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Representation of short distances in structurally

sparse graphs∗

Zdeněk Dvořák
†

Abstract

A partial orientation ~H of a graph G is a weak r-guidance system if
for any two vertices at distance at most r in G, there exists a shortest
path P between them such that ~H directs all but one edge in P towards
this edge. In case that ~H has bounded maximum outdegree, this gives
an efficient representation of shortest paths of length at most r in G.
We show that graphs from many natural graph classes admit such weak
guidance systems, and study the algorithmic aspects of this notion.

1 Introduction

We consider the following general question: Given an undirected unweighted
graph G, can short distances in G be represented efficiently? More precisely,
the setting that interests us is as follows:

• G is known to belong to some class G of well-structured graphs (e.g.,
planar graphs, graphs of clique-width at most 6, . . . )

• We are only interested in distances up to some fixed upper bound r.

• We are allowed to preprocess G in polynomial time; let D denote the
resulting data structure.

• The data structure D should enable us to efficiently answer the queries
of the following form:
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– Are two input vertices u and v at distance at most r in G?

In case that the answer is positive, we may also want to determine the
distance between u and v, and return a shortest path between them.

Note that we consider both G and r to be fixed parameters. There are
several criteria to consider:

• The time complexity of the preprocessing.

• The time complexity of the queries.

• The space complexity (the size of D).

Of course, there are some trade-offs between these criteria. E.g., D could
store distances between all pairs of vertices, resulting in a relatively slow
preprocessing time and space complexity Θ(|V (G)|2), but constant query
time. In this paper we consider a solution which still achieves constant
query time (depending only on G and r), but is memory efficient in the
sense that storing D takes up about as much space as the graph G itself.
To achieve this, D will only consist of an orientation of G.

An orientation of an undirected graph G is a directed graph ~H such that
for every (u, v) ∈ E( ~H), we have uv ∈ E(G), and for every uv ∈ E(G), at
least one of (u, v) and (v, u) is a directed edge of ~H. Note that ~H can contain
both (u, v) and (v, u), i.e., we allow an edge of G to be directed in both ways
at the same time. Let B ~H

(v, a) denote the set of vertices reachable in ~H
from v by a directed path of length at most a. An r-guidance system is
an orientation ~H such that for any vertices u, v ∈ V (G) at distance ℓ ≤ r
in G, there exist non-negative integers a and b such that a + b = ℓ and
B ~H

(u, a) ∩ B ~H
(v, b) 6= ∅; i.e., there is a shortest path between u and v in

G whose edges are in ~H directed towards one of its vertices. Note that if
~H has maximum outdegree at most c, all such paths can be enumerated
in time O(cr), and if c is small, this enables us to find a shortest path
between a given pair of vertices (or verify that their distance is greater than
r) efficiently.

The guidance systems were (without explicitly naming them) introduced
by Kowalik and Kurowski [10], who proved that they can be used to represent
short distances in planar graphs, and more generally for every F , in any
graph avoiding F as a topological minor. As observed in [6], essentially the
same argument shows that graphs from even more general graph classes,
namely all classes with bounded expansion and more generally all nowhere-
dense classes, admit guidance systems of bounded maximum outdegree. To
state the result precisely, we need to introduce several definitions.
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For a non-negative integer s, a graph H is an s-shallow minor of a graph
G ifH is obtained fromG by contracting pairwise-disjoint subgraphs, each of
radius at most s. For a class G, let ∇sG denote the class of all graphs H that
appear as s-shallow minors in graphs from G. A class G of graphs has bounded
expansion if for every s ≥ 0 there exists ds such that every graph in ∇sG has
average degree at most ds. Even less restrictively, a class G is nowhere-dense
if for every s ≥ 0 there exists ds such that Kds 6∈ ∇sG. Examples of classes
of graphs with bounded expansion include planar graphs and more generally
all proper minor-closed classes, graphs with bounded maximum degree and
more generally all proper classes closed under topological minors, graphs
drawn in the plane with O(1) crossings on each edge, and many other classes
of sparse graphs; see [12] for more details.

Theorem 1 (Dvořák and Lahiri [6]). Let G be a class of graphs and r a
positive integer.

• If G has bounded expansion, then there exists c such that every graph
G ∈ G has an r-guidance system of maximum outdegree at most c.
Moreover, such an r-guidance system can be found in time O(|V (G)|).

• If G is nowhere-dense, then for every ε > 0, there exists c such that
every graph G ∈ G has an r-guidance system of maximum outdegree
at most c|G|ε. Moreover, such an r-guidance system can be found in
time O(|V (G)|1+ε).

A graph with an orientation of maximum outdegree at most c necessarily
has maximum average degree at most 2c, and thus it is (2c+1)-degenerate.
Hence, guidance systems of bounded maximum outdegree can only exist in
sparse graphs. This brings us to the main topic of our paper: Does there

exists a variant of the notion useful for dense graphs?

Note that representing distance one by a guidance system forces us to
orient all edges. If we relax the notion to only represent distances 2, 3, . . . , r,
this may not be necessary. A partial orientation of a graph G is a spanning
directed subgraph of an orientation of G (i.e., we allow some edges not to be
oriented in either direction). An r+-guidance system is a partial orientation
~H of a graph G such that for any vertices u, v ∈ V (G) at distance ℓ in G,
where 2 ≤ ℓ ≤ r, there exist non-negative integers a and b such that a+b = ℓ
and B ~H

(u, a) ∩ B ~H
(v, b) 6= ∅. Let us give a (trivial) example showing that

there are dense graphs admitting r+-guidance systems.

Example 2. Let G be a graph containing a universal vertex u, and let ~H be
the partial orientation obtained by directing all edges incident with u towards
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u. Observe that for any positive integer r, ~H is an r+-guidance system in
G of maximum outdegree one.

However, there are some quite simple graphs that do not admit r+-
guidance systems of bounded outdegree. For a graph G and a positive
integer k, let Gk denote the k-distance power of G, that is, the graph with
vertex set V (G) and two vertices adjacent if and only if the distance between
them in G is at most k.

Example 3. Let T be the graph obtained from K1,n by subdividing every edge
exactly twice, let X be the set of its leaves, and let Y be the set of neighbors
of the central vertex of degree n. Let G = T 2. Note that Y induces a clique
in G, and any two vertices of X are joined by a unique path of length three
using exactly one edge of this clique. This implies that in any 3+-guidance
system for G, every edge of the clique on Y must be directed in at least one
direction, and thus some vertex of Y has outdegree at least (n− 1)/2.

This example highlights the fact that in dense graphs, we cannot afford
to represent the shortest paths by having all of their edges oriented, and
motivates another generalization of guidance systems.

Definition 4. A weak r-guidance system is a partial orientation ~H of G
such that for any distinct vertices u, v ∈ V (G) at distance ℓ ≤ r in G, there
exist non-negative integers a and b such that a+ b = ℓ− 1 and G contains
an edge between B ~H

(u, a) and B ~H
(v, b); that is, there exists a shortest path

between u and v in G such that all but one edge e of this path is directed in
~H towards this exceptional edge e (which may or may not be directed).

In particular, an r-guidance system (or an r+-guidance system) is also a
weak r-guidance system. Note that if the graph G is represented so that we
can in constant time test whether two vertices are adjacent, then a weak r-
guidance system of maximum outdegree c makes it possible to find a shortest
path between a given pair of vertices (or verify that their distance is greater
than r) in time O(cr−1).

The goal of this paper is to develop the theory of weak guidance systems;
we show that several interesting graph classes admit weak guidance systems
of small maximum outdegree (constant, or logarithmic in the number of
vertices), address the algorithmic question of finding weak guidance systems
efficiently, and describe an application of the notion in approximation of
distance variants of the independence and domination number. On the
negative side, we give examples of simple graph classes that do not admit
weak guidance systems of small maximum outdegree.

The rest of the paper is organized as follows.

4



• In Section 2, we give some basic properties of weak guidance systems,
including the fact that they behave well under the distance power
operation.

• In Section 3, we prove a result analogous to Theorem 1, showing
that graphs from classes with structurally bounded expansion (i.e.,
definable in classes with bounded expansion by first-order logic formu-
las) admit weak guidance systems with bounded maximum outdegree.
We also give an analogous result for structurally nowhere-dense graph
classes.

• The results from Section 2 and 3 do not provide polynomial-time al-
gorithms to find the weak guidance system if we are not provided with
some additional information (e.g., in the case of graph powers, if we
are only given the graph Gk, but not the graph G and its weak guid-
ance system). In Section 4, we provide an approximation algorithm for
this problem that for an n-vertex graph which admits a weak guidance
system of maximum outdegree c returns one of maximum outdegree
O(c log n). We also provide an algorithm that returns a weak guid-
ance system of maximum outdegree O(c log c), assuming that certain
set systems have bounded VC-dimension, which is in particular the
case for classes with structurally bounded expansion studied in Sec-
tion 3.

• In Section 5, we show an application of weak guidance systems in de-
sign of approximation algorithms for distance independence and dom-
ination number.

• In Section 6, we consider several graph classes that do not admit weak
guidance systems of bounded maximum outdegree, specifically graphs
of girth at least five and large average degree, split graphs, and graphs
of bounded clique-width.

2 Basic properties of weak guidance systems

First, let us note that weak guidance systems enable us to circumvent the
difficulty from Example 3.

Lemma 5. Let G be a graph and let k ≥ 1 and c ≥ 2 be integers. For any
positive integer r, if G has a weak kr-guidance system ~H of maximum out-
degree at most c, then then Gk has a weak r-guidance system ~F of maximum
outdegree at most 2ck.
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Proof. Let ~F be the partial orientation of Gk containing exactly the directed
edges (u, v) such that v ∈ B ~H

(u, k). Note that ~F has maximum outdegree
at most

k
∑

ℓ=1

cℓ = c ·
ck − 1

c− 1
< 2ck.

Suppose that the distance between vertices x and y in Gk is ℓ ≤ r. Then
the distance between x and y in G is between (ℓ− 1)k+1 and ℓk, and since
~H is a weak kr-guidance system in G, there is a shortest path P between x
and y in G oriented in ~H towards an edge e = x′y′ of P , where x, x′, y′, y
appear in P in order. Let x0 = x, x1, . . . , xa be the maximal sequence of
vertices of P such that xi is at distance ki from x in G and e is contained
in the subpath of P between xa and y. Analogously, let y0 = y, y1, . . . , yb
be the maximal sequence of vertices of P such that yi is at distance ki from
y in G and e is contained in the subpath of P between yb and x. Note that
the distance between xa and yb in G is at most 2k− 1, since each of them is
at distance at most k − 1 from e. If the distance between xa and yb in G is
greater than k, then note that ℓ = a + b+ 2 and y′ 6= yb; let z = y′ and let
Q be the path x0 . . . xazyb . . . y0. Otherwise, ℓ = a+ b+1 and we let z = yb
and Q = x0 . . . xayb . . . y0. This gives a shortest path Q in Gk directed in ~F
towards its edge xaz.

Let us remark that weak guidance systems are qualitatively different
from guidance systems only in dense graphs, as in degenerate graphs, a
weak guidance system can be completed to a guidance system by directing
the rest of the edges while preserving the bounded maximum outdegree.

Observation 6. If G admits a weak r-guidance system of maximum out-
degree c and G is t-degenerate, then G also admits an r-guidance system of
maximum outdegree at most c+ t.

Finally, we give the following description of weak r-guidance systems,
which we use often in the rest of the paper. For vertices u and v of a graph
G at distance ℓ, let G(u→ v) be the set of neighbors of u at distance ℓ− 1
from v; i.e., G(u → v) consists of all possible second vertices of shortest
paths from u to v.

Observation 7. A partial orientation ~H of a graph G is a weak r-guidance
system if and only if the following claim holds for all u, v ∈ V (G) at distance
ℓ in G, where 2 ≤ ℓ ≤ r:

(⋆) Either u has an outneighbor in G(u→ v), or v has an outneighbor in
G(v → u).
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3 Weak guidance systems in structurally sparse

graphs

The standard way of generalizing the concepts of bounded expansion and
nowhere-density to dense graphs is through the notion of first-order trans-
ductions, see e.g. [7, 8, 2, 11]. For a positive integer k and a graph G, let
kG denote the disjoint union of k copies of G. A transduction T consists of

• a positive integer k

• a binary predicate symbol M and unary predicate symbols U1, . . . ,
Us, and

• first-order formulas ω(x) and ǫ(x, y) with free variables x (resp. x and
y) using these predicate symbols and the binary predicate symbol E.

For graphs H and G, we write H ∈ T (G) if there exist sets C1, . . . , Cs ⊆
V (kG) such that V (H) consists exactly of the vertices v ∈ V (kG) satisfying

kG,U1 := C1, . . . , Us := Cs |= ω(v)

and E(H) consists exactly of the pairs u, v ∈ V (H) such that

kG,U1 := C1, . . . , Us := Cs |= ǫ(u, v),

where the predicate symbol E is interpreted as adjacency in kG and M is
interpreted as the equivalence between the k copies of each vertex.

That is, a transduction allows us to blow up the graph by replicating
each vertex a bounded number of times, then non-deterministically color
some vertices (via the predicates U1, . . . , Us), and finally define the vertices
and edges of the new graph by a first-order formula. As an example, if T is
the transduction with k = 1, s = 0, ω(x) = true and

ǫ(x, y) = (x 6= y) ∧ (∃z)(z = x ∨ E(x, z)) ∧ E(z, y),

then H ∈ T (G) if and only if H = G2. Hence, the transduction operation
generalizes the graph power operations we considered in Lemma 5.

For a class of graphs G′ and a transduction T , let T (G′) denote the class
of all graphs G such that G ∈ T (G′) for some G′ ∈ G′. We say that a
class of graphs G has structurally bounded expansion (resp., is structurally
nowhere-dense) if G ⊆ T (G′) for a transduction T and a graph class G′ of
bounded expansion (resp., being nowhere-dense). The goal of this section is
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to show that such graph classes admit weak guidance systems with bounded
maximum outdegree.

In preparation for that, let us start by considering the graph classes with
bounded shrub-depth. The notion of shrub-depth was defined by Ganian et
al. [9] using the concept of tree models. For a positive integer m, an m-
signature is a function S : Z+ → 2[m]×[m] assigning a symmetric relation
S(i) to each i > 0. For a positive integer d, an (m,d)-tree model of a graph
G is a triple (T, ϕ, S), where

• T is a rooted tree with leaf set V (G) and such that the length of every
root-leaf path is d,

• ϕ : V (G) → [m] assigns one of m labels to each leaf,

• S is an m-signature, and

• for every u, v ∈ V (G), if 2i is the distance between u and v in T (i.e.,
if i is the distance from u and v to their nearest common ancestor in
T ), then uv ∈ E(G) if and only if (ϕ(u), ϕ(v)) ∈ S(i).

A class G of graphs has shrub-depth at most d if for some positive integer
m, every graph in G has an (m,d)-model.

Lemma 8. For every class G of graphs of bounded shrub-depth and every
positive integer r, there exists a positive integer c such that every graph from
G has a weak r-guidance system of maximum outdegree at most c.

Proof. Let m and d be positive integers such that every graph G ∈ G has
an (m,d)-tree model (T, ϕ, S). Let c = r3mr(d+ 1)r

2

d.
For a positive integer k, a k-type is a pair (f, g) of functions f : [k] → [m]

and g : [k]2 → {0}∪ [d]. The type of a k-tuple (v1, . . . , vk) of vertices of G is
the k-type (f, g) such that f(i) = ϕ(vi) for i ∈ [k] and g(i, j) is half of the
distance between vi and vj in T . For each vertex x ∈ V (T ), each positive
integer k ≤ r, and each k-type t, if there exist a k-tuple (v1, . . . , vk) of leaves
of T with ancestor x and of type t, fix such a k-tuple Q(x, t) = (v1, . . . , vk)
arbitrarily and let A(x, t) = {v1, . . . , vk}; otherwise, let A(x, t) = ∅. For
each non-leaf vertex y ∈ V (T ), if y has more than r children x such that
A(x, t) 6= ∅, then let R(y, t) be a set of r + 1 of them chosen arbitrarily;
otherwise let R(y, t) be the set of all children x of y such that A(x, t) 6= ∅.
Let B(y, t) =

⋃

x∈R(y,t) A(x, t), and let B(y) be the union of B(y, t) over all
k-types t with k ≤ r.

Let ~H be the partial orientation of G containing exactly the edges (u, v)
such that uv ∈ E(G) and v ∈ B(y) for some ancestor y of u in T . Clearly,
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~H has maximum outdegree at most c. Let us now argue that ~H is a weak
r-guidance system.

Consider any vertices u, v ∈ V (G) at distance ℓ in G, where 2 ≤ ℓ ≤ r,
and let P = u0u1 . . . uℓ, where u0 = u and uℓ = v, be a shortest path from
u to v in G. We will show that the condition (⋆) from Observation 7 is
satisfied for u and v. Let y be the nearest common ancestor of u and u1
in T , let X be the set of children of y that have a descendant belonging to
V (P ), and let x1 be the child of y whose descendant is u1. Suppose first
that v is not a descendant of x1. Let Q be the tuple of vertices of P that are
descendants of x1 (in any order) and let t be its type. Since |X| ≤ r+1 and
A(x1, t) 6= ∅, there exists x′1 ∈ R(y, t) \ (X \ {x1}). Let Q′ = Q(x′1, t) and
let P ′ be obtained from P by replacing the vertices of Q by the vertices of
Q′. Observe that since Q and Q′ have the same type and the same common
ancestors with the other vertices of P , P ′ is also a shortest path from u to
v in G. Moreover, the construction of ~H implies that the first edge of P ′

is directed away from u, establishing the validity of the condition (⋆) from
Observation 7.

Hence, suppose that v is a descendant of x1. In particular, this implies
that y is also the nearest common ancestor of u and v. Let x2 be the child
of y whose descendant is u. By symmetry, we can assume that uℓ−1 is a
descendant of x2 as well. Let Q1 = (u1, u2, . . . , uk) be the maximal initial
segment of P − u consisting of descendants of x1; we have k < ℓ − 1. Let
t1 be the type of Q1. Since |X| ≤ r + 1 and A(x1, t1) 6= ∅, there exists
x′′1 ∈ R(y, t1) \ (X \ {x1}). Let Q′

1 = Q(x′1, t1) and let P ′
1 be obtained from

P by replacing the vertices of Q1 by the vertices of Q′
1. Observe that since

Q and Q′ have the same type and the same common ancestors with u and
uk+1, P

′
1 is also a shortest path from u to v in G. Moreover, the construction

of ~H implies that the first edge of P ′
1 is directed away from u, establishing

the validity of the condition (⋆) from Observation 7.
We conclude that ~H is a weak r-guidance system.

Crucially, the notions of structurally bounded expansion and structural
nowhere-density can be characterized in terms of bounded shrub-depth cov-
ers. A cover of a graph G is a system of subsets of V (G). Let a be a
positive integer. A cover C of G is a-generic if for every subset A ⊆ V (G) of
size at most a, there exists C ∈ C such that A ⊆ C. An a-generic bounded
shrub-depth cover assignment for a graph class G is a function C that to each
graph G ∈ G assigns an a-generic cover C(G) such that the class

C(G) = {G[C] : G ∈ G, C ∈ C(G)}
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has bounded shrub-depth.

Theorem 9 (Gajarský et al. [8] and Dreier et al. [3]). Let G be a class of
graphs and let a be a positive integer.

• If G has structurally bounded expansion, then for some positive integer
k, G has an a-generic bounded shrub-depth cover assignment C such
that |C(G)| ≤ k for every G ∈ G.

• If G is structurally nowhere-dense and ε > 0, then for some positive
integer k, G has an a-generic bounded shrub-depth cover assignment C
such that |C(G)| ≤ k|V (G)|ε for every G ∈ G.

Together with Lemma 8, this gives the main result of this section.

Corollary 10. Let G be a class of graphs and let r be a positive integer.

• If G has structurally bounded expansion, then for some positive inte-
ger c, every graph in G has a weak r-guidance system of maximum
outdegree at most c.

• If G is structurally nowhere-dense and ε > 0, then for some positive
integer c, every graph in G has a weak r-guidance system of maximum
outdegree at most c|V (G)|ε.

Proof. Let C be an (r + 1)-generic bounded shrub-depth cover assignment
and k the corresponding constant from Theorem 9. Let c0 be the constant
from Lemma 8 for the class C(G). Let c = kc0.

For any graph G ∈ G, let ~H be the union of the weak r-guidance systems
of the subgraphs G[C] for C ∈ C(G) obtained using Lemma 8. Clearly, the
maximum outdegree of ~H is at most c if G has structurally bounded ex-
pansion and at most c|V (G)|ε if G is structurally nowhere-dense. Moreover,
consider any vertices u and v at distance at most r in G, and let P be a
shortest path between them. Since the cover C(G) is (r + 1)-generic, there
exists C ∈ C(G) such that G[C] contains P . Since ~H restricted to C is a
weak r-guidance system in G[C], there exists a shortest path between u and
v in G[C] (and thus also in G) directed by ~H towards one of its edges. We
conclude that ~H is a weak r-guidance system in G.

Let us remark that r-guidance systems can be used to characterize
bounded expansion and nowhere-density.

Lemma 11. Let G be a class of graphs closed under induced subgraphs.

10



• If there exists c : Z+ → Z
+ such that for every positive integer r, every

G ∈ G has an r-guidance system of maximum outdegree at most c(r),
then G has bounded expansion.

• If there exists c : Z+ × R
+ → Z

+ such that for every positive integer
r and for every ε > 0, every G ∈ G has an r-guidance system of
maximum outdegree at most c(r, ε)|V (G)|ε, then G is nowhere-dense.

Proof. Suppose for a contradiction that G is not nowhere-dense. By as-
sumptions, for every ε > 0, every graph G ∈ G has an orientation with
maximum outdegree at most c(1, ε)|V (G)|ε, and thus the maximum aver-
age degree of subgraphs of G is at most 2c(1, ε)|V (G)|ε. By [5, Theorem
6], there exists r ≥ 2, a graph G ∈ G, and a graph H of average degree
d > 2c(r, ε)|V (G)|ε such that G contains the graph H ′ obtained from H by
subdividing each edge exactly r − 1 times as an induced subgraph. Since
G is closed under induced subgraphs, we can assume G = H ′. Suppose ~H
is an r-guidance system in G. Then for every uv ∈ E(H), the correspond-
ing path Puv of length r in G contains an edge directed away from u or
from v, and thus the average outdegree of the vertices of H in G is at least
|E(H)|/|V (H)| = d/2 > c(r, ε)|V (G)|ε. This contradicts the assumptions.

The argument for the bounded expansion case is analogous, using [5,
Theorem 5] instead of [5, Theorem 6].

Note that the assumption of being closed under induced subgraphs is
needed, as seen by Example 2: This example together with Observation 6
shows that the class of graphs formed from cliques by subdividing each edge
once and adding a universal vertex afterwards admits an r-guidance system
of maximum outdegree at most 4 for every r ≥ 1; but this class is not
nowhere-dense.

It is tempting to ask whether weak r-guidance systems do not similarly
characterize structurally bounded expansion or structural nowhere-density.
However, this is not the case. We define a weak ∞-guidance system to be a
partial orientation that is a weak r-guidance system for every positive integer
r. Interval graphs are the intersection graphs of sets of open intervals in the
real line.

Example 12. Consider any interval graph G. Let ~H be the partial orien-
tation of G obtained as follows. For each u ∈ V (G), let v1 and v2 be the
neighbors of u such that the right endpoint of the interval of v1 is maximum
among all neighbors of u, and the left endpoint of the interval of v2 is min-
imum among them. Include in ~H the edges (v, v1) and (v, v2). Then ~H is a
weak ∞-guidance system in G of maximum outdegree at most two.

11



The class of interval graphs is closed under induced subgraphs, but it is
well-known not to be structurally nowhere-dense.

4 Algorithmic aspects

Note that Theorem 9 only gives a polynomial-time algorithm to obtain the
covers if we are given a graph G′ such that G ∈ T (G′), where G′ belongs to
a bounded expansion/nowhere dense graph class. If only G is provided, it
is currently not known how to obtain the covers efficiently. Consequently,
Corollary 10 does not give an efficient algorithm to obtain weak guidance
systems. In this section, we address this issue, giving a polynomial-time al-
gorithm that given an n-vertex graph returns a weak guidance system whose
maximum outdegree is worse than optimal only by an O(log n) factor, and
an improved approximation algorithm in case certain relevant set systems
have bounded VC-dimension.

First, let us introduce one more relaxation of the guidance system no-
tion. A fractional orientation of a graph G is a function p that assigns
a non-negative real number p(u, v) to each pair (u, v) of adjacent vertices
of G. The outdegree d+p (u) of a vertex u in the fractional orientation p is
∑

v:uv∈E(G) p(u, v). We say that p is a fractional r-guidance system if for
every u, v ∈ V (G) at distance ℓ, where 2 ≤ ℓ ≤ r, we have

∑

y∈G(u→v)

p(u, y) +
∑

y∈G(v→u)

p(v, y) ≥ 1. (1)

By Observation 7, weak guidance systems can naturally be interpreted
as fractional guidance systems.

Observation 13. Suppose ~H is a weak r-guidance system in a graph G, of
maximum outdegree c. Let us define p(u, v) = 1 for every (u, v) ∈ E( ~H)
and p(u, v) = 0 for every uv ∈ E(G) such that (u, v) 6∈ E( ~H). Then p is a
fractional r-guidance system of maximum outdegree c.

Moreover, an optimal fractional guidance system can be constructed
through linear programming.

Lemma 14. If a graph G has a weak r-guidance system of maximum out-
degree c0, we can find a fractional r-guidance system of maximum outdegree
at most c0 in G in polynomial time.
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Proof. Let p be an optimal solution to the following linear program.

p(u, v) ≥ 0 for every (u, v) s.t. uv ∈ E(G)
∑

v:uv∈E(G)

p(u, v) ≤ c for every u ∈ V (G)

∑

y∈G(u→v)

p(u, y) +
∑

y∈G(v→u)

p(v, y) ≥ 1 for every u, v ∈ V (G) at distance between 2 and r

minimize c

Then p is a fractional r-guidance system of maximum outdegree at most c
in G, and c ≤ c0 by Observation 13.

Note that the sets G(u → v) can be computed in polynomial time by
first computing the distances between all pairs of vertices of G. The linear
program has O(n2) variables and constraints, and thus its optimal solution
can be found in polynomial time.

Fractional r-guidance systems can be directly used to test presence of
shortest paths, with a small probability of error. Let p be a fractional r-
guidance system in a graph G. If u is a non-isolated vertex of G, then by
a p-random neighbor of u, we mean a neighbor of u selected at random,
with the probability that a neighbor v is selected being p(u, v)/d+p (u); if
d+p (u) = 0, the probability is 1/deg u, instead. For distinct vertices u and
v and a positive integer r, a random (p, r)-exploration between u and v is a
random pair of walks (Pu, Pv) from u and v selected as follows:

• If uv ∈ E(G), then Pu = uv and Pv = v.

• Otherwise, if r = 1 or u or v is an isolated vertex, then Pu = u and
Pv = v.

• Otherwise, let x ∈ {u, v} be selected uniformly at random, and let y
be a p-random neighbor of x;

– if x = u, then select a random (p, r − 1)-exploration (Py, Pv)
between y and v and let Pu be the concatenation of uy and Py,
and

– if x = v, then select a random (p, r − 1)-exploration (Pu, Py)
between u and y and let Pv be the concatenation of vy and Py.

Observation 15. Suppose p is a fractional r-guidance system in a graph G,
of maximum outdegree c. Let u and v be distinct vertices of G at distance
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at most r, and let (Pu, Pv) be a random (p, r)-exploration between u and v.
The probability that Pu ∪ Pv is a shortest path between u and v in G is at
least (4c)−(r−1).

Proof. We prove the claim by induction on the distance ℓ between u and v
that the probability is at least (4c)−(ℓ−1). If ℓ = 1, then Pu = uv and Pv = v
with probability 1. Hence, suppose that ℓ ≥ 2. By (1) and symmetry, we
can assume that

∑

y∈G(u→v)

p(u, y) ≥
1

2
,

and thus
∑

y∈G(u→v) p(u, y)

d+p (u)
≥

1

2c
.

Hence, with probability at least 1
4c , when choosing (Pu, Pv), we pick x = u

and y ∈ G(u → v), so that the distance between y and v is ℓ − 1. By the
induction hypothesis, the probability that Py∪Pv is a shortest path between
y and v, and thus Pu ∪ Pv is a shortest path between u and v, is then at
least (4c)−(ℓ−2). The result follows by multiplying these probabilities.

Note that for Observation 15 to be practically useful, we would need
a representation of p that enables us to choose a p-random neighbor effi-
ciently; in that case, we could iterate k(4c)r−1 times the procedure from
Observation 15 to find the shortest path between u and v (or decide that
the distance between them is greater than r) with error probability at most
e−k. More interestingly, we can turn a fractional r-guidance system to a
weak r-guidance system with a logarithmic loss in the maximum degree.

Lemma 16. Let c be a positive real number, let n be a positive integer, and
let m = ⌈4c log n⌉. Suppose p is a fractional r-guidance system in a graph
G, with maximum outdegree at most c. There exists an algorithm that in
polynomial time returns a weak r-guidance system ~H in G with maximum
outdegree at most m.

Proof. Let us say that pair {u, v} of vertices is dissatisfied by a partial
orientation ~F if the distance ℓ between u and v satisfies 2 ≤ ℓ ≤ r and
~F contains neither an edge from u to G(u → v) nor an edge from v to
G(v → u). By Observation 7, ~F is a weak r-guidance system if and only if
there are no dissatisfied pairs.

Let X be any set of pairs of vertices of G at distance between 2 and r. Let
~F be a random partial orientation of G obtained by, for each non-isolated
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vertex z of G, choosing a random p-neighbor z′ and adding the edge (z, z′).
Clearly, ~F has maximum outdegree at most one. Moreover, consider any
{u, v} ∈ X. By (1) and symmetry, we can assume that

∑

y∈G(u→v)

p(u, y) ≥ 1/2.

Hence, the probability that u′ ∈ G(u→ v) (and thus {u, v} is not dissatisfied
in ~F ) is at least 1

2c . By the linearity of expectation, the expected number of
dissatisfied pairs in X is at most

(

1− 1
2c

)

|X|.
Moreover, we can use the method of conditional probabilities to deran-

domize this procedure and to deterministically construct a partial orienta-
tion ~F of G of maximum outdegree at most one such that the number of
pairs in X dissatisfied by ~F is at most

(

1− 1
2c

)

|X|. Indeed, we can select the
outneighbors one by one, always maintaining the invariant (initially satisfied
by the computation from the previous paragraph) that the expected num-
ber of pairs in X dissatisfied by the orientation obtained by choosing the
remaining outneighbors as random p-neighbors is at most

(

1 − 1
2c

)

|X|. To
do so, when processing a vertex u, we only need to be able to compute this
expected number after each possible choice of the outneighbor of u, which
is straightforward due to the linearity of expectation.

Now, to obtain ~H, we let X0 be the set of all pairs of vertices whose
distance is between 2 and r in G. Then, for i = 1, . . . ,m, we use the
procedure described in the previous paragraph to find a partial orientation
~Fi of maximum outdegree at most one so that the set Xi of pairs from Xi−1

dissatisfied by ~Fi has size at most
(

1− 1
2c

)

|Xi−1|. Note that

|Xm| ≤
(

1− 1
2c

)m
|X0| ≤

|X0|

n2
< 1,

and thus Xm = ∅. Consequently, no pair is dissatisfied by

~H =

m
⋃

i=1

~Fi,

and thus ~H is the desired weak r-guidance system in G.

Combining Lemmas 14 and 16, we obtain the following claim.

Corollary 17. There exists an algorithm that, for an input n-vertex graph
G that admits a weak r-guidance system of maximum outdegree at most c,
outputs in polynomial time a weak r-guidance system of maximum outdegree
O(c log n).
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Let us remark that the logarithmic loss in Corollary 17 cannot be avoided
in general. For positive integers a and k, let m = k2k+1 and let Ga,k be the
random graph obtained as follows. We start with a random bipartite graph
with parts L of size a and R of size ma, with each vertex of L being adjacent
to each vertex of R independently with probability 1/2. We then divide R
into m parts R1, . . . , Rm of size a arbitrarily, and for i = 1, . . . ,m, we add
a vertex xi adjacent to all vertices of Ri.

Lemma 18. There exists an integer a0 such that for every a ≥ a0 and
k ≤ log a, with positive probability

• Ga,k has a fractional 2-guidance system with maximum outdegree at
most 3, and

• Ga,k does not have a weak 2-guidance system with maximum outdegree
at most k.

Proof. Let us use the notation from the definition of the graph Ga,k. Note
that

• for i = 1, . . . ,m and v ∈ L, the expected number of neighbors of v in
Ri is a/2, and by Chernoff inequality, the probability that v has less
than a/3 neighbors in Ri is less than exp(−a/36).

• for distinct vertices u, v ∈ R, the expected number of common neigh-
bors of u and v in L is a/4, and by Chernoff inequality, the probability
that u and v have less than a/5 common neighbors in L is less than
exp(−a/200),

• for distinct u, v ∈ L, the probability that u and v have less than a/5
common neighbors in R1 is also less than exp(−a/200), and

• for i ∈ 1, . . . ,m and a k-tuple K of vertices of Ri, the expected num-
ber of vertices of L with no neighbor in K is 2−ka, and by Chernoff
inequality, the probability that the number of such vertices is at most
2−k−1a is at most exp

(

−2−k−3a
)

.

Hence, the probability that any of these events occurs is less than

ma · exp(−a/36) + (m2 + 1)a2 · exp(−a/200) +mak · exp
(

−2−k−3a
)

< 1

if a is sufficiently large (and using the assumption that k ≤ log a; note that
the basis of the logarithm is e, and thus 2k ≤ alog 2 ≪ a). Hence, with
positive probability,
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• for i = 1, . . . ,m, each vertex v ∈ L has at least a/3 neighbors in Ri,

• any distinct vertices u, v ∈ R have at least a/5 common neighbors
in L,

• any distinct vertices u, v ∈ L have at least a/5 common neighbors
in R1, and

• for i ∈ 1, . . . ,m and for every k-tuple K of vertices of Ri, more than
2−k−1a vertices of L have no neighbor in K.

Let us define a fractional orientation p of Ga,k as follows:

• For i = 1, . . . ,m and v ∈ Ri, we set p(xi, v) = 3/a,

• for each adjacent u ∈ R and z ∈ L, we set p(u, z) = 2.5/a, and

• for each adjacent z ∈ L and u ∈ R1, we set p(z, u) = 2.5/a;

p is 0 everywhere else. Note that this fractional orientation has maximum
outdegree at most 3, since deg xi = |Ri| = a, the number of neighbors of
u ∈ R in L is at most |L| = a, and the number of neighbors of z ∈ L in R1

is at most |R1| = a. Consider now any vertices x, y ∈ V (Ga,k) at distance
exactly two from one another. Note that Ga,k is bipartite, and thus either
x, y ∈ R, or x, y ∈ V (Ga,k) \R. There are the following cases:

• One of x and y belongs to {x1, . . . , xm}, say x = xi. Then y necessarily
belongs to L, and y has at least a/3 neighbors in Ri. Hence, |Ga,k(x→
y)| ≥ a/3 and

∑

z∈Ga,k(x→y)

p(x, z) ≥ a/3 · 3/a = 1.

• Both x and y belong to L. Since x and y have at least a/5 common
neighbors in R1, we have |Ga,k(x → y) ∩ R1| = |Ga,k(y → x) ∩ R1| ≥
a/5, and

∑

z∈Ga,k(x→y)

p(x, z) +
∑

z∈Ga,k(y→x)

p(y, z) ≥ 2 · a/5 · 2.5/a = 1.

• Similarly, if x, y ∈ R, then x and y have at least a/5 common neighbors
in L, and

∑

z∈Ga,k(x→y)

p(x, z) +
∑

z∈Ga,k(y→x)

p(y, z) ≥ 2 · a/5 · 2.5/a = 1.
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Therefore, p is a fractional 2-guidance system for Ga,k.

Consider now any partial orientation ~H of Ga,k with maximum outdegree
at most k. Then each vertex v ∈ L has an outneighbor in Ri for at most
k choices of i, and thus there exists i ∈ {1, . . . ,m} such that at least (1 −
k/m)a =

(

1 − 2−k−1
)

a vertices of L have no outneighbor in Ri. Let K
be a k-tuple of vertices of Ri containing all outneighbors of xi. More than
2−k−1a vertices of L have no neighbor in K, and thus there exists a vertex
v ∈ L with no outneighbor in Ri and no neighbor in K. However, xi and
v are at distance 2, yet neither xi nor v has an outneighbor in Ga,k(xi →

v) = Ga,k(v → xi) ⊆ Ri \ K. Hence ~H is not a weak 2-guidance system.
Consequently, every weak 2-guidance system for Ga,k must have maximum
outdegree greater than k.

Note that if we set k = ⌊log a⌋, we have

n = |V (Ga,k)| ≤ (m+1)(a+1) ≤
(

k2k+1+1
)

· (exp(k+1)+1) ≤ exp(O(k)),

and thus Lemma 18 gives examples of graphs with an arbitrarily large num-
ber n of vertices and a fractional 2-guidance system of maximum outdegree
at most 3 such that every weak 2-guidance system has maximum outdegree
Ω(log n).

However, we can do better in case the VC-dimension of relevant systems
is bounded. Recall that a system S of subsets of a set X shatters a set
A ⊆ X if {A ∩ S : S ∈ S} contains all subsets of A, and that the VC-
dimension of S is the size of the largest subset of X shattered by S. The
key property of systems with bounded VC-dimension is that they admit
efficient (randomized) approximation for smallest hitting set in terms of the
size of the smallest fractional hitting set (a hitting set for S is a subset of
X intersecting all elements of S, and a fractional hitting set is a function
w : X → R

+
0 such that, defining w(A) =

∑

x∈Aw(x) for each subset A of
X, each element S ∈ S satisfies w(S) ≥ 1; the size of the fractional hitting
set w is w(X)). For the following standard result, see e.g. [13].

Theorem 19. There exists a polynomial-time randomized algorithm that,
given a system S of subsets of a set X of VC-dimension at most d and
a fractional hitting set w of size s, with probability at least 1/2 returns a
hitting set for S of size O(ds log s).

For a graph G, integer r ≥ 2, and vertex u ∈ V (G), let VC(G, r, u)
denote the VC-dimension of the system

{G(u → v) : v ∈ V (G), 2 ≤ dG(u, v) ≤ r},
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and let VC(G, r) = maxu∈V (G)VC(G, r, u).

Theorem 20. There exists a polynomial-time randomized algorithm that,
for an input n-vertex graph G that admits a weak r-guidance system of max-
imum outdegree at most c, with probability at least 1/2 outputs a weak r-
guidance system of maximum outdegree O(VC(G, r) · c log c).

Proof. Let p be a fractional r-guidance system of maximum outdegree at
most c in G found using Lemma 14. For each u ∈ V (G), let Ru be the set
of vertices v ∈ V (G) such that 2 ≤ dG(u, v) ≤ r and

∑

z∈G(u→v)

p(u, z) ≥ 1/2.

Since p is a fractional r-guidance system, for each u, v ∈ V (G) such that
2 ≤ dG(u, v) ≤ r, we have v ∈ Ru or u ∈ Rv.

Let Su be the system {G(u → v) : v ∈ Ru} of subsets of the set NG(u) of
neighbors of u. For z ∈ NG(u), let us define w(z) = 2p(u, z). By the choice
of Ru, we have w(S) ≥ 1 for each S ∈ Su, and thus w is a fractional hitting
set for Su. Moreover, w(NG(u)) ≤ 2c, since the maximum outdegree of p
is at most c. The VC-dimension of Su is at most VC(G, r, u) ≤ VC(G, r),
and thus we can by Theorem 19 find a hitting set Hu ⊆ NG(u) for Su of
size O(VC(G, r) ·c log c); note that we iterate the algorithm Ω(|V (G)|) times
to make the probability of error less than 1

2|V (G)| , and thus we find a valid

hitting set for each u ∈ V (G) with probability at least 1/2.
Let us now define a partial orientation ~G of G by, for each u ∈ V (G),

directing the edges from u to Hu. Clearly, ~G has maximum outdegree
O(VC(G, r) · c log c). Moreover, consider any u, v ∈ V (G) such that 2 ≤
dG(u, v) ≤ r. By symmetry, we can assume that v ∈ Ru, and thus Hu inter-
sects the set G(u→ v) ∈ Su. Hence, u has an outneighbor in G(u→ v). By
Observation 7, we conclude that ~G is a weak r-guidance system for G.

In particular, this is useful for structurally nowhere-dense classes (and in
particular for classes with structurally bounded expansion), as follows from
the fact that first-order definable sets in graphs from these classes have
bounded VC-dimension. More precisely, for a first-order formula ψ(~x, ~y)
with two groups ~x and ~y of free variables, a graph G, and a |~x|-tuple ~u of
vertices of G, let Sψ,G(~u) be the set of |~y|-tuples ~v of vertices of G such that
G |= ψ(~u,~v), and let Sψ,G be the system

{Sψ,G(~u) : ~u ∈ V (G)|~x|}
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of sets of |~y|-tuples of vertices of G. The following bound follows from the
results of Adler and Adler [1], see also [14] for a more precise bounds and
the discussion of the possibility to introduce vertex and edge colors (unary
and binary predicates from the statement of the theorem).

Theorem 21. For every nowhere-dense graph class G and a first-order for-
mula ψ(~x, ~y) using unary predicate symbols U1, . . . , Us and binary predicate
symbols E1, . . . , Et, there exists a constant d such that the following claim
holds. Consider any graph G ∈ G, and interpret Ui for i ∈ {1, . . . , s} as a
subset of V (G) and Ej for j ∈ {1, . . . , t} as a subset of E(G). Then the
system Sψ,G has VC-dimension at most d.

This easily gives the following consequence.

Lemma 22. For every structurally nowhere-dense class G of graphs and
every integer r ≥ 2, there exists a constant d such that VC(G, r) ≤ d for
every graph G ∈ G.

Proof. Since G is structurally nowhere-dense, there exists a nowhere-dense
class G0 and a transduction T = (k,M,U1, . . . , Us, ω, ǫ) such that for each
G ∈ G there exists a graph H ∈ G0 such that G ∈ T (H); let CG1 , . . . , CGs be
the corresponding subsets of V (H) used to interpret U1, . . . , Us.

For H ∈ G0, let (kH)′ be the graph obtained from the disjoint union of
k copies of G by adding a clique on each k-tuple of vertices corresponding
to the same vertex of H, and let MH be the set of the edges of these cliques.
Also, let EH be the set of edges of kH. Let G1 = {(kH)′ : H ∈ G0}.
Since (kH)′ is a subgraph of the lexicographic product of H with a clique
of bounded size and G0 is nowhere-dense, the class G1 is nowhere-dense as
well [12].

Note that there exists a first-order formula ψr(x1, x2, y) with three free
variables such that for each u, v ∈ V (G) satisfying 2 ≤ dG(u, v) ≤ r and
z ∈ V (G), G |= ψr(u, v, z) if and only if z ∈ G(u→ v). Let ψ′

r be the formula
obtained from ψr by restricting the quantification to vertices satisfying ω and
replacing each usage of the adjacency predicate by ǫ. Clearly, if G ∈ T (H),
then

G |= ψr(u, v, z) iff (kH)′, U1 := CG1 , . . . , Us := CGs , E := EH ,M :=MH |= ψr(u, v, z).

Therefore, with the interpretation of the unary and binary symbols as above,
Sψr ,G is a subset of {S∩V (G) : S ∈ Sψ′

r ,(kH)′}, and thus the VC-dimension of
Sψr ,G is at most as large as the VC-dimension of Sψ′

r ,(kH)′ . Since (kH)′ ∈ G1

and G1 is nowhere-dense, Theorem 21 implies that this VC-dimension is
bounded.
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Hence, Theorem 20 gives the following algorithmic form of Corollary 10.

Corollary 23. Let G be a class of graphs and let r be a positive integer.

• If G has structurally bounded expansion, then there exists c and a ran-
domized algorithm that for an input n-vertex graph G ∈ G outputs in
polynomial time with probability at least 1/2 a weak r-guidance system
of maximum outdegree at most c.

• If G is structurally nowhere-dense and ε > 0, then there exists c and
a randomized algorithm that for an input n-vertex graph G ∈ G out-
puts in polynomial time with probability at least 1/2 a weak r-guidance
system of maximum outdegree at most cnε.

5 Distance domination and independence number

For a positive integer r, a set S of vertices of a graph G is r-dominating
if every vertex of G is at distance at most r from S, and r-independent
if distinct vertices of S are at distance greater than r from one another.
Let γr(G) denote the smallest size of an r-dominating set in G, and αr(G)
the largest size of an r-independent set in G. Observe that if D is an r-
dominating and A a 2r-independent set in G, then every vertex of D is at
distance at most r from at most one vertex of A, and since every vertex
of A is at distance at most r from D, we have |A| ≤ |D|. Consequently,
α2r(G) ≤ γr(G). In general, the converse inequality does not hold and it
is not even possible to bound γr(G) by a function of α2r(G); however, as
shown in [4], if G is from a class of graphs with bounded expansion, then
γr(G) = O(α2r(G)). A small variation of the argument gives the following
stronger claim.

Lemma 24. For all positive integers c and r, there exists a linear-time algo-
rithm that, given a graph G together with its 2r-guidance system of maximum
outdegree less than c, returns an r-dominating set D and a 2r-independent
set A in G such that |D| ≤ c2|A|.

Note that this implies that γr(G) ≤ |D| ≤ c2γr(G) and 1
c2
α2r(G) ≤

|A| ≤ α2r(G), and thus this gives a linear-time algorithm to approximate
both the r-domination and the 2r-independence number of G within the
constant factor c2. The presence of a weak 2r-guidance system of bounded
outdegree is not by itself sufficient to ensure a similar result.
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Example 25. Let ~K be a random orientation of the clique with vertex set
{1, . . . , n} (for each edge, choose direction uniformly independently at ran-
dom). Let G be the graph obtained from ~K as follows: We have V (G) =
{v1, . . . , vn, u1, . . . , un, z}, where for each i ∈ {1, . . . , n}, ui is adjacent to
z, vi, and all vertices vj such that (i, j) ∈ E( ~K). Let ~H be the partial ori-
entation of G where for i ∈ {1, . . . , n}, the edge viui for i ∈ {1, . . . , n} is
directed towards ui, and the edge uiz is directed towards z. Note that for
any distinct i, j ∈ {1, . . . , n}, we have (i, j) ∈ E( ~K) or (j, i) ∈ E( ~K), and
thus the path viuivj or vjujvi has the first edge directed towards its middle

vertex. Consequently, ~H is a weak 2-guidance system for G of maximum
outdegree one. Moreover, any 2-independent set in G contains at most one
of the vertices {v1, . . . , vn, z} and at most one of the vertices {u1, . . . , un},
and thus α2(G) ≤ 2. On the other hand, we have γ1(G) = Ω(log n): By
replacing each vertex vi by ui in an optimal dominating set and possibly
adding z, we obtain a dominating set D of size at most γ1(G)+1 containing
none of the vertices v1, . . . , vn, and to dominate these vertices, observe that
with high probability D needs to contain Ω(log n) of the vertices u1, . . . , un.

However, we can solve this issue by adding an additional obstruction.
An (r, k)-halfgraph in a graph G is a sequence u1, . . . , uk, v1, . . . , vk of
vertices of G such that for every i, j ∈ {1, . . . , k},

• if j < i, then the distance between ui and vj in G is greater than r,
and

• if j ≥ i, then the distance between ui and vj in G is exactly r.

We say that a graph is (r, k)-stable if it does not contain any (r, k)-halfgraph.

Theorem 26. For all positive integers r, k, and c ≥ 2, there exists a
constant b and a polynomial-time algorithm that, given an (r, k)-stable graph
G together with its weak 2r-guidance system ~H of maximum outdegree at
most c, returns an r-dominating set D and a 2r-independent set A in G
such that |D| ≤ b|A|.

Proof. Let D and A′ be the sets of vertices of G obtained as follows. We
initialize D := ∅ and A′ := ∅. As long as D is not an r-dominating set,
we choose a vertex x at distance greater than r from D arbitrarily, we add
x to A′, and we add x and all vertices reachable in ~H from x by directed
paths of length at most r to D. At the end, D is an r-dominating set and
|D| ≤ cr+1|A′|.

Let ≺ be the linear ordering on vertices of A′ such that x ≺ y when x was
added to A′ before y. The algorithm above enforces the following property
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(†): If x ≺ y, then every vertex reachable from x by a directed path in ~H of
length at most r is at distance greater than r from y.

Let σ(1) = 0 and for p = 2, . . . , k, let σ(p) = c2r+1(σ(p−1)+1). The set
A′ is not necessarily 2r-independent, however it has the following property:
If S ⊆ A′ consists of vertices pairwise at distance at most 2r from one
another, then |S| ≤ σ(k + 1). To prove this, we will show a stronger claim.
For a positive integer p ≤ k + 1, a p-halfgraph extension of S is a sequence
up, . . . , uk, vp, . . . , vk of vertices of G such that for i = p, . . . , k,

(i) ui ∈ A′, ui ≺ ui+1 if i < k, and s ≺ ui for every s ∈ S.

(ii) ~H contains a directed path from ui to vi of length exactly r,

(iii) the distance between ui and vj in G is exactly r for every j ∈ {i, . . . , k},
and

(iv) the distance between vi and s is exactly r for every s ∈ S.

We will prove by induction on p that if there exists a p-halfgraph extension
of S, then |S| ≤ σ(p); |S| ≤ σ(k + 1) then follows, since an empty sequence
trivially forms a (k + 1)-halfgraph extension of S. For p = 1, note that if
1 ≤ j < i ≤ k, then uj ≺ ui by (i), and (ii) and (†) imply that the distance
between vj and ui in G is greater than r. Together with (iii), this implies
that G contains an (r, k)-halfgraph, which is a contradiction. That is, the
case p = 1 can never occur and the conclusion |S| ≤ σ(1) holds trivially.

Suppose now that p ≥ 2 and that the claim holds for p − 1. If S = ∅,
then |S| ≤ σ(p) holds. Otherwise, let up−1 be the last vertex of S in the
ordering ≺. Since the distance between any vertices of S is at most 2r and
~H is a weak 2r-guidance system, for each s ∈ S \ {up−1}, there exists a

shortest path Ps in G between up−1 and s directed in ~H towards one of
its edges. Let Qs be the longest initial segment of Ps directed away from
up−1. By the choice of up−1, we have s ≺ up−1, and thus (†) implies that the
part of Ps directed away from s has length at most r− 1, and consequently
|E(Qs)| ≥ r.

For any directed path Q in ~H starting in up−1 of length between r and
2r, let SQ be the set of vertices s ∈ S \ {up−1} such that Qs = Q. The
preceding argument shows that S is the union of the sets SQ over all such
paths, and thus we can fix Q such that |SQ| ≥ |S|/c2r+1. If |SQ| ≤ 1, then
|S| ≤ 22r+1 ≤ σ(p), as required. Hence, suppose that |SQ| ≥ 2. Let vp−1

be the final vertex of Q and let sQ be the first vertex of SQ in the ordering
≺. Consider any vertex s′ ∈ SQ \ {sQ}. Note that G contains a path of
length at most 2r − |E(Q)| ≤ r from sQ to vp−1 with all but possibly the
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last edge directed away from sQ in ~H, and since sQ ≺ s′ by the choice of
sQ, (†) implies that s′ is at distance at least r from vp−1. Since s

′ is also at
distance at most 2r from up−1 through a shortest path whose initial segment
is Q, s′ is at distance at most 2r− |E(Q)| ≤ r from vp−1. We conclude that
|E(Q)| = r and all vertices of SQ \{sQ} are at distance exactly r from vp−1.
Therefore, up−1, . . . , uk, vp−1, . . . , vk is a (p − 1)-halfgraph extension of
SQ \{sQ}, and |SQ \{sQ}| ≤ σ(p−1) by the induction hypothesis. But then
|S| ≤ c2r+1|SQ| ≤ c2r+1(σ(p − 1) + 1) = σ(p).

Let F be the auxiliary graph with V (F ) = A′ and with distinct vertices
u, v ∈ A′ adjacent if the distance between them in G is at most 2r. We claim
that each vertex of F has at most c2r+1σ(k + 1) neighbors that precede it
in the ordering ≺. Indeed, let N be the set of such neighbors of a vertex
u ∈ A′, and for each directed path Q in ~H starting in u of length between
r and 2r, let NQ consist of the vertices v ∈ N such that Q is the maximal
initial directed segment of a shortest path from u to v in G which is directed
towards one of its edges by ~H. As in the preceding part of the proof, note
that (†) and the fact that ~H is a weak 2r-guidance system implies that N is
the union of the sets NQ over such paths, and thus we can fix such a path Q
for which |NQ| ≥ |N |/c2r+1. However, the vertices of NQ are at distance at
most 2r− |E(Q)| ≤ r from the final vertex of Q, and thus they are pairwise
at distance at most 2r from one another. Consequently, |NQ| ≤ σ(k + 1),
and |N | ≤ c2r+1σ(k + 1).

We conclude that F is c2r+1σ(k+1)-degenerate, and thus it is (c2r+1σ(k+
1) + 1)-colorable and has an independent set A of size at least

|A′|

c2r+1σ(k + 1) + 1
≥

|D|

cr+1(c2r+1σ(k + 1) + 1)
.

By the construction of F , A is a 2r-independent set in G. Therefore, the
theorem holds with b = cr+1(c2r+1σ(k + 1) + 1).

By the results of Adler and Adler [1], for any structurally nowhere-dense
graph class G and every r, there exists k so that all graphs in G are (r, k)-
stable. In combination with Corollary 23, we have the following consequence.

Corollary 27. For any class G with structurally bounded expansion and
for any positive integer r, there exists a constant b and a polynomial-time
randomized algorithm that, given a graph G ∈ G with probability at least 1/2
returns an r-dominating set D and a 2r-independent set A in G such that
|D| ≤ b|A|.
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6 Graph classes without bounded outdegree weak

guidance systems

To better understand obstructions to the existence of weak r-guidance sys-
tems of bounded maximum outdegree, it is natural to consider the dual of
the linear program from the proof of Lemma 14, which can be reformulated
as follows. For uz ∈ E(G), let Rr(u, z) be the set of vertices v ∈ V (G) such
that the distance between u and v is between 2 and r and z lies on a shortest
path from u to v in G; i.e., z ∈ G(u→ v).

Lemma 28. Let G be a graph and let r be a positive integer. Let c be the
solution to the following optimization problem:

yuv ≥ 0 for every u, v ∈ V (G) at distance between 2 and r

xu = max
z:uz∈E(G)

∑

v∈Rr(u,z)

yuv for every u ∈ V (G)

maximize

∑

uv:2≤dG(u,v)≤r yuv
∑

v∈V (G) xv

Then every fractional or weak r-guidance system in G has maximum outde-
gree at least c.

Proof. The dual of the linear program from the proof of Lemma 14 is

xu ≥ 0 for every u ∈ V (G)

yuv ≥ 0 for every u, v ∈ V (G) at distance between 2 and r
∑

u∈V (G)

xu = 1

∑

v∈Rr(u,z)

yuv ≤ xu for every (u, z) s.t. uz ∈ E(G)

maximize
∑

uv:2≤dG(u,v)≤r

yuv

This is equivalent to the optimization problem from the statement of the
lemma. Hence, its solution c provides a lower bound on the maximum
outdegree of a fractional r-guidance system in G, and by Observation 13
also a lower bound on the maximum outdegree of a weak r-guidance system
in G.
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As an example, this easily shows that no good weak guidance systems
exist for graphs of girth at least five and large maximum average degree (the
maximum average degree of a graph is the maximum of the average degrees
of its subgraphs).

Lemma 29. Let G be a graph of girth at least five and maximum average
degree d ≥ 2. Every fractional or weak 2-guidance system in G has maximum
outdegree at least d/2.

Proof. Let Z ⊆ V (G) be a smallest set such that G[Z] has average degree d.
Since d ≥ 2, every vertex of G[Z] has degree at least two, since deleting
vertices of degree at most one would not decrease the average degree.

Since G has girth at least 5, any vertices u, v ∈ Z at distance two in
G[Z] have a unique common neighbor z ∈ Z; we define

yuv =
1

degG[Z] z − 1
.

For any pair u, v ∈ V (G) of vertices at distance two inG such that {u, v} 6⊆ Z
or the common neighbor of u and v does not belong to Z, we define yuv = 0.
For any edge uz of G, if {u, z} ⊆ Z, then we have |R2(u, z)∩Z| = degG[Z] z−
1, and thus

∑

v∈R2(u,z)

yuv = 1;

while if {u, z} 6⊆ Z, then
∑

v∈R2(u,z)

yuv = 0.

Therefore,

xu = max
z:uz∈E(G)

∑

v∈R2(u,z)

yuv = 1

for u ∈ Z and xu = 0 for u ∈ V (G) \ Z, and

∑

uv:dG(u,v)=2 yuv
∑

u∈V (G) xu
=

1
2 ·

∑

u∈Z

∑

z:uz∈E(G[Z])

∑

v∈R2(u,z)
yuv

|Z|
=

|E(G[Z])|

|Z|
= d/2.

The claim now follows from Lemma 28.

This shows that weak guidance systems can be qualitatively different
from guidance systems only in graphs of girth at most four.
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Corollary 30. Let G be a graph of girth at least five. For any r ≥ 2, if G
admits a weak r-guidance system of maximum outdegree at most c, then G
also admits an r-guidance system of maximum outdegree at most 3c.

Proof. By Lemma 29, G has maximum average degree at most 2c, and thus
G is 2c-degenerate. The claim then follows by Observation 6.

Next, we consider the class of split graphs. A graph G is a split graph if
there exists a partition (A,B) of its vertex set where A is a clique and B is
an independent set.

Lemma 31. For every n such that n is a power of a prime, there exists a
split graph Gn with 2(n2 +n+1) vertices such that every fractional or weak
2-guidance system in G has maximum outdegree at least (n+ 1)/2.

Proof. It is well-known that whenever n is a power of prime, there exists a
finite projective plane B of order n, i.e., a system of n2 + n + 1 subsets of
the set A = [n2 + n+ 1] with the property that

(i) |p1 ∩ p2| = 1 for every distinct p1, p2 ∈ B and

(ii) every element of A belongs to exactly n+ 1 sets from B.

Let Gn be the graph with vertex set A ∪B, vertices in A forming a clique,
vertices in B forming an independent set, and vertices z ∈ A and p ∈ B
adjacent iff z ∈ p. Note that distinct vertices of B are at distance two in
Gn by (i), and that for each p ∈ B and z ∈ p, |R2(p, z) ∩ B| = n by (ii).
Therefore, defining yp1p2 = 1 for any distinct p1, p2 ∈ B and yuv = 0 for any
other pair u, v of vertices of Gn, we have

xp = max
z:z∈p

∑

p′∈R2(p,z)

ypp′ = n

for p ∈ B and xz = 0 for z ∈ A. Therefore,

∑

uv:dGn (u,v)=2 yuv
∑

u∈V (Gn)
xu

=

(|B|
2

)

|B|n
=

|B| − 1

2n
=
n+ 1

2
.

The claim now follows from Lemma 28.

Let us remark that split graphs are a special case of chordal graphs
(graphs with no induced cycle of length at least four), and thus chordal
graphs do not in general admit weak guidance systems of bounded maximum
outdegree.
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Finally, let us consider the graphs of bounded clique-width. A k-labeled
graph is a graph where each vertex is assigned a label from [k] (several ver-
tices can have the same label, and not all labels must be used). A k-labeled
graph G is constructible if it is obtained by a finite number of applications
of the following rules:

• |V (G)| = 1, or

• G is the disjoint union of at least two constructible k-labeled graphs,
or

• G is obtained from a constructible k-labeled graph G′ by, for some
i, j ∈ [k], changing all labels i to j, or

• G is obtained from a constructible k-labeled graph G′ by, for some
i, j ∈ [k], adding all edges between vertices with labels i and j.

We say a graph has clique-width at most k if we can assign labels to its
vertices so that the resulting k-labeled graph is constructible. Graphs with
bounded shrub-depth also have bounded clique-width (or equivalently, bounded
rank-width); indeed, they can be viewed as graphs of bounded clique-width
where the corresponding operation tree has bounded depth. It is natural to
ask whether Lemma 8 extends to graphs of bounded clique-width. We show
that this is not the case, even for weak 2-guidance systems.

Lemma 32. For every d ≥ 0 and a ≥ max(2, 2d − 1), there exists a con-
structible 6-labeled graph Hd,a with half its vertices labeled 1 and half its
vertices labeled 2, such that

(i) |V (Hd,a)| ≤ 8ad − 6 and

(ii) for every partial orientation ~G of Hd,a of maximum outdegree less than
d, there exist vertices u and v of labels 1 and 2, respectively, at distance
exactly two, such that for every common neighbor x of u and v, we have
(u, x), (v, x) 6∈ E( ~G).

Proof. For d = 0, we can let H0,a = K2 with one vertex labeled 1 and the
other vertex labeled 2. Suppose we already constructed Hd−1,a, and let us
show how to inductively obtain Hd,a. First, let H

′
d−1,a be the graph obtained

from Hd−1,a by adding vertices v3 and v4 with labels 3 and 4 and adding
all edges between vertices with labels 1 and 4 and between vertices with
labels 2 and 3. Next, we form the disjoint union of a copies of H ′

d−1,a. Then
we add two vertices v5 and v6 with labels 5 and 6, and all edges between
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vertices with labels i and i + 2 for i ∈ {3, 4}. Finally, we relabel vertices
with labels 3 and 5 to label 1 and vertices with labels 4 and 6 to label 2.

The construction uses only 6 labels, and thus Hd,a is a constructible
6-labeled graph. Moreover,

|V (Hd,a)| = a(|V (Hd−1,a) + 2) + 2 ≤ a(8ad−1 − 4) + 2 ≤ 8ad − 6,

where the last inequality holds since a ≥ 2. Consider any partial orientation
~G of Hd,a of maximum outdegree less than d. Since v5 and v6 have outdegree
less than d, for one of the a ≥ 2d−1 copies of H ′

d−1,a in Hd,a, denoted by F ′,

we have (vi, v) 6∈ ~G for every i ∈ {5, 6} and v ∈ V (F ′). Let F be the copy
of Hd−1,a in F ′. Suppose that for any two vertices u and v of F of labels 1
and 2, respectively, at distance exactly two in Hd,a, there exists a common

neighbor x of u and v in Hd,a such that (u, x) ∈ E( ~G) or (v, x) ∈ E( ~G).
The construction of H ′

d−1,a and Hd,a ensures that such a common neighbor
x necessarily belongs to F , as we did not add any vertex adjacent both to
vertices with label 1 and with label 2. Hence, by the induction hypothesis,
the restriction of ~G to F has maximum outdegree at least d − 1. Let u be
a vertex of F with at least d − 1 outneighbors in ~G belonging to F . By
symmetry, we can assume u has label 1. Since ~G has maximum outdegree
less than d, we have (u, v4) 6∈ E( ~G). Moreover, by the choice of F ′, we have
(v6, v4) 6∈ E( ~G). Note that v6 has label 2 in Hd,a and the copy of v4 in F
is the only common neighbor of u and v6 in Hd,a. This shows that Hd,a

satisfies the property (ii).

By Lemma 32, letting n = |V (Hd,2d−1)|, we conclude that any weak 2-
guidance system inHd,2d−1, a graph of clique-width at most 6, has maximum
outdegree at least d = Ω(log n/ log log n). As we will see in Lemma 33, this
is nearly tight. Before that, let us remark that a similar bound also applies
to fractional 2-guidance systems, which follows from Lemma 28: For the
purpose of the analysis, let us define both vertices of H0,a to be foundational,
and when constructing Hd,a, we let the foundational vertices be exactly the
foundational vertices in the copies of Hd−1,a; then, we consider the y-weights
defined inductively for each copy of Hd−1,a, and additionally set yviz = 1
for each i ∈ {5, 6} and each foundational vertex z at distance two from vi.
Letting nd = 2ad be the number of foundational vertices of Hd,a, this results
in xvi = |nd−1|/2; and moreover, xz = 1 for every foundational vertex z.
Hence, the lower bound we obtain by Lemma 28 is at least

and−1 + a2nd−2 + . . . + adn0
(nd−1 + and−2 + . . .+ adn0) + nd

=
2dad

2dad−1 + 2ad
=

da

d+ a
=

2

3
d
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for a = 2d.
On the positive side, we show that graphs of bounded clique-width admit

weak guidance systems of logarithmic outdegree. Let us start by a useful
observation. Suppose (A,B) is a partition of the vertex set of a graph G.
For u, v ∈ V (G), we write u ≡(A,B) v if either u, v ∈ A and u and v have
the same neighbors in B, or u, v ∈ B and u and v have the same neighbors
in A.

Lemma 33. Let r be a positive integer or ∞. Suppose (A,B) is a partition
of the vertex set of a graph G and ≡(A,B) has k equivalence classes. If G[A]
and G[B] have a weak r-guidance system of maximum outdegree at most c,
then G has a weak r-guidance system of maximum outdegree at most c+ k.

Proof. Let ~HA and ~HB be weak r-guidance systems of maximum outdegree
at most c in G[A] and G[B], respectively. Let ~H consist of ~HA ∪ ~HB and
the following edges: For each u ∈ V (G) and each equivalence class C of
≡(A,B) intersecting the component of G containing u, choose a vertex u′C in
C nearest to u in G and a vertex uC ∈ G(u → u′C) arbitrarily, and add the

edge (u, uC). Clearly, ~H has maximum outdegree at most c+ k.
Consider now any vertices u, v ∈ V (G) at distance ℓ, where 2 ≤ ℓ ≤ r,

and let P be a shortest path between u and v in G. If an edge of P incident
with u or v belongs to G[A] ∪ G[B], switch the names of vertices u and v
if necessary so that such an edge is incident with u. By symmetry, we can
assume u ∈ A. If P ⊆ G[A], then by Observation 7, ~HA (and thus also
~H) contains an edge directed from u to G[A](u → v) ⊆ G(u → v) or an
edge directed from v to G[A](v → u) ⊆ G(v → u). Hence, suppose that
P 6⊆ G[A].

If the first edge of P is contained in G[A], then let P ′ be the longest initial
segment of P contained in G[A]. If the first edge of P is not contained in
G[A], then let P ′ be the longest initial segment of P contained in G[B∪{u}].
Let C be the equivalence class of ≡(A,B) containing the last vertex z of P ′.
Note that z 6= v: In the first case, this is because P is not contained in
G[A]. In the second case, this is because |E(P )| = ℓ ≥ 2 and the choice
of the names of the vertices u and v implies that the last edge of P is not
contained in G[B]. Since u′C is a nearest vertex from u in C, u′C is at distance
at most |E(P ′)| from u in G. Moreover, u′C is in the same equivalence class
of ≡(A,B) as z, and thus u′C is adjacent to the vertex following z in P . Hence,

uC ∈ G(u→ v) and ~H contains the edge (u, uC).
Observation 7 then implies that ~H is a weak r-guidance system in G.

We combine this with the following well-known fact about clique-width.
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Observation 34. If G is a graph with n vertices and clique-width at most k,
then there exists a partition (A,B) of vertices of G such that |A|, |B| ≤ 2

3n
and ≡(A,B) has at most 2k equivalence classes.

Since any induced subgraph of a graph of clique-width at most k also
has clique-width at most k, we obtain the following consequence.

Corollary 35. For every k ≥ 0, every n-vertex graph of clique-width at
most k has a partial orientation ~H of maximum outdegree O(k log n) such
that ~H is a weak ∞-guidance system.

7 Conclusions

As we have shown, some interesting graph classes admit weak guidance
systems of bounded maximum outdegree, including

• interval graphs,

• classes with structurally bounded expansion, and

• distance powers of graphs with bounded outdegree weak guidance sys-
tems.

However, we do not have an exact characterization of the graph classes with
this property.

Problem 36. Characterize hereditary graph classes G such that for every
positive integer r, every graph from G admits a weak r-guidance system of
bounded maximum outdegree.

We have also exhibited several graph classes that only admit weak guid-
ance systems whose outdegree grows slowly with the number of vertices of
the graph, in particular

• structurally nowhere-dense classes, and

• graphs of bounded clique-width.

Again, we do not have a good description of the graph classes with this
property.

Problem 37. Characterize hereditary graph classes G such that for every
positive integer r, every graph G ∈ G admits a weak r-guidance system of
maximum outdegree at most |V (G)|o(1).
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In sparse graphs, guidance systems and related notions (such as the gen-
eralized coloring numbers) have various algorithmic and structural applica-
tions. We suspect that similar applications can be found for weak guidance
systems as well, generalizing them to dense graphs; we demonstrated this
on the example of approximation algorithms for distance domination and
independence number.
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pretations of bounded expansion classes, ACM Transactions on Compu-
tational Logic (TOCL), 21 (2020), pp. 1–41.
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