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Abstract 

Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, 
where, and how people move from one place to another, is fundamentally important as such 
information is the basis for large-scale investment decisions on the nation's multi-modal 
transportation infrastructure. Recent rise of using passively generated mobile data from mobile 
devices have raised questions on using such data for capturing the mobility patterns of a 
population because: 1) there is a great variety of different kinds of mobile data and their respective 
properties are unknown; and 2) data pre-processing and analysis methods are often not explicitly 
reported. The high stakes involved with mobility analysis and issues associated with the passively 
generated mobile data call for mobility analysis (including data, methods and results) to be 
accessible to all, interoperable across different computing systems, reproducible and reusable by 
others. In this study, a container system named Mobility Analysis Workflow (MAW) that integrates 
data, methods and results, is developed. Built upon the containerization technology, MAW allows 
its users to easily create, configure, modify, execute and share their methods and results in the 
form of Docker containers. Tools for operationalizing MAW are also developed and made publicly 
available on GitHub. One use case of MAW is the comparative analysis for the impacts of different 
pre-processing and mobility analysis methods on inferred mobility patterns. This study finds that 
different pre-processing and analysis methods do have impacts on the resulting mobility patterns. 
The creation of MAW and a better understanding of the relationship between data, methods and 
resulting mobility patterns as facilitated by MAW represent an important first step toward 
promoting reproducibility and reusability in mobility analysis with passively-generated data.   
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Highlights 

 A Mobility Analysis Workflow (MAW) is developed to process passively-generated data 

for mobility analysis. 

 MAW facilitates accessibility, interoperability, reproducibility and reusability. 

 MAW allows its components to be flexibly reused for a variety of mobility analysis. 

 The study confirms the impacts of data pre-processing and analysis methods on the 

resulting mobility patterns.  

 



1 

1. Introduction 
 

Mobility analysis, or understanding and modeling of people's mobility patterns in terms of when, 

where, and how people move from one place to another is fundamentally important. Such 

information is not only important for answering many scientific inquiries regarding how people 

interact with urban spaces and with each other, but also as a basis for many large- or mega-scale 

investment decisions on the nation's multi-modal transportation infrastructure. For decades, 

information on people's mobility patterns has been obtained from self-reported household travel 

surveys where randomly-selected respondents are asked to report all of their travel on one or two 

pre-determined travel survey days (Stopher and Greaves, 2007). Travel surveys, though 

providing rich information, are expensive (about $250-350 per household), and have relatively 

small sample sizes (typically ~0.1% of the region's population for urbanized areas). Because 

household travel surveys are conducted rather infrequently (once every few years), they are 

unsuitable for answering questions relating to how mobility patterns evolve over time or change 

after events.  

 

The past two decades have seen a surge of studies using data from mobile devices to analyze 

individuals' mobility patterns (Chen et al., 2016). Such data often contains a large number of 

individuals (from hundreds of thousands to millions) while covering a sustained time period (from 

weeks to months and years). This data has two key pieces of information: the geographical 

locations (often expressed in longitude and latitude) where individual mobile devices are observed 

on the network, and the associated time when they are observed. Based on these two pieces of 

information, individuals' mobility patterns, in terms of when and where they go from one place to 

another, can be inferred.  

 

Unlike travel surveys where trips are self-reported by the respondents and thus are automatically 
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identified, data from mobile devices (hereafter "mobile data") needs to be pre-processed and 

analyzed to infer trips and their related information. This is due to the fact that mobile data is 

generated from users' opting into using certain mobile services (e.g., phone services, social media, 

or mobile apps) and consequently the amount and the quality of the mobile data vary greatly from 

one user to another depending on his/her usage patterns and the positioning technologies (e.g. 

GPS, WIFI, cellular tower, etc.) used by the data vendor. This means that pre-processing of the 

raw mobile data is first needed to correct data issues or to simply select a subset of users that 

meet certain criteria, followed by analysis of the pre-processed mobile data to infer mobility 

patterns. Those who use such data must go through these pre-processing and then analysis steps.  

 

Exactly how this pre-processing and analysis sequence (called “mobility analysis method” 

hereafter for simplicity) is carried out is specific to individual researchers and indeed the 

proliferation of many studies that use big mobile data to infer mobility patterns suggest a variety 

of mobility analysis methods are being used (Chen et al., 2016). The different methods used can 

result in very different mobility patterns. Figure 1 illustrates an example. Both algorithms use a 

clustering method called trace segmentation in which a trajectory containing only raw mobile 

location records is first segmented into multiple subsequences, each satisfying the duration 

threshold. Then, the distance threshold is checked requiring that within a cluster of candidate 

records for an inferred stay, all pairs must be within the pre-set distance threshold. At the same 

distance and duration thresholds, one can see that the two algorithms result in quite different 

numbers of stays: at 0.5 minutes and 0.05 km, algorithm 1 results in 2 stays and algorithm 2 

results in 11 stays; when the distance threshold increases to 0.5 km, the numbers become 3 and 

9, respectively.   



3 

 

Figure 1. Illustration of two seemingly similar algorithms with the same distance and duration 

thresholds but completely different, resulting mobility patterns for a sample user with 19 records 

in the trajectory over two days. Algorithm #1 is the trace segmentation clustering algorithm used 

in this study. Algorithm #2 a similar trace segmentation clustering, implemented in the 

“preprocessing.detection.stops” function in the Python library “scikit-mobility (Pappalardo et al., 

2021). Each black dot represents a raw location record; each solid red circle represents an 

inferred stay containing at least two location records; and each dashed red circle represents an 

inferred stay containing only one location record. 

 

The sample illustrated in Figure 1 indicates that compared to the traditional survey data, the 

mobility patterns derived from those big datasets are much more sensitive to the actual pre-

processing and analysis methods used: even essentially the same algorithms with the same 

distance and duration thresholds can result in vastly different patterns. Those resulting mobility 

patterns can directly impact policy making. This calls for a community effort involving everyone 

— not only those who have worked with mobile data, but also those who have not. This motivates 

the first aim of the current study, the development of a Mobility Analysis Workflow (MAW) that 

incorporates pre-processing and analyzing the raw mobile data to infer mobility patterns, which 

everyone can access and use with their own mobile data. More specifically, MAW supports four 
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important properties of open science: accessibility, interoperability, reproducibility, and reusability. 

Accessibility requires not only the sharing of the code used for mobility analysis but also providing 

an easy-to-install and easy-to-configure version of the computer program or software with 

necessary dependencies, documentation, and licenses. Interoperability is defined as the ability to 

support information exchange between two or more systems (IEEE Standards Coordinating 

Committee, 1990). In the context of mobility analysis, this means a mobility analysis workflow can 

be tested and executed on different computing systems, including different operating systems 

(e.g. Mac OS vs. Windows), different hardware architectures (e.g. x86 vs. ARM), and different 

cloud platforms. Reproducibility is achieved if the same results are obtained when a mobility 

analysis workflow is tested with the same input data (Benureau and Rougier, 2018) by a different 

researcher or on a different computing system. Reusability implies that a workflow can be reused 

over additional cases other than those for which it was originally designed for (Lamprecht et al., 

2020).  

 

Even though no two mobility researchers use exactly the same methods to process and analyze 

mobile data, there are main commonalities and differences. In the pre-processing stage, as noted 

in Wang and Chen (2018), presence of oscillation is a primary issue in mobile data and not 

removing it can result in an overestimation of the regularity commonly found in human mobility 

patterns. Yet, there exist a variety of available methods and parameter settings in correcting 

oscillations, even for the same dataset. In the data analysis stage to derive the mobility patterns, 

even though clustering is a common method to identify stays (places where people perform 

activities), different clustering algorithms have been used (e.g., trace segmentation vs incremental 

clustering) with different threshold values (e.g., maximum distance or minimum duration required). 

Currently there is little to no systematic knowledge regarding how the differences in pre-

processing and analysis of the mobile data impact the derived mobility patterns. Answering this 
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question comprises the second aim of the study. To answer this question, six workflows that 

employ different mobility data pre-processing and analysis methods are designed to pre-process 

and analyze two commonly-used sample mobile datasets, and the resulting mobility patterns are 

compared among the six workflows. The findings provide additional evidence (on top of what is 

illustrated in Figure 1) in confirming the impacts of pre-processing and analysis methods on the 

derived mobility patterns.  

 

The rest of the paper is organized as follows. Section 2 reviews how accessibility, interoperability, 

reproducibility, and reusability are accounted for in existing mobility research. Section 3 presents 

general design principles and features of MAW (detailed tutorials on how to use MAW can be 

found on GitHub (UW THINK lab github, 2021). Section 4 describes the six specific workflow 

designs used in this study to test and understand how different mobility analysis methods and 

their parameter settings affect the inferred mobility patterns. Results from those workflows are 

presented and analyzed in detail in Section 5. Section 6 summarizes this study and discusses 

potential future research directions. 

 

2. State of the Art 

2.1 Related work addressing accessibility, interoperability, reproducibility and 

reusability  

The accessibility, interoperability, reproducibility and reusability of computer programs have been 

addressed through containerization. A container is a piece of software that includes code and 

dependencies that can be easily deployed. Docker is one of the most widely used technology for 

creating and managing containers (Docker Inc., 2013). It has been adopted in the research of 

bioengineering (Di Tommaso et al., 2017), information and communication technologies (Wan et 

al., 2018), social science (Kumar and Kurhekar, 2017), industrial engineering (Sollfrank et al., 
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2021), geology (Liu et al., 2020), and environmental science (Li, 2020). Containers enable users 

to run computer programs across different computing systems (i.e. interoperability) and produce 

the same results (i.e. reproducibility). Compared to virtual machines, they are also scalable 

(Merkel, 2014): a container packages up only the code and dependencies needed to run the code 

which include runtime, system tools, system libraries, and settings, and thus can be set up and 

deployed rapidly. Another factor that contributes to Docker container’s popularity is its open-

source nature (da Veiga Leprevost et al., 2017). There is a rich collection of containers in the 

public repositories of Docker Hub (https://hub.docker.com/). Those containers are not only for 

reuse but also for facilitating the creation of new containers; and users can also upload and 

publish their customized containers on Docker Hub (i.e. reusability). These features of Docker 

Hub greatly reduce the effort required to build a complex workflow and increase the accessibility 

and reusability of data science tasks (Madduri et al., 2019). To build workflows from containers, 

researchers have developed the Common Workflow Language (CWL) (Amstutz et al., 2015) and 

the Workflow Description Language (WDL) (OpenWDL, 2012) using existing data exchange 

formats such as JSON, YAML, or XML. These standards guide users to organize and connect 

multiple units of computation (e.g. containers) based on data processing logics. To apply these 

standards, it however requires knowledge about command-line tools which have complex syntax 

and are not user-friendly, especially to non-IT professionals.  

 

Recent developments in creating accessible, interoperable, reproducible, and reusable workflows 

have focused on creating graphical user interfaces (GUIs) for containers and workflows. Two 

notable efforts in this line of work include the Galaxy platform (Afgan et al., 2018) and BioDepot-

workflow-builder (Bwb) (Hung et al., 2019). The Galaxy platform is a web application that allows 

users to upload and analyze data. The limitation toward wider applications is that it only allows 

users to perform data analysis related to biomedical research. Bwb was developed as a portable 
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and interactive graphical tool for creating modular workflows. It introduced widgets as the 

graphical interface for containers and represents workflows as connected widgets. Widgets make 

container/workflow building intuitive and interactive: users can import their own code or containers 

to create new widgets and existing widgets can be modified through a form-based user interface. 

However, as the Galaxy webserver, the Bwb has primarily served the biomedical research 

community.  

 

In transportation research and practice, the use of accessible, interoperable, reproducible, and 

reusable workflows is still at a nascent stage. Existing efforts focus on the distribution of 

developed programs (typically in the form of code scripts) through platforms such as GitHub, 

JupyterLab or Google Colab (Boeing, 2020; Majka et al., 2019). As noted earlier, simply making 

scripts open-source does not address the dependency issues as aforementioned. To run the 

scripts, users need to figure out the compatible types of machines, operating systems, script 

compilers, and versions of packages and libraries. This information is not always clearly defined 

in a code repository, making it challenging to reproduce the research work and results. Though 

containers have recently attracted transportation researchers’ attention (Feygin et al., 2020), they 

are used primarily to allow users to run models remotely, rather than for designing and 

implementing workflows.  

 

2.2 Algorithms used in pre-processing and analysis of mobile data to derive 

mobility patterns 

A common issue that is frequently encountered in mobile data is oscillation, which happens when 

a mobile device is seen jumping between different locations within a short time (within seconds) 

even though the device itself is not moving (Calabrese et al., 2011a, 2011b; Wu et al., 2014; 

Wang and Chen, 2018). The oscillation phenomenon generates a considerable number of records 
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(~30%) that do not reflect devices' actual movements (Lee and Hou, 2006). A recent study (Wang 

and Chen, 2018) shows that not removing oscillated records prior to inferring mobility patterns 

over-stated the regularity property, which has been identified as the most striking feature of 

individual mobility patterns (González et al., 2008). Only a small portion of existing studies 

reported removing oscillations explicitly, primarily via heuristic methods (e.g., repeated visits to 

two or more locations within a short time, often a few seconds) (Wang and Chen, 2018). Clustering 

that is nearly applied by all studies to identify stays can remove oscillations to some extent, but 

Wang and Chen (2018) show that it is unsuitable for data generated from cellular towers (CDR 

data) or their triangulations (sightings data) due to sparsity issues.  

 

To derive trips from big mobile data, the key is to identify stays from the data, i.e., instances where 

a user remains in the same place for some time to conduct activities such as staying at home, 

working, etc. After stays are identified, trips are simply movements from one stay (origin) to the 

next (destination). Methods to extract stays from mobile data are primarily of two kinds: 1) 

threshold-based methods; and 2) trace-segmentation methods. Threshold-based methods scan 

through the trajectories of each user (one trajectory refers to the user’s available observations of 

one day) and identify stays by setting temporal and spatial thresholds such as spatial density, 

duration, speed and changes of heading (Hariharan and Toyama, 2004; Jiang et al., 2013). 

Threshold-based methods require thresholds to be predetermined, which are related to the 

characteristics of the data to be processed and are subject to analysts’ knowledge on the data. 

Trace-segmentation methods (Zheng, 2015) first segment a trajectory into several sequences of 

consecutive observations and then identify a stay if a sequence of observations is bounded by 

both spatial and temporal constraints that correspond to the positioning error and the minimum 

time needed for conducting an activity. When applied to cellular data that is more sparse and less 

accurate (in terms of spatial uncertainty) than the GPS data (Chen et al., 2016), both of these two 
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methods can be too strict in satisfying the temporal and spatial constraints (Wang and Chen, 

2018). Thus, modification methods that first cluster observations close in space without 

considering the temporal information and then identify visits at each cluster have been proposed 

(Wang and Chen, 2018). This means that clustering methods may be applied multiple times on a 

user’s trajectory to identify stays.  

 

For the actual clustering methods used, threshold-based methods often use incremental 

clustering (Ester and Wittmann, 1998; Huang, 1998; Fisher, 1987), which treats the first location 

record in a person’s trajectory as a cluster center, and then for each additional record, the 

algorithm calculates the distance between the cluster center and the new record. If the distance 

is below a pre-determined distance threshold, the cluster center is updated by incorporating the 

newly added record; otherwise, the original cluster center remains unchanged. Incremental 

clustering is sensitive to the order of the location records as inputs. To correct this order issue, K-

means clustering has been proposed (Wang and Chen, 2018) to re-cluster those location centers 

initially identified from incremental clustering. The outputted final cluster centers from K-means 

clustering are inferred stays. The clustering method used in trace segmentation differs from 

incremental clustering in its distance calculation and the identification of the cluster centers. 

Incremental clustering calculates distances between a cluster center and a location point and then 

updates the center location every time a new record is identified as belonging to the cluster; trace 

segmentation, on the other hand, calculates all pairwise distances for all location records that 

satisfy a pre-determined duration threshold and then identifies the center of the cluster containing 

all records that also satisfy a pre-determined distance threshold. Computationally, incremental 

clustering is more efficient than trace segmentation. One commonality between the two clustering 

methods is that both require threshold values to be determined in advance. Different threshold 

values have been used. For example, the minimum stay duration ranges from 5 minutes for 
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analyzing the call detail records data (Widhalm et al., 2015; Yin et al., 2018) to 10 minutes for 

cellular sighting data and GPS data (Bayir et al., 2009; Wan and Lin, 2013), and to 30 minutes for 

GPS, Bluetooth and Wi-Fi data (Ye et al. 2009; Vhaduri and Poellabauer, 2016). The distance 

thresholds used in those studies include 200 meters (Ye et al. 2009; Wan and Lin, 2013), 250 

meters (Vhaduri and Poellabauer, 2016), 500 meters (Chin et al., 2019) and 1000 meters 

(Widhalm et al., 2015; Yin et al., 2018). As noted in the introduction section, there is currently no 

systematic knowledge on how the final resulting mobility patterns are affected by different factors 

including: the types of clustering algorithms used, various threshold values, whether to remove 

oscillation in the pre-processing of the data, and the order of clustering algorithms applied.   

 

3. Development of Mobility Analysis Workflow (MAW) 

3.1. Container Design 

Individual containers are used to implement specific mobility analysis methods. Therefore, 

designing a container involves determining first which method a given container is to implement, 

and second the inputs, outputs, and the associated parameters. The container design process 

follows two principles: commonality and flexibility. Commonality means the containers in MAW 

should implement those methods that are the most frequently incorporated in mobility research. 

Flexibility refers to a container’s capability of being reusable for a variety of mobility analysis 

workflows and this is done through a container’s change points. Change points are key 

parameters used in an algorithm developed for a task. Values of the parameters can be changed 

by a user, thus called change points.  

 

Based on the methods used in the current literature (see Section 2.2) and the 

commonality/flexibility considerations, MAW contains five containers: Trace Segmentation 

Clustering, Incremental Clustering, Stay Duration Calculator, Oscillation Corrector, and Stay 



11 

Integrator. Table 1 summarizes the functionalities of each container, inputs and outputs, and the 

associated change points.  

 

3.2. Design of building blocks (modules) in the MAW 

3.2.1. Selection of containers in building modules 

The five containers can be used to design different workflows based on the context, data type, 

and purpose of the mobility analysis at hand. This section discusses a number of considerations 

relating to the design of the containers.  

 

Use of the Oscillation Corrector. For mobile data in a low-density area, where oscillation is not 

prominent due to lack of high-rise buildings (which may block mobile device signals), either trace 

segmentation clustering or incremental clustering can be applied to the raw mobile data without 

calling for the Oscillation Corrector container. However, for cellular data or GPS data in a high-

density area, the effect of oscillation can no longer be ignored and the container of Oscillation 

Corrector should be called when building a mobility analysis workflow. Whether the Oscillation 

Corrector container is applied to the raw mobile data or to clustering output (e.g., inferred stays) 

depends on the purpose of mobility analysis. For example, if a workflow is for real-time or online 

applications, deploying this container after clustering could be more desirable. This is because 

the number of location records in the raw mobile data is typically much larger than the number of 

clusters (stays). Therefore, applying the container to raw mobile data is likely to be much more 

computationally intensive than to clustering results from a previous step. On the other hand, in a 

non-time-sensitive situation such as retrospective analysis of people’s mobility patterns, applying 

this container to raw mobile data before the clustering steps may be more suitable than applying 

afterwards, as it mitigates the effect of oscillation on clustering results. 
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Table 1 Designs of the Five Containers in MAW 

Container name Input and Output Algorithm Change point values  

Trace 
Segmentation 
Clustering 

Input: Location 
records1 on a single 
day, sorted by time. 
Output: Same as 
inputs, with identified 
stay locations2 
added. Transient 
points3 are denoted 
as -1. 

It scans through all input data to identify subsequences of location 
records that satisfy the two thresholds (Hariharan and Toyama, 2004; 
Ye et al., 2009). First, the subsequence’s duration (the time interval 
from the first to the last location record in the subsequence) must 
exceed a predefined duration4 threshold. Second, any pairwise 
distance between two location records must fall below a predefined 
distance threshold. Those subsequences of location records are 
identified as stays, while location records not belonging to any 
subsequence are classified as transient points.  

Duration  threshold 

∈[0.5, 30] minutes5. 

Distance  threshold ∈ 
[0.06, 0.25] km for GPS 
data6, and [0.05, 1.0] km 
for cellular data7. 

Incremental 
Clustering 

Input: Location 
records (on either 
one day or multiple 
days). 
Output: Same as 
inputs, with identified 
stay locations added. 
Transient points are 
noted with 
placeholder of -1. 

This container can be applied either to raw location records or 
inferred stays. When clustering location records, it starts by treating 
the first record as a cluster center, and then for each additional 
record, it calculates the distance between the cluster center and the 
new record (Fisher, 1987; Huang, 1998; Ester and Wittmann, 1998). 
If the distance is below a distance threshold, the cluster center is 
updated by incorporating the newly added record; otherwise, the 
location record forms a new cluster. Incremental clustering is 
sensitive to the order of the location records as inputs (Wang and 
Chen, 2018). Thus, K-means clustering (Kanungo et al., 2002) is 
applied to cluster location centers initially identified from incremental 
clustering. When applied to inferred stays, a duration threshold is 
first used to filter stays whose durations are longer than the 
threshold. Then the above procedures as to clustering location 
records are applied to the stay locations, by treating each stay 
location like a location record. 

Duration  threshold 

∈[0.5, 30] minutes5. 

Distance  threshold ∈ 
[0.06, 0.25] km for GPS 
data6, and [0.05, 1.0] km 
for cellular data7. 

Stay Duration 
Calculator 

Input: Location 
records with stay 
locations identified. 
Output: Same as 
input, with stay 
durations added. 
Transient points have 
a placeholder (e.g., -
1) for stay durations. 

It calculates the duration of each stay as the time interval between the 
first and the last of a sequence of location records associated with a 
stay. The change point—the minimum duration threshold—is to 
reassure that all stays satisfy the minimum duration requirement. Its 
value is typically set to be the same as the duration threshold in trace 
segmentation or incremental clustering. Any stay with a duration 
below the duration threshold will be removed and the location records 
associated with it will be outputted as transient points.  

Duration  threshold ∈ 
[0.5, 30] minutes5. 
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Table 1 Designs of the Five Containers in MAW (cont’d) 

Container name Input and Output Algorithm Change point values  

Oscillation 
Corrector 

Input: Location 
records with or 
without stay 
information, sorted by 
time. 
Output: Same as 
inputs with location 
records caused by 
oscillations removed. 

Given a predetermined time window, it scans through the input data 
to identify subsequences of multiple stays or records that fall into the 
predetermined time window and contain at least one circular event 
(Wu et al., 2014). A circular event refers to a tour in which one device 
is initially found at one location, goes somewhere else and then 
returns to the previous location. For each unique location from all the 
subsequences suspected of oscillation, the total amount of time a 
person spends at each location across all days is calculated. The 
location where the person spends the longest time in a subsequence 
is treated as the true location (of a stay or location record) (Wang and 
Chen, 2018). Those in a subsequence but not regarded as the true 
visited location are deemed as from oscillation and their locations are 
updated with the one associated with the true location.  

Time window ∈ [1/6, 11] 
minutes8. 

Stay Integrator 

Input: Two sets of 
location records with 
inferred stay 
information attached, 
from two types of 
data (e.g. GPS and 
cellular), respectively. 
Output: Location 
records with stay 
information (stay 
location and duration) 
attached.  

This container integrates stays of higher uncertainties (e.g. cellular 
stays) into stays of lower uncertainties (e.g. GPS stays). First, three 
temporal relationships between the two types of stays are defined 
(Peuquet, 1994): temporally separate, temporally contained and 
temporally intersecting. Additionally two spatial relationships are 
defined (Peuquet and Duan, 1995): spatially contiguous or not. 
Second, two stays of different types will either be merged, remain 
separate stays, or be split based on the above temporal-spatial 
relationships (Wang et al., 2019). Third, after integrating the stays, 
this container calls and executes four other containers, “Oscillation 
Corrector”, “Stay Duration Calculator”, “Incremental Clustering”, and 
“Stay Duration Calculator” in a sequence. 

Duration  threshold ∈ 

[0.5, 30] minutes5. 

Distance  threshold = 
0.2 km (Wang et al., 
2019). 

1 A location record is a data entry that records the location (in terms of geographical coordinates) of a mobile device, the timestamp when the location is 
recorded and the accuracy of the recorded location. 
2 Stay location is the geometric centroid of location records associated with the stay. In container design, a stay is identified as a sequence of location records. 
3 A transient point is a location record which indicates a passing-by location without stopping to carry out meaningful activities (e.g., a location record generated 
during navigation). In the container design, it is identified as a location record not associated with any stay. 
4 Duration of a stay is the time interval from the first to the last location record associated with the stay 
5 Based on Transportation Research Board (2005); Bayir et al. (2009); Ye et al. (2009); Gidófalvi and Dong (2012); Zhao et al. (2014); Vhaduri and Poellabauer 
(2016); Yin et al. (2018); Zhang et al. (2018). 
6 Based on Gidófalvi and Dong (2012); Montoliu et al. (2013); Vhaduri and Poellabauer (2018a, 2018b). 
7 Based on Montoliu et al. (2013); Vhaduri and Poellabauer (2018a, 2018b); Wang and Chen (2018); Yin et al. (2018); Zhao et al. (2018); Chin et al. (2019). 
8 Based on Tandon and Chan (2009); Shad et al. (2012); Fanourakis and Wac (2013); Wu et al. (2014); Qi et al. (2016); Katsikouli et al. (2019); Shan et al. 
(2019); Xu et al. (2021).
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Use of Trace Segmentation Clustering container vs Incremental Clustering container. 

There are three factors in choosing between the two clustering methods – trace segmentation 

and incremental clustering. The first factor is location accuracy. As noted in Section 3.1, distances 

in the two clustering methods are calculated differently: for trace segmentation clustering, pairwise 

distances between location records are calculated; and for incremental clustering, the distances 

between a location record and cluster centers are calculated. When the input location records 

have a large amount of noise such as in the cellular data, the distances calculated between them 

have large errors. Under this circumstance, calculating distances between location records and 

cluster centers can mitigate the magnitude of errors. Therefore, trace segmentation clustering is 

appropriate for high-accuracy location records (such as GPS data with location accuracy of only 

a few meters (Merry and Bettinger, 2019)) while for low-accuracy location records such as cellular 

data whose accuracy ranges from tens of meters to several kilometers (Järv et al., 2014), 

incremental clustering should be applied.  

 

The second factor is temporal sparsity of the location records. For temporally sparse location 

records (i.e. large time intervals between consecutive location records), the use of trace 

segmentation clustering will result in that every segment (subsequence) only contains one or a 

few location records. This will make clustering infeasible or biased. Therefore, trace segmentation 

clustering is appropriate for location records with low temporal sparsity, and as temporal sparsity 

increases, incremental clustering should be considered.  

 

The third factor is the purpose of clustering, especially when multiple days of location records are 

used. Trace segmentation clustering processes location records on a daily basis, while 

incremental clustering combines all days. Each has its pros and cons. Trace segmentation 

clustering can effectively identify transient points since it accounts for how long a person remains 



15 

at one location, which is the key to distinguish between stays and transient points. However, it is 

also likely to misidentify a recurring stay location (e.g. home) to be different stay locations due to 

uncertainties in the stay locations. On the other hand, incremental clustering can capture recurring 

stays over multiple days, but it is also vulnerable to misidentifying recurring transient points as 

stays. For example, if a person passes by an intersection and leaves a location record every day, 

incremental clustering may falsely identify the intersection to be a stay location. Whether the 

purpose of clustering involves identifying recurring stays, transient points or both depends on 

understanding of the data generation process for the mobile data. As an example, the data 

generation process for some mobile data (an example is social media check-in data) may capture 

few transient points; and in such cases, incremental clustering can be applied alone.  

 

It is worth noting that there are no hard criteria in selecting between the two clustering methods. 

In many cases the selection is a trade-off among multiple factors including the above three factors 

and others such as computational complexity. Also, in certain contexts, both clustering methods 

can be applicable. Examples of selecting the clustering methods and other MAW containers to 

construct workflows are given in Section 4. 

 
 

4. Understanding the effects of pre-processing and analysis 

algorithms on inferred mobility patterns 

To test how the inferred mobility patterns are affected by different pre-processing or analysis 

algorithms, their respective orders in a workflow, and change point values, two sample datasets 

are drawn from the real-world app-based data (see Section 4.1) and tested in different workflows. 

One dataset consists of predominantly GPS location records and the other of predominantly 

cellular location records. Two sets of metrics are evaluated, relating to the inferred mobility 

patterns and the computational costs.  
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4.1 Sample Selection   

App-based data is multi-sourced data, generated from the use of various mobile phone 

applications (e.g., weather, shopping, dating, and navigation), each of which may use one or more 

positioning technologies, including GPS signaling or cellular tower triangulation. Each location 

record in the app-based data contains the device ID of an encrypted anonymous mobile device, 

a timestamp, a location (in the form of a pair of latitude and longitude coordinates), and the 

associated location accuracy in meters. A threshold of 100 meters is used to separate GPS data 

from cellular location records. If a location record has accuracy lower than 100 meters, this 

location record is assumed to be a GPS location record; and otherwise, it is a cellular location 

record. The data used in this study is the GPS and cellular data generated when people use 

mobile phone apps (thus called app-based data) in the central Puget Sound region covering the 

four counties (King, Kitsap, Pierce, and Snohomish) during the period of March, April, and 

November of 2019. We then randomly selected 1,000 users whose location records contain over 

80% GPS location records. This dataset constitutes our sample GPS dataset. Similarly, a random 

set of 1000 users each with more than 80% of location records as cellular location records are 

selected, which comprises the sample cellular dataset. 

 

The sample GPS dataset and cellular dataset contain 1,880,818 and 192,441 location records, 

respectively. The number of location records per person varies over time, as shown in Figure 2. 

The daily number of location records per person in the GPS data varies between 82 and 183 

during the months of March and April, and drops to around 50 in November 2019. Meanwhile, the 

daily number of location records per person in the cellular dataset remains around 40 throughout 

the study period.  
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Figure 2. Number of location records per person every day over the study period, in the GPS 

data and cellular data, respectively. 

 

 

Figure 3. Number of people observed every day over the study period, in the GPS data and 

cellular data, respectively. 
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The number of people observed in the datasets each day has similar trends, as shown in Figure 

3. Around 200 people are observed each day in the GPS dataset during March and April, and 

the number drops to around 150 in November. In the cellular dataset, the number of people 

observed every day remains around 50.  

 

To understand the sparsity of the data, two quantitative measures are investigated. The first one 

is for how many days each person is observed, and Figure 4 shows the distribution of this number 

for the GPS and cellular datasets, respectively. In the GPS dataset, 19% of the 1000 people are 

observed for only 1 day, while in the cellular dataset, this percentage increases sharply to 62%. 

On the other hand, while both datasets see a few people being observed every day during the 

study period (2 people in the GPS dataset and 1 person in the cellular dataset), the top 10% 

quantile with the highest number of days observed has a minimum of 55 days observed in the 

GPS dataset and only 13 days observed in the cellular dataset. Therefore, people in the cellular 

dataset are observed overall for fewer days than those in the GPS dataset. Second, the cellular 

location records have longer observation time intervals than the GPS location records, as shown 

in Figure 5. Observation time interval measure the time (in minutes) between consecutively 

observed location records. In the GPS dataset, 9.3% of the location records have an observation 

interval less than 10 minutes, while the cellular dataset has only 6.6%. While in both datasets, the 

observation interval can get as large as 23 hours, the median observation intervals in the GPS 

and cellular datasets are 0.1 minute (i.e. 6 seconds) and 6 minutes, respectively. These findings 

suggest the cellular data is considerably sparser than the GPS data.  



19 

 

Figure 4. Distribution in the number of days observed, in the GPS dataset and cellular dataset, 

respectively. 

 

Figure 5. Distribution in the observation interval (time between consecutive location records), in 

the GPS dataset and cellular dataset, respectively. The two subfigures show only the distributions 

for observation interval less than 210 minutes, as more than 99% of the location records in both 

datasets have observation interval below 210 minutes. 
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4.2 Workflow Designs 

4.2.1 Relating to the Oscillation Corrector container 

A set of workflows are designed to test how the inferred mobility patterns are affected by whether 

oscillation is addressed, when to address it, and its change point value settings. Considering that 

(1) oscillation is a prominent issue in cellular data (Qi et al., 2016); and (2) only incremental 

clustering is appropriate for analyzing cellular data due to its low location accuracy and high 

spatial-temporal sparsity (see Section 3.2), three workflows are to be tested (Table 2). 

Table 2 Workflows for testing different settings of the Oscillation Corrector container 

Workflow index Workflow design Note Change point values 

1 
Incremental Clustering – 
Stay Duration Calculator 

Oscillation is 
not dealt with. 

Distance ≤ threshold = 1 
km1; 
Duration ≥ threshold = 5 
minutes1; 
Time window ∈ {1/6, 5, 11} 
minutes. 

2 

Incremental Clustering – 
Stay Duration Calculator – 
Oscillation Corrector – 
Stay Duration Calculator 

Oscillation is 
addressed as a 
post-processing 
step. 

3 
Oscillation Corrector – 
Incremental Clustering – 
Stay Duration Calculator 

Oscillation is 
addressed as a 
pre-processing 
step. 

1 These values were justified in Wang and Chen (2018), which used cellular data collected in the same region as the 
sample cellular data. 

 

Workflows 1 through 3 address the situations where oscillation is simply ignored, dealt with in 

post-processing (i.e. after inferring stays), and corrected in pre-processing (i.e. before inferring 

stays), respectively. Different change point values of Oscillation Corrector are tested in workflows 

that include this container. In both workflows 1 and 2, incremental clustering is applied directly to 

the raw cellular data, followed by one step to calculate the durations of inferred stays. Workflow 

2 additionally post-processes the inferred stays by removing those suspected for oscillation. Since 

this operation may change the cluster compositions (e.g. two clusters merged into one), a Stay 

Duration Calculator container is subsequently called to update the stay durations. Workflow 3 in 

contrast, addresses oscillation beforehand, prior to applying incremental clustering and 

calculating stay duration.  
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For change point values, the distance threshold and duration threshold are set to be the ones 

used by Wang and Chen (2018), which are appropriate for the sample cellular data. Different 

values for the time window are tested to understand how they affect the performance of Oscillation 

Corrector. In previous studies, the time window for detecting oscillations has been set to 10-20 

seconds (Qi et al., 2016), 1 minute (Katsikouli et al., 2019), 2 minutes (Wu et al., 2014), 5 minutes 

(Xu et al., 2021), and 11 minutes (Shad et al., 2012). Three values, which include 10 seconds 

(the lower bond), 11 minutes (the upper bound) and 5 minutes (the middle point) are thus tested 

for the time window in Oscillation Corrector. 

 

4.2.2 Relating to different clustering methods 

Trace segmentation clustering and incremental clustering are the two most widely used clustering 

methods for analyzing mobile data to infer stays. Therefore, a set of workflows are designed to 

test how using different clustering methods leads to different inferred mobility patterns. For this 

group of workflows, the sample GPS dataset is used as the input data, as both clustering methods 

are applicable to GPS data (if using the sample cellular dataset, only incremental clustering would 

be applicable). The workflows to be tested are listed in Table 3. 

Table 3 Workflows for testing different clustering methods 

Workflow index Workflow design Note Change point values 

4 
Incremental Clustering – 
Stay Duration Calculator 

Only incremental 
clustering is applied. 

Distance threshold ∈
{0.05, 0.2, 0.5} km; 

Duration threshold ∈
{0.5, 5, 30} minutes  

5 
Trace Segmentation 
Clustering – Stay Duration 
Calculator 

Only trace 
segmentation clustering 
is applied. 

6 

Trace Segmentation 
Clustering – Incremental 
Clustering – Stay Duration 
Calculator 

Both trace 
segmentation clustering 
and incremental 
clustering are applied. 
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Workflows 4, 5 and 6 concern the situations where only incremental clustering, only trace 

segmentation clustering, and both trace segmentation clustering and incremental clustering are 

applied to the GPS data, respectively. In each workflow, a Stay Duration Calculator container 

follows the clustering step(s) to calculate the durations of inferred stays. For workflow 6, the 

particular order in which trace segmentation clustering comes ahead of incremental clustering is 

based on the consideration that when the two clustering methods are applied together, the 

purpose of incremental clustering is to identify recurring stays over multiple days (see Section 

3.2). Therefore, incremental clustering needs preliminary stays inferred by trace segmentation 

clustering as its inputs. 

 

In terms of change point vales, various options as discussed in Section 3.1 are tested. There are 

two change points in these three workflows, the distance threshold in the clustering algorithms 

and duration threshold in the clustering algorithms and Stay Duration Calculator container. In 

existing literature, values adopted for the duration threshold include 30 seconds (Gidófalvi and 

Dong, 2012), 5 minutes (Yin et al., 2018), 10 minutes (Zhao et al., 2014; Vhaduri and Poellabauer, 

2016), and 30 minutes (Ye et al., 2009; Zhang et al., 2018). For the distance threshold, values of 

between 0.05 and 0.1 km (Yin et al., 2018), between 0.06 and 0.25 km (Vhaduri and Poellabauer, 

2018a), 0.15 km (Gidófalvi and Dong, 2012), 0.25 km (Montoliu et al., 2013; Vhaduri and 

Poellabauer, 2018b), and 0.5 km (Zhao et al., 2018) have been observed in existing literature. 

The lower bound, upper bound and a middle point of each change point are selected for testing, 

which results in distance threshold ∈ {0.05, 0.2, 0.5}  km and duration threshold ∈ {0.5, 5, 30} 

minutes. 
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4.3 Performance metrics 

Two categories of performance metrics are adopted to quantify the effects of pre-processing and 

analyzing algorithms on inferred mobility patterns. The first category refers to the spatial-temporal 

patterns of human mobility (Chen et al., 2016), and includes the following specific performance 

metrics: 

 Number of trips per person per day. 

 Radius of gyration per person per day: a measure of the activity space of a person on a 

daily basis. The daily radius of gyration is calculated using equation 1 (Lu et al., 2012), 

𝑟𝑔(𝑖) = √
1

𝑁
∑[dist(𝑠𝑎, 𝑠̅)]2

𝑎

                                                               (1) 

where index i refers to a person, index a refers to the person’s stays, 𝑠𝑎 represents one 

stay, 𝑠̅ is the center of mass for all stays of the person, dist denotes the (Euclidean) 

distance between two stay locations, and N is the number of stays made by the person. 

For each day, 𝑟𝑔(𝑖) is calculated using stays on that day. The calculated 𝑟𝑔(𝑖) is then 

averaged over all days that have at least one stay. 

 Departure time distribution. The departure time of a trip is assumed to be the time when 

the last stay ends. To quantify the departure time distribution, every day is divided into 

48 half-hour intervals, and the number of trips starting at each interval is counted. The 

departure time distribution summarizes the departure time of all trips made by all people 

on all days. 

 

The second category of performance metrics relates to the computational performance of 

workflows. The key metrics in this category are the computation time of a given workflow, 

measured as the time interval from when the workflow begins reading input data to when it 
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finishes printing the output, and the memory usage over time throughout the running of the 

workflow. 

 

5. Results 
 
5.1. Effect of correcting oscillation on inferred mobility patterns 

Figure 6 shows how the inferred number of trips and radius of gyration change when the 

Oscillation Corrector is applied differently in a workflow. It is worth noting that based on the 

definition of radius of gyration (Section 4.3), a person must have at least one stay for the radius 

of gyration to be meaningful. Therefore, all results on the number of trips and radius of gyration 

are reported only for users with at least one stay inferred in the three-month period by all 

workflows designed for the corresponding dataset. For the cellular dataset, 483 out of the 1,000 

users meet this requirement. And the number for the GPS dataset is 659. 

 

There are two observations from Figure 6. The first observation is that when oscillation corrector 

is applied as pre-processing vs. as post-processing, its effects on the inferred mobility patterns 

are different. For the number of trips, correcting oscillation after clustering decreases the number 

of trips inferred, from 1.46 when Oscillation Corrector is not applied to 1.34 when Oscillation 

Corrector is applied as post-processing with an 11-minute time window. This finding is reasonable, 

because Oscillation Corrector as a post-processing step will take inferred stays (from the 

clustering step) as input, and when an oscillation is identified, the stay caused by the oscillation 

will be merged with the true stay. This leads to a decrease in the number of stays and 

consequently decreased number of trips after applying oscillation corrector. 
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Figure 6. Effects of Oscillation Corrector on number of trips and radius of gyration. Both metrics 

are calculated on a daily basis for each person, and average over all days and all people. 

 

What maybe a bit surprising is that when applied before clustering (i.e. as pre-processing), 

Oscillation Corrector increases the number of trips. This finding is consistent with existing 

literature (Xu et al., 2021). To further understand the mechanism behind this increase, a user from 

the cellular dataset is randomly drawn, and his/her trajectories before and after applying 

Oscillation Corrector as pre-processing are shown in Figure 7. 
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Figure 7. Sample user trajectory to explain the increase in the number of trips after applying 

Oscillation Corrector as pre-processing. The left figure shows the trajectory without correcting 

oscillation, and the right figure shows the trajectory after applying Oscillation Corrector in pre-

processing. Black dots represent raw location records and red circles represent inferred stays. 

 

The user shown in Figure 7 has three stays (right figure), two of which cannot be inferred when 

oscillation is present (left figure). The reason is that oscillation breaks each of the two stays into 

two segments, and neither segment satisfies the duration constraint (i.e. a minimum duration of 

5 minutes). Stay B (on right figure), for example, lasts from 12:06 to 12:14, which meets the 

duration constraint. However, an oscillation occurring at 12:10 separates the stay into two parts, 

one from 12:06 to 12:10 and the other from 12:10 to 12:14, and both parts are below the duration 

constraint of 5 minutes (shown in the left figure). Similarly for stay C, an oscillation happening at 

12:23 breaks the stay (lasting from 12:19 to 12:27) into one segment lasting from 12:19 to 12:23 

and the other from 12:23 to 12:27, respectively. The fact that presence of oscillation breaks a 

user’s trajectory into segments of short durations (less than the minimum duration constraint) and 

thus makes the clustering method unable to identify those stays likely underlies the observation 
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that correcting the oscillations before clustering will increase the number of stays and trips. Among 

the 483 users who made at least one stay in the cellular dataset, 101 users (21%) have increased 

number of stays/trips observed after correcting oscillations in pre-processing, suggesting this 

pattern is common in a cellular dataset. It is also worth noting that stays with shorter durations 

are more vulnerable to the impact of oscillation than stays with longer durations: in Figure 6, 

oscillation also happened to stay A but does not mask stay A from being inferred, likely due to the 

longer duration of stay A (19 minutes) than B and C (8 minutes).  

 

For radius of gyration, Figure 6 suggests two patterns. First, correcting oscillation will increase 

the radius of gyration per person per day. The value increases slightly from 1.943 km when 

oscillation is not corrected to 1.946 km and 1.949 km when Oscillation Corrector is applied as 

post-processing with time windows of 5 min and 11 min, respectively. When Oscillation Corrector 

is applied as pre-processing under the two time windows, the radius of gyration increases to 1.975 

km and 2.071 km, respectively.  These numbers lead to the second observation, that is, with the 

same change point value, applying Oscillation Corrector as pre-processing results in larger radius 

of gyration than applying it as post-processing. As aforementioned, Oscillation Corrector as pre-

processing could lead additional stays to be identified (thus increases the number of stays) while 

Oscillation Corrector as post-processing could result in stays being merged (thus decreases the 

number of stays). It is intuitive that those merged stays are close in distance while those newly 

identified stays are likely far away from existing stays (or otherwise they may be absorbed into 

existing stays). Therefore, both the increased number of stays by Oscillation Corrector as pre-

processing and decreased number of stays by Oscillation Corrector as post-processing reduce 

the spatial concentration of stays and lead to increases in radius of gyration.  

 

Another mobility metric of interest for comparison is departure time distribution. Figure 8 shows 



28 

the departure time distribution in terms of the proportion of trips that start at different times of day, 

aggregated to half-hour intervals, under different configurations for Oscillation Corrector. When 

the time window equals 10 seconds or 5 minutes, there is little to no difference in the departure 

time distributions between not correcting oscillation, applying Oscillation Corrector in post-

processing or in pre-processing. However, as the time window further increases to 11 minutes, 

the differences among the three configurations become more noticeable. There are two 

observations under the situation where the time window is equal to 11 minutes in Figure 8. First, 

applying Oscillation Corrector as pre-processing appears to result in more trips happening in early 

morning (12am – 6am) and fewer trips during the morning peak (8am – 11am) and afternoon 

peak (3pm – 6pm), compared to the pattern for not correcting oscillations; and second, correcting 

oscillations in post-processing appears to have opposite effects: it results in fewer trips inferred 

in early morning and more trips inferred during the morning and afternoon peaks. This finding may 

be related to the earlier finding that Oscillation Corrector increases the number of trips if applied 

in pre-processing and decreases the number of trips if applied in post-processing (Figure 6). It 

may also be related to the fact that in early morning, when cellular phone usage is the lowest 

during a day (Caceres et al., 2012) and thus data during that period is fairly sparse. The more 

sparse the data is, the fewer location records that capture each stay, and the more likely that stay 

inference will be affected by oscillations (and correcting oscillations). As a measure of sparsity 

(Ban et al., 2018) in the cellular dataset, the average time interval between consecutive location 

records is 1,442 seconds in early morning while only 854 during other times of day, suggesting 

that the cellular data is more sparse in early morning than during other times of day. 
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Figure 8. Effects of different settings for Oscillation Corrector on departure time distribution. The 

black dash curve and black solid curve mostly overlap in the figure. 

 

5.2. Effect of different clustering methods on inferred mobility patterns 

Two clustering methods, trace segmentation clustering and incremental clustering, with varying 

change point values, are tested in this study. Figure 9 shows how they result in different numbers 

of trips inferred. The first observation from Figure 9 is that when trace segmentation clustering is 

applied, the number of trips inferred is always higher than when (only) incremental clustering is 

applied, and this phenomenon is more pronounced when the distance threshold is lower. There 

are two possible reasons behind this phenomenon. The first one is associated with how the 

distance threshold is applied differently in trace segmentation clustering and incremental 

clustering. In trace segmentation clustering, the distance between every pair of location records 

must be below the distance threshold for the location records to be clustered, compared to the 

distance between cluster center and a location record considered in incremental clustering. This 

increases the difficulty for location records to be clustered together in trace segmentation 

clustering, and thus make them more likely to break into different small clusters than in 

incremental clustering. The second reason is because trace segmentation clustering divides a 
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user’s trajectory into segments and identifies stays in each segment. There is likelihood that one 

stay be identified as two or more stays. The segmentation operation also explains why increasing 

distance threshold raises the number of trips inferred by incremental clustering more than the 

number inferred by trace segmentation clustering: the (temporal) segments created by trace 

segmentation clustering pose an additional constraint for the inferred number of trips to increase, 

while incremental clustering is free from this constraint. The second observation from Figure 8 is 

that applying incremental clustering after trace segmentation clustering makes little difference 

compared to using trace segmentation clustering only. This finding is expected as incremental 

clustering applied after trace segmentation clustering only changes the labeling of stays, i.e. 

recurring stays will be identified to be at the same stay location. Its effect on the number of stays 

(and thus trips) is minimum.  

 

Regarding how the change point values affect the inferred number of trips, there are also two 

observations. The first one is that the number of trips decreases with duration threshold, under 

each given distance threshold. This observation is expected, as higher duration threshold results 

in more records to be clustered together, resulting in fewer stays. The second observation is that 

when the duration threshold is low (e.g., at 0.5 minute), the number of trips can increase with 

higher distance threshold. Figure 1 in the introduction section illustrates this phenomenon. At the 

distance threshold is very low (0.05 km), fewer records satisfy this threshold, resulting in few stays. 

As the distance threshold increases to 0.2 km, more stays emerge as more records can satisfy 

this criterion. When the duration threshold is at 5 minutes or higher, this distance effect disappears: 

Figure 9 shows that the number of trips remains roughly the same at varying distance thresholds.  
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Figure 9. Effects of different types of clustering methods and different change point values on the 

inferred number of trips. 

 

How different settings of clustering methods affect radius of gyration (per person per day) is shown 

in Figure 10. We make three observations here. First, increasing duration threshold leads to lower 

radius of gyration, with everything else being equal. Second, the radius of gyration resulting from 

incremental clustering appears to be always smaller than that resulting from trace segmentation 

clustering. Both findings are consistent with previous findings and expected. What is slightly 

different from Figure 9 on the number of trips is that the increase in radius of gyration with distance 

is more pronounced at even higher duration thresholds such as 30 minutes.  
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Figure 10. Effects of different types of clustering methods and different change point values on 

the inferred radius of gyration, averaged for all days for all people. 

 

Figure 11 shows the departure time distribution under different clustering method configurations. 

Three observations are as following. First, as distance threshold increases, the distribution 

introduces more variations, meaning that peaks are higher and valleys are lower. The same goes 

for decreasing duration threshold. The reason behind these two observations could be that as the 

constraints are relaxed (raising distance threshold or lowering duration threshold), the inferred 

stays will falsely capture more and more transient points when people are traveling (e.g. waiting 

for green light at an intersection). For example, at distance threshold of 0.5 km and duration 

threshold of 0.5 minutes, the departure time distribution seems to indicate a morning peak around 
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8 am and evening peak around 6 pm. 

 

Figure 11. Effects of different types of clustering methods and different change point values on 

the inferred departure time distribution. The orange curve and blue curve mostly overlap in the 

figure. 

 

For comparison between incremental clustering and trace segmentation clustering, Figure 11 

suggests that the departure distributions inferred by the two clustering methods are overall similar, 

especially when distance threshold is high and duration threshold is low. However, a noticeable 

difference between the departure time distributions inferred by the two clustering methods is that 
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when the distance threshold is 0.05 km, a smaller proportion of people travel at night (9 pm to 9 

am) as inferred by incremental clustering, compared to that inferred by trace segmentation 

clustering. But when the distance threshold is 0.2 km, the pattern reverses. Considering that most 

people stay at home at night and those stays are recurring, incremental clustering, which utilizes 

location records of multiple days and applies the distance threshold to the distance between a 

cluster center and a location record, could capture home stays more accurately than trace 

segmentation clustering. Trace segmentation clustering on the other hand, could falsely identify 

a home stay to be multiple separate stays especially when the distance threshold is low (e.g. 0.05 

km). However, incremental clustering has its disadvantages as well. When multiple stays form a 

cluster with close distances between them, incremental clustering could falsely merge them into 

a single stay. This may explain why incremental clustering infers fewer trips during the day (9 am 

to 9 pm) than trace segmentation clustering when the distance threshold equals 0.2 km.  

 

5.3. Computational performance of the workflows 

To generate the datasets for testing the computational performance of workflows, users from the 

app-based data (see Section 4.1) are randomly sampled. All location records of a sampled user 

are added to a dataset until the dataset reaches a given size. Using this procedure, six datasets 

at 1 GB, 10 GB, 25 GB, 50 GB, 75 GB, and 100 GB, respectively, are generated.  

 

The workflow applied to each dataset is as following. First, the dataset is split into two, one 

containing only cellular location records and the other containing only GPS location records 

(method of splitting data is described in Section 4.1). Then the workflow “Trace Segmentation 

Clustering – Incremental Clustering – Stay Duration Calculator” is applied to the GPS dataset, 

and the workflow “Incremental Clustering – Stay Duration Calculator – Oscillation Corrector – 

Stay Duration Calculator” is applied to the cellular dataset. The outputs from the two workflows 
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(i.e. inferred GSP and cellular stays) then serve as inputs to the Stay Integrator container to 

produce the final output stays. 

 

Due to the large data volume, the tests are performed using University of Washington’s high-

performance computing cluster “Hyak”. All tests are performed on a Hyak computing node that 

has an Intel Xeon Gold 6230 processor with 20 CPU cores each at 2.10 GHz, and 64 GB memory.  

 

Figure 12 shows the elapsed computation time and memory utilization when the 10 GB app-based 

dataset (which contains both GPS and cellular location records) is processed. The horizontal axis 

represents the time elapsed in minutes, and the vertical axis shows the corresponding memory 

utilization over time. The red dashed lines indicate when the execution of a container is completed. 

For example, the Trace Segmentation Clustering container for processing the GPS dataset (10 

GB) was finished in 58 minutes after the workflow starts. The lowest memory utilization on 

average appeared between 121 minutes and 124 minutes when the Oscillation Corrector 

container is applied to cellular stays, while the highest memory utilization happens when the 

Incremental Clustering container is running to process the GPS data from 58 minutes to 85 

minutes. Figure 12 shows that the peak memory utilization is about 5.7 GB. The entire workflow 

takes 3 hours and 45 minutes to run, while the Stay Integration container requires the largest 

amount of computation time (98 minutes) among all the containers. 
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Figure 12. Computation time and memory utilization of the test workflow with 10 GB data 

comprising 60,000 users with data in March, April and November of 2019. The starting time is set 

to 0. Each red dashed line marks the time when the execution of a container is finished.  

 

To examine how the computation time scales relative to the volume of data, Figure 13 shows the 

computation time of applying MAW for analyzing dataset of different sizes on the same type of 

Hyak computing node (Intel Xeon Gold 6230 processor and 64 GB memory). An approximately 

linear relationship between the data volume and the computation time is observed. These findings 

suggest that the developed MAW has manageable computational costs, in terms of both memory 

utilization and computation time, for analyzing large volumes of mobile data. This enhances the 

accessibility and interoperability of MAW on machines with limited computational resources (e.g. 

on one’s personal computer), and the reusability of MAW to real-world cases in large scales where 

terabytes of mobile data is generated on a daily basis. 
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Figure 13. Time cost of running the test workflow for data of different volumes as input. 

 

6. Concluding Discussions 
 
This study has two unique contributions. First, it addresses the issues of accessibility, 

interoperability, reproducibility and reusability long existing in the human mobility research 

community. An important charge of human mobility research is to discover general truths about 

how individuals conduct their activity and travel patterns in time and space (Chen et al., 2016). 

This means that findings from one study shall be replicable in another study, with different 

datasets but the same set of analysis methods (National Academies of Sciences, Engineering, 

and Medicine, 2019). Replicability requires that analysis methods and codes developed to be 

accessible to others; the same set of results can be reproduced when the same methods are 

applied to the same data; and the software codes developed to implement some analysis methods 

can be reused for additional cases and/or different contexts for consistency checks. It is those 

considerations that initially motivated this study.  

 

The present study is also motivated by that the results of mobility analysis form the very basis of 

transportation policies and investments that affect millions of people's lives. Though there has not 
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been disturbing news about scientific fraud, recent years have witnessed a pattern of failing to 

replicate sometimes sound results across domains including psychology, economics, 

environmental, and medical sciences (Aarts et al., 2015; Camerer et al., 2016; Pexma and Lupker, 

1995; Stupple et al., 2019). These disturbing trends, some of which are high-profile, have 

prompted multiple federal agencies including the National Science Foundation, the National 

Institutes of Health, and the National Academies of Sciences, Engineering, and Medicine to issue 

guidelines and reports on issues relating to reproducibility and replicability.  

 

Compared to other fields, transportation research and in particular travel behavior and mobility 

research, lags behind in thinking and writing about, discussing, and integrating reproducibility and 

replicability into research. A search in the literature using keywords such as transportation, 

reproducibility, and replicability returns few studies. While there may be legitimate factors that 

may inhabit reproducibility and replicability (e.g., diverse methods and diverse data being used, 

confidentiality), one can also argue that the use of diverse methods and data are precisely the 

reasons for increasing reproducibility and replicability across studies. Figure 1 illustrates this need 

amid the larger background that more of these big datasets will be increasingly used for 

transportation investment and policy decisions. The fact that few to no study results from core 

transportation journals may also reflect the reluctance of leading journals to view such work as 

science and thus indirectly play a role that discourages the promotion of reproducibility and 

replicability in transportation research. The authors argue that it is time to engage transportation 

researchers to start conversations about these issues so that definitions and meanings of 

reproducibility and replicability can be better understood and severe, irreversible mistakes can be 

avoided. This need is especially dire for mobility analysis.  

 

The diversity of mobility analysis methods and data also highlights the second contribution of this 
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study: to advance our understanding of how different mobility analysis methods and their 

parameter settings affect the inferred mobility patterns. Since the debut of human mobility analysis 

using big mobile data in early 2000s, the collection of mobility analysis methods and algorithms 

has significantly expanded. And yet, comparative analysis of different mobility analysis methods 

is still few. This further limits the reusability of mobility analysis methods, as whether there are 

alternatives to the methods and how their parameter values should be reset to fit in a different 

context cannot be ascertained.  

 

This study develops a mobility analysis workflow (MAW) so that the codes developed in this 

analysis can be accessible to, reproduced, and reused by others. Reusability supports replicability 

because a developed workflow for one mobility analysis can be reused on new datasets for 

consistency checks. As noted earlier, among the vast number of studies using mobile sensor data, 

the underlying data pre-processing procedures are often not reported and methods used to 

analyze the data and derive trajectories are many but there are few benchmarking studies 

comparing the results of different methods on the same dataset, or the same method on different 

datasets. This study represents an effort on the authors that puts a set of codes for mobility 

analysis into containers and workflows so that others can reproduce and replicate the current 

study and reuse them for their own studies.  

 
Moreover, built upon MAW, this study tests and analyzes how different pre-processing and 

analysis methods affect inferred mobility patterns. Different workflows that incorporate different 

mobility analysis methods, different orders in applying the methods and different parameter value 

settings are designed and tested using MAW. The number of trips, radius of gyration (i.e. spatial 

distribution of trips) and departure time distribution (i.e. temporal distribution of trips) are 

compared among the results from different workflows. The results confirm the impacts of data 

pre-processing and analysis algorithms on the derived mobility patterns. These results are 
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valuable information to researcher and practitioners in selecting appropriate mobility analysis 

methods and developing new ones, and enhance the reusability of mobility analysis methods in 

different contexts. 
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