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Abstract

There exists a natural L∞-algebra or Q-manifold that can be associated to any (gauge)

field theory. Perturbatively, it can be obtained by reducing the L∞-algebra behind the jet

space BV-BRST formulation to its minimal model. We explicitly construct the minimal

models of self-dual Yang-Mills and self-dual gravity theories, which also represents their

equations of motion as Free Differential Algebras. The minimal model regains all relevant

information about the field theory, e.g. actions, charges, anomalies, can be understood in

terms of the corresponding Q-cohomology.
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1 Introduction

Self-dual theories have a number of remarkable properties that make them very useful toy

models in general and first order approximations to more complicated theories: (a) self-dual

theories are closed subsectors of the corresponding complete theories; (b) as a result, all solu-

tions of self-dual theories are solutions of the full ones; (c) all amplitudes of self-dual theories

are also amplitudes of the full ones; (d) self-dual theories are integrable; (e) self-dual theories

are finite and one-loop exact; (f) existence of a self-dual truncation allows one to rearrange the

perturbation theory in a nontrivial way, e.g. to represent Yang-Mills theory as expansion over

self-dual rather than flat backgrounds; (g) tools from twistor theory are very-well adapted to

self-dual theories, see e.g. [1–8]. In this letter we are interested in constructing L∞-algebras of

the simplest self-dual theories: SDYM and SDGR, to uncover their algebraic structure.

There is a hierarchy of L∞-algebras that originate from (quantum) field theories and string

field theory, see e.g. [9–16]. The simplest L∞-algebras emerge from a re-interpretation of the

BV-BRST formalism: upon expanding the master action in ghosts and anti-fields one finds

multilinear maps that obey L∞-relations. Another L∞-algebra emerges from the jet space ver-

sion of the BV-BRST formulation of a given gauge theory [17–21]. Such L∞ is especially useful

when investigating various properties of this gauge theory systematically, e.g. classification of

deformations of the action, or the question of possible anomalies [17, 18]. Given an L∞-algebra

one can consider various equivalent reductions. The smallest possible quasi-isomorphic algebra

is the minimal model, which still captures all the relevant properties of the field theory. An-

other closely related algebraic structure is Free Differential Algebra [22], which emerges as the

sigma-model based on the minimal model.

In this letter we construct the minimal models for self-dual Yang-Mills and self-dual gravity

theories. As a starting point we take the Chalmers-Siegel action [4] for SDYM and the recently

constructed action for SDGR with vanishing cosmological constant [23], which is equivalent to

other actions in the literature [24, 25].

Our general motivation stems from several possible applications, where we hope to under-

stand from the algebraic, L∞, point of view: (i) integrability of self-dual theories; (ii) the

double-copy relations, see [26, 27] and [28, 29] for the recent results in this direction. Also, the

results serve as a starting point for covariantization [30] of Chiral Higher Spin Gravity [31–37].

We begin with a short review of relation between L∞ and field theory and then proceed to

SDYM and SDGR, respectively, with some technicalities left to appendices.
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2 Minimal models

As it was already sketched in the introduction, given any (gauge) field theory in the BV-BRST

language it is natural to consider its jet space extension [19–21, 38, 39], which is what is

done when investigating the local BRST-cohomology [17, 18]. The jet space extension leads

to a rather big L∞-algebra, better say to a Q-manifold provided global issues are taken into

account. Various Q-cohomology groups correspond to all physically relevant quantities, e.g.

deformations/interactions, anomalies, charges, etc., see e.g. [17, 18]. For every L∞-algebra

there always exists a (usually much smaller) L∞-algebra, known as the minimal model, see e.g.

[21, 40, 41], that contains the same information — it is said to be quasi-isomorphic.2 Some care

is needed to prove the same statement for field theories [21, 43], where relevant L∞-algebras

are necessarily infinite-dimensional. Minimal models were first introduced by Sullivan [22] in

the context of differential graded algebras to study rational homotopy theory. We construct

such minimal models for SDYM and SDGR.

Given any non-negatively graded supermanifold N equipped with a homological vector field

Q, QQ = 0, e.g. given by the minimal model, one can write down a sigma-model [19]:

dΦ = Q(Φ) ,

where Φ ≡ ΦA are maps ΠTM → N from the exterior algebra of differential forms on a space-

time manifold M to N . Together with natural gauge symmetries the sigma-model is equivalent

to the classical equations of motion of the initial field theory [19–21], thereby having the form

of a Free Differential Algebra, see [22] for exact definitions.3 In the paper we adopt a more

pragmatic point of view on minimal models: we seek for the classical equations of motion as

an FDA [46]. If Φ = {ΦA} are coordinates on N , then Q = QA∂/∂ΦA and

Q2 = 0 ⇐⇒ QB ∂
∂ΦBQ

A = 0 .

This condition is equivalent to the Frobenius integrability of the field equations, i.e. the equa-

tions are formally consistent. The L∞-relations emerge by Taylor expanding QQ = 0 at a

stationary point of Q [13]. By abuse of notation we always denote coordinates on N and the

corresponding fields by the same symbols. For a large class of field theories N has coordinates

2There is also another, ’quantum’, minimal model [42] — the L∞-algebra given by 1PI correlation functions.
3FDA was introduced by Sullivan and applied to problems in topology. Later, FDA’s sneaked into physics in

the context of supersymmetry and supergravity [44, 45] and, even later, applied to construct formally consistent
deformations of the FDA for free higher spin fields [46].
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of degree-one and degree-zero to be associated with gauge connection(s) A and with some

matter-like zero-forms L. The simplest FDA with this data reads

dA = 1
2
[A,A] , dL = ρ(A)L ,

and is equivalent to A taking values in some Lie algebra and to L taking values in its module

ρ. We consider these equations free. In particular, it is easy to solve them locally in the pure

gauge form, e.g. A = g−1dg. The most general deformation of the free equations here-above

that is consistent with the form-degree counting reads

dA = l2(A,A) + l3(A,A, L) + l4(A,A, L, L) + . . . = FA(A;L) ,

dL = l2(A,L) + l3(A,L, L) + . . . = FL(A;L) .

Our strategy for each of the cases, SDYM and SDGR, is to start off with an action, rewrite

the variational equations of motion in the ’almost’ FDA form, where ’almost’ means that at

each step the equations/Q-structure will require new fields/coordinates on N be introduced.

At the end of the day we find the complete Q. Interacting field theories are defined modulo

admissible field redefinitions (those that do not change the S-matrix). We found a field frame

where no structure maps higher than l3(•, •, •) are needed for SDYM and SDGR, which also

fixes all field redefinitions.4

3 SDYM

3.1 Action, initial data

The theory can be formulated [4] with two fields:5 the usual one-form gauge potential A ≡

Aµ dx
µ ≡ Aa

µ dx
µ Ta and a zero-form ΨAB ≡ ΨBA, ΨAB ≡ ΨAB;a Ta. Here Ta are generators

of some Lie algebra with a non-degenerate invariant bilinear form. We usually suppress form

indices and dx’s, as well as the Lie algebra indices. In practice, it is convenient to think of

generators Ta as of taking values in some matrix algebra and assume A and ΨAB to take values

4This is a key difference with respect to [46], where locality and field redefinitions are not taken into account
[47, 48], which results in a general ansatz for interactions rather than a concrete theory.

5We use almost exclusively the two-component spinor language, which is well-suited for 4d-theories. A short
compendium can be found in Appendix A. A classical source is [49]. The most important fact about our notation
is that symmetric or to be symmetrized indices can be denoted by the same letter. Also, A(k) ≡ A1...Ak.
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in MatN , with matrix indices again suppressed. The action reads6

SSDYM = tr

∫

ΨA′B′

∧HA′B′ ∧ F ,

where F = dA−A ∧ A and we prefer to omit ∧-symbol. The equations of motion imply

FA′B′ = 0 , DA
B′ ΨA′B′

= 0 , (3.1)

where D ≡ dxAA′

DAA′ ≡ ∇ − [A, •] is the gauge and Lorentz covariant derivative. We also

used the decomposition of F into (anti)self-dual parts

F = HBBFBB +HB′B′

FB′B′ .

We can rewrite the variational equations as

dA−AA = HBBFBB , DΨA′B′

= eCC′ΨC,A′B′C′

, (3.2)

which is the starting point for constructing the corresponding L∞-algebra. The first equation

simply states that FA′B′ = 0 and, hence, connection A is self-dual. Therefore, only the self-dual

part may not be trivial and it is parameterized by FAB. A simple consequence is the Bianchi

identity for FAB. In the second equation we introduced a field ΨA,A′B′C′

that parameterizes

the first derivative of Ψ that is consistent with (3.1), i.e. it corresponds to a coordinate on the

on-shell jet of ΨA′B′

.7

The problem is, therefore, to find a completion of (3.2), which requires an infinite set of

coordinates on N and Q defined on them in such a way that QQ = 0. The first few terms of

Q and N are already clear from (3.2). The on-shell jet space is also well-known [49]. It is the

same as for the free theory where we turned off non-Abelian Yang-Mills groups that result in

non-linearities. That the coordinates on N are the same for the free and interacting theories

is due to the requirement for them to have the same number of local degrees of freedom.

Coordinates, on-shell jet. The coordinates onN are: degree-one A; degree-zero FA(k+2),A′(k)

and ΨA(k),A′(k+2), k = 0, 1, 2, .... The free equations, i.e. (self-dual) Maxwell equations on

6Here, see also appendix A, HAB ≡ HBA, HA′B′

≡ HB′A′

is the basis of self-dual two-forms, HAB ≡
eAC′ ∧ eBC′

, idem. for HA′B′

. Vierbein one-form is eAA′

.
7Equations of motion for free fields of arbitrary spin can be recast into the FDA form [50]. The on-shell jet

is very easy to describe in spinorial language [49].
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Minkowski space, can be written as [50]

dA = HBBFBB + ǫHB′B′

ΨB′B′ , (3.3)

which just defines FAB and ΨA′B′

as (anti)-self-dual components of dA. The Bianchi identities

imply

dFA(k+2),A′(k) = eBB′FA(k+2)B,A′(k)B′

, (3.4)

and a similar chain of equations for the field Ψ

dΨA(k),A′(k+2) = eCC′ΨA(k)C,A′(k+2)C′

. (3.5)

The system (3.3), (3.4), (3.5) is equivalent to Maxwell equations, i.e. no self-dual truncation

has yet been taken. The free SDYM equations are obtained by setting ǫ = 0 in (3.3), while

no other modifications are needed. What erasing ΨA′B′

from (3.3) does is that it makes the

anti-selfdual part of dA vanish. The Ψ-subsystem (3.5) decouples and describes the second

degree of freedom (say, helicity −1). The first equations in (3.4) and (3.5) are equivalent to the

well-known [51]

DA
B′

FAB = 0 , DA
B′ ΨA′B′

= 0 ,

and describe helicity +1 and −1 degrees of freedom. Subsystems (3.4) and (3.5) are closed

and identical to each other (upon swapping primed and unprimed indices). What makes them

different is that only the physical degree of freedom carried by F gets embedded into A once

we set ǫ = 0. There is no change in the number of physical degrees of freedom in the ǫ = 0

limit.

General form. In order to have a genuine FDA we should incorporate the background gravi-

tational fields: vierbein eAA′

and the (anti)-self-dual components ωAB, ωA′B′

of spin-connection.

Finally, we have

N :
1 : eAA′

, ωAB , ωA′B′

, A ,

0 : FA(k+2),A′(k) ,ΨA(k),A′(k+2) , k = 0, 1, 2, ...
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We will prove below that the complete L∞-algebra of SDYM can be cast into the following

simple form:

deAA′

= ωA
B ∧ eBA′

+ ωA′

B′ ∧ eAB′

,

dωAB = ωA
C ∧ ωBC ,

dωA′B′

= ωA′

C′ ∧ ωB′C′

,

dA = AA+HBBF
BB ,

dF = l2(ω, F ) + l2(A, F ) + l2(e, F ) + l3(e, F, F ) ,

dΨ = l2(ω,Ψ) + l2(A,Ψ) + l2(e,Ψ) + l3(e, F,Ψ) .

Some of the maps above are self-evident, e.g. l2(ω, •) and l2(A, •) are parts of the usual Lorentz

and gauge covariant derivatives. HBBF
BB is a specific tri-linear map l3(e, e, F ). Introducing

the standard Lorentz covariant derivative ∇ and appending it with the gauge part [A, •] we

define D = ∇− [A, •]. The equations reduce to

∇eAA′

= 0 , ∇2 = 0 ,

dA = AA +HBBF
BB ,

DF = l2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l3(e, F,Ψ) .

The first line is equivalent to living in Minkowski space. Covariant derivative D allows us to

absorb l2(A, F ) = [A, F ] and l2(A,Ψ) = [A,Ψ]. The L∞-structure relations are equivalent to

(i) e, ω being a flat connection of Poincare algebra; (ii) a bit more nontrivial L∞-relations that

follow from

D2F + l2(e,DF ) + l3(e,DF, F ) + l3(e, F,DF ) ≡ 0 ,

D2Ψ+ l2(e,DΨ) + l3(e,DF,Ψ) + l3(e, F,DΨ) ≡ 0

and decompose into

l2(e, l2(e, F )) ≡ 0 , (3.8a)

−[HBBF
BB, F ] + l2(e, l3(e, F, F )) + l3(e, l2(e, F ), F ) + l3(e, F, l2(e, F )) ≡ 0 , (3.8b)

l3(e, l3(e, F, F ), F ) + l3(e, F, l3(e, F, F )) ≡ 0 , (3.8c)

l2(e, l2(e,Ψ)) ≡ 0 , (3.8d)
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−[HBBF
BB,Ψ] + l2(e, l3(e, F,Ψ)) + l3(e, l2(e, F ),Ψ) + l3(e, F, l2(e,Ψ)) ≡ 0 , (3.8e)

l3(e, l3(e, F, F ),Ψ) + l3(e, F, l3(e, F,Ψ)) ≡ 0 . (3.8f)

The first and the fourth relations are guaranteed by the free equations of motion.

3.2 FDA, flat space

Appetizer. Firstly, let us explain why a non-linear completion of (3.3), (3.4), (3.5) is nec-

essary. The root of the nonlinear completion is in the fact that D2 6= 0 and, for a field χ in

representation ρ of the Yang-Mills algebra we find D2χ = −ρ(F )χ. In the adjoint representa-

tion, one gets (matrix/Lie algebra indices are implicit)

D2χ = −[F, χ] = −HBB [F
BB, χ] .

Therefore, the Bianchi identity for the first equation in the F -subsystem

DFAA = eBB′ ∧ FAAB,B′

leads to

D2FAA = −HBB[F
BB, FAA] = −eBB′ ∧DFAAB,B′

. (3.9)

The aim is to use the above equation to obtain DFAAA,A′

. Matching the indices and imposing

that DFAAA,A′

is a one-form, one may take the ansatz

DFAAA,A′

= eCC′FAAAC,A′C′

+ αeC
A′

[FAC , FAA] + βeC
A′

[FAA, FAC ]

+ γeAA′

[FA
C , F

AC] .

The Fierz identity (A.3) and the anti-symmetry of the commutator reduce this to

DFAAA,A′

= eCC′FAAAC,A′C′

+ α00eC
A′

[FAC , FAA] ,

8



where the label on α00 was added for future convenience. Upon contraction with eBB′ this

yields8

eBB′ ∧DFAAB,B′

= 0 + 1
3
α00eBB′ ∧ eC

B′

[FBC , FAA] + 2
3
α00eBB′ ∧ eC

B′

[FAC , FAB]

= 1
3
α00HBB[F

BB, FAA] ,
(3.10)

where (A.2) was used. Comparing this to (3.9), one obtains the solution

DFAAA,A′

= eCC′FAAAC,A′C′

+ 3eC
A′

[FAC , FAA] , (3.11)

where the first term on the r.h.s. is there since the free equations. Similarly, taking the covariant

derivative of the above result yields another consistency equation. Following the same steps as

before, one finds

D2FAAA,A′

= −HBB[F
BB, FAAA,A′

] = −eBB′ ∧DFAAAB,A′B′

− 3eC
A′

∧ [DFAC, FAA]− 3eC
A′

[FAC, DFAA] ,

which results in

eBB′ ∧DFAAAB,A′B′

= HBB[F
BB, FAAA,A′

]− 3
2
HBB[F

AA, FABB,A′

]

+ 3
2
HBB[F

AB, FAAB,B′

] + 3
2
HB′

A′

[FAB, FAA
B
,B′

] .
(3.12)

The minimal ansatz for DFAAAA,A′A′

reads

DFAAAA,A′A′

= eCC′FAAAAC,A′A′C′

+ α02eC
A′

[FAC , FAAA,A′

]

+ α12eC
A′

[FAAC,A′

, FAA] .

We contract this with eBB′ to find

eBB′ ∧DFAAAB,A′B′

= 3α02

16
HBB[F

BB, FAAA,A′

] + (9α02

16
+ 3α12

8
)HBB[F

AB, FAAB,A′

]

+ 3α12

8
HBB[F

AA, FABB,A′

] + (3α02

18
− α12

8
)HB′

A′

[FAB, FAA
B
,B′

] .
(3.13)

8The first term can be rewritten as eBB′ ∧ eCC′FAABC,B′C′

= 1

2
(HBCǫB′C′ + ǫBCHB′C′)FAABC,B′C′

and

vanishes as the contracted indices are symmetrized in FAABC,B′C′

and anti-symmetrized in the ǫ’s. The last term
must be zero, because eBB′ ∧ eC

B′

= 1

2
HBC is symmetric in B,C, whereas the commutator is anti-symmetric.

9



We compare this to (3.12) to obtain the result

DFAAAA,A′A′

= eCC′FAAAAC,A′A′C′

+ 16
3
eC

A′

[FAC, FAAA,A′

]

+ 4eC
A′

[FAAC,A′

, FAA] .

The procedure presented above is nothing more than the practical realisation of solving the

L∞-relation (3.8b). This procedure will be generalized next.

Main course, F -sector. By looking at the first few equations in the system it is easy to

come up with an ansatz:

DFA(k+2),A′(k) = eBB′

FA(k+2)B,A′(k)B′

+

k−1
∑

n=0

αnke
B
A′ [FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] ,

(3.14)

for any k ≥ 0. This ansatz makes use of the fact that DFA(k+2),A′(k) should be a one-form,

which requires the presence of eBB′

and it matches the number of (un)-primed indices. In any

non-linear theory there is always a freedom to perform field redefinitions. We have also fixed

the redefinitions by requiring that there are no index contractions between F in [F, F ]. Terms

with contracted indices can easily be introduced by field-redefinitions. Our ansatz contains

only the terms that are necessary to ensure consistency and, thereby, is the minimal one.

Taking the covariant derivative of the ansatz yields

D2FA(k+2),A′(k) =−HBB[FBB , FA(k+2),A′(k)] = −eBB′

∧DFA(k+2)B,A′(k)B′

− eBA′ ∧
k−1
∑

n=0

αnk[DFA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)]

− eBA′ ∧
k−1
∑

n=0

αnk[FA(n+1)B,A′(n), DFA(k−n+1),A′(k−n−1)] .

(3.15)
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and considering only terms quadratic in F gives9

eBB′

∧DFA(k+2)B,A′(k)B′ = HBB[FBB, FA(k+2),A′(k)]

− 1
2
HBB

k−1
∑

n=0

αnk[FA(n+1)BB,A′(n+1), FA(k−n+1),A′(k−n−1)]

− 1
4
HBB

k
∑

n=0

(αnk − α(k−n)k)[FA(n+1)B,A′(n), FA(k−n+1)B,A′(k−n)]

+ 1
2
HB′

A′

k−1
∑

n=0

αnk[FA(n+1)
B
,A′(n) , FA(k−n+1)B,A′(k−n−1)B′ ] ,

(3.16)

where terms cubic in F are ignored for now. Alternatively, we contract eBB′

withDFA(k+3),A′(k+1)

to obtain

eBB′

∧DFA(k+2)B,A′(k)B′ = −1
2
HBBα0(k+1)

k+2
(k+3)(k+1)

[FBB, FA(k+2),A′(k)]

− 1
2
HBB

k−1
∑

n=0

α(n+1)(k+1)
(n+2)(k+2)
(k+3)(k+1)

[FA(n+1)BB,A′(n+1), FA(k−n+1),A′(k−n−1)]

− 1
4
HBB

k
∑

n=0

(αn(k+1)
(k−n+2)(k+2)
(k+3)(k+1)

− α(k−n)(k+1))
(n+2)(k+2)
(k+3)(k+1)

)[FA(n+1)B,A′(n), FA(k−n+1)B,A′(k−n)]

+ 1
2
HB′

A′

k
∑

n=0

(α(k−n)(k+1)
(n+2)(k−n)
(k+3)(k+1)

+ αn(k+1)
(k−n+2)(k−n)
(k+3)(k+1)

)[FA(n+1)
B
,A′(n) , FA(k−n+1)B,A′(k−n−1)B′ ] .

Comparing this with (3.16) results in the following system of recurrence relations:

0 = α0k +
2k(k+2)
k+1

,

0 = α(n+1)(k+1)
(n+2)(k+2)
(k+3)(k+1)

− αnk ,

0 = αn(k+1)
(k−n+2)(k+2)
(k+3)(k+1)

− α(k−n)(k+1)
(n+2)(k+2)
(k+3)(k+1)

− αnk + α(k−n)k ,

0 = α(k−n)(k+1)
(n+2)(k−n)
(k+3)(k+1)

+ αn(k+1)
(k−n+2)(k−n)
(k+3)(k+1)

− αnk .

This system is over-determined, but, nevertheless, is solved by

αnk = − 2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

.

9In the third term we have made the anti-symmetry of the commutator explicit by writing [X,Y ] = 1

2
([X,Y ]−

[Y,X ]) and renaming the dummy indices accordingly. This automatically gets rid of terms that vanish because
of symmetry reasons, like the last term in the middle expression of (3.10). As the summation now runs up to
n = k, the coefficient αkk shows up, so we set αkk = 0 by hand since it was not present in the ansatz.
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The full solution reads

DFA(k+2),A′(k) = eBB′

FA(k+2)B,A′(k)B′

− eBA′

k−1
∑

n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] .
(3.18)

It was assumed that the ansatz only contains linear and quadratic terms in F . The fact that

terms cubic in F vanish in (3.16) is proved in Appendix B.2. This confirms the L∞-relation in

(3.8c) and it implies that DFA(k+2),A′(k) indeed truncates at quadratic order.

Main course, Ψ-sector. As was clear from the L∞-relations in (3.8), the non-linear exten-

sion of the Ψ-sector is different from the F -sector. The minimal ansatz for DΨA(k),A′(k+2) is

slightly more involved as it reads

DΨA(k),A′(k+2) = eCC′

ΨA(k)C,A′(k+2)C′ +

k−1
∑

n=0

βnke
C
A′ [FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+

k−2
∑

n=0

γnke
C
A′ [FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(3.19)

We follow the same steps as for the F -sector: we write the Bianchi identity for the ansatz above

and as a parallel calculation we contract eBB′

with ΨA(k+1),A′(k+3) to obtain two expressions for

eBB′

∧ DΨA(k)B,A′(k+2)B′ and compare them. This provides us with a system of recurrence

relations for βnk and γnk. The details of the calculation are left for Appendix B.1. The system

is solved by

βnk = − 2
(n+1)!

k−n+2
k+3

k!
(k−n−1)!

, γnk =
2

(n+2)!
n+1
k+3

k!
(k−n−2)!

.

The full solution reads

DΨA(k),A′(k+2) = eCC′

ΨA(k)C,A′(k+2)C′

− eCA′

k−1
∑

n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)!

[FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+ eCA′

k−2
∑

n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)!

[FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(3.20)
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In Appendix B.2 we show that this solution ensures consistency of the L∞-relation in (3.8f),

i.e. the above solution does not require higher order corrections.

Summary. SDYM can be cast in the form of an L∞-algebra. This gives rise to three L∞-

relations for the F -sector and the Ψ-sector of SDYM, see (3.8). The first of each gives rise to

the free equation for DFA(k+2),A′(k) and DΨA(k),A′(k+2). The second L∞-relation can be solved

to obtain the quadratic piece of the non-linear extension in both sectors, which are proportional

to [F, F ] and [F,Ψ], respectively. In particular, the coefficients can be found by writing down

the minimal ansätze (3.14) and (3.19) and checking their Bianchi identities. This yields two

expressions for eBB′

FA(k+2)B,A′(k)B′ and eBB′

ΨA(k)B,A′(k+2)B′ . Comparing them gives rise to a

system of recurrence relations, whose solution gives the final results (3.18) and (3.20), i.e. the

boxed equations above. Furthermore, the third L∞-relation ensures that the system is closed,

i.e. there are no higher order corrections. It is proved that these relation are indeed satisfied

for the obtained solutions and hence the expressions we have found are the complete non-linear

extensions for the two sectors.

An interesting follow up would be to consider the higher-spin extensions of SDYM [34, 52]

and the supersymmetric higher spin extensions constructed in [53].

3.3 FDA, constant curvature space

As a simple modification of SDYM on Minkowski background we can consider a constant

curvature background, i.e. de Sitter or anti-de Sitter spaces. The action is the same. Let us

first recall that the free Maxwell equations on a constant curvature background rewritten as an

FDA read [50]

dA = HBBFBB + ǫHB′B′

ΨB′B′ , (3.21a)

∇FA(k+2),A′(k) = eBB′FA(k+2)B,A′(k)B′

+ k(k + 2)ΛeAA′

FA(k+1),A′(k−1) , (3.21b)

∇ΨA(k),A′(k+2) = eCC′ΨA(k)C,A′(k+2)C′

+ k(k + 2)ΛeAA′

ΨA(k−1),A′(k+1) . (3.21c)

The only difference is the presence of new eAA′

-terms that are consistent on their own and do

not require any other modifications. It is also convenient to set Λ = 1 in what follows. The

L∞-algebra for SDYM on a constant background is given by

deAA′

= ωA
B ∧ eBA′

+ ωA′

B′ ∧ eAB′

,

dωAB = ωA
C ∧ ωBC +HAB ,
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dωA′B′

= ωA′

C′ ∧ ωB′C′

+HA′B′

,

dA = AA+HBBF
BB ,

dF = l2(ω, F ) + l2(A, F ) + l2(e, F ) + l̃2(e, F ) + l3(e, F, F ) ,

dΨ = l2(ω,Ψ) + l2(A,Ψ) + l2(e,Ψ) + l̃2(e,Ψ) + l3(e, F,Ψ) ,

where l̃2 encodes the gravitational correction to the free equations (3.21b) and (3.21c). The

contributions

l2(ω, F ) = (k + 2)ωA
B F

A(k+1)B,A′(k) + kωA′

B′ FA(k+2),B′A′(k−1)

and l2(A, F ) = [A, F ] (and similarly for Ψ) can be absorbed into the covariant derivative

D = ∇− [A, •]. As a result, the relations can be rewritten as

∇eAA′

= 0 ,

dA = AA+HBBF
BB ,

DF = l2(e, F ) + l̃2(e, F ) + l3(e, F, F ) ,

DΨ = l2(e,Ψ) + l̃2(e,Ψ) + l3(e, F,Ψ) .

As different from ∇2 = 0 in flat space, in a constant curvature background we have for any

spin-tensor TA(n),A′(m)

∇2TA(n),A′(m) = −nHA
B T

A(n−1)B,A′(m) −mHA′

B′ TA(n),A′(m−1)B′

.

The L∞-relations of the sought for L∞-algebra read

−[HBBF
BB, F ] + l2(e,DF ) + l̃2(e,DF ) + l3(e,DF, F ) + l3(e, F,DF ) ≡ 0 , (3.22a)

−[HBBF
BB,Ψ] + l2(e,DΨ) + l̃2(e,DΨ) + l3(e,DF,Ψ) + l3(e, F,DΨ) ≡ 0 . (3.22b)

Since l̃ can be viewed as a deformation of the previously found FDA, all terms without l̃ vanish

already. The remaining nontrivial relations read

l̃2(e, l3(e, F, F )) + l3(e, l̃2(e, F ), F ) + l3(e, F, l̃2(e, F )) = 0 , (3.23a)

l̃2(e, l3(e, F,Ψ)) + l3(e, l̃2(e, F ),Ψ) + l3(e, F, l̃2(e,Ψ)) = 0 , (3.23b)
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where we ignore terms quadratic in the cosmological constant. These relations are satisfied

automatically. A proof of this given in Appendix B.3. Consequently, on a constant curvature

gravitational background we obtain

DFA(k+2),A′(k) = eBB′

FA(k+2)B,A′(k)B′ + k(k + 2)eAA′FA(k+1),A′(k−1)

− eBA′

k−1
∑

n=0

2
(n+1)!

(k+2)!
(k−n−1)!(k−n+1)(k+1)

[FA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)] ,
(3.24a)

DΨA(k),A′(k+2) = eCC′

ΨA(k)C,A′(k+2)C′ + k(k + 2)eAA′ΨA(k−1),A′(k+1)

− eCA′

k−1
∑

n=0

2
(n+1)!

k−n+2
k+3

k!
(k−n−1)!

[FA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

+ eCA′

k−2
∑

n=0

2
(n+2)!

n+1
k+3

k!
(k−n−2)!

[FA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)] .

(3.24b)

Summary. We constructed the L∞-algebra of SDYM on a constant curvature background and

derived the corresponding L∞-relations. The free Maxwell equations on a constant curvature

background in terms of an FDA, (3.21), are well-known in the literature and solve the first

L∞-relation of both the F -sector and Ψ-sector. In section 3.2 we computed the non-linear

extension of DFA(k+2),A′(k) and DΨA(k),A′(k+2) on a flat background. In the second L∞-relation

of each sector we see an interplay between the gravitational contribution of the free equations

and the non-linear extension on flat space. We demonstrated that the second L∞-relation for

both sectors decomposes into the flat space L∞-relation and a new relation containing the

gravitational contributions in such a way that the latter does not contribute to the quadratic

order in DFA(k+2),A′(k) and DΨA(k),A′(k+2). The third L∞-relation then contains no gravitational

contribution and remains satisfied. The complete non-linear extension of both sectors are only

modified in the linear terms according to the free equations and are shown in the boxed equation

(3.24a) and (3.24b) above.

15



4 SDGR

4.1 Action, initial data

Self-dual gravity with vanishing cosmological constant can be formulated with the help of two

fields [23]: one-form ωA′B′

and zero-form ΨA′B′C′D′

. The action reads

∫

ΨA′B′C′D′

∧ dωA′B′ ∧ dωC′D′ . (4.1)

The equations of motion are (FA′B′

= dωA′B′

)

F(A′B′ ∧ FC′D′) = 0 , dΨA′B′C′D′

∧ FA′B′ = 0 . (4.2)

One-form ωA′B′

looks like the anti-self-dual part of the Lorentz spin-connection, but it is not.

The curvature FA′B′ for ωA′B′

lacks the ”ωω”-part. Nevertheless, this interpretation is not very

far from the reality since action (4.1) can be understood as a limit of that for self-dual gravity

with cosmological constant [54]. In the latter FA′B′

= dωA′B′

− ωA′

C′ ∧ ωC′B′

is the canonical

one and the limit is to drop the ωω-part.

Minkowski space is a special solution of (4.2): ωA′A′

0 = xC
A′

dxCA′

such that dωA′B′

0 = HA′B′

,

where HA′B′

is built from the Minkowski’s space vierbein eAA′

= dxAA′

, HA′B′

≡ eC
A′

∧ eCB′

and its conjugate is HAB ≡ eAC′ ∧ eBC′

. One can easily write down the first few equations of

the FDA that corresponds to variational equations (4.2):10

dωA′A′

= eB
A′

∧ eBA′

,

deAA′

= ωA
B ∧ eBA′

,

dωAA = ωA
C ∧ ωCA +HMMC

MMA
B ,

(4.4a)

dΨA′A′A′A′

= eBB′ΨB,A′A′A′A′B′

. (4.4b)

10As a side remark, let us write the curvature for so(3, 2) ∼ sp(4), which is relevant for anti-de Sitter space
(they correspond to Lorentz generators LA′A′ , LAA and to translations PAA′):

dωAA − ωA
C ∧ ωCB − eAB′ ∧ eAB′

= RAA ,

deAA′

− ωA′

B′ ∧ eAB′

− ωA
B ∧ eBA′

= TAA′

,

dωA′A′

− ωA′

C′ ∧ ωC′B′

− eB
A′

∧ eBA′

= RA′A′

,

The gauge algebra for the SDGR with zero scalar curvature can be understood as a limit of so(3, 2)-algebra
where LA′A′ become abelian [23].
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The main idea is to identify the right gauge algebra [23]. This is the starting for constructing the

L∞-algebra. The first equation of (4.4a) implies that the gravitational degrees of freedom fully

reside in the anti-self-dual part. The last equation of (4.4a) identifies the only nonvanishing

part of the curvature with the self-dual Weyl tensor CABCD, RA
B = HMMC

MMA
B . As a

result one obtains a Bianchi identity for RA
B . Eq. (4.4b) introduces a new field ΨA,A′B′C′D′E′

,

which parameterizes the first derivative of Ψ and is contained in the on-shell jet of ΨA′B′C′D′

.

Similarly to SDYM we aim to find a completion of (4.4a) and we need to define an infinite set

of coordinates on N and Q such that QQ = 0.

Coordinates, on-shell jet. Coordinates on supermanifold N coincide with those of the free

massless spin-two field, i.e. with [50] and [49]. Indeed, the set of one-forms turned out to be

the same, while the zero-forms begin with (anti)-self-dual components of Weyl tensor and are

just the on-shell nontrivial derivatives of those. Therefore, the coordinates on N are: degree-

one ωAB, eAA′

and ωA′B′

; degree-zero CA(k+4),A′(k) and ΨA(k+4),A′(k), k = 0, 1, 2, .... A similar

discussion follows as for SDYM. In particular, the free equations for helicity ±2 fields are [51]

∇A
B′ ΨA′B′C′D′

= 0 , ∇A
B′

CABCD = 0 ,

and can be rewritten in the FDA form as [50]

∇CA(k+4),A′(k) = eCC′CA(k+4)C,A′(k)C′

, ∇ΨA(k),A′(k+4) = eCC′ΨA(k)C,A′(k+4)C′

. (4.5)

One needs to supplement these equations with the free limit of (4.4). Our problem is to find a

nonlinear completion of (4.5) that is consistent with (4.4).

General form. The supermanifold N has coordinates

N :
1 : ωA′B′

, eAA′

, ωAB ,

0 : CA(k+4),A′(k) ,ΨA(k),A′(k+4) , k = 0, 1, 2, ...

Now, we try to reformulate the theory in the L∞-form. Given the data above and our desire

to truncate the FDA at l3(•, •, •), we write

dωA′A′

= eB
A′

∧ eBA′

,

deAA′

= ωA
B ∧ eBA′

,

dωAA = ωA
C ∧ ωCA +HMMC

MMA
B ,
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dC = l2(ω,C) + l2(e, C) + l3(e, C, C) ,

dΨ = l2(ω,Ψ) + l2(e,Ψ) + l3(e, C,Ψ) .

We define the covariant derivative ∇ = d − ω, which lacks the ωA′B′

-part. For an arbitrary

spin-tensor TA(n),A′(m) we get

∇2TA(n),A′(m) = −nHMMC
MMA

B T
BA(n−1),A′(m) . (4.6)

The covariant derivative allows one to absorb the terms l2(ω,C) and l2(ω,Ψ) and we can write

∇C = l2(e, C) + l3(e, C, C) , ∇Ψ = l2(e,Ψ) + l3(e, C,Ψ) .

This gives rise to the L∞-relations for SDGR, which read

−(k + 4)HMMC
MMA

B C
A(k+3)B,A′(k) + l2(e,∇C) + l3(e,∇C,C) + l3(e, C,∇C) = 0 ,

−kHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e,∇Ψ) + l3(e,∇C,Ψ) + l3(e, C,∇Ψ) = 0 ,

and decompose into

l2(e, l2(e, C)) = 0 , (4.7a)

l3(e, l3(e, C, C), C) + l3(e, C, l3(e, C, C)) = 0 , (4.7b)

l2(e, l2(e,Ψ)) = 0 , (4.7c)

l3(e, l3(e, C, C),Ψ) + l3(e, C, l3(e, C,Ψ)) = 0 , (4.7d)

−nHMMC
MMA

B C
A(k+3)B,A′(k) + l2(e, l3(e, C, C))

+ l3(e, l2(e, C), C) + l3(e, C, l2(e, C)) = 0 ,
(4.7e)

−nHMMC
MMA

B ΨA(k−1)B,A′(k+4) + l2(e, l3(e, C,Ψ))

+ l3(e, l2(e, C),Ψ) + l3(e, C, l2(e,Ψ)) = 0 .
(4.7f)

4.2 FDA

Appetizer. Let us first illustrate our approach by presenting the source of the non-linear

extension with an explicit example. We follow roughly the same steps as for SDYM, though

some subtle differences arise. The most important ones come from the commutativity of the

C’s and the additional contraction of unprimed indices that we will see shortly.
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The Bianchi identity for the curvature, ∇RAA = 0 implies

∇CAAAA = eBB′

CAAAB,B′ .

Its own Bianchi identity via (4.6) imposes

∇2CAAAA = −eBB′

∧ ∇CAAAAB,B′ = 4HBBCABB
D CAAAD .

We need to construct an ansatz for ∇CAAAAA,A′. Commutativity of the C’s and the Fierz

identity allow us to construct the minimal ansatz as

∇CAAAAA,A′ = eCC′

CAAAAAB,A′C′ + a01e
C
A′ CAAC

D CAAAD . (4.8)

Contracting the ansatz with eBB′

yields

eBB′

∧∇CAAAAB,B′ = −2a01
5
HBBCABB

D CAAAD − 3a01
5
HBBCAAB

D CAABD

= −2a01
5
HBBCABB

D CAAAD .

One term is dropped, as commuting the two C’s and raising/lowering the contracted indices

tells us that this term vanishes. Comparing the result with (4.8) yields the solution

∇CAAAAA,A′ = eCC′

CAAAAAC,A′C′ + 10eCA′ CAAC
D CAAAD .

The procedure that we have followed is a practical realisation of solving the L∞-relation (4.7e).

This procedure will be generalized next.

Main course, C-sector. Using the same criteria as before we propose the minimal ansatz

∇CA(k+4),A′(k) = eCC′

CA(k+4)C,A′(k)C′ +

k−1
∑

n=0

anke
C
A′ CA(n+2)C

D
,A′(n) CA(k−n+2)D,A′(k−n−1) .

19



Taking another derivative leads to

∇2CA(k+4),A′(k) = (k + 4)HBB′

CABB
D CA(k+3)D,A′(k) = −eCC′

∧ ∇CA(k+4)C,A′(k)C′

−
k−1
∑

n=1

anke
C
A′ ∧∇CA(n+2)C

D
,A′(n) CA(k−n+2)D,A′(k−n−1)

−
k−2
∑

n=0

anke
C
A′ ∧ CA(n+2)C

D
,A′(n)∇CA(k−n+2)D,A′(k−n−1) .

(4.9)

Considering only terms quadratic in C yields

eCC′

∧∇CA(k+4)C,A′(k)C′ = −(k + 4)HBBCABB
D CA(k+3)D,A′(k)

− 1
2
HBB

k−1
∑

n=0

ankCA(n+2)BB
D
,A′(n+1) CA(k−n+2)D,A′(k−n−1)

− 1
2
HBB

k
∑

n=0

(ank

2
−

a(k−n)k

2
)CA(n+2)B

D
,A′(n)CA(k−n+2)BD,A′(k−n)

− 1
2
HA′

B′

k−1
∑

n=0

ankCA(n+2)B
D
,A′(n)CA(k−n+2)

B
D,A′(k−n−1)B′ ,

(4.10)

where in the third line we made the anti-commuting property of the C’s explicit, together with

the anti-symmetry of the spinorial inner product. At the same time we contract eBB′

with

∇CA(k+5),A′(k+1) to obtain

eBB′

∧ ∇CA(k+4)B,A′(k)B′ = −HBB k+2
(k+5)(k+1)

a0(k+1)CABB
D CA(k+3)D,A′(k)

− 1
2
HBB

k−1
∑

n=0

(k+2)(n+3)
(k+5)(k+1)

a(n+1)(k+1)CA(n+2)BB
D
,A′(n+1)CA(k−n+2)D,A′(k−n−1)

− 1
4
HBB

k
∑

n

( (k+2)(k−n+3)
(k+5)(k+1)

an(k+1) −
(k+2)(n+3)
(k+5)(k+1)

a(k−n)(k+1))

× CA(n+2)B
D
,A′(n)CA(k−n+2)BD,A′(k−n)

− 1
2
HA′

B′

k−1
∑

n=0

( (k−n)(n+3)
(k+5)(k+1)

a(k−n)(k+1) +
(k−n)(k−n+3)
(k+5)(k+1)

an(k+1))

× CA(n+2)B
D
,A′(n)CA(k−n+2)

B
D,A′(k−n−1)B′ .
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Comparing this expression with (4.10) brings about the following system of recurrence relations:

0 = a0k −
(k+4)(k+3)k

k+1
,

0 = a(n+1)(k+1) −
(k+5)(k+1)
(k+2)(n+3)

ank ,

0 = (k+2)(k−n+3)
(k+5)(k+1)

an(k+1) −
(k+2)(n+3)
(k+5)(k+1)

a(k−n)(k+1) − ank + a(k−n)n ,

0 = ank −
(k−n)(n+3)
(k+5)(k+1)

a(k−n)(k+1) −
(k−n)(k−n+3)
(k+5)(k+1)

an(k+1) .

This over-determined system is solved by

ank =
2

(n+2)!
(k+4)!(k−n)

(k−n+2)!(k+1)

and the full solution reads11

∇CA(k+4),A′(k) = eCC′

CA(k+4)C,A′(k)C′

+

k−1
∑

n=0

2
(n+2)!

(k+4)!(k−n)
(k−n+2)!(k+1)

eCA′ CA(n+2)C
D
,A′(n) CA(k−n+2)D,A′(k−n−1) .

(4.11)

In appendix C.2 we prove that this solution is complete, i.e. no higher order terms arise.

Main course, Ψ-sector. For the Ψ-sector we follow a similar approach. The minimal ansatz

reads

∇ΨA(k),A′(k+4) = eCC′

ΨA(k)C,A′(k+1)C′ +
k
∑

n=0

bnke
C
A′ CA(n+2)C

D
,A′(n)ΨA(k−n−2)D,A′(k−n+3)

+

k
∑

n=0

cnke
C
A′ CA(n+3)

D
,A′(n)ΨA(k−n−3)CD,A′(k−n+3) .

(4.12)

The details of the calculations are left to Appendix C.1, but the approach is as follows: we

take the covariant derivative of the ansatz above. We also contract eBB′

with ∇ΨA(k+1),A′(k+5).

Both will give us an expression for eBB′

∧∇ΨA(k)B,A′(k+4)B′ and we compare them. This results

11A closely related problem was addressed in [55], which is to find an FDA form of the full gravity to the
next to the leading order (the problem to find the complete minimal model for gravity does not seem to admit
a solution in a closed form, even though it does always exist as a matter of principle). It would be interesting
to understand what [55] describes since it does not coincide with the FDA of SDGR with (non)-vanishing
cosmological constant. The physical degrees of freedom are the same though.
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in a system of recurrence relations, which is solved by

bnk = 2
(n+2)!

k!
(k−n−2)!

k−n+4
k+5

, cnk = − 2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

,

and the solution in the Ψ-sector reads

∇ΨA(k),A′(k+4) = eCC′

ΨA(k)C,A′(k+1)C′

+
k
∑

n=0

2
(n+2)!

k!
(k−n−2)!

k−n+4
k+5

eCA′ CA(n+2)C
D
,A′(n) ΨA(k−n−2)D,A′(k−n+3)

−
k
∑

n=0

2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

eCA′ CA(n+3)
D
,A′(n)ΨA(k−n−3)CD,A′(k−n+3) .

(4.13)

We prove in Appendix C.2 that ∇ΨA(k),A′(k+4) is consistent as it is and does not require higher

order terms.

Summary. We rewrote SDGR as an L∞-algebra. This gives rise to three L∞-relations for

the C-sector and the Ψ-sector, see (4.7). Solving the first relation of each sector yields the

free equations for ∇CA(k+4),A′(k) and ∇ΨA(k),A′(k+4). We constructed a minimal ansatz for a

non-linear extension of the free equations and used the second L∞-relation to determine its

structure. The results are shown in the boxes expressions above, (4.11) and (4.13). The third

L∞-relation is found to be satisfied for the obtained solutions, which implies that the minimal

ansatz is sufficient to solve the whole system.

An interesting followup of this project is construct FDA for SDGR in the constant-curvature

background. The action of this theory [54] is even more natural

∫

ΨA′B′C′D′

∧ FA′B′ ∧ FC′D′ ,

where FA′B′

= dωA′B′

− ωA′

C′ ∧ ωC′B′

. However, it is more nonlinear, featuring quartic terms

(the quintic one vanishes). A simpler problem is to consider the higher spin extensions of SDGR

[34, 52] with vanishing cosmological constant.

5 Conclusions and Discussion

The present paper is the first in a series of papers where we plan to construct minimal models of

various field theories, including some examples of higher spin gravities. Since every (gauge) field
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theory defines and is defined by its minimal model, a certain L∞-algebra, our general motivation

is to first understand how various properties of field theories, e.g. integrability, asymptotic

symmetries, conserved charges, actions, anomalies etc., can be understood in the known cases

and derived from this L∞-algebra in the cases where this information is yet unavailable. For

example, it would be interesting to understand the Ward construction of Yang-Mills instantons

[2] from the L∞ point of view.

As we have reviewed in section 2, the minimal model can naturally be associated to any

gauge theory and it is the smallest L∞-algebra that captures all local BRST cohomology of

this field theory. However, the minimal model is usually difficult to construct explicitly. Apart

from this paper, the only available examples where minimal models were explicitly constructed

are (a) Chern-Simons theory, which is just dA = AA and, for that reason, is hard to consider

this as a genuine example of a minimal model (nevertheless, this toy model was quite useful to

prove that all matter-free higher spin gravities in 3d are of Chern-Simons form [41]); (b) another

example is discussed in [55] and is closely related to the SDGR FDA of the present paper. It

is tempting to argue that minimal models can explicitly be constructed only for theories that

feature some kind of (hidden) simplicity, e.g. they are integrable like Chern-Simons theory,

SDYM and SDGR.

Some obvious future directions include: (a) self-dual gravity with cosmological constant

[54]; (b) higher spin extensions of SDYM and SDGR [34, 52]; (c) the supersymmetric higher

spin extensions of [53]; Chiral higher spin gravity [31–37].

All physically relevant local information about a given theory is encoded in its minimal

model via the Q-cohomology. For example, conserved charges, actions correspond to H(Q)

with values in the trivial module. A more complicated example is the presymplectic structure

ΩAB δΦ
A ∧ δΦB which is a two-form on the field space and is a degree (d − 1) form from the

space-time point of view. It corresponds to H(Q,Λ2(N )), where the action of Q is understood

as Lie derivative LQ along Q that is defined canonically on (p, q)-tensors on N , see [56–59] for

more detail and examples. As the last example, Q-cohomology with values in vector fields,

H(Q, T 1,0(N )), is responsible for deformations of Q itself, i.e. it classifies possible interac-

tions. It is worth noting that Q-cohomology can often be computed without having to know

the minimal model explicitly. The latter is an additional bonus that should be a signal of

integrability.
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A Notation

The most important conventions and definitions that were used in the main text are introduced

here. A short discussion on the spinor formalism is given, a more elaborate treatment can be

found in [49].

It is useful for 4d theories to express all space-time indices in terms of spinor indices,

using so(3, 1) ∼ sl(2,C). This isomorphism allows to map 4-dimensional space-time vectors to

2× 2 Hermitian matrices, which can be extended to tensors. As basis for the 2× 2 Hermitian

matrices in flat space-time we choose the Pauli matrices and the unit matrix σµ
AB′ = (11, σi). The

Greek letters run over space-time indices, whereas the lower case Latin letters are space indices

and capitals are the matrix indices. The Pauli matrices satisfy Tr σi = 0 and {σµ, σν}AA′ =

2ηµν11AA′, with ηµν = diag(−1, 1, 1, 1) the Minkowski metric. We define

xAA′ = xµ(σµ)AA′ =

(

x0 + x3 x1 − ix2

x1 + ix2 x1 − x3

)

,

which is Hermitian. We also introduce a dual set (σµ)AA′

= (1,−σi), such that

vµ = −1
2
xAA′σµA′A .

The two sets are related by σAA′

µ = σA′A
µ . We also introduce raising and lowering rules for the

primed (and similarly for unprimed indices):

yA = yBǫBA, yA = ǫAByB .

The inner product in spinor indices is defined as (xy) = xAyBǫAB = xAy
A = −xAyA. We define
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the ǫ’s as

ǫAB = ǫA
′B′

= i(σ2)AB =

(

0 1

−1 0

)

and their inverse −ǫAB = (−σ2)−1 = −iσ2. ǫAB is anti-symmetric and ǫACǫ
BC = δ B

A . Inner

products in spinor indices look slightly different from inner products in space-time indices:

xAA′yAA′

= −2xµy
µ , zAz

A = zAzBǫAB = 0 .

Any bi-spinor TAB can be decomposed into symmetric and anti-symmetric parts:

TAB = 1
2
(TAB + TBA + TAB − TBA) = T(AB) +

1
2
ǫABT

C
C , (A.1)

where T(AB) =
1
2!
(TAB+TBA) denotes the symmetric part of TAB. From now on, we will use the

convention that if a tensor carries identical indices, it is implied that the tensor is symmetric in

them, e.g. TAA = 1
2!
(TA1A2 + TA2A1) and in a more condensed notation, TA(n) is symmetrized

over the n indices in a similar fashion. Tensors can carry two types of unrelated indices, primed

and unprimed. In the most general case we write TA(m),A′(n) = 1
m!n!

∑

permutations T
A1...Am,A′

1...A
′
n .

An object that we will often use is the vierbein eAA′

≡ eAA′

µ dxµ, which is a one-form. A direct

consequence of the decomposition of (A.1) leads to the important identity

eAA′ ∧ eBB′ = 1
2
(ǫA′B′HAB + ǫABHA′B′) , (A.2)

where HAB = eAC′ ∧ eBC′

and HA′B′ = eCA′ ∧ eCB′ . This identity allows one, for example, to

rewrite the Yang-Mills field strength in terms of its (anti)-self-dual parts

F = FAA′|BB′eAA′

∧ eBB′

= HBBFBB +HB′B′

FB′B′ ,

with FAB = 1
2
FAC′|B

C′

and FA′B′ = 1
2
FCA′|

C
B′ .

Another useful feature of the spinor formalism is the Fierz identity. Given three spinors, φA,

χB, ψC , the anti-symmetrization over their indices equals zero, as their indices only run over

two values A,B,C = 0, 1. The Fierz identity is obtained by contracting this anti-symmetrized

product with ǫBC , which leads to

3ǫBCφ[AχBψC] = φA(χψ) + χA(ψφ) + ψA(φχ) ≡ 0 . (A.3)
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B Technicalities: SDYM

The calculations in the main text have been highly compacted for the sake of brevity. In this

appendix we aim to present some proofs and additional details to the reader.

B.1 Ψ-sector

The calculations of the Ψ-sector have been moved to this appendix as they are very much

similar to the F -sector. The approach is as follows: we apply a covariant derivative to the

ansatz (3.19) and we also contract eBB′

with ΨA(k+1),A′(k+3) as to obtain two expressions for

eBB′

DΨA(k)B,A′(k+2)B′ , which we then compare. The former yields

D2ΨA(k),A′(k+2) =−HBB[FBB,ΨA(k),A′(k+2)] = −eCC′

∧DΨA(k)C,A′(k+2)C′

− eCA′ ∧
k−1
∑

n=0

βnk[DFA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1
∑

n=0

βnk[FA(n+1)C,A′(n), DΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1
∑

n=0

γnk[DFA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)]

− eCA′

k−1
∑

n=0

γnk[FA(n+2),A′(n), DΨA(k−n−2),A′(k−n+1)] .

(B.1)
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Considering only quadratic terms in the fields gives

eBB′

∧DΨA(k)C,A′(k+2)C′ = HBB[FBB ,ΨA(k),A′(k+2)]

−
k
∑

n=1

β(n−1)k

2
HBB[FA(n)BB,A′(n),ΨA(k−n),A′(k−n+2)]

−
k
∑

n=0

βnk+γ(n−1)k

2
HBB[FA(n+1)B,A′(n),ΨA(k−n−1)B,A′(k−n+2)]

−
∑

n=0

γnk

2
HBB[FA(n+2),A′(n),ΨA(k−n−2)BB,A′(k−n+2)]

+
k
∑

n=0

γ(n−1)k

2
HA′

B′

[FA(n+1)
B
,A′(n−1)B′ ,ΨA(k−n−1)B,A′(k−n+2)]

−
k
∑

n=0

βnk

2
HA′

B′

[FA(n+1)
B
,A′(n) ,ΨA(k−n−1)B,A′(k−n+1)B′ ] .

(B.2)

We have renamed the dummy indices in some terms in order to match the summation limits with

the expression for eBB′

ΨA(k)B,A′(k+2)B′ that we will derive next. This makes some coefficients

show up that were not present in the minimal ansatz, so we have to set them to zero by hand:

βkk = 0, γ(−1)k = 0. Contracting eBB′

with DΨA(k),A′(k+4) gives

eBB′

∧DΨA(k)B,A′(k+2)B′ =

−
k
∑

n=0

(n+1)(k+4)
(k+1)(k+3)

βn(k+1)

2
HBB[FA(n)BB,A′(n),ΨA(k−n),A′(k−n+2)]

−
k
∑

n=0

( (k−n)(k+4)
(k+1)(k+3)

βn(k+1)

2
+ (n+2)(k+4)

(k+1)(k+3)

γn(k+1)

2
)HBB[FA(n+1)B,A′(n),ΨA(k−n−1)B,A′(k−n+2)]

−
k
∑

n=0

( n(k−n)
(k+1)(k+3)

βn(k+1)

2
− n(n+2)

(k+1)(k+3)

γn(k+1)

2
)HA′

B′

[FA(n+1)
B
,A′(n−1)B′ ,ΨA(k−n−1)B,A′(k−n+2)]

−
k
∑

n=0

( (k−n)(k−n+2)
(k+1)(k+3)

βn(k+1)

2
− (n+2)(k−n+2)

(k+1)(k+3)

γn(k+1)

2
)HA′

B′

[FA(n+1)
B
,A′(n) ,ΨA(k−n−1)B,A′(k−n+1)B′ ]

−
k
∑

n=0

(k−n−1)(k+4)
(k+1)(k+3)

γn(k+1)

2
HBB[FA(n+2),A′(n),ΨA(k−n−2)BB,A′(k−n+2)] .

Comparing this expression to (B.2), one obtains the recurrence relations

0 = β0k +
2k(k+2)
k+3

,
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0 = (n+2)(k+4)
(k+1)(k+3)

β(n+1)(k+1)

2
− βnk

2
,

0 = (k−n)(k+4)
(k+1)(k+3)

βn(k+1)

2
+ (n+2)(k+4)

(k+1)(k+3)

γn(k+1)

2
−

βnk+γ(n−1)k

2
,

0 = (k−n)(k−n+2)
(k+1)(k+3)

βn(k+1)

2
− (n+2)(k−n+2)

(k+1)(k+3)

γn(k+1)

2
− βnk

2
,

0 = (k−n−1)(n+1)
(k+1)(k+3)

β(n+1)(k+1)

2
− (n+3)(n+1)

(k+1)(k+3)

γ(n+1)(k+1)

2
+ γnk

2
,

0 = (k−n−1)(k+4)
(k+1)(k+3)

γn(k+1)

2
− γnk

2
.

The system is solved by

βnk = − 2
(n+1)!

k−n+2
k+3

k!
(k−n−1)!

, γnk =
2

(n+2)!
n+1
k+3

k!
(k−n−2)!

.

B.2 Absence of higher order corrections

In section 3.2 it was mentioned that the obtained solutions for DFA(k+2),A′(k) and DΨA(k),A′(k+2)

ensured that no higher order corrections were needed. This result is equivalent to the consis-

tency of the L∞-relation in (3.8c) and (3.8f). Here we shall present the proof.

F -sector. As a starting point we take the solution from (3.18) and plug it into (3.15), from

which we only consider only the cubic terms. This gives us the l.h.s. of the L∞-relation (3.8c):

l3(e, l3(e, F, F ), F ) + l3(e, F, l3(e, F, F )) =

− 1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

n−m+1
n+2

αnkαmn[FA(k−n+1),A′(k−n−1), [FA(m+1)B,A′(m), FA(n−m)
B
,A′(n−m−1) ]]

+ 1
2
HA′A′

k−2
∑

n=0

k−n−2
∑

m=0

αnkαm(k−n−1)[FA(n+1)
B
,A′(n) , [FA(n+1)B,A′(m), FA(k−n−m),A′(k−n−m−2)]]

= −1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

n−m+1
n+2

αnkαmn[FA(m+1)
B
,A′(m) , [FA(n−m)B,A′(n−m−1), FA(k−n+1),A′(k−n−1)]]

− 1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

n−m+1
n+2

αnkαmn[FA(n−m)
B
,A′(n−m−1) , [FA(m+1)B,A′(m), FA(k−n+1),A′(k−n−1)]]

+ 1
2
HA′A′

k−2
∑

n=0

k−n−2
∑

m=0

αnkαm(k−n−1)[FA(n+1)
B
,A′(n) , [FA(n+1)B,A′(m), FA(k−n−m),A′(k−n−m−2)]] ,

where we applied the Jacobi identity on the very first term. In order to compare the three

terms on the r.h.s., the nested commutators must be cast into the same form, which can be

achieved by renaming the dummy indices. The final result allows all terms to be collected into
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one and evaluates to

1
2
HA′A′

k−2
∑

n=0

(
n
∑

m=0

αmkα(n−m)(k−m−1) −
m+2
n+3

α(n+1)kα(n−m)(n+1) −
n−m+2
n+3

α(n+1)kαm(n+1))

× [FA(m+1)
B
,A′(m) , [FA(n−m+1)B,A′(n−m), FA(k−n),A′(k−n−2)]] = 0 ,

for which the solution for αnk was used. This proves the L∞-relation (3.8c).

Ψ-sector. We isolate the terms cubic in the fields in (B.1) and we plug in (3.18) and (3.20),

which yields the l.h.s. of L∞-relation (3.8f) and reads

l3(e, l3(e, F, F ),Ψ) + l3(e, F, l3(e, F,Ψ)) =

HA′A′

k−1
∑

n=1

n−1
∑

m=0

αmnβnk

2
n−m+1
n+2

[[FA(m+1)B,A′(m), FA(n−m)
B
,A′(n−m−1) ],ΨA(k−n−1),A′(k−n+1)]

+HA′A′

k−2
∑

n=0

k−n−2
∑

m=0

βm(k−n−1)βnk

2
[F (n+1)

B
,A′(n) , [FA(m+1)B,A′(m),ΨA(k−n−m−2),A′(k−n−m))]]

+HA′A′

k−3
∑

n=0

k−n−3
∑

m=0

βnkγm(k−n−1)

2
[FA(n+1)

B
,A′(n) , [FA(m+2),A′(m),ΨA(k−n−m−3)B,A′(k−n−m)]]

+HA′A′

k−2
∑

n=1

n−1
∑

m=0

αmnγnk

2
[[FA(m+1)B,A′(m), FA(n−m+1),A′(n−m−1)],ΨA(k−n−2)

B
,A′(k−n+1) ]

+HA′A′

k−2
∑

n=0

k−n−3
∑

m=0

(
βm(k−n−1)γnk

2
k−n−m−2
k−n−1

−
γm(k−n−1)γnk

2
m+2

k−n−1
)

× [FA(n+2),A′(n), [FA(m+1)
B
,A′(m) ,ΨA(k−n−m−3)B,A′(k−n−m)]].

Our approach is similar to the one for the F -sector: we aim to reduce the equations as much

as possible by casting the nested commutators into a similar form. A particular technicality

in this case is that a contraction can be either between two F ’s or between F and Ψ. The

Fierz identity is used to convert all contractions into the latter type. However, one must be

careful, as the Fierz identity requires some free indices on the available spinors, which might

not be present in all terms of the summation. Hence we isolate these cases and check that their
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contribution vanishes.

HA′A′

k−2
∑

n=0

β(k−1)kαn(k−1)

2
k−n
k+1

[[FA(n+1)B,A′(n), FA(k−n−1)
B
,A′(k−n−2) ],ΨA′A′ ]

+HA′A′

k−2
∑

n=0

βnkβ(k−n−2)(k−n−1)

2
[FA(n+1)

B
,A′(n) , [FA(k−n−1)B,A′(k−n−2),ΨA′A′ ]]

= HA′A′

k−2
∑

n=0

(−
β(k−1)kαn(k−1)

2
k−n
k+1

+
βnkβ(k−n−2)(k−n−1)

2
−

β(k−1)kα(k−n−2)(k−1)

2
n+2
k+1

)

× [FA(n+1)
B
,A′(n) , [FA(k−n−1)B,A′(k−n−2),ΨA′A′ ]] = 0 ,

where we used the solution for βnk and αnk. Finally, applying the Fierz identity, Jacobi identity

and renaming of dummy indices allows one to cast the remaining terms into a more practical

form that reads

HA′A′

k−3
∑

n=0

n
∑

m=0

(
β(n+1)kαm(n+1)

2
n−m+2
n+3

+
β(n+1)kα(n−m)(n+1)

2
m+2
n+3

+
βmkβ(n−m)(k−m−1)

2

+
βmkγ(n−m)(k−m−1)

2
−

γ(n+1)kαm(n+1)

2
)[FA(m+1)

B
,A′(m) , [FA(n−m+2),A′(n−m),ΨA(k−n−3)B,A′(k−n)]]

+HA′A′

k−3
∑

n=0

n
∑

m=0

(
β(n+1)kα(n−m)(n+1)

2
m+2
n+3

+
β(n+1)kαm(n+1)

2
n−m+2
n+3

−
βmkβ(n−m)(k−m−1)

2

+
γ(n+1)kα(n−m)(n+1)

2
−

γmkβ(n−m)(k−m−1)

2
k−n−2
k−m−1

+
γmkγ(n−m)(k−m−1)

2
n−m+2
k−m−1

)

× [FA(m+2),A′(m), [FA(n−m+1)
B
,A′(n−m) ,ΨA(k−n−3)B,A′(k−n)]] = 0 ,

which is obtained by plugging in the solutions for αnk, βnk and γnk were used. This implies the

consistency of L∞-relation (3.8f).

B.3 Higher gravitational corrections

In section 3.3 we mentioned that the correction due to the constant gravitational background

to the linear term in DFA(k+2),A′(k) and DΨA(k),A′(k+2) does not propagate to the quadratic term

or higher. This appendix is dedicated to prove this.

F -sector. The L∞-relations are modified on a constant curvature background according to

(3.23). It was mentioned in (3.23) that the gravitational contribution decouples and vanishes

independently. We shall present a proof here.

We are interested in checking consistency of L∞-relation (3.23a). We do so by taking the
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covariant derivative of (3.24a), which gives

D2FA(k+2),A′(k) = −HBB[FBB , FA(k+2),A′(k)] + (k + 2)HA
B FA(k+1)B,A′(k)

+ kHA′
B′

FA(k+2),A′(k−1)B′ = −eBB′

∧DFA(k+2)B,A′(k)B′

− eBA′ ∧
k−1
∑

n=0

αnk[DFA(n+1)B,A′(n), FA(k−n+1),A′(k−n−1)]

− eBA′ ∧
k−1
∑

n=0

αnk[FA(n+1)B,A′(n), DFA(k−n+1),A′(k−n−1)] .

(B.4)

Considering only the terms coming from gravitational contributions gives the l.h.s of L∞-

relation (3.23a) and reads after introducing fk = k(k + 2):

l̃2(e, l3(e, F, F )) + l3(e, l̃2(e, F ), F ) + l3(e, F, l̃2(e, F )) =

HA′A′

k−2
∑

n=0

1
2
n+2

n+3
fn+1α(n+1)k[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

+HA′A′

k−2
∑

n=0

αnk

2
fk−n−1[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

−HA′A′

k−2
∑

n=0

αn(k−1)

2
fk[FA(n+2),A′(n), FA(k−n),A′(k−n−2)]

=

k−2
∑

n=0

1
2
(
1
2
n+2

n+3
fn+1α(n+1)k −

1
2
(k−n)+1

k−n+1
fk−n−1α(k−n−1)k +

αnk

2
fk−n−1 −

α(k−n−2)k

2
fn+1

−
αn(k−1)

2
fk +

α(k−n−2)(k−1)

2
fk)[FA(n+2),A′(n), FA(k−n),A′(k−n−2)] = 0 ,

where the anti-symmetry of the commutator has been made explicit and the solution for αnk was

applied. Thus, the modification to the second L∞-relation of the F -sector vanishes, which means

that the gravitational background only modifies DFA(k+2),A′(k) on the linear level, identically

to the free equations. This is equivalent to the consistency of (3.23a).
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Ψ-sector. The second L∞-relation for Ψ on a gravitational background is modified according

to (3.23b). This gives

D2ΨA(k),A′(k+2) =−HBB[FBB ,ΨA(k),A′(k+2)] + kHA
B ΨA(k−1)B,A′(k+2)

+ (k + 2)HA′
B′

ΨA(k),A′(k+1)B′ = −eCC′

∧DΨA(k)C,A′(k+2)C′

− eCA′ ∧
k−1
∑

n=0

βnk[DFA(n+1)C,A′(n),ΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1
∑

n=0

βnk[FA(n+1)C,A′(n), DΨA(k−n−1),A′(k−n+1)]

− eCA′ ∧
k−1
∑

n=0

γnk[DFA(n+2),A′(n),ΨA(k−n−2)C,A′(k−n+1)]

− eCA′

k−1
∑

n=0

γnk[FA(n+2),A′(n), DΨA(k−n−2),A′(k−n+1)] .

(B.5)

Considering only the terms containing a gravitational contribution, one obtains the l.h.s. of

the L∞-relation (3.23b):

l̃2(e, l3(e, F,Ψ)) + l3(e, l̃2(e, F ),Ψ) + l3(e, F, l̃2(e,Ψ))

= HA′A′

k−2
∑

n=0

(fn+1β(n+1)k

1
2
n+2

n+3
+ 1

2
βnkfk−n−1 +

1
2
fn+1γ(n+1)k

+
1
2
k−

1
2
n

k−n−1
γnkfk−n−1 − fk

βn(k−1)

2
− fk

γn(k−1)

2
)[FA(n+2),A′(n),ΨA(k−n−2),A′(k−n)] = 0 ,

(B.6)

which we obtain by plugging in the solutions for αnk, βnk and γnk. This proves the consistency

of (3.23b).

The results in this appendix prove that the gravitational contribution to the L∞-relations in

both sectors decouples and vanishes independently, which is equivalent to consistency of (3.23a)

and (3.23b). Thus, the gravitational background only modifies DFA(k+2),A′(k) andDΨA(k),A′(k+2)

on the linear level, identically to the free equations.

C Technicalities: SDGR

Several technicalities have been left out from the main text. In this section we aim to present

the calculation of the Ψ-sector, as well as the proofs of the truncation of ∇C and ∇Ψ, as

promised in section 4.2
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C.1 Ψ-sector

We have left the details of the calculation of the Ψ-sector of section 4.2 to this appendix, as it

bears a lot of resemblance to the C-sector.

The approach is similar to before: we take the covariant derivative of the ansatz (4.12)

and we also contract eBB′

with ∇ΨA(k+1),A′(k+5) as this will give two expressions for eBB′

∧

∇ΨA(k)B,A′(k+4)B′ , so we can compare them. This will unveil its structure. The former yields

∇2ΨA(k),A′(k+4) = kHBBCABB
D ΨA(k−1)D,A′(k+4) = −eCC′

∧∇ΨA(k)C,A′(k+4)C′

− eCA′ ∧
k
∑

n=0

bnk∇CA(n+2)C
D
,A′(n)ΨA(k−n−2)D,A′(k−n+3)

− eCA′ ∧
k
∑

n=0

bnkCA(n+2)C
D
,A′(n)∇ΨA(k−n−2)D,A′(k−n+3)

− eCA′ ∧
k
∑

n=0

cnk∇CA(n+3)
D
,A′(n) ΨA(k−n−3)CD,A′(k−n+3)

− eCA′ ∧
k
∑

n=0

cnkCA(n+3)
D
,A′(n) ∇ΨA(k−n−3)CD,A′(k−n+3) .

(C.1)

Isolating the terms quadratic in the fields gives

eBB′

∧∇ΨA(k)C,A′(k+4)C′ = −kHBBCABB
D ΨA(k−1)D,A′(k+4)

−
1

2
HBB

k
∑

n=0

bnkCA(n+2)BB
D
,A′(n+1) ΨA(k−n−2)D,A′(k−n+3)

−
1

2
HBB

k
∑

n=0

(bnk + c(n−1)k)CA(n+2)B
D
,A′(n)ΨA(k−n−2)BD,A′(k−n+4)

+
1

2
HA′

B′

k
∑

n=0

bnkCA(n+2)
BD

,A′(n)ΨA(k−n−2)BD,A′(k−n+3)B′

−
1

2
HA′

B′

k
∑

n=0

cnkCA(n+3)
BD

,A′(n)B′ ΨA(k−n−3)BD,A′(k−n+3)

−
1

2
HBB

k
∑

n=0

cnkCA(n+3)
D
,A′(n)ΨA(k−n−3)BBD,A′(k−n+4) ,
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whereas the latter gives

eBB′

∧ ∇ΨA(k)B,A′(k+4)B′ = −HBBb0(k+1)
k+6

(k+1)(k+5)
CABB

D ΨA(k−1)D,A′(k+4)

−
1

2
HBB

k
∑

n=0

b(n+1)(k+1)
(k+6)(n+3)
(k+1)(k+5)

CA(n+2)BB
D
,A′(n+1)ΨA(k−n−2)D,A′(k−n+3)

− 1
2
HBB

k
∑

n=0

(bn(k+1)
(k+6)(k−n−1)
(k+1)(k+5)

+ cn(k+1)
(k+6)(n+3)
(k+1)(k+5)

)

× CA(n+2)B
D
,A′(n) ΨA(k−n−2)BD,A′(k−n+4)

+
1

2
HA′

B′

k
∑

n=0

(b(n+1)(k+1)
(n+1)(k−n−2)
(k+1)(k+5)

− c(n+1)(k+1)
(n+1)(n+4)
(k+1)(k+5)

)

× CA(n+3)
BD

,A′(n)B′ ΨA(k−n−3)BD,A′(k−n+3)

+
1

2
HA′

B′

k
∑

n=0

(bn(k+1)
(k−n+4)(k−n−1)

(k+1)(k+5)
− cn(k+1)

(k−n+4)(n+3)
(k+1)(k+5)

)

× CA(n+2)
BD

,A′(n) ΨA(k−n−2)BD,A′(k−n+3)B′

−
1

2
HBB

k
∑

n=0

cn(k+1)
(k+6)(k−n−2)
(k+1)(k+5)

CA(n+3)
D
,A′(n)ΨA(k−n−3)BBD,A′(k−n+4) .

Comparing them gives the system of recurrence relations

0 = k+6
(k+1)(k+5)

b0(k+1) − k ,

0 = bnk − b(n+1)(k+1)
(k+6)(n+3)
(k+1)(k+5)

,

0 = bnk + cnk − bn(k+1)
(k+6)(k−n−1)
(k+1)(k+5)

− cn(k+1)
(k+6)(n+3)
(k+1)(k+5)

,

0 = bnk − bn(k+1)
(k−n+4)(k−n−1)

(k+1)(k+5)
+ cn(k+1)

(k−n+4)(n+3)
(k+1)(k+5)

,

0 = cnk + b(n+1)(k+1)
(n+1)(k−n−2)
(k+1)(k+5)

− c(n+1)(k+1)
(n+1)(n+4)
(k+1)(k+5)

,

0 = cnk − cn(k+1)
(k+6)(k−n−2)
(k+1)(k+5)

,

which is solved by

bnk =
2

(n+2)!
k!

(k−n−2)!
k−n+4
k+5

cnk = − 2
(n+2)!

k!
(k−n−3)!

n+1
(k+5)(n+3)

.
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C.2 Absense of higher order corrections

C-sector. We consider (4.9) and isolate the terms cubic in C. Plugging in the solution from

(4.11) yields the l.h.s. of the L∞-relation (4.7b) given by

l3(e, l3(e, C, C), C) + l3(e, C, l3(e, C, C)) =

1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

ankamn
n−m+2
n+4

m+2
n+3

CA(m+1)B
DE

,A′(m) CA(n−m+1)E
B
,A′(n−m−1) CA(k−n+2)D,A′(k−n−1)

+ 1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

ankamn
n−m+2
n+4

n−m+1
n+3

× CA(m+2)B
E
,A′(m) CA(n−m)E

BD
,A′(n−m−1) CA(k−n+2)D,A′(k−n−1)

+ 1
2
HA′A′

k−2
∑

n=0

k−n−2
∑

m=0

ankam(k−n−1)
m+2

k−n+3

CA(n+2)
BD

,A′(n) CA(m+1)BD
E
,A′(m) CA(k−n−m+1)E,A′(k−n−m−2)

+ 1
2
HA′A′

k−2
∑

n=0

k−n−2
∑

m=0

ankam(k−n−1)
k−n−m+1
k−n+3

× CA(n+2)
BD

,A′(n) CA(m+2)B
E
,A′(m) CA(k−n−m)DE,A′(k−n−m−2) .

(C.3)

The first three terms can be collected into

1
2
HA′A′

k−1
∑

n=1

n−1
∑

m=0

(ankamn
n−m+2
n+4

m+2
n+3

+ anka(n−m−1)n
m+3
n+4

m+2
n+3

− a(n−m−1)kam(k−n+m)
m+2

k−n+m+4
)

× CA(m+1)B
DE

,A′(m) CA(n−m+1)
B
,A′(n−m−1) CA(k−n+2)D,A′(k−n−1) = 0 ,

for which the solution for ank is applied. The last term in (C.3) may be rewritten as

1
2
HA′A′

k−2
∑

n=0

n
∑

m=0

amka(n−m)(k−m−1)
k−n+1
k−m+3

CA(m+2)
BD

,A′(m) CA(n−m+2)B
E
,A′(m) CA(k−n)DE,A′(k−n−2)

= 1
4
HA′A′

k−2
∑

n=0

n
∑

m=0

(amka(n−m)(k−m−1)
k−n+1
k−m+3

− a(n−m)kam(k−n+m−1)
k−n+1

k−n+m+3
)

× CA(m+2)
BD

,A′(m) CA(n−m+2)B
E
,A′(m) CA(k−n)DE,A′(k−n−2) = 0 ,
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where again we used the solution for ank. This proves that the C-sector truncates at quadratic

order. This confirms the consistency of (4.7b).

Ψ-sector. We consider the cubic terms in (C.1) and we assume the solutions (4.11) and

(4.13). This gives the l.h.s. of the L∞-relation in (4.7d) and reads

l3(e, l3(e, C, C),Ψ) + l3(e, C, l3(e, C,Ψ)) =

1
2
HA′A′

k−3
∑

n=0

n
∑

m=0

(am(n+1)b(n+1)k
(n−m+3)(m+2)

(n+5)(n+4)
+ a(n−m)(n+1)b(n+1)k

(m+3)(m+2)
(n+5)(n+4)

− bm(k−n+m−1)b(n−m)k
m+2

k−n+m−1
)

× CA(m+1)B
DE

,A′(m) CA(n−m+2)E
B
,A′(n−m) ΨA(k−n−3)D,A′(k−n+2)

+ 1
4
HA′A′

k−4
∑

n=0

n
∑

m=0

(b(n−m)(k−m−1)bmk
k−n−3
k−m−1

+ c(n−m)(k−m−1)bmk
n−m+3
k−m−1

− am(n+1)c(n+1)k
n−m+3
n+5

− bm(k−n+m−1)b(n−m)k
k−n−3

k−n+m−1

− cm(k−n+m−1)b(n−m)k
m+3

k−n+m−1
+ a(n−m)(n+1)c(n+1)k

m+3
n+5

)

× CA(m+2)
BD

,A′(m) CA(n−m+2)B
E
,A′(n−m)ΨA(k−n−4)DE,A′(k−n+2)

+ 1
2
HA′A′

k−4
∑

n=0

n
∑

m=n

(b(n−m)(k−m−1)cmk
(k−n−3)(n−m+2)
(k−m−1)(k−m−2)

− c(n−m)(k−m−1)cmk
(n−m+3)(n−m+2)
(k−m−1)(k−m−2)

− a(n−m)(n+1)c(n+1)k
n−m+2
n+5

)

× CA(m+3)
D
,A′(m) CA(n−m+1)BD

E
,A′(n−m) ΨA(k−n−4)E

B
,A′(k−n+2)

+ 1
2
HA′A′

k−5
∑

n=0

n
∑

m=0

(cm(k−n+m−1)b(n−m)k
k−n−4

k−n+m−1

− b(n−m)(k−m−1)cmk
(k−n−3)(k−n−4)
(k−m−1)(k−m−2)

+ c(n−m)(k−m−1)cmk
(n−m+3)(k−n−4)
(k−m−1)(k−m−2)

)

CA(m+3)
C
,A′(m) CA(n−m+2)

BD
,A′(n−m) ΨA(k−n−5)BDE,A′(k−n+2) = 0 ,

which is obtained by plugging in the results for ank, bnk and cnk. This proves consistency of

(4.7d).
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