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1 Introduction

It is well known that fundamental equations of mathematical physics admit rather exten-
ded symmetries. At the first place we can mention symmetries with respect to continuous
groups (Lie symmetries). In addition, there exists an extended class of generalised symmet-
ries (higher symmetries, supersymmetries, hidden symmetries) connected with the menti-
oned equations, see, e.g., book [1] and paper [2].

An important class of equations of quantum mechanics (QM) is formed by the superin-
tegrable Schrödinger equations which admit more integrals of motion than the number
of degrees of freedom of the associated QM systems. As a rule such equations also admit
a wide Lie symmetry and different kinds of generalised symmetries. A known example is
the Schrödinger equations for the Hydrogen atom which, in addition to its invariance with
respect to the rotation group, is supersymmetric and admits the hidden (Fock) symmetry
with respect to group O(4).

Searching for Lie symmetries of partial differential equations is a rather popular business
which generates a big number of publications. Rather surprisingly, the correct group
classification of Schrödinger equations for a particle interacting with an external field
appears only recently [3, 4, 5, 6], in spite of that the search for the related symmetries
started long time ago, see papers [7, 8, 9].

The systematic search for superintegrable QM systems was started in papers of Yakov
Smorodinsky and his collaborators [10], [11], who completely described all inequivalent 2d
Schrödinger equations which admit second order integrals of motion. The modern trend
is the studying of the related integrals of motion of the third and even arbitrary orders
[12]. See also [13] where the determining equations for such symmetries were deduced.

The present paper is devoted to the classification of superintegrable Schrödinger equa-
tions with position dependent mass (PDM). Such equations have very important applica-
tions in the modern theoretical physics, being the mathematical models of semiconductors
[14], quantum liquids [15], quantum dots [16], and many, many others quantum objects.

Higher symmetries of the 2d PDM Schrödinger equations are well known (see, e.g.,
[17] and the references given therein). However, there are only some particular results
concerning the classification of such equations with three independent variables [18, 19,
20, 21]. In the following we present the complete classification of the special class of such
equations, namely, of equations which are scale invariant.

For the group classification of the stationary and time dependent PDM Schrödinger
equations and the related reaction-diffusion systems see papers [22, 23] and [24, 25] corres-
pondingly. In accordance with these papers such equations cannot be Galilei invariant in
contrast with the standard Schrödinger equation and its generalisations for the case of
particles with arbitrary spin [26].

The classification of the higher symmetries of the 3d PDM Schrödinger equations is a
very complicated problem which is solved only for some special classes of such equations.
An important and rather extended class of them includes equations which admit at least
one parametric symmetry group. All inequivalent equations from this class which admit
first order integrals of motion is fixed in [22].

In the present paper we classify the scale invariant 3d PDM Schrödinger equations
which admit at least one second order integral of motion and show that they include
many interesting and consistent equations. The found equations form the important part
of a more general class of superintegrable equations which admit at least a minimal Lie
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symmetry.

2 PDM Schrödinger equations

We will study the stationary PDM Schrödinger equations of the following generic form:

Ĥψ = Eψ, (1)

where

Ĥ = paf(x)pa + V (x). (2)

In equation (1) x = (x1, x2, x3), pa = −i∂a, а V (x) та f(x) = 1
2m(x)

are arbitrary
functions of x which are associated with the potential and inverse mass correspondingly,
and summation is imposed over the repeated indices.

In paper [22] all inequivalent equations (1) admitting at least one first order integral
of motion (i.e., differential operator of first order commuting with Hamiltonian H) are
found. In [21] the complete classification of the special class of superintegrable equations
(1) was carried out, namely, the equations invariant with respect to the rotation group.

In the present paper we classify superintegrable equations (1) which are scale invariant.
The corresponding arbitrary elements V and f take the form [22]:

f = r2F (ϕ, θ), V = V (ϕ), (3)

where F (.) and V (.) are arbitrary functions, ϕ i θ are the Euler angles.
Hamiltonians (2) with special arbitrary elements (3) commute with the generator of

the scaling transformations which has the following form:

D = xapa −
3i

2
.

Our task is to find such of them which commute with at least one first order differential
operator.

3 Equivalence group

Changes of dependent and independent variables are called the equivalence transformati-
ons provided they keep the generic form of the differential equation (in our case of equation
(1)) up to the changes of the arbitrary elements (in our case functions f and V ). The
set of the equivalence transformations has the gruppoid structure [27], and can include
equivalence groups and some discrete elements.

As it is shown in [22], the maximal continuous equivalence group of equation (1) is
C(3), i.e., the group of conformal transformations of 3d Euclidean space. The generators
of this group are the following first order differential operators:

P a = pa = −i
∂

∂xa
, La = εabcxbpc,

D = xnp
n −

3i

2
, Ka = r2pa − 2xaD,

(4)

2



where r2 = x21+x
2
2+x

2
3 and pa = −i ∂

∂xa
. The corresponding group transformations (whose

explicit form can be found in [22]) keep the generic form of equations (1), (2) up to exact
form of functions f and V . The important particular form of these transformations is the
inversion:

xa → x̃a =
xa

x2
, ψ(x) → x̃3ψ(x̃) (5)

which acts on operators (4) in the following manner:

Pa → Ka, Ka → Pa, La → La, D → D. (6)

For the class of equations considered in the present paper the equivalence group is
reduced to the direct product of the rotations group whose generators are componets of
the orbital momenta La and dilatation transformations generated by D, since La and D

commute with H while the remaining operators (4) do not have this property. Notice that
the discrete equivalence transformation (5) is kept also.

In the following we will use the rotations and the inverse transformation (5) for
optimisation of the requested calculation and selection of non-equivalent versions of the
studied equations.

4 Determining equations

The searched second order integrals of motion can be represented in the following form:

Q = µab∂a∂b + ξa∂a + η (7)

where µab = µba, ξa and η are unknown functions of x.
By definition operators Q have to commute Ĥ:

[Ĥ, Q] ≡ ĤQ−QĤ = 0. (8)

Condition (8) represents the operator equation which can be satisfied when the operators
presented here act on an arbitrary twice differentiable function. Evaluating the commuta-
tor and equating the coefficients for the same differential operators ∂

∂xa
, ∂2

∂xa∂xb

and ∂3

∂xa∂xb∂xc

we come to the following system of determining equations:

5
(

µab
c + µac

b + µbc
a

)

= δab (µnn
c + 2µcn

n ) + δbc (µnn
a + 2µan

n ) + δac
(

µnn
b + 2µbn

n

)

, (9)

(µnn
a + 2µna

n ) f − 5µanfn = 0, (10)

2fηa + ξanfn − ξnfan + fξann + 2µanVn − µmnfmna = 0, (11)
(

µab
nn + ξab + ξba

)

f + µab
n fn − µnafnb − µnbfna − δab (µmnfmn + ξnfn) = 0, (12)

f (µmm
nn + 2ξnn) + (µnn

m − 3ξm) fm − 5µmnfmn = 0, (13)

(fηn)n + ξnVn + µmnVmn = 0 (14)

where fn = ∂f

∂xn
, ξan = ∂ξa

∂xn
, etc.

To find all operators (2) which admit integrals of motion (7) it is necessary to find
all inequivalent solutions of the very complicated system of equations (9)–(14) for twelve
unknowns µab, ξa, η, f and V . Fortunately, equations (12), (13) and (14) can be omitted
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since they are nothing but the differential consequences of the remaining ones. In addition,
variables , ξa can be excluded. Indeed, diffirentiating (10) with respect to xa and making
the summation over the repeating index a, we come to equation (13), while the same
procedure with (11) lead to equation (14). On the other hand, equation (13) can be
deduced from (9) and (10), provided the following relations are satisfied:

ξ̂ba + ξ̂ab =
2

3
δabξ̂

n
n ,

3ξ̂nfn = 2f ξ̂nn

(15)

where ξ̂a = ξa − µan
n .

Relations (15) are nothing but the determining equations for the coefficients of the first
order symmetry operators of equations (1), found in paper [22]. Since such operators and
the corresponding equations (1) are known [22], we suppose that functions ξ̂a are trivial,
and so ξa = µan

n . As a result equations (11) are reduced to the following form:

2(fηa + µabVb) + (µam
nmf − µnmfam)n = 0, (16)

and the corresponding integral of motion (7) can be rewritten as:

Q = ∂bµ
ab∂a + η. (17)

The corresponding functions µab have to satisfy the autonomous system of equations
(9), which specify the conformal Killing tensor. The latter one is a linear combination of
the following tensors (see, e.g., [28]):

µab
1 = λab1 + δab

λcd1 x
cxd

x2
ϕ1(x),

µab
2 = λa2x

b + λb2x
a + δabλc3x

cϕ2(x),

µab
3 = (εacdλcb3 + εbcdλca3 )xd,

µab
4 = (xaεbcd + xbεacd)xcλd4,

µab
5 = δabx2ϕ5(x) + k(xaxb − δabx2),

µab
6 = λab5 x

2 − (x2λbc5 + xbλac5 )xc + δabλcd6 x
cxdϕ6(x),

(18)

µab
7 = (xaλb7 + xbλa)x2 − 4xaxbλc7x

c + δabλc8x
cx2ϕ7(x),

µab
8 = 2(xaεbcd + xbεacd)λdn8 x

cxn − (εackλbk8 + εbckλak8 )xcx2,

µab
9 = λab9 x

4 − 2(xaλbc9 + xbλac9 )xcx2 + (4xaxb + kδabx2)λcd9 x
cxd

+ δabλcd10x
cxdx2ϕ9(x)

(19)

where λabn = λban and λan are arbitrary parameters, and ϕ1, ..., ϕ9 are arbitrary functions of
x = r =

√

x21 + x22 + x23.
Thus our classification problem is reduced to finding inequivalent solutions of equations

(10) and (16) for unknowns f and V , where µab is a linear combination of functions (18)
and (19). The main difficulty is the extended number of arbitrary parameters involved into
the mentioned equations which has to be reduced using the equivalence transformations.
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5 Decoupling of the determining equations

Taking into account the scale invariance of equations (1) with arbitrary elements (3) we
can conclude that the Killing tensors µab involved into the determining equations should be
homogeneous functions of x. In other words, equations , (10) and (16) are decoupled to five
autonomous subsystems which correspond to the Killing tensors including homogeneous
polynomials of fixed order n with n = 0, 1, 2, 3, 4 , and the corresponding functions
ϕ1, ϕ2, ..., ϕ9 should be constants.

Moreover since any equation (1), (2) which arbitrary element (3) is invariant w.r.t.
the inverse transformation (5), we can restrict ourselves to the Killing tensors being
polynomials of xa of order n 6 2, which are given by equations (18), since the symmetries
with n=3 and n=4 are equivalent to the symmetries with n = 1 and n = 0 correspondingly.
It means that it is sufficient to solve the determining equations (10) and (16) with the
following µab:

µab = λab + κδab
λ̃cdxcxd

x2
, (20)

µab = λaxb + λbxa − 2δabλ̃cxc

+ µaxb + µbxa + (εacdλcb + εbcdλca)xd,
(21)

µab = κxaxb + (xaεbcd + xbεacd)λdxc + δabλ̃cdxcxd

+ λabx2 − (xaλbc + xbλac)xc.
(22)

Notice than any second order symmetry corresponding to n = 0 and n = 1 is accompanied
by the addition symmetry generated by the changes of variables (6).

5.1 Symmetries independent on xa

Let us start with the symmetries which correspond to Killing tensors µab fixed in (20).
Substituting (20) into (13), we obtain the following equation:

λabfb + κ
λ̃mnxmxn

r2
fa = 0. (23)

Since µab = µba, up to rotation transformations there are three inequivalent versions of
nontrivial parameters λab:

λ11 = k1, λ
22 = k2, λ

33 = k3, (24)

λ11 = k1, λ
22 = k2, (25)

λ33 = k3. (26)

Substituting (24)-(26) into (23) and equating the coefficients for the same independent
variables xm, we come to the conclusion that coefficient κ should be trivial, and

f = 0 for version (24), (27)

f = x23 for version (25), (28)

f = (x21 + x22)F (ϕ) for version (26) (29)
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where F (ϕ) is an arbitrary function of the Euler angle ϕ = arctan
(

x2

x1

)

.

Substituting (56)-(29) into (16) we obtain the following solutions for the latter equation:

f = x23, V =
x23

(x21 + x22)
F (ϕ), η = −

1

x21 + x22
F (ϕ), λ11 = λ22 = 1, (30)

f = x23, V = Const, η = 0, λ11 = k1, λ
22 = k2 6= k1, (31)

f = (x21 + x22)F (ϕ), V =
f

x23
, η = −

1

x23
, λ33 = 1. (32)

Thus up to the equivalence there are three versions of the scale invariant PDM Schrödin-
ger equations which admit second order integrals of motion independent on x. They
include arbitrary elements f and V fixed in formulae (30) and (31).

5.2 Symmetries linear in independent variables

Consider now the symmetries generated by the Killing tensors (22) which are linear in xa.
The related determining equations (13) are reduced to the following form:

2λaf = µabfb. (33)

To simplify calculations we will use the identity 2f = x1f1+x2f2+x3f3 which makes it
possible to reduce (33) to the following homogeneous system of linear algebraic equations
for deraviatives fa:

Mabfb = 0, (34)

where

Mab = µab − λaxb − µaxb. (35)

Notice that operator (7) with µab given in (31) is a bilinear combination of generators
of conformal group , C(3), i.e.,

Q = a+P2L3 + a−L2P3 + b+P1L3 + b−P3L1 + c+P1L2

+ c−P2L1 + λapaD + d̃1P1L1 + d̃2P2L2 + d̃3L3P3,
(36)

where a± = λ23 ± λ1, b± = λ31 ± λ2, c± = λ12 ± λ3, d̃a = λbb − λcc, (a, b, c) is the cycle (1,
2, 3).

Using rotation transformations coefficients a1, b1 and c2 can be reduced to zero. As a
result the components of tensor Mab (35) take the following form:

M11 = −2cx3 + λ1x1, M
12 = λ2x1 + d3x3,M

21 = λ1x2 + d3x3,

M22 = λ2x2, M
23 = d1x1 + λ3x2 + bx3,

M13 = ax3 + d2x2 + λ3x1, M
31 = cx1 + d2x2 + (a+ λ1)x3,

M32 = (b+ λ2)x3 + d1x1, M
33 = λ3x3 − 2ax1 − 2bx2

(37)

where we redenote a− = a, b− = b, c+ = c, d1 = d̃2 − d̃3, d2 = d̃3 − d̃1, d3 = d̃1 − d̃2.
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Equation (34) admits nontrivial solution iff the determinant of the matrix whose entries
Mab are given by equations (37) is equal to zero It is the case provided one of the following
conditions is satisfied:

a = b = c = da = 0, (38)

d1 = −d2, c = 0, λ1 = λ2 = 0, (39)

ad2 = −bc, bλ1 = −2λ3, (40)

bλ1 = aλ2, c = 0, (41)

a = b = da = λ2 = 0, (42)

λ1d1 = −cλ2, d1λ3 = −aλ2, b = 0. (43)

Substituting consequently the versions presented in (38)– (43) into equations (34) and
(16) with matrices (37) we find the corresponding functions f , V and η.

Let us start with version (38). In this case the symmetry operator includes a linear
combination of generators P1D,P2D and P3D with coefficients λ1, λ2 and λ3 correspon-
dingly. Rotating the coordinate system, two of these coefficients (say, λ1 and λ2) can be
nullified which reduce the tensor components given in (37) to the following form:

M3a = xa, a = 1, 2, 3,

while the remaining components are reduced to zero. The related equations (34) and (16)
take the following form:

xaf3 = 0, (44)

fηa + xaV3 = 0. (45)

The generic solution of equation (44) for function f given in (3) is:

f = r̃2F (ϕ), (46)

where F (ϕ) is an arbitrary function of the Euler angle. Integrating the related equation
(45) for V given in (3), we find the generic form of functions η and V :

V = G(ϕ) + c1
x3

r̃
F (ϕ) + c2

x3

r
F (ϕ)

η =
c1

r̃
+
c2

r

where c1 and c2 are integration constants, and G(ϕ) is an additional arbitrary function.
The found solutions are represented in the firs item of Table 1, where the additional

integral of motion obtained by the inversion transformation is fixed also.
Considering version (39) we come to the following nontrivial components of tensor Mab

(37):

M13 = ax3 + dx2 + λ3x1, M
23 = λ3x2 − dx1 − bx3,

M31 = ax3 + dx2, M
32 = −dx1 − bx3, M

33 = λ3x3 + 2bx2 − 2ax1.

Up to rotation transformations we can set b = 0, and the related equations (34) are
reduced to the following ones:

f3 = 0, af1 = 0, d(x1f2 − x2f1) = 0. (47)
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In accordance with (47) one out of two coefficients a and d should be trivial provided
the mass is not a constant. The corresponding solutions of equation (47) look as:

f = x22, d = 0, a 6= 0, (48)

f = r̃2, a = 0, d 6= 0. (49)

In the cases (48) and (49) equations (16) take the following forms:

x22η1 + (λ3x1 + ax3)V3 = 0,

x22η2 + λ3x2V3 = 0,

x22η3 + ax3V1 + (λ3x3 − 2ax1)V3 = 0

(50)

and

r̃2η1 = −(dx2 + λ3x1)V3,

r̃2η2 = (dx1 − λ3x2)V3,

r̃2η3 = d(x1V2 − x2V1)− λ3x3V3.

(51)

correspondingly.
If all arbitrary parameters a, λ3 and d are nontrivial, equations (50) and (51) have only

constant solutions for V and η. Equations (50) for a = 0 and equations (51) for d = 0 are
reduced to the particular cases of equations (45) and (46). Their solutions are represented
in Items 2 of Table 1 where F (ϕ) = 0 for the system (51) and F (ϕ) = sin(ϕ) for the
system (51).

Obtained in analogous manner other versions of Hamiltonians (2) which admit second
order integrals of motion linear in the independent variables are collected in Tables 1 and
2 where the systems which admit more than one integral of motion are indicated also.

6 Symmetries bilinear in independent variables

Le last task is to find PDM Schrödinger equations admitting integrals of motion which
are generated by tensors (22). These integrals of motion can be represented as:

Q = νab({Ka, Pb}+ {Pb, Ka}) + λ̃abQab, (52)

where νab = λab + εabcλc, λ̃
ab are arbitrary koefficients, Qab = PcxaxbPc, and the symbols

{., .} denote anticommutators.
Operators Qab also can be expressed via operators (4), since the following identities are

true:

{La, Lb}+ {Pa, Kb} = 2Qab, a 6= b,

{P1, K1}+ {P2, K2}+ L2
3 = 2Q33.

(53)

The corresponding determining equations (13) take the following form:

2f(λab − λ̃ab)xb) = µabfb. (54)

In analogy with (33)-(35) it is convenient to rewrite equations (54) in the form (34),
where

Mab = µab − λacxcxb. (55)
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Like in the case of equation (37), using the rotation transformations many of arbitary
coefficients in (55) can be nullified and the coefficient matrix can be reduced to one of
the canonical forms.The related matrices (55) are reduced to linear combinations of the
following matrices Nab and Ñab:

M = νabNab + ν̃abÑab, (56)

where Ñab = xaxbI, I is the unit matrix, and the nontrivial entries Nab
cd of matrices Nab

are given in the following formulae (refer to (22):

N12
11 = −x1x2, N

13
11 = −x1x3, N

22
11 = N33

11 = x21,

N11
22 = N33

22 = x22, N
21
22 = −x2x1, N

23
22 = −x2x3,

N31
33 = −x3x1, N

32
33 = −x3x2, N

33
33 = r̃2,

N12
11 = −2x1x2, N

12
12 = r2, N12

21 = r2 − 2x22, N
12
31 = −2x2x3,

N21
12 = r2 − 2x21, N

21
21 = r2, N21

22 = −2x1x2, N
21
32 = −2x1x2.

(57)

Matrices (57) are degenerated and so the corresponding equations (34) and (16) have
nontrivial solutions. Inequivalent versions of these matrices are presented in the following
formulae:

N = ν1N
11 + ν2N

22 + ν3N
33, (58)

N = ν4(N
11 +N22) + ν5N

33 + ν6N
12, (59)

N = ν7(N
11 +N22 +N33) + ν8N

12 + ν9N
23, (60)

N = ν10(N
11 +N22) + ν11N

33 + ν12(N
12 −N21), (61)

N = ν13(N
11 +N22 +N33) + ν14(N

12 −N21) + ν15(N
23 −N32) (62)

where ν1, ν2, ..., ν15 are arbitrary linear coefficients.
Thus the classification of the integrals of motion bilinear in xa is reduced to search of

generic solutions of equations (34) and (16), where M are matrices given by formulae (56)
and (58)-(62). We will not present the details of the requested cumbersome calculations
but restrict ourselves to one particular example of them.

Let matrix M is reduced to (61) with nontrivial ν10 and ν12. Then equations (34) have
nontrivial solutions f if ν11 = 0, and equations (16) have nontrivial solutions for V if
ν10 = ν12 or ν10ν12 = 0.

If ν10 = ν11 = 0 then equations (34) and (16) take the following form:

x1f2 − x2f1 = 0

and

fηa = −2xa(x1V2 − x2V1), a = 1, 2, 3

correspondingly. Their generic solutions look as:

f = r2F (θ), V = cF (θ)ϕ+G(θ), η = −c ln(r2).

If ν10 6= 0, ν12 = ν11 = 0 we have the following versions of equations (34) and (16):

f1 = 0, f2 = 0,

fη1 + (x22 + x23)V1 − x1x2)V2 = 0,

fη2 − x1x2V1 + (x21 + x23)V2 = 0,

fη3 − x1x3V1 − x2x3V2 = 0,

9



and the related solutions are:

f = x23, V =
x23
r̃2
F (ϕ) +G(θ), η = −

r2

r̃2
F (ϕ)−G(θ).

Table 1. Inverse masses, potentials and the related integrals of motion defined up to
arbitrary functions.

№ f V Integrals of motion

1 r̃2F (ϕ) F (ϕ)G(θ) {P3, K3}+ 4G(θ)

2 r̃2F (ϕ) cF (ϕ)x3

r
+G(ϕ) {P3, D} − 2c

r
, {K3, D} − 2cr

3 r̃2F (ϕ) cF (ϕ)x3

r

{P3, K3}+
4c
r
, {P3, D} − 2c

r
,

{K3, D} − 2cr

4 r̃2F (ϕ) F (ϕ)

P 2
1 + P 2

2 + 1
x2

3

F (ϕ),

K2
1 +K2

2 +
r4

x2

3

,

{P3, K3}, {P3, D}, {K3, D}

5 r̃2F (ϕ) r̃2

x2

3

F (ϕ)
P 2
3 + 1

x2

3

, K2
3 +

r4

x2

3

,

{P3, K3}+
4r̃2

x2

3

6 r̃2F (θ) G(ϕ)F (θ) +R(θ) L2
3 + 2G(ϕ)

7 r2F (θ) cF (θ)ϕ+G(θ) {L3, D}+ 2c ln(r)

8 x23
x2

3

r̃2
F (ϕ) +G(θ)

{P1, K1}+ {P2, K2}

+4r2

r̃2
F (ϕ) + 4G(θ),
L2
3 + 2F (ϕ)

9 x23 c
x2

3
ϕ

r2
+G(θ)

{P1, K1}+ {P2, K2}+ 4 r2

r̃2
ϕ+ 4G(θ),

L2
3 + 2ϕ, {L3, D}+ c ln(r)

10 x22 F (ϕ)−
x2

1

r̃2
G(θ)

{K1, P1} − 2J2
2 +

4x2

1

r̃2
G(θ)− 4F (ϕ),

{K3, P3}+ 4G(θ)

11 x23 Ṽ
{P1, K1}+ (b+ 1− a){P2, K2}

+2(a− 1)J2
3 + 4η̃

Finally, if ν10 = ν12, ν11 = 0, we have the following equations (34) and (16):

f1 = 0, f2 = 0,

fη1 + (x22 + x23 − 2x1x2)V1 + (2x21 − x1x2)V2 = 0,

fη2 − (x1x2 + 2x22)V1 + (x21 + 2x1x2 + x23)V2 = 0,

fη3 − (x1x3 + 2x2x3)V1 + (2x1x3 − x2x3)V2 = 0,

and the related solutions are f = x23, V = F (θ), η = −F (θ).
Consider also the most complicated case when the symmetry operator (52) is reduced

to the following bilinear form of generators of group C(3):

Q = {K1, P1}+ µ{K2, P2}+ νL2
3. (63)
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Table 2. Inverse masses, potentials and the related integrals of motion defined up to
arbitrary coefficients.

№ f V Integrals of motion

1 r2 c r
2

x2

3

L3, {L1, L2}+ 4cx1x2

x2

3

2 x23
cx2

3

ν2r2+ν((µ+1)x2

3
+µx2

1
+x2

2
)+µx2

3

{P1, K1}+ µ{P2, K2}+ 4ν r2

x2

3

V

3 x23
c1

x2

3

x2

1

+ c2
x2

3

x2

2

+ c3
bx2

1
+ax2

2

x2

3

+c4
x2

3

2(ax2

2
−bx2

1
)+(a−b)x2

3

{P1, K1}+ (b+ 1− a){P2, K2}

+2(a− 1)J2
3 + 4c1

ax2

2
+x2

3

x2

1

+4c2
(bx2

1
+(b−a+1)x2

3

x2

2

+ 4c3
ax2

1
+b(b−a+1)x2

2

x2

3

+4c4
(2ax2

2
+x2

3
)

a(x2

3
+2x2

2
)+b(x2

3
+2x2

1
)

4 x22 c1
x2

2

x2

3

+ c2
x1

r̃

{P1, D} − {P3, L2} − 2c2
1
r̃
+ 4c1

x1

x2

3

,

{K1, D} − {K3, L2} − 2c2
r2

r̃
+ 4c1

r2x1

x2

3

5 x22 c
x2

2

x2

3

{P1, D} − {P3, L2}+ 4cx1

x2

3

, K1,

{K1, D} − {K3, L2}+ 4c r
2x1

x2

3

, P1

6 x22 cx1

r̃

{P1, D} − {P3, L2} − 2c1
r̃
, K3,

{K1, D} − {K3, L2} − 2c r
2

r̃
, P3

7 x23 c1
x2

3
x2

r̃x2

1

+ c2
x2

3

x2

1

{L3, P1}+ 4c2
x2

x2

1

+ 2c1
2x2

2
+x2

1

r̃x2

1

,

{L3, K1}+ 4c2
x2r

2

x2

1

+ 2c1
(2x2

2
+x2

1
)r2

r̃x2

1

8 x23 c
x2

3

x2

1

{L3, P1}+ 4cx2

x2

1

, {L3, K1}+ 4cx2r
2

x2

1

,

{P1, K1}+
4cr2

x2

1

, P2, K2

9 x23 c r̃
2

r2

{K1, P2}+ 4cx1x2

r2
, {K2, P1}+ 4cx1x2

r2
,

{P1, K1}+ 4c
x2

1

r2
, L3, {P2, K2}+ 4c

x2

2

r2

10 x23 c
x2

3

r2

{P2, K1} − 4cx1x2

r2
, {P1, K2} − 4cx1x2

r2
, L3,

{P1, K1} −
4cx2

1

r2
, {P2, K2} −

4cx2

2

r2

11 r̃2 c1e
−2ϕ r2+x2

3

r̃2
+ c2e

−ϕ x3

r̃

{P3, (L3 +D)} − 4c1e
−2ϕ x3

r̃2
− 2c2e

−ϕ 1
r̃
,

{K3, (L3 +D)} − 4c1e
−2ϕ r2x3

r̃2
− 2c2e

−ϕ r2

r̃

12 r̃2 c1e
2ϕ r2+x2

3

r̃2
+ c2e

ϕ x3

r̃

{P3, (L3 −D)}+ 4c1e
2ϕ x3

r̃2
+ 2c2e

ϕ 1
r̃
,

{K3, (L3 −D)}+ 4c1e
2ϕ r2x3

r̃2
+ 2c2e

ϕ r2

r̃

13 r̃2 cx3

r

{P3, K3}+ 4cx3

r
, {P3, D} − 2c2

r
,

{K3, D} − 2c1r2

r̃
− 2c2r, L3

14 r̃2 r̃2

x2

3

P 2
3 + 1

x2

3

, K2
3 +

r4

x2

3

, L3

15 r̃2 c P3, L3, D, K3

16 x23 c P1, P2, K1, K2, D, L3

17 r2 c L1, L2, L3, D

The corresponding matrix M is degenerated, and its nonzero entries (37) take the
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following form:

M11 = 2(x23 + (1 + ν)x22), M
12 = −2(µ+ ν)x1x2, M

21 = −2(1 + ν)x1x2,

M22 = 2(µ+ ν)x21 + µx23, M
13 = −2x1x3, M

23 = −2µx2x3.

The related equations (34) are solved by f = x23, and the corresponding equations (13):
take the following form:

(ax22 + x23)V1 − bx1x2V2 = x23η1,

(bx21 + (b+ 1− a)x23)V2 − bx1x2V1 = x23η2
(64)

where a = 1+ ν and b = µ+ ν. Notice that the third component of equations (13) in our
case is a consequence of the system (64) since η should satisfy the condition xaKa = 0.

By definition potential V should be scale invariant and so can be treated as a function
of two scale invariant variables y1 = x1

x3

and y2 = x2

x3

. The system (64) is compatible
provided the following second order equation for V is satisfied:

(ay22 − by21 + a− b)Vy1y2 + y1y2(aVy1y1 − bVy2y2) + 3(ay2Vy1 − by1Vy2) = 0. (65)

The generic solution of the system (64) can be found in a a closed form only for special
combinations of parameters a and b, namely, a = b and a = 0 (or b = 0 which is the
same). They are represented in Items 8-10 of Table 1. For a and b arbitrary we were able
to find only particular solutions which are presented in Items 2 and 3 of Table 2. The
arbitrary solutions are denoted as Ṽ and η̃ and represented formally in Item 11 of Table
1.

Analogously it is possible to solve the equations corresponding to the remaining inequi-
valent matrices M . Doing this it is necessary to extend matrices N by adding special
matrices Ñ (refer to equation (24)) which keeps M degenerated. The obtained in this way
results are collected in two tables one of which includes systems defined up to arbitrary
functions, the other one includes arbitrary coefficients. The presen-ted list of PDM systems
admitting second order integrals of motion is complete up to rotation transformations.

In the tables F (.), G(.) and R(.) are arbitrary functions of the arguments specified
in brackets, c, c1, c2, µ and ν are arbitrary real parameters ϕ and θ are Euler angles,
r2 = x21 + x22 + x23, r̃

2 = x21 + x22, Pa, Ka, D and L3 are operators collected in (4), and
the summation is imposed over the repeating indices a by values 1, 2 and 3. The symbol
{A,B} denotes the anticommutator of operators A and B, i.e., {A,B} = AB +BA. For
the systems fixed in the three latest items of Table 2 the second order integrals of motion
are reduced to bilinear combinations of the first order symmetries indicated there.

7 Concluding remarks

We find all inequivalent PDM Schrödinger equations which are scale invariant and admit
second order integrals of motion. In the classification tables thirteen versions of such
equations are collected, part of which include arbitrary parameters which can be treated
as coupling constants (see Table 2). The remaining equations presented in Table 1 are
defined up to arbitrary functions of the reduced numbers of independent variables.

Notice that the systems presented in Items 7, 12 of Table 1 and Items 1, 3, 7, 8, 12, 13
are invariant w.r.t. the rotations around the third coordinate axis.
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Since all found hamiltonians by definition commute with the dilatation generator D,
the related Schrödinger equations are integrable if they admit two second order integrals of
motion, and superintegrable if the number of such integrals of motion is more extended.
In accordance with the tables there exist a rather extended number of integrable and
superintegrable PDM systems in the considered class.

Thus we present a number of new integrable PDM Schrödinger equations. The main
value of this result is its completeness, since we find all inequivalent equations in the
considered class. It can be considered as the first step in the description of all PDM
quantum systems which admit second order integrals of motion and are invariant w.r.t.
at least one parametrical Lie group.

A natural next step is construction of exact solutions of the obtained integrable and
superintagrable systems and the description of analogous systems invariant w.r.t. all
inequivalent one parametric lie groups. The latter task is not too cumbersome since the
number of such groups is not too extended and is equal to four [22]. Let us remind that
the exact solutions for the PDM Schrödinger equations admitting at least five parametric
symmetry groups were found in [29].
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