the canonical com-

mutation relations of the associated (σ-projective) Weyl representation. Such abstract

quantum kinematical systems have been studied from a variety of perspectives, includ-

ing finite-dimensional approximations [11], uncertainty relations [56], and generalized

metaplectic operators [55]. In this paper we continue this program by developing a

formalism to study Gaussian states (and channels) for general quantum kinematical

systems.

Bosonic Gaussian states are defined by the Gaussianity of their associated charac-

teristic functions on the phase space R2n (see, e.g., [53]). Using the natural notion

of Gaussian distribution on LCA groups [35], one arrives at a sensible definition of

a Gaussian state. However, in many cases of interest (e.g., G finite or totally discon-

nected), the corresponding class of states is trivial. To overcome this, we advocate

the use of Gaussianity in the sense of Bernstein (or B-Gaussianity for short), which

is an LCA generalization of Bernstein’s classical result: a real probability distribution

µ is Gaussian if and only if the sum and difference of two independent µ-distributed

random variables are independent [3]. Our notion of B-Gaussian states, valid for any

phase space (G, σ), unifies a variety of examples from the literature, including bosonic

Gaussian states, discrete Hudson/stabilizer states [20], vacuum states of p-adic oscilla-

tor Hamiltonians [52], (classes of) minimal uncertainty states [34], and the (relatively)

recently introduced Gaussian states for single mode p-adic systems [59, 60].
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We completely characterize B-Gaussian states over 2-regular (second countable)

LCA groups of the form G = F × F̂ equipped with the canonical normalized 2-

cocycle (see Section 2.3 for the cocycle). Here, 2-regularity means that the doubling

map g 7→ 2g is an automorphism ofG, and this case includes the systems of n-bosonic

modes, n-qudit systems (for odd d ≥ 3) and p-adic quantum systems. Thanks to van

Kampen’s structure theorem, the “configuration space” F is of the form Rn×Fc, where

Fc admits a compact open subgroup, and the resulting phase space G ∼= R2n × (Fc ×
F̂c). Since the Euclidean case is well understood, we begin by focusing on the case

where the phase space is Fc×F̂c. In this setting, we show that every B-Gaussian state is

determined uniquely by a compact open 2-regular isotropic subgroupH of Fc×F̂c and

a character on H (Theorem 5.1). We also establish a correspondence between pure B-

Gaussian states and symmetric bicharacters on compact open 2-regular subgroupsK of

Fc (Theorem 5.19), which complements the covariance matrix parametrization in the

bosonic setting. As a consequence of our results when F = Fc, we show that, amongst

B-Gaussian states over general configuration spaces F = Rn × Fc, there can be no

entanglement across the associated tensor decomposition L2(F ) = L2(Rn) ⊗ L2(Fc)
of the system Hilbert space (Theorem 5.14). This completes the analysis for 2-regular

Weyl systems G = F × F̂ .

In the non-2-regular setting, the structure of B-Gaussian states can be dramatically

different. We show that B-Gaussian states over angle-number systems with the phase

space Tn × Zn are forced to be pure, and belong to the canonical “Fourier” basis of

L2(Tn). Over fermionic and hard-core bosonic systems, which have the same phase

space Z2n
2 but with different 2-cocycles, we show that there are no B-Gaussian states.

The phase space formulation provides another important function on the phase space

for a given quantum state, namely the Wigner function. Wigner functions, which are

dual to characteristic functions, are always real-valued and integrate to 1 whenever they

are integrable, so they are often called “pseudo-probability distributions”. The natu-

ral question of non-negativity of Wigner functions was answered by Hudson for pure

states in single-mode bosonic systems [28], showing that pure states with non-negative

Wigner function are precisely the pure Gaussian states. This was later generalized to

multi-mode bosonic systems [48]. Gross continued this line of research, establishing

a discrete Hudson’s theorem for n-qudit systems with odd d ≥ 3 [20]. Our formalism

allows one to define Wigner functions in full generality, which, in particular, begs the

question of a generalized Hudson’s theorem for 2-regular Weyl systems. We partially

answer this question by showing that over totally disconnected 2-regular LCA groups

of the form G = F × F̂ , a pure state has non-negative continuous Wigner function if

and only if it is B-Gaussian.

This paper will be followed by the second part of our project [61], which studies

Gaussian quantum channels over general kinematical systems and related quantum

information theoretic analysis.
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2. PRELIMINARIES ON GENERAL QUANTUM KINEMATICAL SYSTEMS

2.1. Locally compact abelian groups. In this subsection we review the basics of

harmonic analysis on locally compact abelian (LCA) groups. All LCA groups in this

paper are assumed second countable.

An LCA group G has a dual object called the dual group Ĝ consisting of characters

on G, i.e., continuous homomorphisms from G into the circle group T. The set Ĝ is

an abelian group with respect to pointwise multiplication, and is locally compact (and

second countable) when equipped with the topology of compact convergence. The

double dual of an LCA group can be canonically identified with the original group, i.e.

we have

(̂Ĝ) ∼= G,

which is known as Pontryagin-van Kampen duality. Under this duality, properties of

G manifest in a dual manner in Ĝ. For instance, an LCA group G is compact if and

only if Ĝ is discrete ([22, 23.17]).

For the most part, we use additive notation for LCA groups, so that the group op-

eration will be denoted by a + b for a, b ∈ G and the identity of G will be denoted

by 0. The inverse of a ∈ G will be denoted by −a. However, we will sometimes use

multiplicative notation for dual groups Ĝ. For example, the identity element for Ĝ will

be denoted by 1, meaning the constant function with value 1 and the inverse of γ ∈ Ĝ

will be denoted by γ−1 or γ̄ (meaning complex conjugate). For a ∈ G and γ ∈ Ĝ the

duality bracket

〈a, γ〉 := γ(a) ∈ C

will be frequently used. Note that for γ1, γ2 ∈ Ĝ and a1, a2 ∈ G we have

〈a1 + a2, γ1 + γ2〉 = 〈a1 + a2, γ1〉〈a1 + a2, γ2〉 = γ1(a1)γ1(a2)γ2(a1)γ2(a2).

Given a closed subgroupH ofG (which we writeH ≤ G), the quotient groupG/H

is an LCA group endowed with the quotient topology. Its dual group Ĝ/H can be

identified with H⊥ = {γ ∈ Ĝ : γ(a) = 1, a ∈ H}, a closed subgroup of Ĝ called

the annihilator of H . The identification H⊥ ∼= Ĝ/H ([15, Theorem 4.39]) is given by

γ ∈ H⊥ 7→ γ̃, where γ̃(a + H) := γ(a), a ∈ G. Here, a + H refers to the coset of

H with the representative a. The quotient group Ĝ/H⊥ can be identified with the dual

group Ĥ through the map γ +H⊥ ∈ Ĝ/H⊥ 7→ γ|H ∈ Ĥ ([15, Theorem 4.39]). Note

that for H ≤ G, the subgroup H is open if and only if G/H is discrete by definition

of the quotient topology.

An LCA group G is equipped with a non-zero, translation-invariant Radon measure

µ = µG, called the Haar measure, which is unique up to a positive constant. More

precisely, for another non-zero, translation-invariant Radon measure on G we can find

c > 0 such that ν = c · µ. The choice of Haar measures will be specified later in

this paper. When the underlying group G is clear from context, we simply write µ.

Otherwise, we use the notation µG.
4



For a closed subgroup H of G the Haar measure provides interesting information

about H as follows.

We have 0 < µG(H) <∞ if and only if H is open and compact. (2.1)

One direction is trivial by local finiteness of µ and [15, Proposition 2.19]. The converse

direction follows from the fact that µ|H becomes a finite Haar measure of H , so G/H
has a G-invariant Radon measure µ satisfying µ({xH}) = µ(xH) ∈ (0,∞), which

implies discreteness of G/H by [9, Proposition 1.4.4].

The concepts of dual group and Haar measure lead to Fourier transforms. For f ∈
L1(G) := L1(G, µ) and γ ∈ Ĝ we define

f̂(γ) :=

∫

G

f(x)γ(x) dµ(x),

and the group Fourier transform FG is defined by

FG : L1(G) → C0(Ĝ), f 7→ f̂ , (2.2)

where C0(Ĝ) refers to the space of all continuous functions on Ĝ vanishing at infin-

ity. The map FG is a norm-decreasing homomorphism with respect to convolution on

L1(G) and pointwise multiplication on C0(Ĝ), i.e. we have

FG(f ∗ g) = FG(f) · FG(g), f, g ∈ L1(G),

where f ∗ g is the convolution of f and g given by

f ∗ g(x) =
∫

G

f(y)g(x− y)dµ(y), x ∈ G.

We will sometimes use the notation f̂G instead of f̂ when we need to specify which

group we are referring to. Let us record the special case when f = 1K for a compact

subgroup K of G:

FG(1K) = µG(K)1K⊥. (2.3)

Indeed, we have

γ(y)

∫

K

γ(x) dµG(x) =

∫

K

γ(x) dµG(x), ∀y ∈ K

so that ∫

K

γ(x) dµG(x) =

{
µG(K), γ ∈ K⊥

0, otherwise
, (2.4)

and this explains (2.3).

The above Fourier transform can be extended to the L2(G) = L2(G, µ)-level. More

precisely, there is a Haar measure µĜ on Ĝ such that FG : L1(G) ∩ L2(G) → L2(Ĝ)
is isometric with respect to the corresponding L2-norms. This map can be extended to

a unitary (still denoted)

FG : L2(G, µG) → L2(Ĝ, µĜ),
5



by Plancherel’s theorem ([15, 4.25]). Note that the choice of µĜ depends on µG, and

we call it the dual Haar measure to µG.

The above FG allows for an inverse map at the L2-level, but we have a more direct

inversion via the Fourier inversion theorem ([15, 4.32]): for f ∈ L1(G) such that

f̂ ∈ L1(Ĝ), we have

f(x) =

∫

G

f̂(γ)γ(x) dµĜ(γ), a.e. x ∈ G. (2.5)

If, in addition, f is continuous onG, then the above identity holds for all x ∈ G. When

f ∈ L2(G) satisfies FG(f) ∈ L1(Ĝ) ∩ L2(Ĝ), the function f must be continuous and

the above inversion formula also holds by [43, Theorem 4.4.13].

The space L1(G) embeds naturally into the Banach algebra M(G) of all complex

Radon measures on G via the map f 7→ f dµ. The Fourier transform extends to a

contraction FG :M(G) → Cb(Ĝ) satisfying

FG(ν)(γ) = ν̂(γ) :=

∫

G

γ(x) dµ(x), ν ∈M(G), γ ∈ Ĝ,

where Cb(Ĝ) is the space of bounded continuous functions on Ĝ. The homomorphism

property still holds, i.e. for ν1, ν2 ∈M(G) we have

FG(ν1 ∗ ν2) = FG(ν1) · FG(ν2),

where the convolution ν1 ∗ ν2 is determined by the following relation: for any com-

pactly supported continuous function φ on G we have
∫

G

φ d(ν1 ∗ ν2) =
∫

G

∫

G

φ(x) dν1(x)dν2(y).

We let M1(G) denote the set of all positive elements in M(G) with total measure

1, namely the (probability) distributions on G. A theorem by Bochner ([23, 33.3])

says that the set FG(M
1(G)) coincides with the set of all continuous positive definite

functions on Ĝ having value 1 at the identity. Recall that a function f : G → C is

positive definite if the matrix [f(xi − xj)]
n
i,j=1 is positive semi-definite for any finite

sequence (xi)
n
i=1 ⊆ G.

The closed support of ν ∈ M1(G) (which we write supp ν) is defined to be the

smallest closed subset A ⊆ G such that ν(A) = ν(G). This definition needs to be

distinguished with the (open) support of a continuous function f on G, which we

write supp f , defined by supp f = {x ∈ G : f(x) 6= 0}. We say that ν ∈ M1(G) is

concentrated on a Borel subset A ⊆ G if ν(B) = 0 for any Borel B ⊆ G such that

A ∩ B = ∅.

Proposition 2.1. Let f : G→ C be a continuous positive definite function on an LCA

group G.

(1) We have |f(x)| ≤ f(0) for any x ∈ G.
6



(2) ([23, Corollary 32.7]) The set G1 := {x ∈ G : |f(x)| = f(0)} is a closed sub-

group of G, |f | is constant on the cosets of G1 and f/f(0) is a character on

G1.

Let us end this subsection by recalling a fundamental structure theorem of LCA

groups due to van Kampen: An LCA group G is isomorphic to Rn×F (as topological

groups) for some LCA group F containing a compact open subgroup [22, 24.30].

2.2. Phase space structure. Let G be an LCA group equipped with a Borel function

σ : G×G→ T satisfying the conditions

σ(a, b)σ(a + b, c) = σ(a, b+ c)σ(b, c), σ(a, 0) = σ(0, b) = 1, a.e. a, b, c ∈ G.

Note that the above equation holds for almost every a, b, c ∈ G unless σ is continuous.

However, we will often omit the expression “almost every” in the sequel for simplicity.

The function σ is called a 2-cocycle (or a multiplier) onG, and determines a symplectic

form ∆ : G×G→ T via

∆(a, b) := σ(a, b)σ(b, a), a, b ∈ G. (2.6)

Note that ∆ is a bicharacter, meaning that ∆ is continuous and ∆(·, b) and ∆(a, ·) are

characters on G for all a, b ∈ G [12, p.533]. Note that Borel measurability of σ and

∆ being Borel homomorphism in each argument guarantees that ∆ is continuous [31,

p.281]. We require the map Φ∆ : G→ Ĝ given by

Φ∆(a)(b) = ∆(a, b), a, b ∈ G (2.7)

to be a topological group isomorphism, in which case we call the associated 2-cocycle

σ a Heisenberg multiplier (following the terminology of [12]). The pair (G, σ) (or

rather (G,∆)) is viewed as the phase space underlying a general quantum kinematical

system (see, e.g., [12]).

For example, the standard choice of 2-cocycle on the system of n-bosonic modes

with the phase space G = R2n ∼= Rn × Rn is given by

σboson(a, b) = exp

(
− i

2
aTJb

)
, a, b ∈ G, (2.8)

where J =

[
0 In

−In 0

]
∈ M2n(R) is the matrix of the canonical symplectic form

on R2n. Note also that the above map Φ∆ is different from the usual identification

x ∈ R2n 7→ γx ∈ R̂2n given by γx(y) := ei〈x,y〉, y ∈ R2n, which we call the canonical

identification.

From the fact that Φ∆(a)(a) = 1 for any a ∈ G, the isomorphism Φ∆ is called

a symplectic self-duality for G [39]. A typical example of an LCA group G with

symplectic self-duality is G = F × F̂ for another LCA group F , and this is exactly the

class we will focus on. Note, however, that there exist LCA groups with symplectic

self-duality not isomorphic to F × F̂ for any LCA group F [39, Theorem 11.2].
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Since σ is a Heisenberg multiplier, there is a unique (up to unitary equivalence) ir-

reducible unitary projective representation with respect to σ (or σ-representation) W :
G → U(HW ) for some Hilbert space HW [12, Theorem 2]. Being a σ-representation

means that the map a ∈ G 7→ W (a)ψ is Borel for any ψ ∈ HW and we have

W (a)W (b) = σ(a, b)W (a+ b), a, b ∈ G. (2.9)

Note that there are important examples of discontinuous 2-cocycles as we can see in

Section 2.3.2.

We call W and W (a), a ∈ G, the Weyl representation and the Weyl operators fol-

lowing the standard terminology. Note that the Weyl operators satisfy the canonical

commutation relations (CCR)

W (a)W (b) = ∆(a, b)W (b)W (a), a, b ∈ G. (2.10)

See [12, §3.5] for a concrete model of HW and W .

A 2-cocycle σ on an LCA group G is normalized if σ(a,−a) = 1, a ∈ G. This

additional requirement on σ is essential to accommodate “Gaussian states” as we can

see in Remark 4.5(4) below. Fortunately, any 2-cocycle σ allows a normalization

σ̃, which is similar to σ as 2-cocycles in the sense that there exists a Borel function

ξ : G→ T (called a normalizing factor) so that

σ̃(a, b) =
ξ(a)ξ(b)

ξ(a+ b)
σ(a, b), a, b ∈ G, (2.11)

defines a normalized 2-cocycle. In this case, the 2-cocycles σ and σ̃ determine the

same symplectic form ∆(a, b) = σ(a, b)σ(b, a) = σ̃(a, b)σ̃(b, a), and therefore σ
is a Heisenberg multiplier if and only if σ̃ is. Moreover, if W is an irreducible σ-

representation of G acting on HW , then

W1/2(a) := ξ(a)W (a)

is an irreducible σ̃-representation of G acting on the same Hilbert space HW . We will

take ξ to be a Borel measurable square root of the function a ∈ G 7→ σ(a,−a), hence

the 1/2 in the notation W1/2. Note that a choice of square root is always possible

but not unique, in general. Thus, the choice of ξ and σ̃ will be specified whenever

necessary.

2.3. Weyl systems. The main class of quantum kinematical systems we consider have

the form G = F × F̂ for an LCA group F . Such groups admit a canonical choice of

2-cocycle, σcan : G×G→ T given by

σcan((x, γ), (x
′, γ′)) := γ(x′), x, x′ ∈ F, γ, γ′ ∈ F̂ . (2.12)

It is straightforward to see that σcan is a Heisenberg multiplier and we call the pair

(F × F̂ , σcan) a Weyl system. The group F is called the configuration space.
8



In this case we have a simple description for the unique irreducible σcan-representation

W = Wcan as follows [38]. We first define the translation operator Tx and the modu-

lation operator Mγ for x ∈ F and γ ∈ F̂ acting on HW := L2(F ) by

Txf(y) := f(y − x), Mγf(y) := γ(y)f(y), f ∈ L2(F ), y ∈ F.

Then, W : G→ B(L2(F )) is given by

W (x, γ) := TxMγ, (x, γ) ∈ G.

2.3.1. 2-Regular groups. The above 2-cocycle σcan is never normalized unless G is

trivial. There is a canonical normalization when the group G = F × F̂ (equivalently,

F ) is 2-regular. Here, we say that the abelian group G is 2-regular if the map a 7→ 2a
is an automorphism of G, and we denote its inverse by 2−1. In this case, there is a

unique bicharacter ξ such that ξ(x, γ)2 = 〈x, γ〉 [12, Lemma 1], namely

ξ(x, γ) := 〈x, γ〉1/2 := 〈2−1x, 2−1γ〉2 = 〈x, 2−1γ〉 = 〈2−1x, γ〉.
With this ξ as the normalization factor, we get the canonical normalization σ̃can of σcan
given by

σ̃can(a, b) := ∆(2−1a, 2−1b)2 = ∆(a, 2−1b) = ∆(2−1a, b), a, b ∈ G. (2.13)

We sometimes write σ̃can = ∆1/2 for an obvious reason, and we also call the pair

(F × F̂ , σ̃can) a Weyl system. Note finally that the corresponding Weyl representation

W1/2 becomes

W1/2(x, γ)ψ(y) = 〈x, γ〉1/2TxMγψ(y) = 〈x, γ〉−1/2〈y, γ〉ψ(y − x), ψ ∈ L2(F ).

Example 2.2. (Bosonic systems) The additive group Rn is 2-regular, and if we identify

R̂n ∼= Rn via 〈x, γy〉 := ei〈x,y〉, x, y ∈ Rn, then the formula (2.8) is recovered with

σboson = σ̃can. The corresponding symplectic form satisfies

∆(z, z′) = ei〈y,x
′〉e−i〈y

′,x〉 = ei〈Jz,z
′〉, z = (x, y), z′ = (x′, y′) ∈ R2n,

where J =

[
0 In

−In 0

]
∈ M2n(R) and 〈·, ·〉 refers to the usual inner product on Eu-

clidean spaces. The Weyl representation becomes

W1/2(x, y)ψ(t) = e−
i
2
〈x,y〉ei〈y,t〉ψ(t− x), ψ ∈ L2(Rn), x, y ∈ Rn.

This is equivalent to the Weyl representation used in [26, §12.2] and [15, §1.3], for

example.

Example 2.3. (Qudit systems) If d ≥ 3 is an odd integer then Znd is a finite 2-regular

abelian group. (2−1 = d+1
2

is the multiplicative inverse of 2 in the ring Zd.) Similar to

above, we have the self-duality Ẑnd
∼= Znd via

γy(x) = e
2πi
d

〈x,y〉, x, y ∈ Znd . (2.14)
9



Under the canonical identification

ℓ2(Znd) = ℓ2(Zd)⊗ · · · ⊗ ℓ2(Zd) ∼= Cd ⊗ · · · ⊗ Cd,

the corresponding multiplication operators My :=Mγy satisfy

My = Zy1 ⊗ · · · ⊗ Zyn, y = (y1, ..., yn) ∈ Znd ,

where Z : Cd ∋ |k〉 7→ e
2πik
d |k〉 ∈ Cd is the qudit generalization of the Pauli Z matrix.

Similarly, the translation operators are given by

Tx = Xx1 ⊗ · · · ⊗Xxn , x = (x1, ..., xn) ∈ Znd ,

where X : Cd ∋ |k〉 7→ |k+1〉 ∈ Cd is the qudit generalization of the Pauli X matrix.

The Weyl representation W : Znd × Znd → B((Cd)⊗n) is then simply

W (x, y) = e
(d+1)πi

d
〈x,y〉Xx1Zy1 ⊗ · · · ⊗XxnZyn , x, y ∈ Znd .

In this case the symplectic form satisfies

∆((x, y), (x′, y′)) = e
2πi
d

(〈y,x′〉−〈y′,x〉), x, y, x′, y′ ∈ Znd . (2.15)

Example 2.4. (p-adic systems) If p is a prime, the field of p-adic numbers Qp is a

2-regular totally disconnected abelian group, along with any finite product Qn
p . It is

well-known that Q̂p
∼= Qp via the duality

〈x, y〉 = e2πi{xy}p , x, y ∈ Qp,

where {x}p is the fractional part of x defined through the (unique) power series repre-

sentation of x as follows:

{x}p =
−1∑

n=−k

xnp
n, when x =

∞∑

n=−k

xnp
n.

(see [15, Theorem 4.12], for instance). The symplectic structure on G = Qn
p × Qn

p is

given similarly as

∆((x, y), (x′, y′)) =
n∏

k=1

e2πi({ykx
′

k}p−{y′kxk}p), x, y, x′, y′ ∈ Qn
p .

2.3.2. Weyl systems over non-2-regular groups I: Angle-number systems. When the

LCA groupG = F×F̂ is not 2-regular the canonical normalization (2.13) is no longer

available. Instead, we will specify a normalization σ̃can of σcan for each individual case.

We call the quantum system described by (Td × Zd, σ̃can) the angle-number system

in d-modes, which we named after [56, Table I]. Note that there are many physical

quantum systems modelled through the angle-number system in 1-mode such as the

quantum rotor [42] and the dynamics of a Josephson junction between two isolated

islands [17]. The case d = 2 for two rotors can be found in [50, Sec IV. B.].

The canonical 2-cocycle becomes

σcan((θ, n), (θ
′, n′)) = e2πi〈θ

′,n〉, (θ, n) ∈ Td × Zd.
10



Here, we identify T ∼=
[
−1

2
, 1
2

)
and for θ = (θ1, · · · , θd) ∈ Td ∼=

[
−1

2
, 1
2

)d
and

n = (n1, · · · , nd) ∈ Zd we have

〈θ, n〉 := n1θ1 + · · ·+ ndθd ∈ R. (2.16)

Our choice of normalizing factor ξ is

ξ(θ, n) = eπi〈θ,n〉, (θ, n) ∈ Td × Zd ∼=
[
−1

2
,
1

2

)d

× Zd. (2.17)

Some care needs to be applied here since the identification T ∼=
[
−1

2
, 1
2

)
does not

respect the group structure of T and ξ is discontinuous at (θ, n) when θj = −1
2

for

some 1 ≤ j ≤ d, so that the resulting normalization σ̃can is also discontinuous there.

In this case the associated Weyl representation W1/2 becomes

W1/2(θ, n) := eπi〈θ,n〉TθMn, (θ, n) ∈ Td × Zd,

which are operators acting on the Hilbert space H = L2(Td) ∼= ℓ2(Zd) with the canon-

ical choice of orthonormal basis {|em〉 : m ∈ Zd}, where em(θ) = e2πi〈θ,m〉, θ ∈ Td.

We will simply write |m〉 for |em〉.
2.4. Fermions and hardcore bosons. In this section we examine two quantum kine-

matic systems over the phase space G = Zn2 × Ẑn2
∼= Zn2 × Zn2 = Z2n

2 .

2.4.1. Fermionic systems. Even though our phase space is of the form F × F̂ , we can

endow a 2-cocycle which is not similar to the canonical one (when n ≥ 2). More

precisely, our choice of 2-cocycle is as follows.

σfer(a, b) := (−1)a
TAb, a, b ∈ Z2n

2 , (2.18)

where A =




0

1 0

1 1 0

.

.

.

.

.

.
. . .

. . .

1 1 · · · 1 0


. Note that the 1-mode case (i.e. n = 1) goes back to the

canonical 2-cocycle on Z2 × Z2. We can check that σfer is a Heisenberg multiplier by

observing that A + AT is invertible. Indeed, we have A + AT =




Ω E E · · · E

E Ω E · · · E

E E Ω · · · E

.

.

.

.

.

.

.

.

.
. . .

.

.

.

E E E · · · Ω


,

where E =

[
1 1

1 1

]
, Ω =

[
0 1

1 0

]
. Then the invertibility of A + AT is direct from the

matrix identity (I + A)(A + AT )(I + AT ) =
⊕n

j=1Ω, where we use the relations

ΩE = EΩ = E and E2 = 2E = 0.

The quantum kinematical system (Zn2 × Ẑn2 , σfer) describes a fermionic system in

n-modes. For a detailed explanation, let us recall the Majorana operators c1, . . . , c2n,
11



which are self-adjoint operators acting on H = C2n = ℓ2(Zn2 ) satisfying the CAR

(canonical anti-commutation relations):

{cj, ck} = 2δjk, 1 ≤ j, k ≤ 2n.

Note that cj’s are realized as

c2j−1 = Y ⊗ · · · ⊗ Y ⊗X ⊗ I ⊗ · · · ⊗ I

c2j = Y ⊗ · · · ⊗ Y ⊗ Z ⊗ I ⊗ · · · ⊗ I,

where X and Z appear at the j-th tensor component and X , Y , Z are the 2 × 2 Pauli

matrices. The unique irreducible unitary σfer-representation Wfer : Z2n
2 → U(2n) is

given by

Wfer(a) := cx11 · · · cx2n2n , a = (x1, · · · , x2n) ∈ Z2n
2 . (2.19)

That Wfer is a σfer-representation is straightforward to check. Irreducibility follows

from the fact that {Wfer(a) : a ∈ Z2n
2 } forms an orthogonal basis of M2n(C) with

respect to the trace inner product.

We consider a normalization σ̃fer of σfer given by

σ̃fer(a, b) :=
ξ(a)ξ(b)

ξ(a+ b)
σfer(a, b), a, b ∈ Z2n

2 , (2.20)

where the normalizing factor ξ : Z2d
2 → T is chosen to satisfy

ξ(a)2 = ξ(a)ξ(−a) = σ̃fer(a,−a)σfer(a,−a) = (−1)a
TAa, a ∈ Z2n

2 .

Note that there are many choices for the factor ξ. We will not fix a particular choice of

ξ for fermionic systems, but instead consider all possible choices of ξ (see Section 7).

Finally, we remark that the unique irreducible σ̃fer-representation is

W1/2,fer := ξWfer.

2.4.2. Hardcore bosons. Here we consider the canonical 2-cocycle σcan (2.12) onG =

Zn2 × Ẑn2
∼= Z2n

2 . As in the qudit case (Example 2.3), the associated Weyl operators

have the following form:

Wcan(x, y) = Xx1Zy1 ⊗ · · · ⊗XxnZyn = hx11 h
y1
2 h

x2
3 h

y2
4 · · ·hxn2n−1h

yn
2n, (2.21)

where X , Z are the standard 2× 2 Pauli matrices and the matrices hj , 1 ≤ j ≤ 2n are

given by

h2j−1 = I ⊗ · · · ⊗ I ⊗X ⊗ I ⊗ · · · ⊗ I

h2j = I ⊗ · · · ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I,

where X and Z appear at the j-th tensor component for 1 ≤ j ≤ n. The self-adjoint

matrices hj , 1 ≤ j ≤ 2n are an analogue of Majorana operators and they satisfy

hkhl = −hlhk, (k, l) = (2j − 1, 2j) or (2j, 2j − 1), 1 ≤ j ≤ n

and hkhl = hlhk for other choices (k, l). In other words, the observables hj , 1 ≤
j ≤ 2n anti-commute in the same modes and commute for different modes, and the

12



associated quantum system corresponds to “hardcore bosons” of n degrees of freedom

[7, Section II].

To apply our program in this setting, we consider a normalization σ̃can of σcan given

by

σ̃can(a, b) :=
ξ(a)ξ(b)

ξ(a+ b)
σcan(a, b), a, b ∈ Z2n

2 , (2.22)

where the normalizing factor ξ : Z2n
2 → T is chosen to satisfy

ξ(a)2 = ξ(a)ξ(−a) = σ̃can(a,−a)σcan(a,−a) = (−1)a
TLa, a ∈ Z2n

2 , L :=

[
0 0

In 0

]
.

As in the fermionic system, we will not fix a particular choice for ξ, and the unique

irreducible σ̃can-representation is given by W1/2,can := ξWcan.

3. CHARACTERISTIC AND WIGNER FUNCTIONS OF QUANTUM STATES

Throughout this and the next section we fix a general quantum kinematical system

given by the pair (G, σ) consisting of a second countable LCA group G and a normal-

ized 2-cocycle σ which is a Heisenberg multiplier.

Similar to the bosonic case (e.g. [26, §12]) and certain qudit systems (e.g. [20]),

quantum states on H := HW – the irreducible representation space of W – can be

recovered through their characteristic functions on the phase space G.

Recall that the set of all quantum states on H (denoted by D = D(H)) is a subset

of S1(H), the trace class on H equipped with the trace norm ‖X‖1 = Tr(|X|) =

Tr((X∗X)
1
2 ), X ∈ S1(H). Note that S1(H) is a subspace of S2(H), the Hilbert-

Schmidt class on H equipped with the Hilbert-Schmidt norm ‖X‖2 = (Tr(X∗X))
1
2 ,

X ∈ S2(H).

Definition 3.1. Let ρ ∈ S1(H). Its characteristic function χρ ∈ L∞(G) is defined by

χρ(a) = Tr(W1/2(a)
∗ρ), a ∈ G.

For a pure state ρ = |ψ〉〈ψ| with ψ ∈ H, we will simply write χψ instead of χ|ψ〉〈ψ|.

It is straightforward that ‖χρ‖∞ ≤ ‖ρ‖1, so χρ is indeed bounded. The terminology

“characteristic function” can be justified from the fact that χρ determines the original

operator ρ via the twisted group Fourier transform on G. See [30] and [31] for de-

tails of twisted group Fourier transforms on locally compact (not necessarily abelian)

groups. In our specific situation, namely that W is the only (up to unitary equivalence)

σ-representation, the theory simplifies.

Definition 3.2. The twisted group Fourier transform Fσ
G on G is given by

Fσ
G : L1(G) → B(HW ), f 7→ f̂(W1/2) :=

∫

G

f(a)W1/2(a)dµ(a) ∈ B(HW ), (3.1)

where the choice of Haar measure µ on G will be specified below in Theorrem 3.3.
13



The map Fσ
G is a norm-decreasing ∗-homomorphism with respect to twisted convo-

lution and twisted involution, defined respectively by

(f ∗σ g)(a) :=
∫

G

f(b)g(a− b)σ(b, a− b)dµ(b), a ∈ G,

and

f ⋆σ(a) := σ(a,−a)f(−a), a ∈ G,

for f, g ∈ L1(G). More precisely, we have Fσ
G(f ∗σ g) = Fσ

G(f) ·Fσ
G(g) as the product

(or composition) of two operators and Fσ
G(f

⋆σ) = Fσ
G(f)

∗ as the adjoint operator for

f, g ∈ L1(G). It extends to a unitary operator acting on L2(G).

Theorem 3.3. (Twisted Plancherel theorem, [30, Theorem 7.1]) The twisted group

Fourier transform Fσ
G extends to a unitary equivalence between L2(G) and S2(HW )

for a suitable choice of Haar measure µ on G. In particular, we have∫

G

f ḡdµ = Tr(f̂(W1/2)ĝ(W1/2)
∗), f, g ∈ L1(G) ∩ L2(G). (3.2)

Moreover, the extended map Fσ intertwines the left regular σ-representation λσ : G→
B(L2(G)) given by

λσ(a)f(b) = σ(a, b− a)f(b− a), a, b ∈ G, f ∈ L2(G),

with an amplification of W1/2. More precisely, we have

[Fσ
G◦λσ(a)](f) = W1/2(a)·[Fσ

G(f)] : L
2(G) → S2(HW ), a ∈ G, f ∈ L2(G). (3.3)

In what follows, we fix the Haar measure µ on G respecting (3.2).

The following twisted Fourier inversion justifies the “characteristic function” termi-

nology, and will be useful in Section 5.

Proposition 3.4. For any ρ ∈ S1(H) we have χρ ∈ L2(G) and Fσ
G(χρ) = ρ.

Proof. Since Fσ
G : L2(G) → S2(H) is unitary, span{Fσ

G(ϕ) : ϕ ∈ Cc(G)} is dense

in S2(H), where Cc(G) is the space of all continuous functions on G whose closed

support is compact. Consequently, span{Fσ
G(ϕ1)Fσ

G(ϕ2)
∗ : ϕ1, ϕ2 ∈ Cc(G)} is dense

in S1(H).
First, for ρ = Fσ

G(ϕ1)Fσ
G(ϕ2)

∗ = Fσ
G(ϕ1 ∗σ ϕ⋆σ2 ) with ϕ1, ϕ2 ∈ Cc(G), the inter-

twining relation (3.3) with λσ entails

ϕ1 ∗σ ϕ⋆σ2 (·) = 〈ϕ1|λσ(·)ϕ2〉 = Tr(W1/2(·)∗Fσ
G(ϕ1)Fσ

G(ϕ2)
∗) = χρ(·). (3.4)

For arbitrary ρ ∈ S1(H), there exist a sequence (ρn)n in the space

span{Fσ
G(ϕ1)Fσ

G(ϕ2)
∗ : ϕ1, ϕ2 ∈ Cc(G)}

such that lim
n→∞

‖ρ− ρn‖S1(H) = 0. Since χρn = (Fσ
G)

−1(ρn) from (3.4), we have

lim
n→∞

‖(Fσ
G)

−1(ρ)− χρn‖L2(G) = lim
n→∞

‖(Fσ
G)

−1(ρ)− (Fσ
G)

−1(ρn)‖L2(G)

≤ lim
n→∞

‖ρ− ρn‖S1(H) = 0.

14



In particular, theL2-convergence of (χρn)n to (Fσ
G)

−1(ρ) implies that a subsequence of

(χρn)n converges to (Fσ
G)

−1(ρ) almost everywhere. On the other hand, the condition

lim
n→∞

‖ρ − ρn‖S1(H) = 0 implies lim
n→∞

‖χρn − χρ‖∞ = 0. Thus, χρ = (Fσ
G)

−1(ρ) ∈
L2(G). �

Remark 3.5.

(1) For f ∈ L2(G), the element Fσ
G(f) is originally defined by the S2(H)-limit

of Fσ
G(fn) = f̂n(W1/2) for some sequence (fn) ⊆ L1(G) ∩ L2(G) converging

to f in L2(G). However, we may still express the element Fσ
G(f) via the inte-

gral representation
∫
G
f(a)W1/2(a)dµ(a) once we understand it as a bounded

operator on H given in the weak sense. Indeed, for any ξ, η ∈ H we have

‖χ|ξ〉〈η|‖L2(G) = ‖|ξ〉〈η|‖S2(H) = ‖ξ‖ · ‖η‖ by Proposition 3.4. Thus,

|〈η|
∫

G

f(a)W1/2(a)dµ(a)|ξ〉| =
∣∣∣∣
∫

G

f(a)〈η|W1/2(a)|ξ〉dµ(a)
∣∣∣∣

=

∣∣∣∣
∫

G

f(a)χ|ξ〉〈η|(a)dµ(a)

∣∣∣∣
≤ ‖f‖L2(G)‖ξ‖ · ‖η‖.

This explains that the integral
∫
G
f(a)W1/2(a)dµ(a) defines a bounded opera-

tor on H in the weak sense. The same computation also tells us that Fσ
G(fn)

converges to
∫
G
f(a)W1/2(a)dµ(a) in the weak operator topology of B(H),

which means that

Fσ
G(f) =

∫

G

f(a)W1/2(a)dµ(a).

(2) The setG×T can be equipped with the “Heisenberg” group law (x, z)·(y, w) =
(x + y, zwσ(x, y)). We denote the resulting locally compact group by G(σ),
which is a central extension of G. The original version of [30, Theorem 7.1]

(which applies to more general classes of groups) assumes thatG(σ) has a type

I regular representation, which is the case for any abstract quantum kinematical

system (G, σ). Indeed, the quotient spaceG(σ)/G can easily be identified with

the group T, and the canonical Haar measure on T is G(σ)-invariant as well.

Thus, we can apply [29, Theorem 1] to conclude that G(σ) is type I.

In bosonic systems, one often considers another function on phase space associated

to a quantum state ρ. It is called the Wigner function W = Wρ, and is defined as the

(symplectic) Fourier transform of the characteristic function χρ. This can be done in

the full generality. Using the current assumption that G is self-dual via the isomor-

phism Φ∆ (2.7), we can transfer the group Fourier transform FG from (2.2) to get the

“symplectic” group Fourier transform on G

F sym
G : L1(G) → C0(G)
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given by

F sym
G (f)(a) :=

∫

G

f(b)∆(a, b)dµ(b), a ∈ G, f ∈ L1(G).

It follows from symplectic self-duality that there is (another) Haar measure µsym
G on G

such that the map F sym
G extends to a unitary

F sym
G : L2(G, µ) → L2(G, µsym

G ). (3.5)

We may call µsym
G the symplectic dual Haar measure of µ. We also have the corre-

sponding Fourier inversion theorem as in (2.5).

Definition 3.6. The Wigner function Wρ : G → C of ρ ∈ S1(H) is defined by the

symplectic Fourier transform of its characteristic function χρ ∈ L2(G), i.e. Wρ :=
F sym
G (χρ).

The Wigner function Wρ encodes the state ρ in a dual manner to χρ. One such

aspect is the following.

Proposition 3.7. For a quantum state ρ ∈ D(H) the Wigner function Wρ is always

real-valued and if it is integrable, then we have
∫

G

Wρ(a) dµ
sym
G (a) = 1. (3.6)

Proof. The first conclusion follows from the fact that W1/2 is involutive (as it is nor-

malized): Tr(ρW1/2(−a)∗) = Tr(ρW1/2(a)) = Tr(ρW1/2(a)∗), a ∈ G. When Wρ ∈
L2(G, µsym

G ) is also integrable, then the associated function χρ must be continuous by

[43, Theorem 4.4.13], so we can safely take evaluation χρ. In particular, we see that

χρ(0) = 1, so by Fourier inversion we have
∫
G
Wρ(a)dµ

sym
G (a) = 1. �

The above Proposition (which is well known for bosonic systems) is the reason

why Wigner functions are called “pseudo-probability distributions”. It is of interest to

investigate the class of states whose Wigner functions are actual probability measures,

equivalently, non-negative. We will focus on this theme in Section 8, but for now we

record one useful property of characteristic/Wigner functions which follows directly

from the CCR (2.10): for ρ ∈ D(H) we have

χW1/2(z)∗ρW1/2(z)(w) = ∆(z, w)χρ(w), w, z ∈ G (3.7)

WW1/2(z)∗ρW1/2(z)(w) = Wρ(w + z), w, z ∈ G. (3.8)

Remark 3.8.

(1) The above Wigner function exhibits similar properties to bosonic Wigner func-

tions, but we will postpone collecting such properties until the follow-up paper

[61].

(2) Our Wigner functions coincide with the ones from [33], [40] and [20].
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4. GAUSSIAN STATES IN GENERAL QUANTUM KINEMATICAL SYSTEMS

We first recall some necessary background on Gaussian distributions over second

countable LCA groups G, and refer the reader to [14] for details.

Definition 4.1. A distribution ν on G is called

• Gaussian if its Fourier transform ν̂ on Ĝ is of the form

ν̂(γ) = 〈γ, x〉 exp(−ϕ(γ)), γ ∈ Ĝ, (4.1)

for some x ∈ G and some non-negative continuous ϕ : Ĝ→ R satisfying

ϕ(γ + γ′) + ϕ(γ − γ′) = 2(ϕ(γ) + ϕ(γ′)), γ, γ′ ∈ Ĝ. (4.2)

• Gaussian in the sense of Bernstein, or simply B-Gaussian if

ν̂(γ + γ′)ν̂(γ − γ′) = ν̂(γ)2|ν̂(γ′)|2, γ, γ′ ∈ Ĝ. (4.3)

Remark 4.2.

(1) Gaussian distributions on LCA groups were first studied by Parthasarathy, Rao,

and Varadhan [35] as a generalization of Gaussian distributions on Rn. This

concept has been further generalized to B-Gaussian distributions by Rukhin

[45] and by Heyer and Rall [25] through analogues of the Kac-Bernstein the-

orem on LCA groups. Note that if the group G contains a closed subgroup

homeomorphic to T2, then we can always find a B-Gaussian distribution on G
which is not Gaussian [14, Lemma 9.6].

(2) Any non-negative continuous function ϕ : Ĝ → R satisfying (4.2) is of the

form

ϕ(γ) = ψ(γ, γ), γ ∈ Ĝ,

where ψ : Ĝ× Ĝ→ R is a continuous function satisfying

• ψ(γ1, γ2) = ψ(γ2, γ1),
• ψ(γ1 + γ2, γ3) = ψ(γ1, γ3) + ψ(γ2, γ3),
• ψ(γ1, γ1) ≥ 0

for any γ1, γ2, γ3 ∈ Ĝ. In particular, ψ ∈ Hom(Ĝ,Hom(Ĝ,R)).
(3) From the definition we can easily see that the Fourier transform of a Gaussian

distribution ν on G is fully supported, i.e. supp ν = Ĝ·

We collect some properties of B-Gaussian distributions which will be useful through-

out this paper. An LCA group K is called a Corwin group if 2K := {2k : k ∈ K} =
K, i.e., the doubling map is surjective.

Proposition 4.3. Let ν be a B-Gaussian distribution on G and

H = supp ν̂ =
{
γ ∈ Ĝ : ν̂(γ) 6= 0

}
.

(1) The set H is an open subgroup of Ĝ, whose annihilator H⊥ is a compact

Corwin subgroup of G.
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(2) Suppose that G has no subgroup isomorphic to T2 and H = Ĝ. Then ν is a

Gaussian distribution on G.

(3) If Ge, the connected component of the identity of G, contains at most one

element of order 2, then ν = ν0 ∗ (1K/µ(K)) for a compact Corwin subgroup

K of G and a Gaussian distribution ν0 on G. The mentioned hypothesis on G
is satisfied when G is discrete or 2-regular.

Proof. (1) Openess of H is clear, and H being a subgroup is direct from (4.3). More-

over, the quotient group Ĝ/H is discrete, so that H⊥ ∼= ̂̂
G/H is compact. For the

Corwin property of H⊥, it suffices to check that 2γ ∈ H implies that γ ∈ H by [14,

Lemma 7.2]. But this is also direct from (4.3).

(2)&(3) These are [14, Lemma 9.7, Theorem 9.9]. �

We are now ready to define Gaussian states over general kinematic systems.

Definition 4.4. A state ρ ∈ D(H) is Gaussian (resp. B-Gaussian) if there is a Gaussian

(resp. B-Gaussian) distribution ν on Ĝ such that χρ = FĜ(ν).

Remark 4.5.

(1) Note that Definition 4.4 requiresχρ to be the Fourier transform of a (B-)Gaussian

distribution on Ĝ instead of a (B-)Gaussian distribution on G. This difference

does not show up in the bosonic system since the class of Gaussian distribu-

tions on Rn are preserved by Fourier transform.

(2) Conjugation with respect to a Weyl operator preserves (B-)gaussian states.

More precisely, (3.7) tells us that for any a ∈ G the state W1/2(a)
∗ρW1/2(a) is

Gaussian (resp. B-Gaussian) whenever ρ is.

(3) Every Gaussian state is clearly a B-Gaussian state. However, the class of all

B-Gaussian states is strictly larger than that of all Gaussian states in general.

See Example 4.6/4.7, Theorem 5.1, Corollary 5.9 and Proposition 5.18 below

for such cases.

(4) In order to secure the existence of B-Gaussian states we need to focus on nor-

malized 2-cocycles. Indeed, suppose ρ ∈ D(H) is a B-Gaussian state with

respect to the σ-representation W where σ is a general 2-cocycle σ on G. The

positivity of ρ says that

χρ(a) = χρ∗(a) = σ(a,−a)Tr (ρ∗W (−a)) = σ(a,−a) χρ(−a).
Being a Fourier transform of a distribution, we have χρ(a) = χρ(−a), a ∈ G.

Therefore, we have σ(a,−a) = 1 whenever χρ(a) 6= 0, i.e. on the support of

χρ, which is an open subgroup of G and non trivial in many cases. This is one

reason why we require our quantum kinematical system to be equipped with

normalized 2-cocycles.

For bosonic systems, Gaussianity and B-Gaussianity coincide with the usual notion

of bosonic Gaussian states (see, e.g., [26, §12.3.2]) by the multivariate Kac-Bernstein
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theorem. See [14] for more details, generalizations, and further references. We now

present some examples of B-Gaussian states which were already well-known in the

literature under different names. To see this, first recall that for a closed subgroup

H ≤ G, its symplectic complement is defined by

H∆ := {z ∈ G | ∆(z, h) = 1 ∀ h ∈ H}.
We say that H is isotropic (respectively, maximally isotropic or Lagrangian) if H ⊆
H∆ (respectively, H = H∆).

Example 4.6. (Discrete stabilizer states) Let d ≥ 3 be an odd integer, and consider

the Weyl system (Znd × Znd , σ̃can). For a maximally isotropic subgroup H of Znd × Znd
and v ∈ Znd × Znd the associated stabilizer state (see, e.g., [20, 27]) |H, v〉〈H, v| is the

rank-1 projection

|H, v〉〈H, v| = 1

|H|
∑

h∈H

∆(v, h)W1/2(h) =
1

dn

∑

h∈H

∆(v, h)W1/2(h). (4.4)

Indeed, the projection |H, v〉〈H, v| is the unique state stabilized by the abelian group{
∆(v, h)W1/2(h) : h ∈ H

}
[20, Lemma 8], that is,

∆(v, h)W1/2(h)|H, v〉 = |H, v〉, h ∈ H.

As shown in the proof of [20, Lemma 9], its characteristic functionχH,v := χ|H,v〉〈H,v|

is of the form

χH,v(z) = ∆(v, z)1H(z), z ∈ Znd × Znd ,

where 1H is the indicator function of H (albeit with a different normalization from

[20]). Self-duality of finite abelian groups tells us that there is v0 ∈ Znd × Znd such that

∆(v, ·) = 〈v0, ·〉. Hence, χH,v is the Fourier transform of ν = δv0 ∗ ( 1
|H⊥|

1H⊥). Now

we check the condition (4.3). The character ∆(v, ·) clearly satisfies (4.3). Finiteness

and 2-regularity of the group Znd ×Znd imply that H is also 2-regular, and consequently

1H satisfies (4.3). This means that the stabilizer state |H, z〉〈H, z| is a pure B-Gaussian

state. Note that H is a non-trivial proper subgroup of Znd × Znd since |H| = dn and the

Fourier transform of Gaussian distributions always have full support. Thus, we know

that |H, z〉〈H, z| is not a Gaussian state.

Later we will show that pure B-Gaussian states in the n-qudit system are precisely

the stabilizer states |H, v〉〈H, v| for some v ∈ Z2n
d and some maximally isotropic

subgroup H ≤ Z2n
d , and that there are no Gaussian states (even mixed ones) over

the Weyl system (Znd × Znd , σ̃can). (See Theorem 5.1, Corollary 5.9, Proposition 5.18,

and Example 5.11.) Hence, the Gaussian character of qudit stabilizer states (which

belongs to the folklore) is made explicit through the Bernstein identity (4.2) of their

characteristic functions.

Example 4.7. (Minimum uncertainty states) Consider the Weyl system (G = F ×
F̂ , σ̃can) over a 2-regular LCA group G such that F contains a compact open 2-regular

subgroup K. Fix z0 ∈ G. Then

ψ = µF (K)−1/2W1/2(z0)1K ∈ L2(F )
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is a minimum uncertainty state in the sense that it saturates the entropic uncertainty

relation from [34, Theorem 1.5]. The characteristic function χψ := χ|ψ〉〈ψ| of |ψ〉〈ψ|
then satisfies (by (3.7))

χψ(z) = µ−1
F (K)∆(z0, z)χ|1K〉〈1K |(z) = µ−1

F (K)∆(z0, z)〈W1/2(z)1K , 1K〉, z ∈ G.

Note that for y ∈ K, y − x ∈ K if and only if x ∈ K. Hence, for z = (x, γ) ∈ G

〈W1/2(z)1K , 1K〉 =
∫

G

〈x, γ〉−1/2〈y, γ〉1K(y − x)1K(y)dµ(y)

= 1K(x)

∫

K

〈x, γ〉−1/2〈y, γ〉dµ(y)

= µF (K)1K(x)〈x, γ〉−1/21K⊥(γ)

By 2-regularity of K, 2−1K = K. Thus, for x ∈ K and γ ∈ K⊥

〈x, γ〉−1/2 = 〈2−1x, 2−1γ〉2 = 〈2−1x, γ〉 = 1,

and consequently

χψ(z) = ∆(z0, z)1K×K⊥(z), z ∈ G.

Similar to the previous example we see that |ψ〉〈ψ| is a pure B-gaussian state. On the

other hand, since K×K⊥ is never equal to the whole phase space G = F × F̂ , |ψ〉〈ψ|
is not a Gaussian state as before. The full description of pure B-Gaussian states in this

setting will be given in Theorem 5.19.

5. WEYL SYSTEMS OVER 2-REGULAR GROUPS

In this section we focus on the Weyl system (G = F×F̂ , σ̃can) over a 2-regular LCA

group and provide a complete characterization of B-Gaussian states. By the structure

theorem of van Kampen, we know that F ∼= Rn×Fc for some LCA group Fc admitting

a compact open subgroup [22, 24.30]. So we have G ∼= R2n × (Fc × F̂c). Let us write

Gc = Fc × F̂c for later use.

Our strategy is to first characteize B-Gaussian states on the Weyl system (Gc, σ̃can)
and then use our result to show that, amongst B-Gaussian states over G = R2n × Gc,

there can be no bipartite entanglement between the subsystems R2n and Gc. The full

characterization then follows naturally.

5.1. Systems admitting compact open subgroups. The main goal of this section is

to establish the following theorem.

Theorem 5.1. For a state ρ ∈ D(L2(Fc)), the following are equivalent:

(1) ρ is a B-Gaussian state on the Weyl system (Gc, σ̃can);
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(2) there exist a compact open 2-regular isotropic subgroup H ≤ Gc and a char-

acter γ ∈ Ĥ such that

ρ = ρH,γ :=

∫

H

γ(z)W1/2(z)dµGc(z). (5.1)

Moreover, H and γ are uniquely determined.

Let us first focus on the easier direction (2) ⇒ (1). The main step in the proof is

Proposition 5.4, which requires a few preparatory lemmas. For notational simplicity

we write σ = σ̃can = ∆1/2 from (2.13).

Lemma 5.2. Let H be a compact open 2-regular subgroup of Gc.

(1) For z ∈ G we have z ∈ H∆ if and only if σ(z, h) = 1 for all h ∈ H .

(2) For z ∈ G,

∫

H

σ(z, z′)dµGc(z
′) =

{
µ(H), z ∈ H∆

0, otherwise
.

Proof. (1) If z ∈ H∆, then for all h ∈ H

σ(z, h) = ∆1/2(z, h) = ∆(2−1z, 2−1h)2 = ∆(z, 2−1h) = 1

as 2−1H ⊆ H . Conversely, if σ(z, h) = 1 for all h ∈ H then again by definition of the

normalization

∆(z, h) = ∆(2−1z, 2−1(2h))2 = σ(z, 2h) = 1, h ∈ H.

(2) This is from (1) and (2.4). �

Lemma 5.3. Let H be a compact open subgroup of Gc. Then H∆ is a compact open

subgroup of Gc. Morever, if H is 2-regular then so is H∆.

Proof. Since H is open, the quotient Gc/H is discrete, so that H⊥ ∼= Ĝc/H is com-

pact. Since H is compact, the dual Ĥ is discrete, so that H⊥ is open from Ĝc/H
⊥ ∼=

Ĥ . Thus, H⊥ is a compact open subgroup of Ĝc. But H⊥ = Φ∆(H
∆) via the isomor-

phism Φ∆ : Gc → Ĝc, implying that H∆ is compact open in Gc.

For the final statement, let z ∈ H∆. Then for all h ∈ H ,

∆(2−1z, h) = ∆(2−1z, 2−1h)2 = σ(z, h),

so the result follows from Lemma 5.2 (1). �

Proposition 5.4. The element ρH,γ from (5.1) is a self-adjoint operator satisfying the

relation ρ2H,γ = µGc(H)ρH∩H∆,γ .
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Proof. Self-adjointness comes from W1/2(z)
∗ = W1/2(−z), γ(z) = γ(−z). Since

the above integral (5.1) is WOT-convergent, and multiplication is separately WOT-

continuous, we have

ρ2H,γ =

∫

H

∫

H

γ(z)γ(z′)W1/2(z)W1/2(z
′)dµGc(z)dµGc(z

′)

=

∫

H

∫

H

γ(z + z′)σ(z, z′)W1/2(z + z′)dµGc(z)dµGc(z
′)

=

∫

H

∫

H

γ(z′)σ(z, z′ − z)W1/2(z
′)dµGc(z)dµGc(z

′)

=

∫

H

∫

H

γ(z′)σ(z, z′)W1/2(z
′)dµGc(z)dµGc(z

′)

=

∫

H

γ(z′)

(∫

H

σ(z, z′)dµGc(z)

)
W1/2(z

′)dµGc(z
′)

= µGc(H)

∫

H∩H∆

γ(z′)W1/2(z
′)dµGc(z

′)

= µGc(H)ρH∩H∆,γ,

where the second last equality is Lemma 5.2 (2). Note that H ∩H∆ is again a compact

open 2-regular subgroup by Lemma 5.3, so the notation ρH∩H∆,γ is justified. �

Proof of Theorem 5.1. (2) ⇒ (1): Since H is isotropic, H = H ∩H∆, so Proposition

5.4 implies ρ2H,γ = µGc(H)ρH,γ . By the spectral theorem for compact operators, ρH,γ is

positive with spec(ρH,γ) = {0, µGc(H)}. Moreover, as ρH,γ = Fσ
Gc
(γ1H), by Lemma

3.4 and injectivity of Fσ
Gc

, we have χρ = γ1H . In particular, Tr(ρH,γ) = χρ(0) = 1, so

ρH,γ is a state. Its characteristic function satisfies the Bernstein identity (4.3):

χρ(z + z′)χρ(z − z′) = γ(z + z′)γ(z − z′)1H(z + z′)1H(z − z′)

= γ(z)2|γ(z′)|21H(z)1H(z′),
where the last equality uses 2-regularity of H to show z + z′, z − z′ ∈ H if and only

if z, z′ ∈ H . On the other hand, χρ = γ1H is continuous and positive definite since

γ ∈ Ĥ andH is a compact open subgroup [54, 37, 41]. Consequently, χρ is the Fourier

transform of a B-Gaussian distribution, and thus ρH,γ is a B-Gaussian state. �

The other, more involved direction of the proof of Theorem 5.1, requires additional

preparations. The major step, Proposition 5.7, concerns the singularity of Gaussian

distributions in our setting, and is based on [14, Proposition 3.14]. We begin with a

few general lemmas. Recall that, in this paper, all LCA groups are assumed to be

second countable (hence metrizable).

Lemma 5.5. Let G be an LCA group, and let H be an open subgroup of G. Then

Ge ≤ H , where Ge is the connected component of the identity in G.
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Proof. If π : G։ G/H denotes the canonical quotient map, then π(Ge) is a connected

subgroup of the discrete group G/H . Hence, the group π(Ge) is trivial, which implies

Ge ≤ H . �

Lemma 5.6. Let G be a 2-regular LCA group admitting a compact open subgroup.

Then, any path connected closed subgroup of G must be trivial.

Proof. Let H be a path connected closed subgroup of G. Together with second count-

ability, we know that H ∼= Rn × Tm for some n ≥ 0 and m ≤ ℵ0 [2, 8.27].

First, connectedness of H implies H ≤ Ge. Since G admits a compact open sub-

group, Lemma 5.5 implies thatGe compact. Hence,H is compact, which forces n = 0.

Second, since G is 2-regular, the doubling map x 7→ 2x is injective on H . Since

this is false for any non-trivial power of T, we must also have m = 0. Thus, H is

trivial. �

Proposition 5.7. Let G be a non-discrete 2-regular LCA group with a compact open

subgroup. Then any Gaussian distribution ν on G is singular with respect to the Haar

measure µ on G.

Proof. We may assume that ν is symmetric (meaning x = 0 in (4.1)) by translation.

Then the support C of ν is a connected closed subgroup of G [14, Proposition 3.6].

By Lemma 5.6, if C were path connected, it would be trivial, in which case ν = δe is

singular (as G is not discrete).

Suppose C is not path connected. We know by [14, Proposition 3.8, Proposition

3.11] that there is a path connected Polish group L (not necessarily locally compact), a

continuous homomorphism p : L→ C, and a distribution νL on L such that ν = p(νL)
(push-forward measure). Hence, ν is concentrated on the subgroup p(L). We claim

that p(L) is Borel with µ(p(L)) = 0, which gives the singularity of ν.

First note that p(L) is the image of the induced map p̃ : L/Ker(p) → C, which is

injective. Since L/Ker(p) is a Polish group and C is metrizable, it follows that p(L)
is Borel by [49, Corollary A.7].

Now suppose, by way of contradiction, that µ(p(L)) > 0. SinceG admits a compact

open subgroup, Ge is compact by Lemma 5.5. Hence, C ≤ Ge is compact, forcing

0 < µ(p(L)) ≤ µ(C) < ∞, which means that p(L) = p(L) − p(L) contains a

neighborhood of the identity of G by [22, 20.17]. Thus, p(L) is a subgroup of G with

non-empty interior, hence clopen. From the definition of the support we then have

p(L) = C, which implies that C is path connected; contradiction. �

We are now ready to finish the proof of the main result of this subsection. Recall

that Gc = Fc × F̂c where Fc is an LCA group admitting a compact open subgroup.

Proof of Theorem 5.1. (1) ⇒ (2): Suppose ρ ∈ D(L2(Fc)) is a B-Gaussian state.

Then χρ is the Fourier transform of a B-Gaussian distribution on Ĝc. Thanks to 2-

regularity and Proposition 4.3 it is of the form χρ = FĜc
(ν)|K⊥1K⊥ for a compact

Corwin subgroup K ≤ Ĝc and a Gaussian distribution ν on Ĝc. Since K⊥ is open and
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χρ ∈ L2(Gc) we know that FĜc
(ν)|K⊥ ∈ L2(K⊥). We claim that

(∗) FĜc
(ν)|K⊥ = FĜc/K

(νK)

for some Gaussian distribution νK on Ĝc/K. Supposing (∗) holds, the measure νK ∈
M(Ĝc/K) has square-integrable Fourier transform and so must be absolutely con-

tinuous with respect to the Haar measure on Ĝc/K (with square-integrable Radon-

Nikodym derivative, by the Plancherel theorem). This forces K to be open. If not,

the group Ĝc/K is non-discrete, and we can appeal to Proposition 5.7 to get the con-

tradiction that νK is also singular with respect to the Haar measure on Ĝc/K. Note

that Ĝc/K satisfies the assumption of Proposition 5.7: K is a Corwin subgroup of a

2-regular group, so it is automatically 2-regular. Together with 2-regularity of Ĝc, it

follows that Ĝc/K is 2-regular. Also, since Ĝc contains a compact open subgroup,

so too does Ĝc/K as the canonical quotient map π : Ĝc → Ĝc/K is open (see, e.g.,

[22, 5.26]). Thus, K is open, and the Gaussian disctribution νK is supported on a con-

nected subset ([14, Proposition 3.6]) of the discrete group Ĝc/K, so that νK = δγ0+K
for some γ0 ∈ Ĝc. But then

χρ = FĜc/K
(νK)1K⊥ = γ−1

0 1K⊥,

so letting H = K⊥, and γ = γ−1
0 |H , we see that H is a compact open 2-regular

subgroup of G, γ ∈ Ĥ , and χρ = γ1H . Thus, ρ = ρH,γ as in (5.1).

Let us go back to the claim (∗). Viewing Cb(Ĝc/K) ⊆ Cb(Ĝc) in the canonical

fashion (as functions which are constant on the cosets of K), restriction to Cb(Ĝc/K)

induces a probability preserving map from M(Ĝc) to M(Ĝc/K). Write νK for the

image of ν under this map. Then, for all f ∈ Cb(Ĝc/K),

〈f, νK〉(Cb(Ĝc/K),M(Ĝc/K)) = 〈f, ν〉(Cb(Ĝc),M(Ĝc))
.

Consequently, νK is a Gaussian distribution on Ĝc/K and for z ∈ ̂
(Ĝc/K) ∼= K⊥ ≤

G,

FĜc/K
(νK)(z) =

∫

Ĝc/K

〈z, γ +K〉dνK(γ +K) = 〈z−1, νK〉(Cb(Ĝc/K),M(Ĝc/K))

= 〈z−1, ν〉(Cb(Ĝc),M(Ĝc))

= FĜc
(ν)|K⊥(z).

It remains to show that H is isotropic. Uniqueness follows from (twisted) Fourier

inversion. If we denote H0 = H ∩ H∆, then ρ2 = µGc(H)ρH0,γ by Proposition

5.4. Since H0 is compact, open, isotropic and 2-regular, ρH0,γ is a B-Gaussian state

with ρ2H0,γ
= µGc(H0)ρH0,γ . The eigenvalues of ρH0,γ are therefore 0 and µGc(H0).

Since Tr (ρH0,γ) = 1, the eigenvalue µGc(H0) has multiplicity µGc(H0)
−1, implying

that ρ has the eigenvalue µGc(H)1/2µGc(H0)
1/2 with the same multiplicity. From the
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condition Tr ρ = 1 we get

µGc(H)1/2µGc(H0)
1/2µGc(H0)

−1 = 1,

which implies µGc(H) = µGc(H0). If z ∈ H\H0 = H ∩ Hc
0 , then there is an open

neighbourhood U of z in H\H0. But then

µGc(H) ≥ µGc(H0 ∪ U) = µGc(H0) + µGc(U) > µGc(H0),

contradiction. Thus, H = H0 is isotropic. �

Remark 5.8.

(1) If Gc admits no compact open 2-regular subgroup, then Theorem 5.1 tells us

that there are no B-Gaussian states.

(2) There are 2-regular LCA groups with no non-trivial, proper closed 2-regular

subgroups. For example, take the 2-adic rationals Q2. Then Q2 is 2-regular

as it is a field. However, if H is a non-trivial 2-regular closed subgroup of Q2

then necessarily 2−1H = H . But then 2−nH = H for all n ∈ N. Pick x ∈ H
with |x|2 > 0. Then (2−nx) is a sequence in H with |2−nx|2 = 2n|x|2 → ∞
as n → ∞. Hence, H is not bounded and therefore not compact. However,

every proper closed subgroup of Q2 is compact (and open) [44, Corollary 9],

so H = Q2. A similar argument shows that any closed 2-regular subgroup of

Qn
2 is not compact. In particular, there is no B-Gaussian state over the 2-adic

Weyl system Qn
2 × Q̂n

2
∼= Q2n

2 .

The following Corollary is a reason for us to consider B-Gaussian states instead of

Gaussian states.

Corollary 5.9. There is no Gaussian state in the Weyl system (Gc = Fc × F̂c, σ̃can)
unless Fc is trivial.

Proof. If ρ is a Gaussian state, then it is B-Gaussian, so ρ = ρH,γ for H, γ as in The-

orem 5.1, and χρ = γ1H . Since every Gaussian state has non-vanishing characteristic

function, we have Gc = H . However, isotropy of H and non-degeneracy of the sym-

plectic form ∆ implies that

Gc = H ⊂ H∆ = G∆
c = {0} .

�

Remark 5.10. Based on the characterization of B-Gaussian states we can easily de-

termine their von Neumann entropy. Indeed, in the proof of Theorem 5.1, we saw that

the non-zero spectrum of ρH,γ is µGc(H) with multiplicity µGc(H)−1. It follows that

S(ρH,γ) = log(µGc(H)−1). (5.2)

Example 5.11. When F is a 2-regular finite abelian group (here 2-regularity equivalent

to F having odd cardinality), our Haar measure on G = F × F̂ satisfying Theorem 3.3
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is µ(·) = | · |/|F |, where | · | denotes the cardinality. Therefore, the B-Gaussian state

ρH,γ can be written as

ρH,γ =
1

|F |
∑

z∈H

γ(z)W1/2(z).

Moreover, we will see later that ρH,γ is pure if and only if H is maximally isotropic,

or equivalently, |H| = |F | (Lemma 5.17, Proposition 5.18). In particular, if G =

Znd × Ẑnd
∼= Znd × Znd with d odd, we have ρH,γ = |H, v〉〈H, v| (represented as in

(4.4)) for some v ∈ G, by symplectic duality. Therefore, pure B-Gaussian states over

Znd × Znd coincide with stabilizer states of n-qudit systems.

Remark 5.12. From the phase space perspective, the starting point of the stabilizer

formalism of quantum error correction [6, 18] is an isotropic subgroup H of G =

Z2n
2

∼= Zn2 × Ẑn2 . The same idea works for more general phase groups G = Fc × F̂c:

for a compact open 2-regular isotropic subgroup H ≤ G and a character γ ∈ Ĥ,

one can encode information in the subspace of the system Hilbert space L2(Fc) which

is stabilized/fixed by the action of (the abelian group) S =
{
γ(h)W1/2(h) : h ∈ H

}
.

The B-Gaussian state ρH,γ is precisely the normalized projection onto the stabilizer

subspace

C(S) =
{
ψ ∈ L2(Fc) : s|ψ〉 = |ψ〉 for all s ∈ S

}
.

Indeed,

P := µG(H)−1ρH,γ = µG(H)−1

∫

H

γ(h′)W1/2(h
′)dµG(h

′)

satisfies P 2 = P ≥ 0 (Proposition 5.4), so P is an orthogonal projection. More-

over, we can show that γ(h)W1/2(h)P = P for all h ∈ H from the definition (since

h 7→ γ(h)W1/2(h) is a group homomorphism), so Ran(P ) is contained in C(S). Fi-

nally, every vector |ψ〉 stabilized by S clearly satisfies P |ψ〉 = |ψ〉, which means that

C(S) ⊂ Ran(P ).

Example 5.13. In Zelenov’s (relatively recent) papers [59, 60], Gaussian states on

L2(Qp) were defined by χρ being the indicator function of a lattice L ⊆ Qp × Qp

(multiplied by a suitable character on L). By a lattice, they mean a rank-2 free Zp-

submodule of Qp×Qp, where Zp = {x ∈ Qp | |x|p ≤ 1} is the ring of p-adic integers.

Concretely, this means that there exist Zp-linearly independent z1, z2 ∈ Qp × Qp

such that L = Zpz1 ⊕ Zpz2. Their Gaussian terminology was justified through the

observation that such indicator functions are eigenfunctions of the symplectic Fourier

transform.

Let us check that Gaussian states in the sense of Zelenov coincide with B-Gaussian

states. To this end, let G = Qn
p × Qn

p with p an odd prime (so that G possesses

B-Gaussian states, Remark 5.8(2)). We equip G with the metric induced by the norm

‖z‖ = max
1≤i≤2n

|zi|p, z = (z1, ..., z2n) ∈ G.

Note that the closed unit ball of G = Q2n
p in this norm is Z2n

p .
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Let ρ be a B-Gaussian state on L2(Qn
p ). Since G is 2-regular and admits a compact

open subgroup, by Theorem 5.1 there exist a compact open (2-regular) isotropic sub-

group H and a character γ ∈ Ĥ such that ρ = ρH,γ . Note that any closed subgroup

of G is automatically 2-regular since it is a Zp-submodule and 1
2
∈ Zp for odd primes

p. By compactness there exists N ∈ N for which H ⊆ p−NZ2n
p . Hence, pNH is a

Zp-submodule of the free module Z2n
p . Since Zp is a principle ideal domain, pNH is

free of rank at most 2n. In addition, H , and therefore pNH is open in Q2n
p , so there is

some k ∈ N such that B≤p−k(0)2n ⊆ pNH , where B≤p−k(0) = pkZp is the clopen ball

of radius p−k in Qp. It follows that pkei ∈ pNH , where ei are the standard basis vec-

tors of Q2n
p , so pNH contains at least 2n independent elements. Therefore, the rank

of pNH is 2n, implying the existence of Zp-independent h1, ..., h2n ∈ H for which

H = span
Zp
{p−Nh1, ..., p−Nh2n}. Hence, H is a free Zp-module of rank 2n inside

Q2n
p , that is, a lattice.

Conversely, let ρ be a Gaussian state onL2(Qn
p ) in the sense of Zelenov associated to

a lattice L. To prove ρ is B-Gaussian, it suffices to show that L is a 2-regular compact

open isotropic subgroup of Qn
p × Qn

p . Indeed, L =
⊕2n

i=1 Zpzi for some independent

z1, . . . , z2n ∈ Q2n
p , and therefore,

(pNZp)
2n =

2n⊕

i=1

Zp(p
Nei) ⊂ L ⊂

2n⊕

i=1

Zp(p
−Nei) = (p−NZp)

2n

for sufficiently large N . Since
⊕2n

i=1 Zpzi is clearly closed in Qn
p × Qn

p , this inclusion

explains that L is compact and open. The closedness again implies that L is 2-regular

as before. Now we apply the same argument as in the proof of Theorem 5.1 for the

direction (1) ⇒ (2) to show that χρ = 1L is a characteristic function of a state only if

L is isotropic.

5.2. General 2-regular systems. Let us go back to the Weyl system (F × F̂ , σ̃can)
over a general 2-regular LCA group, where F ∼= Rn×Fc with Fc admitting a compact

open subgroup.

Theorem 5.14. EveryB-Gaussian state in the Weyl system (G = F×F̂ , σ̃can) is of the

form ρn⊗ρc, where ρn and ρc areB-Gaussian states in the Weyl system (Rn×R̂n, σ̃can)

and (Gc = Fc × F̂c, σ̃can), respectively.

Proof. Suppose ρ ∈ D(L2(F )) is B-Gaussian. Proposition 4.3(1) implies that the

support of χρ is an open subgroupH of F×F̂ ∼= R2n×(Fc×F̂c). Thus,H ∼= R2n×K
for an open subgroup K of Fc × F̂c. A straightforward calculation shows that the

reduced state (Tr ⊗ id)ρ ∈ D(L2(Fc)) satisfies

χ(Tr⊗id)ρ = χρ|{0}×Gc ,

so that (Tr ⊗ id)ρ is a B-Gaussian state over the Weyl system (Gc, σ̃can) with χ(Tr⊗id)ρ

supported on K, which must be compact thanks to Theorem 5.1.
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Now we apply Proposition 4.3(3) to get χρ = 1Hγ exp(−ϕ) for some γ ∈ Ĥ and

some non-negative continuous ϕ : H → R satisfying (4.2). Let ψ : H × H → R be

the continuous biadditive form associated to ϕ in Remark 4.2(2). We therefore obtain

a continuous homomorphism

H ∋ z 7→ ψ(z, ·) ∈ Hom(H,R),

where Hom denotes the set of continuous homomorphisms. Since H ∼= R2n ×K, the

above homomorphism can be regarded as an element of

Hom(R2n ×K,Hom(R2n ×K,R)),

which, by commutativity of R, identifies canonically with the product group

Hom(R2n,Hom(R2n,R))×Hom(K,Hom(R2n,R))

×Hom(R2n,Hom(K,R))× Hom(K,Hom(K,R)).

Under this identification, we may write

ψ((x, y), (x′, y′)) =

〈
A B

C D




x
y


 ,


x

′

y′



〉
, x, x′ ∈ R2n, y, y′ ∈ K.

where A ∈ Hom(R2n,Hom(R2n,R)) ∼= M2n(R), B ∈ Hom(K,Hom(R2n,R)) ∼=
Hom(K,R2n), C ∈ Hom(R2n,Hom(K,R)) and D ∈ Hom(K,Hom(K,R)). Since

K is compact, Hom(K,Rm) = {0} for any m ∈ N. Thus, B = C = D = 0, and we

have ψ((x, y), (x′, y′)) = 〈Ax, x′〉, x, x′ ∈ R2n, y, y′ ∈ K and consequently

ϕ((x, y)) = ψ((x, y), (x, y)) = 〈Ax, x〉, x ∈ R2n, y ∈ K.

Since γ ∈ Ĥ ∼= ̂R2n ×K = R̂2n × K̂, we may write γ = γn × γc with γn ∈ R̂2n,

γc ∈ K̂. Putting things together, we see that

χρ(x, y) = 1K(y)γc(y)γn(x) exp(−〈Ax, x〉) = χn(x)χc(y), x ∈ R2n, y ∈ K,

where χn = χρ|R2n×{0} = χ(id⊗Tr )ρ and χc = χρ|{0}×K = χ(Tr⊗id)ρ are the char-

acteristic functions of B-Gaussian sates in ρn ∈ D(L2(Rn)) and ρc ∈ D(L2(Fc)),
respectively. By uniqueness of characteristic functions, it follows that ρ = ρn ⊗ ρc,
where ρn = (id⊗ Tr )ρ and ρc = (Tr ⊗ id)ρ. �

Remark 5.15. Theorem 5.14 shows that there is a topological obstruction for B-

Gaussian states over the Weyl system (F×F̂ , σ̃can) with F ∼= Rn×Fc to have bipartite

entanglement with respect to the decomposition L2(F ) ∼= L2(Rn)⊗L2(Fc). A similar

separability phenomenon is known to hold for minimizers of the entropic uncertainty

principle over LCA groups [34].
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5.3. Pure Gaussian states. Based on our characterization (Theorem 5.14), every B-

Gaussian state in a 2-regular Weyl system (F × F̂ , σ̃can) is of the form ρn ⊗ ρc, where

ρn and ρc are B-Gaussian states in the Weyl systems (Rn × R̂n, σ̃can) and (Gc, σ̃can),
respectively. Since a product state is pure if and only if each component is pure, and

the purity of bosonic Gaussian states has been characterized (see [1, Section 3], for

example), the characterization of pure B-Gaussian states reduces to the case of ρc. By

Theorem 5.1, it is of the form ρH,γ for some compact open 2-regular isotropic subgroup

H ≤ Gc and a character γ ∈ Ĥ. In Proposition 5.18 we will prove that ρH,γ is pure if

and only if H is maximally isotropic. Moreover, we show that every pure B-Gaussian

state is determined (up to a Weyl translation) by a symmetric bicharacter (Theorem

5.19). We begin with some preliminary results.

Lemma 5.16. For any compact open subgroup H ≤ Gc we have

µ(H)µ(H∆) = 1, (5.3)

where µ = µGc.

Proof. Let Φ∆ be the (canonical) symplectic self-duality on Gc. By uniqueness of

Haar measures, there exists c > 0 for which Φ∆(µ) = cµĜc
, where Φ∆(µ) is the

push-forward measure. Since H⊥ = Φ∆(H
∆), by the Plancherel theorem we have

1 =
∥∥µ(H)−1/21H

∥∥2

L2(Gc)
=

∥∥FGc(µ(H)−1/21H)
∥∥2

L2(Ĝc)
(5.4)

=
∥∥µ(H)1/21H⊥

∥∥2

L2(Ĝc)
= µ(H)µĜc

(H⊥) = c−1µ(H)µ(H∆).

It remains to show that c = 1. Since Gc admits a compact open 2-regular subgroup, so

too does Fc (project onto first coordinate). Let K ≤ Fc be such a subgroup. Then as

shown in Example 4.7, the characteristic function of the state ψ = µFc(K)−1/21K ∈
L2(Fc) is χ|ψ〉〈ψ| = 1K×K⊥. It is easy to see thatK×K⊥ is a compact open Lagrangian

subgroup of Gc. Hence, (5.4) implies

µ(K ×K⊥)2 = µ(K ×K⊥)µ((K ×K⊥)∆) = c.

Theorem 3.3 then shows

1 = ‖|ψ〉〈ψ|‖22 = ‖1K×K⊥‖2L2(Gc)
= µ(K ×K⊥) =

√
c. (5.5)

�

Lemma 5.17. Let H be a compact open isotropic subgroup of Gc. Then H is La-

grangian if and only if µGc(H) = 1.

Proof. Let µ = µGc for simplicity. If H = H∆, then µ(H) = 1 is direct from Lemma

5.16. Conversely, if µ(H) = 1, then we get µ(H) = µ(H∆) = 1 from the conditions

µ(H) ≤ µ(H∆) and µ(H)µ(H∆) = 1. Since H ⊆ H∆, this implies that H = H∆.

Note that H∆ is compact open by Lemma 5.3

�
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Combining (5.2) and Lemma 5.17, together with the fact that a state is pure if and

only if its entropy is 0, we get the following conclusion.

Proposition 5.18. A B-Gaussian state ρH,γ is pure if and only if H is Lagrangian.

We now show that pure B-Gaussian states in D(L2(Fc)) are determined by a point

in the phase space Gc and a symmetric bicharacter, which is the analogue of the first

and second moments for pure bosonic Gaussian states. Recall that a bicharacter β :
K ×K → T on an LCA group K is symmetric if β(x, y) = β(y, x), x, y ∈ K.

Theorem 5.19. A pure state ρ = |ψ〉〈ψ| ∈ D(L2(Fc)) is B-Gaussian if and only

if there exists a compact open 2-regular subgroup K of Fc, a symmetric bicharacter

β : K ×K → T, z0 ∈ Gc, and α ∈ T such that ψ = αW (z0)ψ0, where

ψ0(x) = µFc(K)−1/21K(x)β(x, 2
−1x), x ∈ Fc. (5.6)

Alternatively, for z0 = (x0, γ0) we have

ψ(x) = α̃µFc(K)−1/21K+x0(x)γ0(x)β(x, 2
−1x), x ∈ Fc,

for some α̃ ∈ T. In this case, ρ = ρH,Γ where Γ = ∆(z0, ·) and

H = {(x, γ) ∈ Gc : x ∈ K, γ|K = β(x, ·)} . (5.7)

Remark 5.20. Note that the above theorem implies that we can choose a continuous

wave function for every pure B-Gaussian state. Furthermore, the result includes the

characterization of stabilizer states in [20, Lemma 18], which is equivalent to saying

that if d ≥ 3 is an odd integer, every pure B-Gaussian state ρ = |ψ〉〈ψ| ∈ D(ℓ2(Znd))
with ψ(x) 6= 0 for all x ∈ Znd is exactly of the form

ψ(x) = d−n/2ωx
TAx+bT x+c,

where ω = exp(2πi
d
), A ∈ Mn(Zd) is a symmetric matrix, b ∈ Znd , and c ∈ R.

The proof of Theorem 5.19 begins with a connection between compact open 2-

regular Lagrangian subgroups and symmetric bicharacters, as follows.

Lemma 5.21. There exists one-to-one correspondence between the family of 2-regular

compact open Lagrangian subgroupsH ofGc and the family of pairs (K, β) consisting

of a compact open 2-regular subgroup K of Fc and a symmetric bicharacter β : K ×
K → T, related by equation (5.7).

Proof. For a given pair (K, β), let H ⊂ Gc be defined by the relation (5.7), which can

easily be checked to be 2-regular closed subgroup of Gc. The isotropy of H follows

from the symmetry of β: for (x, γ), (x′, γ′) ∈ H ,

∆((x, γ), (x′, γ′)) = β(x, x′)β(x′, x) = 1.

Moreover, for each x ∈ K, the corresponding section

Hx :=
{
γ ∈ F̂c : (x, γ) ∈ H

}
=

{
γ ∈ F̂c : γ|K = β(x, ·)

}
(5.8)
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is actually a coset of K⊥ in F̂c. By Fubini’s theorem and (5.5), we have

µGc(H) =

∫

K

µF̂c
(Hx) dµFc(x) =

∫

K

µF̂c
(K⊥) dµFc(x) = µFc(K)µF̂c

(K⊥) = 1.

This implies that H is open and compact by (2.1), and H is Lagrangian by Lemma

5.17, which explains one direction of the correspondence.

For the reverse direction, letH be a compact open 2-regular Lagrangian subgroup of

Gc. For the natural projection πFc : (x, γ) ∈ Gc 7→ x ∈ Fc, defineK := πFc(H). Then

K is a 2-regular compact open subgroup of Fc since πFc is a continuous homomor-

phism and an open map. We first claim that for each x ∈ K, we have Hx = γx +K⊥

for some γx ∈ F̂c, where Hx is from (5.8). Indeed, we can pick any γx ∈ F̂c such that

(x, γx) ∈ H , and then

γ ∈ Hx ⇐⇒ (0, γ − γx) ∈ H = H∆

⇐⇒ ∆((0, γ − γx), (x
′, γ′)) = γ(x′)γx(x′) = 1 for all (x′, γ′) ∈ H

⇐⇒ γ − γx ∈ K⊥ ⇐⇒ γ ∈ γx +K⊥.

Next, we claim that the map T : K → F̂ /K⊥, x 7→ γx + K⊥ is a continuous

homomorphism. The additivity is clear from the definition, and the continuity comes

from the facts that F̂ /K⊥ is discrete and

KerT =
{
x ∈ K : (x, γ) ∈ H for some γ ∈ K⊥

}

=
⋃

γ∈K⊥

{x ∈ K : 1H(x, γ) 6= 0}

is open, which in turn comes from the continuity of the function 1H . Passing through

the canonical identification F̂ /K⊥ ∼= K̂ we obtain a continuous homomorphism T̃ :

K → K̂, and we can readily check that the associated bicharacter β : K × K →
T, (x, y) 7→ γx(y) is the one we were looking for. Indeed, β is symmetric since H is

isotropic:

β(x, y)β(y, x) = γx(y)γy(x) = ∆((x, γx), (y, γy)) = 1, x, y ∈ K.

The relation (5.7) is now straightforward.

Finally, one can easily check that the maps (K, β) 7→ H and H 7→ (K, β) are

inverses to each other. �

Proof of Theorem 5.19. Suppose ρ = ρH,Γ is a pure B-Gaussian state. Then H is a 2-

regular Lagrangian compact open subgroup ofGc by Proposition 5.18. By considering

ρ0 := W (z0)
∗ρW (z0) for z0 ∈ Gc such that Γ = ∆(z0, ·), we may assume that

Γ ≡ 1. Moreover, we can choose a pair (K, β) as in Lemma 5.21 such that equation

(5.7) holds. For the conclusion we only need to check that χψ = χρ for ψ(x) =
µFc(K)−1/21K(x)β(x, 2

−1x), x ∈ Fc. First, we recall that χρ(x, γ) = 1H(x, γ) =

1K(x)1Hx(γ), (x, γ) ∈ Gc. Moreover, there is γx ∈ F̂c such that Hx = γx + K⊥ for
31



each x ∈ K as in the proof of Lemma 5.21. Recall also that β(x, y) = γx(y) with the

above choice. Now we observe that

χψ(x, γ) =

∫

Fc

γ(y − 2−1x)ψ(y − x)ψ(y)dµFc(y)

=

∫

K

γ(y − 2−1x)µFc(K)−11K(y − x)β(x, y − 2−1x)dµFc(y)

= 1K(x)

∫

K

γ(y)µFc(K)−1β(x, y)dµFc(y)

= 1K(x)

∫

K

γ(y)µFc(K)−1γx(y)dµFc(y)

= 1K(x)1γx+K⊥(γ|K),
which lead to the desired conclusion.

We also get the converse by following the above calculation process backwards,

again combined with Lemma 5.21. �

It is well-known that in bosonic systems, every Gaussian state belongs to the norm-

closed convex hull of pure Gaussian states ([47, Problem 5.10]). The same phenome-

non occurs in our setting.

Lemma 5.22. Let H be a compact open 2-regular isotropic subgroup of Gc. The map

Ĝc ∋ γ 7→ ρH,γ ∈ S1(L2(Fc)) is norm continuous.

Proof. Take a net (γi) converging to γ ∈ Ĝc, meaning uniform convergence on com-

pact sets. SinceH is a compact open subgroup, it follows that γi1H → γ1H in L2(Gc).
Thus, by continuity of the twisted Fourier transform (Theorem 3.3)

ρH,γi = Fσ
G(γi1H) → Fσ

G(γ1H) = ρH,γ

in S2(L2(Fc)). Since ρ2H,γi = µGc(H)ρH,γi (Proposition 5.4) we have
√
ρH,γi =

µGc(H)−1/2ρH,γi . Similarly,
√
ρH,γ = µGc(H)−1/2ρH,γ . Hence,

∥∥√ρH,γi −
√
ρH,γ

∥∥
2
= µGc(H)−1/2 ‖ρH,γi − ρH,γ‖2 → 0

in S2(L2(Fc)). Furthermore, isotropy of H implies ρH,γiρH,γ = ρH,γρH,γi and

‖ρH,γi − ρH,γ‖1 ≤
∥∥√ρH,γi −

√
ρH,γ

∥∥
2

∥∥√ρH,γi +
√
ρH,γ

∥∥
2
→ 0.

�

Theorem 5.23. Every B-Gaussian state in S1(L2(F )) belongs to the norm closed con-

vex hull of pure B-Gaussian states.

Proof. Thanks to the decomposition ρn ⊗ ρc we can focus on the case of the state

ρc = ρH,γ for some compact open 2-regular isotropic subgroupH ofGc and a character

γ ∈ Ĥ . Pick a maximal isotropic subgroup K containing H (by Zorn’s lemma, if
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needed). Since H⊥ is a compact open subgroup of Ĝc and the map γ′ 7→ ρK,γγ′ is

continuous by Lemma 5.22, the following state is well defined.

ρ =
1

µĜc
(H⊥)

∫

H⊥

ρK,γγ′dµĜc
(γ′).

We only need to check that χρH,γ
= χρ for the desired conclusion by Proposition 5.18.

Indeed, for z ∈ Gc we have

χρ(z) = Tr

(
W1/2(z)

∗

(
1

µĜc
(H⊥)

∫

H⊥

ρK,γγ′dµĜc
(γ′)

))

=
1

µĜc
(H⊥)

∫

H⊥

Tr (W1/2(z)
∗ρK,γγ′)dµĜc

(γ′)

=
1

µĜc
(H⊥)

∫

H⊥

γ(z)γ′(z)1K(z)dµĜc
(γ′)

=
γ(z)1K(z)

µĜc
(H⊥)

∫

H⊥

γ′(z)dµĜc
(γ′)

= γ(z)1K(z)1H⊥⊥(z) = γ(z)1K∩H(z)

= γ(z)1H(z) = χρH,γ
(z).

�

6. ANGLE-NUMBER SYSTEMS

In this section we show that B-gaussian states in the angle-number system in d-

modes are nothing but the pure states whose wave functions are the elements of the

canonical orthonormal basis {|m〉 = |em〉 : m ∈ Zd} ⊆ H = L2(Td) ∼= ℓ2(Zd),
where em(θ) = e2πi〈θ,m〉, θ ∈ Td. Recall that the associated Weyl representation W1/2

is

W1/2(θ, n) := eπi〈θ,n〉TθMn, (θ, n) ∈ Td × Zd.

See Section 2.3.2 for details.

The first step of the proof is to determine the characteristic functions for rank-1

operators acting on H.

Lemma 6.1. For a, b ∈ Zd we have

χ|a〉〈b|(θ, n) = δa−b,n e
πi〈θ,a+b〉, (θ, n) ∈ Td × Zd. (6.1)

Proof. It is straightforward from the computation

χ|a〉〈b|(θ, n) = 〈b|W1/2(−θ,−n)|a〉

=

∫

Td

e−2πi〈θ′,b〉eπi〈θ,n〉e2πi〈(θ
′+θ),a−n〉 dθ′

= eπi〈θ,2a−n〉
∫

Td

e2πi〈θ
′,a−b−n〉 dθ′ = δa−b,ne

πi〈θ,a+b〉.
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We again remark that the formula (6.1) is only valid for our identification θ ∈[
−1

2
, 1
2

)d
through (2.16).

Theorem 6.2. The set of all B-Gaussian states for the angle-number system in d-modes

is the set of all pure states of the form |m〉〈m| for some m ∈ Zd.

Proof. Let ρ be a B-Gaussian state with the (open) support H of χρ. Since H is an

open subgroup of G = Td × Zd we know that H = Td × K for a subgroup K of

Zd. It is easy to check that the Haar measure µ on G respecting the twisted Plancherel

formula (3.2) is given by
∫

G

f dµ =
∑

n∈Zd

∫

Td

f(θ, n)dθ, f ∈ Cc(G).

Then, by (3.2) and Lemma 6.1, we have

〈a|ρ|b〉 = Tr (ρ(|a〉〈b|)∗) =
∑

n∈Zd

∫

Td

χρ(θ, n)χ|a〉〈b|(θ, n) dθ

=
∑

n∈K

∫

Td

δa−b,nχρ(θ, n)e
−πi〈θ,a+b〉 dθ

=

∫

Td

1K(a− b)χρ(θ, a− b)e−πi〈θ,a+b〉 dθ

for a, b ∈ Zd. In particular,

〈a|ρ|a〉 =
∫

Td

χρ(θ, 0)e
−2πi〈θ,a〉 dθ = χ̂ρ(·, 0)(a), a ∈ Zd.

On the other hand, the B-Gaussianity of ρ again implies that g(·) := χρ(·, 0) is positive

definite and satisfies the B-Gaussian identity (4.3) on Td. Thus, g is the Fourier trans-

form of a B-Gaussian distribution on Zd ∼= T̂d by Bochner’s theorem. Furthermore, we

note that Zd contains no subgroup homeomorphic to T2 and g is nowhere vanishing.

Then, Proposition 4.3(2) tells us that g is the Fourier transform of a Gaussian distri-

bution. If we write g(θ) = e2πi〈θ,m〉 exp(−ϕ(θ)) for some m ∈ Zd and continuous

ϕ : Td → [0,∞) satisfying (4.2), then compactness of Td and Remark 4.2(2) says that

ϕ ≡ 0 since Hom(Td,R) = {0}. Consequently, we have 〈a|ρ|a〉 = ĝ(a) = δm,a.
The above computation means that the diagonal part of the operator ρ (as an infinite

matrix) is zero except one point. Thus, we can conclude that off-diagonal parts of the

positive operator ρ must be zero. This forces ρ = |m〉〈m|.
�

Recalling the fact that the Fourier transform of a Gaussian distribution has full sup-

port we get the following conclusion.

Corollary 6.3. There is no Gaussian state for the angle-number system in d-modes.
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Remark 6.4. The above characterization is consistent with the results about charac-

terizing pure states with non-negative Wigner functions on the angle-number system

in 1-mode [40].

7. FERMIONS AND HARD-CORE BOSONS

In this section we show that there are no B-Gaussian states in the fermionic and

hard-core bosonic systems, introduced in Section 2.4. Although stabilizer states exist

and are heavily studied in these qubit systems, in comparison with our previous results

on finite 2-regular groups, this section shows that qubit stabilizer states do not possess

an underlying Gaussian characterization in the sense of Bernstein.

We begin with a simple description of B-Gaussian distributions on Zm2 .

Proposition 7.1. Every B-Gaussian distribution on G = Zm2 is of the form δa for some

a ∈ G, which is a Gaussian distribution on G.

Proof. Let µ be a B-Gaussian distribution on G = Zm2 and let H = supp µ̂. Then

the annihilator H⊥ is trivial (or equivalently, H = G) since it is a compact Corwin

subgroup of G in which all elements have order 2. Thus, Proposition 4.3 (2) tells

us that µ is a Gaussian distribution on G. In particular, µ̂ is a character on Ĝ as the

associated quadratic function ϕ must vanish, which means that µ is a point-mass at

some point on G. Note finally that it is straightforward to see that every point-mass is

a Gaussian distribution.

�

Let us first focus on the hard-core boson setting.

Theorem 7.2. For any choice of normalizing factor ξ (2.22), there is no B-Gaussian

state on the quantum kinematical system (Zn2 × Zn2 , σ̃can).

Proof. Suppose ρ ∈ D((C2)⊗n) is a B-Gaussian state associated to the (B-)Gaussian

distribution δa, a ∈ Z2n
2 (Proposition 7.1). By Equation (3.7) and the non-degeneracy

of ∆, there exists z0 ∈ Z2n
2 such that ρ0 := W (z0)

∗ρW (z0) has a characteristic func-

tion

χρ0(w) = ∆(z0, w)δ̂a(w) = (−1)z
T
0 Jw(−1)a

Tw ≡ 1.

However, the twisted Fourier inversion (Proposition 3.4) gives that

ρ0 =
1

2n

∑

z∈Z2n
2

W1/2,can(z) =
1

2n

∑

z∈Z2n
2

ξ(z)Wcan(z),

and the RHS must define a state. On the other hand, for z = (x1, . . . , xn, y1, . . . , yn) ∈
Z2n
2 , observe from (2.21) that

(id⊗ · · · ⊗ id⊗ Tr )Wcan(z) = 2δ0,xnδ0,ynh
x1
1 h

y1
2 · · ·hxn−1

2n−3h
yn−1

2n−2.

By repeating the procedure, we get

(id⊗ Tr ⊗ · · · ⊗ Tr )Wcan(z) = 2n−1δ0,x2δ0,y2 · · · δ0,xnδ0,ynhx11 hy22 .
35



Therefore,

(id⊗ Tr ⊗ · · · ⊗ Tr )ρ0 =
1

2

∑

x1,y1∈Z2

ξ(x1e1, y1e1)h
x1
1 h

y1
2

=
1

2
(I ±X ± Y ± Z)

where e1 = (1, . . . , 0) ∈ Zn2 , from the formulae ξ(e1, 0)
2 = ξ(0, e1)

2 = 1 and

ξ(e1, e1)
2 = −1. But it is easy to see that, for any choice of signs, the resulting

operator is not positive, a contradiction. �

The same method works for fermionic systems.

Theorem 7.3. For any choice of the normalizing factor ξ (2.20), there is no B-Gaussian

state on the quantum kinematical system (Z2n
2 , σ̃fer).

Proof. As in the hardcore boson case it boils down to check the operator

ρ =
1

2n

∑

a∈Z2n
2

ξ(a)Wfer(a)

is not positive. By the same argument in Theorem 7.2, we have

(id⊗ Tr ⊗ · · · ⊗ Tr )Wfer(a) = 2n−1δ0,x3δ0,x4 · · · δ0,x2ncx11 cx22
for a = (x1, . . . , x2n) ∈ Z2n

2 , and therefore,

(id⊗ Tr ⊗ · · · ⊗ Tr )ρ =
1

2

∑

x1,x2∈Z2

ξ(x1, x2, 0, . . . , 0)c
x1
1 c

x2
2

=
1

2
(I ±X ± Y ± Z),

which is a contradiction as before. �

8. HUDSON’S THEOREM FOR 2-REGULAR TOTALLY DISCONNECTED GROUPS

Hudson’s theorem [28] and its higher dimensional generalization [48] show that

pure bosonic Gaussian states can be characterized by non-negativity of their Wigner

functions. Gross [20] continued this line of research for the Weyl system with F = Znd ,

d(≥ 3) odd, characterizing pure states with non-negative Wigner functions as the class

of stabilizer states, i.e. pure B-Gaussian states in our terminology. We extend the

result of Gross to the case of totally disconnected groups. Recall that a topological

space is totally disconnected if the only connected sets are singletons. Note that our

proof is inspired by the one of Gross [20], but there are fundamentally new aspects to

accommodate the infinite group setting.

In this section, F denotes a (second countable) 2-regular totally disconnected LCA

group, unless otherwise noted.
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Proposition 8.1. (van Dantzig, [8], [22, Theorem 7.7]) Every open neighborhood of

the identity of a totally disconnected locally compact group contains a compact open

subgroup.

Since F contains a compact open subgroup, all the facts from Section 5.1 are appli-

cable to the kinematical system (G = F × F̂ , σ = σ̃can) with the corresponding Weyl

representation W =W1/2 given by

W (x, γ)ψ(y) = 〈2−1x, γ〉〈y, γ〉ψ(y − x), ψ ∈ L2(F ), x, y ∈ F, γ ∈ F̂ .

Let us express the Wigner function Wψ of a vector state ψ ∈ L2(F ) using the self-

correlation function as in [20, p.10],

ϕq(x) := ψ(q + 2−1x)ψ(q − 2−1x), q, x ∈ F.

We first note that

χψ(x, γ) =

∫
〈2−1x, γ〉〈y, γ〉ψ(y − x)ψ(y)dµF (y) = 〈2−1x, γ〉ĝxF (γ)

with gx(y) = ψ(y − x)ψ(y), x, y ∈ F, γ ∈ F̂ . On the other hand we have

∆((q, p), (x, γ)) = p(x)γ(q), q, x ∈ F, p, γ ∈ F̂ .

Combining the above we get

Wψ(q, p) =
[
FF ⊗ (FF )−1

]
(χψ)(p, q) = (FFg·(q + 2−1·))(p)

= ϕ̂q
F (p), q ∈ F, p ∈ F̂ . (8.1)

The main theorem of this section is the following.

Theorem 8.2 (Hudson’s theorem, 2-regular totally disconnected version). For a

pure state ψ ∈ L2(F ) over the Weyl system (F×F̂ , σ̃can), the following are equivalent:

(1) ρ = |ψ〉〈ψ| is B-Gaussian,

(2) ψ is continuous and Wψ ≥ 0 a.e.

The proof for the direction (1) ⇒ (2) is a simple combination of Theorem 5.1 and

Theorem 5.19. Indeed, a B-Gaussian pure state ρ = ρH,Γ associated to a Lagrangian

subgroup H and a character Γ = ∆(z0, ·) has a characteristic function χρ = Γ · 1H .

Therefore we have Wψ(z) = 1H(z − z0) ≥ 0. Moreover, (5.6) reveals that ψ is

continuous.

The reverse direction (2) ⇒ (1) is the main difficulty. Let us begin with a lemma

which exploits the total disconnectedness of F in a crucial way.

Lemma 8.3. If f ∈ L1(F ), f̂ ≥ 0 a.e., and if f is continuous at 0, then f̂ ∈ L1.

Proof. Proposition 8.1 and second countability of F give a sequence {Kn}∞n=1 of com-

pact open subgroups of F decreasing to the trivial subgroup. Now we claim that

1(Kn)⊥ → 1 pointwise on F̂ as n → ∞. Indeed, if γ ∈ F̂ and ǫ ∈ (0, 1
2
), then
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V = {x ∈ F : |〈x, γ〉 − 1| < ǫ} is a neighborhood of 0. ChooseN such thatKN ⊂ V .

Since Kn ⊂ V for n ≥ N , we have

|1(Kn)⊥(γ)− 1| =
∣∣∣µF (Kn)

−1 1̂Kn(γ)− 1
∣∣∣

=

∣∣∣∣
∫

V

(〈x, γ〉 − 1)µF (Kn)
−1 1Kn(x) dx

∣∣∣∣ < ǫ (< 1/2).

Since |1(Kn)⊥(γ)− 1| is either 0 or 1, we have 1(Kn)⊥(γ) = 1 for all n ≥ N .

Now we apply the monotone convergence theorem and Fubini’s theorem together

with the above claim to get
∫

F̂

f̂(γ)dγ = lim
n→∞

∫

F̂

f̂(γ)1(Kn)⊥(γ)dγ

= lim
n→∞

∫

F

∫

F̂

f(x)1(Kn)⊥(γ)〈x, γ〉 dγ dx

= lim
n→∞

µF (Kn)
−1

∫

F

f(x)1Kn(x)dx

= f(0) <∞.

Note that we used the continuity of f at 0 for the last equality. �

We proceed with an analogue of [20, Lemma 11].

Lemma 8.4. If ψ ∈ L2(F ) is continuous and Wψ ≥ 0 a.e., then ϕq is a positive

definite function on F for each q ∈ F . Moreover, we have

|ψ(q)|2 ≥ |ψ(q + x)| |ψ(q − x)|, (8.2)

|ψ(2−1(x+ y))|2 ≥ |ψ(x)| |ψ(y)|, (8.3)

and

|ϕq(2−1(x+ y))|2 ≥ |ϕq(x)| |ϕq(y)| (8.4)

for all q, x, y ∈ F .

Proof. Since ψ is continuous, we know that ϕq is also continuous for all q ∈ F . From

our assumption and (8.1) we have ϕ̂q
F = Wψ(q, ·) ≥ 0 a.e.. Moreover, we know

ϕq ∈ L1(F ) since ψ(q ± 2−1·) ∈ L2(F ), so we can appeal to Lemma 8.3 to conclude

that ϕ̂q
F

is integrable. This implies that ϕq is positive definite on F for all q ∈ F from

Fourier inversion.

Now, the positivity of the matrix

[
ϕq(0) ϕq(2x)

ϕq(−2x) ϕq(0)

]
gives

ϕq(0)
2 − ϕq(2x)ϕq(−2x) = |ψ(q)|4 − |ψ(q + x)|2|ψ(q − x)|2 ≥ 0, x ∈ F,
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which is (8.2). It is easy to see that (8.2) and (8.3) are equivalent thanks to 2-regularity

and we can apply the latter to get

|ϕq(2−1(x+ y))|2 = |ψ(q + 2−2(x+ y))|2 × |ψ(q − 2−2(x+ y))|2

≥ |ψ(q + 2−1x)||ψ(q + 2−1y)| × |ψ(q − 2−1x)||ψ(q − 2−1y)|
= |ϕq(x)| |ϕq(y)|, q, x, y ∈ F.

�

The above lemma has an immediate consequence, which will be crucial for the proof

of the main theorem.

Corollary 8.5. Suppose ψ ∈ L2(F ) is continuous and non-zero with Wψ ≥ 0. The set

suppψ is balanced (i.e. x, y ∈ suppψ implies 2−1(x + y) ∈ suppψ) and contains a

coset of a compact open subgroup of F . Moreover, |ψ| is constant on any such coset.

Proof. The set suppψ is obviously balanced from the inequality (8.3). Since ψ is

continuous and not identically zero, suppψ is a nonempty open set and the second

assertion follows by Proposition 8.1. For the last statement we consider a compact

open subgroup K of F and x ∈ F with x+K ⊆ suppψ. The function |ψ| achieves a

minimum mx > 0 on x+K, say at xm, by continuity. However, (8.2) implies that

m2
x = |ψ(xm)|2 ≥ |ψ(xm + y)||ψ(xm − y)| ≥ m2

x, y ∈ K,

which forces |ψ(xm+y)| = |ψ(xm−y)| = mx for all y ∈ K. Since xm+K = x+K,

this means that |ψ| ≡ mx on x+K. �

The next is the most important step towards the proof of Theorem 8.2. It says that

the function |ψ| is constant on its support, which happens to be a coset of a compact

open 2-regular subgroup of F .

Lemma 8.6. If ψ ∈ L2(F ) is a continuous state and Wψ ≥ 0, then there exist x0 ∈ F
and a compact open 2-regular subgroup K of F such that

|ψ| = µF (K)−1/21x0+K (8.5)

For the proof of Lemma 8.6 we consider the following subsets of F :

Kq :=
{
x ∈ F : |ϕq(x)| = ϕq(0) = |ψ(q)|2

}
,

Kǫ
q := {x ∈ F : |ϕq(x)| ≥ ǫ} ,

Lq := {x ∈ F : |ϕq(x)| > 0} =
{
x ∈ F : q ± 2−1x ∈ suppψ

}
, (8.6)

for continuous ψ ∈ L2(F ) with Wψ ≥ 0, q ∈ F and ǫ > 0. It is obvious that

Kq ⊂ Kǫ
q ⊂ Lq =

⋃

ǫ>0

Kǫ
q

for q ∈ suppψ and 0 < ǫ < |ψ(q)|2. The following lemma shows that the three sets

are actually identical.
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Lemma 8.7. If q ∈ suppψ for continuous ψ ∈ L2(F ) with Wψ ≥ 0, then Kq is a

2-regular compact open subgroup of F , and Kq = Kǫ
q = Lq for 0 < ǫ < |ψ(q)|2.

Proof. We first check that Kq is a compact open subgroup. Proposition 2.1 says that

Kq is a closed subgroup. Since suppψ is an open set containing q there is a compact

open subgroup K such that q + K ⊂ suppψ by Proposition 8.1. Then 2K ⊂ Kq by

the fact that |ψ| ≡ |ψ(q)| on q +K (Corollary 8.5) and by the definition of ϕq. Since

2K is open (F being 2-regular), Kq has nonempty interior, and is therefore clopen.

Moreover, as ϕq ∈ L1(F ), we have

µF (Kq)ϕq(0) =

∫

Kq

|ϕq(x)|dx ≤ ‖ϕq‖L1(F ) <∞.

Consequently, µF (Kq) <∞, which means Kq is compact.

Let us move our attention to Kǫ
q , ǫ ∈ (0, |ψ(q)|2), a nonempty closed subset of F .

By Proposition 2.1(2), |ϕq| is constant on the cosets of Kq, so that

x+Kq ⊂ Kǫ
q for any x ∈ Kǫ

q . (8.7)

Thus, Kǫ
q is a union of cosets of Kq, and in particular, is open. Moreover, we can

observe that Kǫ
q is actually a finite union of cosets of Kq, i.e.

Kǫ
q =

n⋃

i=1

(xi +Kq), xi ∈ Kǫ
q , 1 ≤ i ≤ n. (8.8)

Indeed, we have

µF (K
ǫ
q) ≤ ǫ−1

∫

Kǫ
q

|ϕq(x)|dx ≤ ǫ−1‖ϕq‖L1(F ) <∞,

which gives us the observation since cosets are disjoint with the same (non-zero) Haar

measure as Kq.

Now let us show that Kǫ
q is a subgroup of F . The fact that Kǫ

q is closed under the

inversion x 7→ −x comes from |ϕq(x)| = |ϕq(−x)|, x ∈ F . In order to show Kǫ
q

is closed under addition, we first observe that Kǫ
q is closed under the map x 7→ 2−1x

by (8.4) with y = 0. Thus, it suffices to show that 2Kǫ
q ⊂ Kǫ

q from the identity

x + y = 2−1(2x + 2y). To this end, we only need to check that 2xk ∈ Kǫ
q for

1 ≤ k ≤ n. We will focus on the case of x1 for simplicity. Since Kǫ
q is closed under

the map x 7→ 2−1x we get a sequence {2−jx1}∞j=1 in Kǫ
q . From (8.8) we can pick

1 ≤ i ≤ n and 0 ≤ j1 < j2 such that 2−jlx1 ∈ xi +Kq, l = 1, 2. In particular, there

exist y1, y2 ∈ Kq such that 2−jlx1 = xi + yl, l = 1, 2. But then, as j2 ≥ j1 + 1,

2j2−j1x1 = 2j2xi + 2j2y1 = (x1 − 2j2y2) + 2j2y1.

Therefore,

2x1 = 2−(j2−j1−1)(x1 − 2j2(y2 − y1)) ∈ Kǫ
q ,

since x1 − 2j2(y2 − y1) ∈ x1 +Kq ⊂ Kǫ
q and Kǫ

q is closed under the map x 7→ 2−1x.
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So far, we have shown that Kǫ
q is 2-regular compact open subgroup of F . Note that

we have q+2−1Kǫ
q = q+Kǫ

q ⊂ suppψ from the definition ofKǫ
q and ϕq, which allows

us to use Corollary 8.5 to get |ψ| ≡ |ψ(q)| on q +Kǫ
q . Now it follows that Kǫ

q ⊂ Kq,

and hence Kǫ
q = Kq.

Finally, Lq =
⋃
ǫ>0K

ǫ
q = Kq. �

Now we are ready to go back to the proof of Lemma 8.6.

Proof of Lemma 8.6. We may assume 0 ∈ suppψ by considering ψ0 =W (x0, 0)
∗ψ =

ψ(·+x0) for any chosen x0 ∈ suppψ if necessary. We claim that suppψ = L0, where

L0 is the 2-regular compact open subgroup of F given by (8.6) and Lemma 8.7. Once

the claim is established, we get the desired conclusion directly from Corollary 8.5 and

the condition ‖ψ‖L2(F ) = 1.

For the claim we recall the fact

(∗) y ∈ Lq ⇔ q ± 2−1y ∈ suppψ.

We begin with x ∈ L0, then we have 2x ∈ L0 ⇔ ±x ∈ suppψ by (∗) with q = 0.

This gives us the inclusion L0 ⊂ suppψ. For the converse we consider x ∈ suppψ.

Corollary 8.5 says that suppψ is balanced, then we have 2−1x ∈ suppψ from the

assumption 0 ∈ suppψ. Now we apply (∗) with q = 0 and the fact that L0 is a

group to get 2−1x ± 2−1x ∈ suppψ, which is equivalent to x ∈ L2−1x by (∗) with

q = 2−1x. Since L2−1x is also a group by Lemma 8.7, we have 2x ∈ L2−1x and

therefore −2−1x = 2−1x − x ∈ suppψ by (∗) with q = 2−1x, which means that

x ∈ L0 by (∗) with q = 0. �

We finally complete the proof of Theorem 8.2.

Proof of Theorem 8.2. (2) ⇒ (1): Starting from (8.5) of Lemma 8.6, we have

|ϕq(x)| = µF (K)−11x0+K(q + 2−1x)1x0+K(q − 2−1x) = µF (K)−11x0+K(q)1K(x),

where we used the 2-regularity of K in the last equality. Moreover, since ϕq is contin-

uous and positive definite on K, Proposition 2.1(2) implies that

ϕq(x) = µF (K)−11x0+K(q)1K(x)γq(x) (8.9)

for some γq ∈ K̂. Therefore, we get the Wigner function

Wψ(q, p) = ϕ̂q
F (p) = 1x0+K(q)1K⊥(p− γ̃q),

where γ̃q ∈ F̂ is any extension of γq. Here, we use the fact that characters on a closed

subgroup can be extended to a character on the whole group [43, Theorem 4.2.14].

Now, by considering ψ0 := W (x0, γ̃0)
∗ψ combined with (3.8), we may assume that

x0 = 0 and γ0 ≡ 1.

Going back to (8.5) we can write

ψ(x) = µF (K)−1/21K(x)α(x)
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for some continuous function α on K with |α| ≡ 1, which gives us

ϕq(x) = µF (K)−11K(q)1K(x)α(q + 2−1x)α(q − 2−1x), x ∈ F. (8.10)

Comparing (8.9) and (8.10) (under the condition x0 = 0), we have

α(q + 2−1x)α(q − 2−1x) = γq(x), q, x ∈ K. (8.11)

However, the condition γ0 ≡ 1 implies that α(2−1x) = α(−2−1x) for all x ∈ K,

which means α is symmetric thanks to 2-regularity of K. Therefore,

γq(x) = α(2−1x+ q)α(2−1x− q)

= γ2−1x(2q) = (γ2−1x(q))
2

=
(
α(2−1(x+ q))α(2−1(x− q))

)2

=
(
α(2−1(q + x))α(2−1(q − x))

)2

= γx(q), q, x ∈ K.

Consequently, we get a symmetric bicharacter β : K × K → T, (q, x) 7→ γq(x)
introduced in Section 5.3. From the condition (8.11) we can easily see that α(x) =
β(x, 2−1x), x ∈ K, which is the conclusion we wanted as in (5.6). �

Question 8.8. Can we further generalize the Hudson theorem over 2-regular LCA

group with compact open subgroups?

Remark 8.9. Note that the original Hudson’s theorem [28] and its higher dimensional

generalization [48] do not assume the continuity of the vector state ψ ∈ L2(Rn). It can

be deduced form the single assumption Wψ ≥ 0 a.e..

On the other hand, a corresponding result on the angle-number system in 1-mode

has been proved in [40]. A careful inspection of the proof reveals that an implicit

assumption of the continuity of ψ ∈ L2(F ) is made in [40]. It is not clear whether we

could remove the continuity of ψ ∈ L2(F ) from the assumption in both of the cases at

the time of this writing.

9. CONCLUSION AND OUTLOOK

In this paper we have established a framework to pursue Gaussian quantum in-

formation over general quantum kinematical systems (with finitely many degrees of

freedom), and characterized Gaussian states over many systems of interest; 2-regular

Weyl systems in particular. In addition to paving the way towards a general theory of

Gaussian quantum channels (to appear [61]), several natural questions concerning the

structure and applications of Gaussian states remain open. For instance, separability

versus positivity under partial transpose, purifications and optimization scenarios.
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