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studies on forecast reconciliation. Under this approach, so-called base forecasts are produced
for every series in the hierarchy and are subsequently adjusted to be coherent in a second recon-
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can also be applied to grouped hierarchies. We prove that our approach preserves unbiasedness
in base forecasts. Our method can also account for correlations between base forecasting er-
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an application to sales of a large scale online retailer, to assess the impacts of our proposed
methodology.
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1. Introduction

Hierarchical time series are characterized by aggregation, or more generally by linear con-
straints in the temporal and or cross-sectional domain. They arise in many applications in-
cluding the field of demand forecasting, where sales of individual products can be grouped into
a hierarchy of sub categories and categories, or daily demand can be aggregated into weekly,
monthly and annual demand. Forecasts of such hierarchies support supply chain management
and production planning (Syntetos et al., 2016). Current state-of-the-art methods first generate
forecasts of all variables in a hierarchy (known as “base” forecasts), and then “reconcile” these
to ensure they respect aggregation constraints. These methods generally change the forecasts
of all series in the hierarchy. However, in a number of operational settings, there may be prac-
tical reasons for reconciling forecasts while leaving forecasts of a subset of pre-specified series

unchanged. This problem forms the subject of investigation of this paper.

Traditional approaches to forecasting hierarchical times series (bottom-up, top-down, middle-
out) focused on producing forecasts of a single level of the hierarchy and then obtaining forecasts
for other levels via aggregation, disaggregation or a combination of both. The pioneering work
of Hyndman et al. (2011) proposed forecasting all variables in a hierarchy and then reconcil-
ing these variables via a least-square problem such that the new forecasts were coherent (i.e.
aggregation constraints are satisfied). These methods have since been applied to temporal hi-
erarchies (Athanasopoulos et al., 2017), and extended to incorporate correlations between base
forecasting errors (Wickramasuriya et al., 2019). The theoretical properties of these methods
have been explored through both a game theoretic (van Erven and Cugliari, 2015) and geo-
metric (Panagiotelis et al., 2021) lens, with the latter establishing that any method based on
projections preserves the unbiasedness of base forecasts. Reconciliation has also been shown
to achieve significant accuracy improvements in several real applications (Yang et al., 2017;

Athanasopoulos et al., 2017; Zhang and Dong, 2018; Jeon et al., 2019; Ben Taieb et al., 2020).

It is important to note that in contrast to bottom up, top down or middle out methods,
reconciliation will adjust the forecasts of all series in a hierarchy. Also while reconciliation
improves forecast accuracy in the hierarchy overall, reconciled forecasts of individual series
within the hierarchy may experience only negligible improvement, or even a deterioration in
accuracy relative to base forecasts. Nystrup et al. (2021) discuss how this depends on error
structure and the degree of incoherency while Athanasopoulos et al. (2017) argue that the
greatest gains in forecast accuracy usually occur for the most inaccurate base forecasts. Indeed,

several case studies (e.g. Wickramasuriya et al., 2019; Hollyman et al., 2021; Pritularga et al.,



2021) show that the accuracy of the top level forecast worsen after the reconciliation step,
which is of particular concern since practitioners often care most about the top level. To
address this issue Hollyman et al. (2021) propose a reconciliation method that leaves the top-
level forecast unchanged. Unlike traditional top-down methods based on disaggregation, their
method is a projection, therefore preserves the unbiasedness of forecasts. They generalize their
method so that forecasts at any level (and not just the top or bottom level) remain unchanged.
Subsequent work by Di Fonzo and Girolimetto (2021) further explore the theoretical properties
of the method proposed by Hollyman et al. (2021).

We extend this literature by proposing a method for optimal reconciliation that keeps fore-
casts of a subset of series unchanged or “immutable”. In contrast to Hollyman et al. (2021) and
Di Fonzo and Girolimetto (2021), the immutable series in our proposed method may come from
different levels of the hierarchy. This may be particularly attractive when both the top-level
forecasts and the forecasts of some key individual product lines are subject to judgmental ad-
justments by experts and therefore should not be altered by the reconciliation process. Another
practical scenario where keeping forecasts from different levels immutable, is discussed in our
application in Section 5 where the amount of available training data is used to determine the set
of immutable forecasts. The set of immutable forecasts cannot be chosen completely arbitrarily
and conditions for selecting a valid set of immutable forecasts are also derived in this paper.

Our method preserves the unbiasedness of forecasts, a result we prove in this paper.

Our proposed method also extends Hollyman et al. (2021) and Di Fonzo and Girolimetto
(2021) in three more important ways. First, it is combined with the non-negative reconciliation
approach in Wickramasuriya et al. (2020) via the imposition of inequality constraints. This is
particularly critical in our application to sales data which are non-negative. Second, the pro-
posed method takes advantage of the full covariance matrix of forecasting errors, which improves
forecasts by facilitating information sharing between nodes and levels (see, e.g.,Wickramasuriya
et al., 2019; Nystrup et al., 2020). Third, our approach is more general than the LCC method
of Hollyman et al. (2021) in that it can be applied to grouped hierarchies, an example of which

we provide in Section 6.

The rest of the paper is organized as follows. In Section 2, we briefly review the relevant
literature on forecast reconciliation. We then demonstrate our constrained forecast reconcilia-
tion method in Section 3. In Section 4, we conduct two Monte Carlo experiments to show the
benefits of our methods under certain circumstances. In Section 5, we evaluate the performance

of the proposed method with an application to the demand data in an online supermarket in



China. Section 6, demonstrates its use and benefits in a case study of the Wikipedia page views
dataset, followed by concluding remarks in Section 7. The code for reproducing the results is

available at https://github.com/AngelPone/chf.

2. Related work

This section briefly introduces the notation used in this paper and the methodological frame-
work of forecast reconciliation. For simplicity, we only provide a full exposition of the cross-
sectional context hierarchical time series noting that the extension to temporal hierarchical time

series is straightforward.

2.1. Notation

For a given hierarchy, let n denote the total number of time series in the hierarchy, and
y, € R™ denotes a vector of observations at time ¢. To preserve the full generality, we adopt
the concepts of hierarchical time series and coherence proposed by Panagiotelis et al. (2021).
Let by € R™ denotes a vector of basis time series. In contrast with most of the literature for
which b; denotes “bottom” level series, in our case, b; can consist of time series from multiple
levels in the hierarchy. y, can be determined by right multiplying matrix S (a constant matrix
of order n x m) by b;. Here, S is not necessarily a summing matriz, but its columns still span

the subspace where forecasts are coherent. Thus, for observations at time ¢, we have

yt = Sbt

To make this clearer consider a 3-variable hierarchy where X =Y + Z. Defining with basis

series [Y, Z] and [X, Y] allow the hierarchy to be defines as

X 11 X 1 0

Y X
Y|=1]120 or |lY|=1]0 1

A Y
Z 01 A 1 -1

Despite the fact that the definition on the left is almost always used, the existing reconcili-
ation methods described in this section are invariant to the way the hierarchy is characterized.
The reason why we consider characterizations such as that on the right will become clearer in

Section 3.
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We use the term determined time series for the n — m elements in y, that are not basis
time series. A vector of h-step-ahead incoherent base forecasts given observations up to time
T is denoted gy (h). Let 1) be a mapping that reconciles the base forecasts to be coherent, i.e.,
yr(h) = ¥(yr(h)), where gr(h) denotes the reconciled forecasts subjective to the aggregation

constraints. In this paper, we focus on the linear forecast reconciliation method, in which
yr(h) = SGyr(h).

G is an m X n weighting matrix that combines the base forecasts to obtain reconciled forecasts
for basis time series, i.e., I;T(h). They are then mapped to the coherent forecasts of all levels
by pre-multiplying the summing matrix S. The choice of G depends on the estimator used in

forecast reconciliation.

2.2. Forecast reconciliation

Although motivated in different ways, most forecast reconciliation methods find the recon-

ciliation weights G by solving the following optimization problem:

min (yr(h) — SGyr(h))W (gr(h) — SGyr(h))

st. GS =1, (1)

which for a given W is solved by G= (S'W S)~18’W. The objective function in Equation 1
can be more compactly written as (g — g)'W(y — g), a convention we follow for the remainder
of the paper. Different reconciliation methods correspond to different choices for W. For
example, the original Hyndman et al. (2011) paper uses I, van Erven and Cugliari (2015) and
Athanasopoulos et al. (2017) assume a diagonal W, while Wickramasuriya et al. (2019) prove
that setting W to the inverse covariance matrix of forecast errors has a number of attractive
theoretical properties. Alternative estimation strategies for the covariance matrix have been
proposed by Nystrup et al. (2020, 2021) and Pritularga et al. (2021). An alternative approach
is to directly regularize the elements of G as proposed by Ben Taieb (2017) and Ben Taieb
and Koo (2019), but unlike the general optimization problem given in 1, these approaches do

depend on the way the basis series and S matrix are defined.

An important modification to Equation 1 is given by Wickramasuriya et al. (2020) who

restrict the reconciled forecasts to be non-negative, a particularly important feature in ap-



plications such as demand forecasting. They implemented the proposed method by adding
non-negativity constraints to the original least-square minimization problem and solved this

quadratic programming problem using three standard QP algorithms.

min (§ - §)'W (3§ - )

s.t. b>0.

While the algorithms they used speed up the computation, dealing with high-dimensional
hierarchies can be time-consuming. In section 3 we extend this approach to the case with
immutable forecasts, which can improve computational speed by keeping immutable forecasts

of nodes with forecast error variance and thus reducing the effective dimension of the hierarchy.

2.3. Forecast reconciliation with immutable forecasts

Hollyman et al. (2021) proposed the level-conditional coherent (LCC) forecasts, obtained
by minimizing the variance of the reconciled bottom level forecasts, while in the meantime,
ensuring the summation of reconciled bottom-level forecasts equal the base forecasts of some

specified level.

Our method generalizes the LCC method in three ways. First, our proposed method is able
to keep multiple nodes from different levels immutable during reconciliation, while for LCC all
immutable series must be from the same level. Our application in Section 5 provides one such
scenario where nodes from different levels must be kept immutable. Secondly, our method allows
for non-diagonal W, allowing information in the forecast error covariance matrix to be accounted
for, thus enhancing the performance of reconciled forecasts. Third, our approach generalizes
to grouped hierarchies. More importantly, from the mathematical point of view, the LCC
approach reconciles the base forecasts within a low-level hierarchy - the conditional level and
the bottom level - using the variance scaling approach (Hyndman et al., 2016; Wickramasuriya
et al., 2019) and keeping the conditional level immutable, which is also pointed out by Di Fonzo
and Girolimetto (2021). Consequently, LCC approach would only incorporate information of
bottom level. However, information of other levels is also important. Our proposed method

would consider the covariance information of all the mutable nodes in the hierarchy.

To emphasize the difference between LCC and our proposed method, we consider a three-

level hierarchy shown in Figure 1. To keep 97t immutable, our proposed method tries to
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Figure 1: A simple three-level hierarchy

optimize the following problem:

min(y — )W (g - 9)

<

(3)

s.t. YTotal = YTotals

where W can be any estimators of the covariance matrix of base forecast errors. Thus, our
proposed method can potentially incorporate information from all mutable levels. However,
the LCC method uses a diagonal estimator of the covariance matrix, diag([0,0,0,cri A,UE‘ B
0% 4,0%5]). The estimator entirely ignores information of middle level and covariance. Fur-
thermore, if y4 is set to be immutable, LCC would only consider the small hierarchy y =
[ya,ya4,yap]) (Di Fonzo and Girolimetto, 2021) and ignore information from other nodes,
which can be captured by our proposed method. Besides, LCC can not be used when a subset

of bottom-level series is immutable.

3. Forecast reconciliation with equality constraints

We now introduce our method for keeping forecasts of a chosen set of variables, not all
necessarily from the same level, unchanged after reconciliation, i.e. immutable. We denote
the immutable series with the k-vector u;. The basis time series must be chosen so that the
immutable series are a sub-vector of the basis series. Without loss of generality, we assume
that these are the last k elements of b;. The first m — k elements of b; are mutable time series,
which we denote v;. The determined time series (which by construction are also mutable) are
denoted w;. The hierarchy of base forecasts is thus stacked as, ¢, = (W, ¥}, 4})’. A summary
of the terminology and notation is provided in Table 1 where subscripts are dropped for ease of

exposition.



Table 1: Summary of terminology and notation used for different series

Term  Notation Description

Full hierarchy y = (w’,v’,u’)’ All series.

Immutable wu Series with forecasts that do not change after reconciliation.
Mutable  (w’,v")’ Series with forecasts that do change after reconciliation.
Basis b= (v/,u’)’ Series used to define hierarchy, not necessarily the same as bottom level.
Determined  (u/,w’)’ Series that can be determined if values of basis level and constraints are known.

The summing matrix can be partitioned as

S So
S= I, O(m—kyxk | »

Ok (m—tk) Lkxk

where S and Ss are (n —m) x (m — k) and (n —m) x (k) matrices respectively, 0, is an
a X b matrix of zeros and I, is an a X a identity matrix. Immutable forecasts are found as the
solution to the following optimization problem can be written as
min(y — )W (g - 9)

Yy

s.t. uw=1u, (4)

519 + Syt = W,

where W is the covariance matrix of the base forecast errors. The first constraint guarantees
that immutability of w. The second constraint is the aggregation constraint. By substituting w
into the objective function, the original constrained optimization problem becomes the following

unconstrained problem:

min(v — §19) W, (v — S§19), (5)
where
. S W — Syt
Sl = ! ,Iv/ - 2 3
) 0)

and W, is the covariance matrix of base forecast errors of the mutable series. This a generalized

least squares problem, similar to that in Equation 1 with solution

b= (S\W,'8) 1§\ W, w. (6)
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The reconciled forecasts of the hierarchy can be obtained through ¢ = Sb = SG’@.

Theorem 1. If the vector of base forecasts y is unbiased, then the reconciled forecasts SG”@

with G given by FEquation 3 are also unbiased.
Proof. See Appendix. O

The covariance matrix of base forecast errors W is unidentifiable and can be estimated
in terms of historical base forecast errors. In this paper, we use four estimators also used in
Wickramasuriya et al. (2019), which are OLS estimator, WLS applying variance scaling, WLS
applying structural scaling and shrinkage estimator. They are denoted as OLS, WLS,,, WLS,
and MinT(Shrinkage), respectively.

Our proposed method for immutable forecasts can be combined with non-negative recon-
ciliation proposed by Wickramasuriya et al. (2020) by imposing nonnegativity constraints into
Equation (5). The optimization problem becomes

min(& — §19)W (v — §19)

v ’ (7)

st. ©v>0.

This quadratic programming problem has a unique global solution and can be solved by quad-
prog package for R when v has low dimension. When @ is of high dimension, Wickramasuriya
et al. (2020) suggested using the block principal pivoting (BPV) algorithm, projected conjugate

gradient (PCG) algorithm, or scaled gradient projection algorithm to accelerate the solution.

Note that the solution to Equation (7) will not still be unbiased when imposing nonnegativity
constraints. Also, care must be taken in using this algorithm, since although the algorithm
guarantees non-negativity of mutable forecasts, negative base forecasts of immutable series will
not be changed after reconciliation. In these cases, reconciled forecasts of some determined series
may also be negative. Therefore, in applications where non-negative forecasts are required, we

recommend that steps should be taken to ensure base forecasts are not negative.



3.1. Conditions for selecting a set of immutable forecasts

Any subset of series in the basis set can be immutable. However, the basis set can not be

chosen arbitrarily for a given hierarchy. Let y = Sb be any valid representation of the hierarchy

(e.g., b can be bottom-level series). Let b* = (y;,,...,y;,.) be a candidate set of basis series,
where j1, ..., jm are the indices of the elements of y. Let S;;; be a square matrix formed by
taking the rows of S corresponding to the indices ji, ..., jm.

Theorem 2. A candidate set of basis series b* is valid if S;y 1s invertible.

Proof. See Appendix. O

4. Monte carlo simulations

In order to demonstrate the applicability of the method proposed in Section 3, we carry
out two Monte Carlo experiments. In Section 4.1, we focus on the situation where we know
the underlying data generating process (DGP) of the top level series, but have limited infor-
mation about the disaggregated series. In Section 4.2, we concentrate on the scenario, where
the disaggregated series are noisy while the aggregated series are less noisy compared to the
disaggregated series due to the smoothing effect of aggregation. We consider a simple hierarchy
as shown in Figure 1. There are four time series at the bottom level and each two of them are

aggregated to obtain the middle level series. Summing the middle level gives the top level.

4.1. Scenario I: model misspecification in disaggregated levels

4.1.1. Simulation setup

Firstly, we want to simulate a scenario where we have limited information about disaggre-
gated levels, so that the model is misspecified, while the top level is easier to model due to
aggregation. We simulate the series in a bottom-up manner. The bottom-level time series are

generated using the basic structural time series model

by = pe + st + 1y,
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where pu,, s; and 7, are trend, seasonal and error terms, respectively. They are simulated using

l"l‘t :Mt—l—i_vt—i_eh etNN<O7UgI4)7
V¢ = Vi1 + &g, €t NN(0,02I4),

St = — Zi;} Si—i +wi, wi ~N(0,0214),

where e;, ; and w; are independent of each other. [ is the length of seasonality period. We set
I = 12 for monthly data. We follow the parameter settings in Section 3.4 of Wickramasuriya
et al. (2019), and set 02 = 2,02 = 0.007 and 02 = 7. The initial values for p,vo, So, 81, - - - , 811
are independently generated from a multivariate normal distribution with mean zero and co-
variance matrix Xy = I4. The noise terms 1, are generated from ARIMA (p, 0, ¢) with p and ¢
taking value of 0 and 1 with equal probability. The coefficients of AR and MA component in the
ARIMA process are sampled from [0.5,0.7] uniformly. To simulate the dependence structure
between time series in the bottom level, the ARIMA DGPs have a contemporaneous error term

with covariance matrix

b

We generate T' = 324 observations for each time series, and the final h = 24 points are used as
test data for evaluation. Base forecasts are produced in two different ways. In the first way,
we use Exponential Smoothing (ETS) models for all levels. In the second way, we use ETS
models for the top levels while Autoregressive Integrated Moving Average (ARIMA) models are
used for the remaining levels. The ARIMA and ETS models are implemented using the default
parameters of auto.arima() and ets() functions in the forecast package for R (Hyndman and

Khandakar, 2008).

4.1.2. Forecasting results

Using the parameters described above, the simulation process is repeated 1000 times. The
average root mean squared error (RMSE) of each aggregation level and their mean values are
reported. The upper panel of Table 2 shows the results using the ETS base forecasts, and
the lower panel shows the results using ETS base forecasts for the top level and ARIMA base

forecasts for the other levels.

Table 2 shows the out of sample forecasting results for the simulated data using four different

covariance matrix estimators.
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Table 2: Out of sample forecasting accuracies for the simulated data in scenario I (model misspecification
in disaggregated levels). The upper panel (“ETS”) shows the results using the ETS base forecasts, and the
lower panel (“ETS + ARIMA”) shows the results using ETS base forecasts for the top level and ARIMA
base forecasts for the other levels. Subcolumns “U” and “C” show forecast accuracies of unconstrained
and constrained forecast reconciliation using different covariance matrices - OLS, WLS,, WLS, and
MinT (Shrinkage). The accuracy of base forecasts is also shown for comparison.

ETS
. OLS WLS, WLS, MinT (Shrinkage)
Level Base U C U C U C U C
0 21.4003 21.3741 21.4003 21.3893 21.4003 21.4204 21.4003 21.4006 21.4003
1 11.9528 11.9269 11.9393 11.9255 11.9316 11.9347 11.9270 11.9165 11.9176
2 7.1655 7.1424 7.1474 7.1418 7.1440 7.1454 7.1417 7.1398 7.1392

Average 13.5062 13.4811 13.4956 13.4855 13.4920 13.5002 13.4897 13.4856 13.4857

ETS + ARIMA
OLS WLS; WLS, MinT (Shrinkage)
Level Base U C U C U C U C
0 21.4003 21.4422 21.4003 21.6658 21.4003 21.9257 21.4003 22.1046 21.4003
1 12.6553 12.1994 12.1921 12.2582 12.1625 12.3544 12.1495 12.4509 12.1726
2 7.7049 7.5549 7.5562 7.5745 7.5440 7.6079 7.5359 7.6255 7.5303

Average 13.9202 13.7322 13.7162 13.8328 13.7022 13.9627 13.6952 14.0603 13.7010

We use the following taxonomy for different methods. We use “C” to denote the method
described in section 3 with immutability constraints (top level immutable), while “U” denotes
reconciliation without immutability constraints as described in Section 2. We also consider
three weighting schemes. First, OLS sets W = I. Second, WLS; refers to the structural
scaling of Athanasopoulos et al. (2017), where W is a diagonal matrix with weights is inversely
proportional to the number of series used to form an aggregate. Third, WLS, refers to the
case were W is a diagonal matrix with weights is inversely proportional to the forecast error
variance of each series. A full estimate of the covariance matrix is not pursued here since the

number of training observations is different for each time series.

We can see that, even though the regular forecast reconciliation improves the forecasting
accuracy of disaggregated series, it may decrease the forecasting accuracy of the top level,
especially when the disaggregated series forecasts are generated by ARIMA models. Keeping
the base forecasts of the top level unchanged maintains the accuracy in the top level and shows
extra improvements in the disaggregated levels. This simulation study corresponds to a common
scenario in practice, in which the disaggregated series are hard to model while the aggregated

series is easier to fit.
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4.2. Scenario II: exploring the smoothing effect of aggregation

4.2.1. Simulation setup

Another common scenario in practice is that the lower level series are highly volatile and
have a low signal-to-noise ratio, while these fluctuations are smoothed out due to aggregation
in the upper levels. We implement the simulation based on the work of van Erven and Cugliari
(2015) for the hierarchy shown in Figure 1. The bottom level series are generated as described
in Section 4.1. A noise component is then added to make the bottom level series noisier than the
aggregated series. Following Wickramasuriya et al. (2019), the bottom-level series are generated
using

YAaAr = zaAg — Vg — 0.5wy,

YAB,t = 2AB,t T V¢ — 0.5wy,

YBAt = ZBA,t — Ut + 0.5wy,

YBB,t = 2BB,;t + vt — 0.5w,
where zaa:,24Bt, ?BAt, BB, are bottom-level series generated as described in Section 4.1,
v ~ N(0,10) and wy ~ N(0,9) are independent white noise processes. The bottom-level series

are then added up to obtain aggregated series.

4.2.2. Forecasting results

Using the same parameters as Section 4.1, we repeat the simulation process 1000 times. As
shown in Table 3, in this simulation study where the lower level series are noisier than Scenario
I, the unconstrained reconciliation methods always perform worse than the base forecasts for
the top level, irrespective of whether ETS or “ETS 4+ ARIMA” is used. Keeping the top
level unchanged shows promising accuracy improvements compared to base forecasts and the
unconstrained forecast reconciliation methods. Note that keeping the top-level base forecasts
immutable in our experiments can be considered a top-down method. However, any level or
multiple nodes from different hierarchical levels can be constrained in practice, which shows

high flexibility of the proposed method.

5. Application: forecasting demand for promotion events in a major Chinese online

retailer

Demand forecasting is crucial in supply chain management, especially for the e-commerce

industry. Forecasts drive order, logistics and inventory management for large scale online re-
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Table 3:  Out of sample forecasting accuracies for the simulated data in scenario II (exploring the
smoothing effect of aggregation). The upper panel (“ETS”) shows the results using the ETS base
forecasts, and the lower panel (“ETS + ARIMA”) shows the results using ETS base forecasts for the top
level and ARIMA base forecasts for the other levels. Subcolumns “U” and “C” show forecast accuracies
of unconstrained and constrained forecast reconciliation using different covariance matrices - OLS, WLSg,
WLS, and MinT (Shrinkage). The accuracy of base forecasts is also shown for comparison.

ETS
. OLS WLS, WLS, MinT (Shrinkage)
Level Base U C U C U C U C
0 21.209 21.233 21.209 21.348 21.209 21.405 21.209 21.271 21.209
1 12.611 12.526 12.513 12.549 12.486 12.571 12.483 12.459 12.429
2 8.487 8.382 8.377 8.391 8.366 8.400 8.366 8.357 8.346

Average 14.102  14.047 14.033 14.096  14.020 14.126  14.019  14.029 13.995

ETS + ARIMA
OLS WLS; WLS, MinT (Shrinkage)
Level Base U C U C U C U C
0 21.2092 21.3563 21.2092 21.6417 21.2092 21.8059 21.2092 21.9663 21.2092
1 13.2206 12.7756 12.7188 12.8465 12.6751 12.9120 12.6724 12.9523 12.6451
2 8.8454 8.6479 8.6287 8.6732 8.6126 8.6979 8.6131 8.7076 8.5982

Average 14.4251 14.2599 14.1856 14.3871 14.1656 14.4720 14.1649 14.5421 14.1509

tailers. Products and their sales naturally form cross-sectional hierarchies according to product
categories. It is usually essential to forecast series at different levels, and reconcile the forecasts
to make them coherent. In this section we discuss strategies for choosing immutable series is

such hierarchies and apply these ideas to real sales data from a major Chinese online retailer.

First, we may choose to series for which demand is intermittent to have immutable forecasts.
For large online retailers, such intermittent SKUs are common, and it may make sense to
forecast demand for such SKUs as zero. Reconciliation however will typically change the values
of intermittent forecasts. Applying our proposed method while keeping intermittent series
immutable provides a simple but elegant solution to this problem. This also effectively reduces
the dimension of hierarchy from thousands to hundreds, while at the same time achieving

coherent forecasts.

A second strategy for choosing immutable series may be motivated by promotions. Retail
sales have been shown to be significantly affected by promotion events, such as Black Friday in
North America and the “11.11” online shopping festival in China. Using promotion information
as exogenous variables is essential to improve forecasts during such promotional events. How-
ever, a common issue in e-commerce platforms is that new products emerge frequently meaning

that the training sample available for different SKUs will be of varying lengths. In these cases,
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forecasting sales of time series of newer products with a smaller number of observations us-
ing univariate forecasting methods can be challenging since they have insufficient observations,
especially during promotional periods. One way to solve this issue is to use a cross-learning
technique that trains a global forecasting model using all time series in the dataset and transfer
knowledge about the promotion effect from other time series. When more training observations
are used for older products compared to newer products we can expect the trained global models
to produce better forecasts for older products. This motivates keeping the forecasts of older
products immutable while still using reconciliation to cross-learn the promotion effect for newer

products.

5.1. Dataset

The sales data are obtained from the category “food” in the Chinese online retailer (who
cannot be identified since the data are proprietary), which consists of 40 subcategories and 1905
items. The data were daily collected from 2019-01-01 to 2021-09-12, but not every time series
starts from 2019-01-01 due to the emergence of new products. Figure 2 shows the total sales of
the “food” category. There are several spikes at specific dates in each year, which are caused
by large-scale promotional events that would affect the sales of most products, such as the
famous “11.11”7 and “12.12” shopping festivals in China. The dataset contains information on
these events, including their names, start and end dates, and a variable measuring the strength
of the promotion strength on each day. Promotion strength can be simply understood as
related to the extent to which product prices are discounted, and is divided into multiple levels.
Each promotional event is divided into multiple stages with different promotion strengths. For
example, the “11.11”7 event in 2020 starts from 2020-10-21 to 2020-11-13. This time period is
divided into five stages and the highest discount occurs on November 11th, which has the highest
total sales in 2020. The dataset also contains a calendar table that highlights the weekends,

holidays and traditional festivals in China, such as Chinese New Year.

5.2. FExperimental setting

Our objective is to forecast sales during eight promotional events from the end of 2020 to
2021-09-12 using observations starting from 2019-01-01. The eight events are listed in Table 4.
Due to a lack of historical data, we use promotion strength as a predictor rather than using many
dummies for each specific type of holiday. Figure 2 shows a drop in sales during Chinese New
Year holidays, e.g., from 2021-02-11 to 2021-02-18. This can be explained by customer stock-

piling before the holiday and a slowdown in express service due to staff shortages. Therefore,
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Table 4: Eight promotion events in the forecasting period. Note that Chinese New Year public holidays
are not included here since they are not promotion events.

1200-

900 -

Sales (in thousands)

Figure 2:

Name Description Start date  End date

11.11 Singles’ Day promotion 2020-10-21  2020-11-13
New Year Chinese New Year’s shopping festival 2021-01-19 2021-02-02
3.8 Women’s Day promotion 2021-03-04 2021-03-08
Anniversary Retailer’s anniversary 2021-04-19 2021-04-25
6.18 June 18th promotion 2021-06-01 2021-06-20
Summer Summer promotion 2021-07-11  2021-07-18
8.8 August 8th promotion 2021-08-05 2021-08-12
9.9 September 9th promotion 2021-09-08 2021-09-12
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Chinese New Year's shopping festival 3.8

—— Chinese New Year holidays
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Total sales of the category “food” from 2019-01-01 to 2021-09-12 in the Chinese online
supermarket,.
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we also add Chinese New Year holidays as exogenous dummy variables.

We adopt different modelling strategies for different variables. Bottom-level time series
containing 60 percent of zeros in the last two months are considered to be intermittent and
forecasts are generated using simple exponential smoothing model implemented by ses func-
tion in forecast package for R. For other non-intermittent series, we first implement Box-Cox
transformation, and then base forecasts are generated using a regression model with ARIMA er-
rors. The parameter of Box-Cox transformation is chosen by method in Guerrero (1993), while
ARIMA orders are chosen using the auto.arima function in forecast package for R. The only
exception is the top-level series do not implement Box-Cox transformation, for which forecasts
without transformation perform better. When there are only a few training observations in
promotion periods, regression models with ARIMA errors can produce unreasonably large fore-
casts and the Box-Cox transformation can amplify forecasts exponentially. Any forecasts more
than ten times larger than the highest sale in history is replaced with the mean of historical

observations.

We keep the intermittent series in bottom level immutable to reduce the dimension. We also
keep series with more than one year of training observations in bottom level immutable, since
we are more confident on their base forecasts obtained from enough historical information. The

top-level series is also kept immutable because the signal is strong in the aggregate series.

Sales are non-negative naturally. We conduct two experiments to compare the performance
of the method in Section 3 and compare results both with and without imposing non-negativity.
Due to the different time series lengths in the bottom level, covariance based reconciliation
method such as MinT(Shrinkage) cannot easily be used. Furthermore, time series exhibit sig-
nificantly different patterns in promotion events, and in particular the variance of base forecast
errors are higher when conditioning on a promotional period. Therefore for reconciliation, we
construct a weighting matrix based on the forecast error variance, computed using historical

promotion events only.

5.3. Forecasting results

Due to the various scales of different events and time series, we evaluate the forecasts us-
ing the average Mean Absolute Scaled Error (MASE, Hyndman and Koehler, 2006). Table 5
presents the mean MASE values of the forecasts of eight promotion events in Table 4. We
provide average MASE across different types of series. Level 0 and 1 are the top two levels

respectively. The bottom level is split into three. Level 2-0 represents the mutable time series
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Table 5: Out of sample forecasting accuracies for the Chinese online retailer data. Subcolumns “C”
and “C+NN” show forecasting accuracies of immutability reconciliation without and with imposing
non-negativity constraints, respectively. Subcolumns “U” and “U+NN” show forecasting accuracies
of conventional reconciliation without and with imposing non-negativity constraints, respectively. The
accuracy of base forecasts is also shown for comparison

OLS WLS, WLS,

Level ‘Base '« ¢ NN U  ULNN C C4NN U U+NN C C4NN U  U+NN
0 294 294 294 293 292 294 294 272 272 294 294 275 277
1 266 9.31 494 272.83 4884 6.41 483 16.09  6.50 243 247 239  2.40

2-0 2.04 8.98 4.31 3.98 2.70 7.19 3.71 2.96 232 197 1.88 1.86 1.83
2-1 0.11 0.11 0.11  42.66 15.43 0.11 0.11 26.99 8.34 0.11 0.11 1.52 1.52
2-2 1.08 1.08 1.08 1.64 1.48 1.08 1.08 1.36 1.25 1.08 1.08 1.58 1.19

in the bottom level, these have a few training observations especially during promotion events.
Level 2-1 refers to the intermittent series in the bottom level which are kept immutable. Level
2-2 represents the time series that have over one year of training observations, and are also cho-
sen to be immutable. We follow the same taxonomy for the reconciliation methods as described
in Section 4. However here, “C” refers to reconciliation, where in addition to level 0, level 2-1
and level 2-2; are kept immutable. Also, for this application, WLS,, is based on forecast error

variance computed only during promotional periods.

Regarding the weighting scheme, OLS performs the worst at all levels even compared to
base forecasts, followed by WLS; and WLS,. Imposing non-negative constraints is can stabi-
lize forecasts at level 2-1 (intermittent series) in particular, especially when using conventional
reconciliation. Of greatest interest is the comparison between reconciliation with immutability
constraints and without immutability constraints. Even in the best case scenario of WLS,, with
nonnegativity imposed, reconciliation without immutability constraints leads to large deterio-
ration in forecasts at Levels 2-1 (intermittent series) and 2-2 (series with more training data)
to the point where they are worse than base forecasts. In contrast, the equivalent results where
immutability constraints are imposed are at least as good as, or better than base forecasts for

all groups of series.

6. A grouped hierarchy: forecasting Wikipedia daily pageviews

In this section, we illustrate the proposed method using a publicly available real-world
dataset - Wikipedia daily pageviews. The dataset consists of one year of daily pageviews
(from 2016-06-01 to 2017-06-29) for the articles of the most popular social networks worldwide
on Wikipedia (Ashouri et al., 2019). The dataset has a grouped structure with the following
attributes: “Agent”: Spider, User, “Access”: Desktop, Mobile app, Mobile web, “Language”: en
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Table 6: Social networking Wikipedia pageviews grouping structure.

Grouping  Series Grouping Series
Total Language
1. Social Network 10. zh(Chinese)
Access Purpose
2. Desktop 11. Blogging related
3. Mobile app 12. Business
4. Mobile web 13. Gaming
Agent 14. General purpose
5. Spider 15. Life style
6. User 16. Photo sharing
Language 17. Reunion
7. en (English) 18. Video
8. de (German) Articles

9. es (Spanish)

(English), de (German), es (Spanish), zh (Chinese) and “Purpose”: Blogging related, Business,
Gaming, General purpose, Life style, Photo sharing, Reunion, Travel, Video (see Table 6).

The time series are obtained through the Wikipedia API', and we remove all-zero series.
The final dataset contains 1041 time series. We consider the main grouping levels and interactive
combination of them for reconciliation, i.e., we use base forecasts of these levels and variance
covariance matrix of their base forecast errors to obtain reconciled forecasts. The applied
hierarchical levels are as follows: Total, Access, Agent, Language, Purpose, Article, Access x
Agent, Access x Language, Access x Purpose, Agent x Language, Agent x Purpose, Language

x Purpose and Bottom levels: Access x Agent xLanguage x Purpose x Article.

Same as Section 4.1, we keep the top level immutable during reconciliation. We compare the
forecasting accuracy of reconciled forecasts between different base forecasting methods, between
multiple estimation methods of reconciliation matrix, and between whether equality constraints
are included. For simplicity, the average RMSE of main aggregation levels and their average

are reported in Table 7.

The upper panel of Table 7 shows the results of using ETS base forecasts for all levels.
We can see that the constrained forecast reconciliation with WLS, covariance matrix improves
forecasting accuracy in upper levels (i.e., levels upon the Purpose level) but decreases accuracy in
other levels. The constrained forecast reconciliation with WLS, and MinT (Shrinkage) improves

forecasting accuracy across all levels compared to the unconstrained forecast reconciliation.

The lower panel shows the results of using ETS to generate base forecasts for the top level

"Wikipedia API: https://wikimedia.org/api/rest_vi/
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Table 7: Out-of-sample forecasting accuracies of the Wikipedia pageviews dataset. The upper panel
(“ETS”) shows the results using the ETS base forecasts, and the lower panel (“ETS + ARIMA”) shows
the results using ETS base forecasts for the top level and ARIMA base forecasts for the other levels.
Subcolumns “U” and “C” show forecast accuracies of unconstrained and constrained forecast reconcili-
ation using different covariance matrices - OLS, WLS,, WLS,, and MinT (Shrinkage). The accuracy of
base forecasts is also shown for comparison.

ETS
OLS WLS, WLS,, MinT (Shrinkage)
Level Base U C U C U C U C
Total 12210.156  13563.924 12210.156 15192.699 12210.156 15433.606 12210.156 25267.803 12210.156
Language  3498.404  3888.629  3769.815  4261.181  3823.865  4358.279  3544.511  8135.100  4829.509
Access 4980.063  5839.776  5653.466  6353.256  5850.465  6850.826  5622.431 14307.679 10690.748
Agent 10054.721  9714.999  9775.191  9282.356  8834.911  9089.362  8001.871 13717.154  9895.496

Purpose 3538.569  3422.376  3609.756  2819.662  3052.171  2707.560  2535.024  3635.515  2913.612
Network 604.442 741.925 764.745 595.083 628.663 532.493 506.161 871.825 831.567
Bottom 58.854 102.675 104.221 74.090 75.868 64.449 62.546 105.923 100.636
Average 4992.173  5324.901  5126.764  5511.190  4925.157  5576.654  4640.386  9434.428  5924.532

ETS + ARIMA

Level Base OLS WLS, WLS, MinT (Shrinkage)

U C U C U C U C
Total 12210.156 18870.816 12210.156 24241.874 12210.156 24707.504 12210.156 21232.512 12210.156
Language  5898.918  5615.024  6236.067 6316.638  5124.889  6439.814  3835.802  5634.430  3772.354
Access 8511.683  8125.442  7954.186  8953.325  6920.617  9134.150  4942.954  7525.282  5558.481
Agent 12831.442 11617.428 11757.789 12598.884 10619.791 12663.466  7775.078 11004.191  7525.498

Purpose 4090.289  4295.386  5005.950  3403.371  3384.287  3251.668  2340.395  3137.897 = 2629.750
Network 563.297 653.120 749.176 521.706 613.466 479.970 425.459 462.020 424.921
Bottom 55.010 88.066 99.331 66.444 73.399 54.911 56.332 55.092 56.730
Average 7350.964  8196.203  7318.887  9339.300  6478.868  9446.095  5254.974  8166.055  5353.527
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and ARIMA for other levels. ETS base forecasts are more accurate compared to ARIMA base
forecasts in most levels except the bottom level, as shown in the Base column of Table 7. The
difference between constrained and unconstrained forecast reconciliation in the OLS and WLS,,
columns is similar to that in the upper panel, but the forecasting performances are worse. The
constrained forecast reconciliation using WLS,, and MinT (Shrinkage) covariance matrix shows
more significant improvements in accuracy except for the tiny decreases in bottom levels. The
results in both panels show that keeping base forecasts of the top level immutable can capture
the diversity and dependency among different levels more wisely, and engage the superiority of
forecast reconciliation when covariance matrix of base forecast errors is used and the time series

in disaggregated levels are noisy.

7. Conclusions

In this paper, we propose a forecast reconciliation approach that can keep the base forecasts
of specific levels or multiple nodes from different levels immutable after reconciliation. The
proposed method is flexible and general enough to allow for expert judgment in choosing the
series with forecasts that should not be adjusted by reconciliation. We prove that the proposed
method can produce unbiased reconciled forecasts as long as the base forecasts are unbiased,

and the equality constraints do not go beyond the boundary conditions.

Monte Carlo simulations and two empirical applications show the superiority of the proposed
method over conventional forecast reconciliation. In particular, constrained forecast reconcilia-
tion shows promising results when series are noisy and decision-makers have limited knowledge
about the underlying data generating processes of lower levels in the hierarchy. The application
to sales data from a major Chinese online retailer, shows the potential of the proposed method
in reconciling the forecasts of high-dimensional hierarchy where careful judgment is used in

selecting immutable time series.

There are several valuable directions worthy of further investigation. First, we show the
results under the cross-sectional scenario and propose the framework is suitable for both cross-
sectional and temporal hierarchies. As such, the framework can also be extended into the
cross-temporal data as in Kourentzes and Athanasopoulos (2019). Second, we select the set
of immutable series using judgment. It is worth to explore whether theoretical properties of
times series can be used to automate this process. Due to the diversity between different
forecasting methods and the heterogeneity across different datasets, the performance of the

forecast reconciliation framework may not be robust, therefore further research, particularly on
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impact of the covariance matrix estimation is needed.
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Appendix A. Proof for unbiased reconciled forecasts

Panagiotelis et al. (2021) show that the unbiased preserving property of forecast reconcil-
iation will hold as long as SG is a projection onto the space spanned by the columns of S.
Algebraically, this can be proven by showing GS = I for a given choice of G. For the choice G

shown in Equation 3 in Section 3 we can show,

G s o 52
. 1 O(m—k)xk O(n—m)x(n—k) S2
GS = S R (=) ) | Lo 0(m—k)xk
Ok:x(nfk) Iy Omx(nfk) Omxk
- Ok (m—k) Lkxk
I, G1S> 0p—k G1 S
O (m—k) Tk Okx(m—k) Ok
=1Ip,
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y S
§y=1""
O(m—k)xk

Appendix B. Proof for validity of candidate basis sets

A candidate basis set b* is valid if y can be constructed when only b* and the hierarchy are
known. By construction,

b" = Sib,
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To obtain a representation of ¢y in terms of b*, we can use
y = Sb=SS_1b" = 5'b*,

where §* = S S’{*ﬁ, which can be obtained only when S; is invertible.

23



References

Ashouri, M., Shmueli, G. and Chor-yiu, S. (2019), ‘Tree-based methods for clustering time series

using domain-relevant attributes’, Journal of Business Analytics 2(1), 1-23.

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N. and Petropoulos, F. (2017), ‘Forecasting
with temporal hierarchies’, Furopean Journal of Operational Research 262(1), 60-74.

Ben Taieb, S. (2017), Sparse and smooth adjustments for coherent forecasts in temporal aggre-
gation of time series, in ‘Proceedings of the Time Series Workshop at NIPS 2016, Vol. 55,
PMLR, pp. 16-26.

Ben Taieb, S. and Koo, B. (2019), Regularized Regression for Hierarchical Forecasting Without
Unbiasedness Conditions, in ‘Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining’, KDD 19, Association for Computing Machin-
ery, New York, NY, USA, pp. 1337-1347.

Ben Taieb, S., Taylor, J. W. and Hyndman, R. J. (2020), ‘Hierarchical Probabilistic Fore-
casting of Electricity Demand With Smart Meter Data’, Journal of the American Statistical
Association 116(533), 27-43.

Di Fonzo, T. and Girolimetto, D. (2021), ‘Forecast combination based forecast reconciliation:

Insights and extensions’, arXiv:2106.05653 [stat] .

Guerrero, V. M. (1993), ‘Time-series analysis supported by power transformations’, Journal of

Forecasting 12(1), 37-48.

Hollyman, R., Petropoulos, F. and Tipping, M. E. (2021), ‘Understanding forecast reconcilia-
tion’, European Journal of Operational Research 294(1), 149-160.

Hyndman, R. J., Ahmed, R. A., Athanasopoulos, G. and Shang, H. L. (2011), ‘Optimal
combination forecasts for hierarchical time series’, Computational Statistics Data Analysis

55(9), 2579-2589.

Hyndman, R. J. and Khandakar, Y. (2008), ‘Automatic time series forecasting: The forecast
package for r’; Journal of Statistical Software 27(1), 1-22.

Hyndman, R. J. and Koehler, A. B. (2006), ‘Another look at measures of forecast accuracy’,
International Journal of Forecasting 22(4), 679-688.

Hyndman, R. J., Lee, A. J. and Wang, E. (2016), ‘Fast computation of reconciled forecasts for
hierarchical and grouped time series’, Computational Statistics & Data Analysis 97, 16-32.

24



Jeon, J., Panagiotelis, A. and Petropoulos, F. (2019), ‘Probabilistic forecast reconciliation with
applications to wind power and electric load’, European Journal of Operational Research

279(2), 364-379.

Kourentzes, N. and Athanasopoulos, G. (2019), ‘Cross-temporal coherent forecasts for Aus-

tralian tourism’, Annals of Tourism Research 75, 393—409.

Nystrup, P., Lindstrém, E., Mgller, J. K. and Madsen, H. (2021), ‘Dimensionality reduction in

forecasting with temporal hierarchies’, International Journal of Forecasting 37(3), 1127-1146.

Nystrup, P., Lindstrém, E., Pinson, P. and Madsen, H. (2020), ‘Temporal hierarchies with
autocorrelation for load forecasting’, European Journal of Operational Research 280(3), 876—

888.

Panagiotelis, A., Athanasopoulos, G., Gamakumara, P. and Hyndman, R. J. (2021), ‘Forecast
reconciliation: A geometric view with new insights on bias correction’, International Journal

of Forecasting 37(1), 343-359.

Pritularga, K. F., Svetunkov, I. and Kourentzes, N. (2021), ‘Stochastic Coherency in Forecast

Reconciliation’, International Journal of Production Economics 240, 108221.

Syntetos, A. A., Babai, Z., Boylan, J. E., Kolassa, S. and Nikolopoulos, K. (2016), ‘Supply chain
forecasting: Theory, practice, their gap and the future’, Furopean Journal of Operational

Research 252(1), 1-26.

van Erven, T. and Cugliari, J. (2015), Game-theoretically optimal reconciliation of contempo-
raneous hierarchical time series forecasts, in A. Antoniadis, J.-M. Poggi and X. Brossat, eds,
‘Modeling and Stochastic Learning for Forecasting in High Dimensions’, Lecture Notes in

Statistics, Springer International Publishing, Cham, pp. 297-317.

Wickramasuriya, S. L., Athanasopoulos, G. and Hyndman, R. J. (2019), ‘Optimal forecast
reconciliation for hierarchical and grouped time series through trace minimization’, Journal

of the American Statistical Association 114(526), 804-819.

Wickramasuriya, S. L., Turlach, B. A. and Hyndman, R. J. (2020), ‘Optimal non-negative
forecast reconciliation’, Statistics and Computing 30(5), 1167-1182.

Yang, D., Quan, H., Disfani, V. R. and Liu, L. (2017), ‘Reconciling solar forecasts: Geographical
hierarchy’, Solar Energy 146, 276-286.

Zhang, Y. and Dong, J. (2018), ‘Least squares-based optimal reconciliation method for hierar-

chical forecasts of wind power generation’, IEEE Transactions on Power Systems pp. 1-1.

25



	1 Introduction
	2 Related work
	2.1 Notation
	2.2 Forecast reconciliation
	2.3 Forecast reconciliation with immutable forecasts

	3 Forecast reconciliation with equality constraints
	3.1 Conditions for selecting a set of immutable forecasts

	4 Monte carlo simulations
	4.1 Scenario I: model misspecification in disaggregated levels
	4.1.1 Simulation setup
	4.1.2 Forecasting results

	4.2 Scenario II: exploring the smoothing effect of aggregation
	4.2.1 Simulation setup
	4.2.2 Forecasting results


	5 Application: forecasting demand for promotion events in a major Chinese online retailer
	5.1 Dataset
	5.2 Experimental setting
	5.3 Forecasting results

	6 A grouped hierarchy: forecasting Wikipedia daily pageviews
	7 Conclusions
	Appendix  A Proof for unbiased reconciled forecasts
	Appendix  B Proof for validity of candidate basis sets

