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Abstract. In this study, we analyze and compare the performance of
state-of-the-art deep reinforcement learning algorithms for solving the
supply chain inventory management problem. This complex sequential
decision-making problem consists of determining the optimal quantity of
products to be produced and shipped across different warehouses over
a given time horizon. In particular, we present a mathematical formu-
lation of a two-echelon supply chain environment with stochastic and
seasonal demand, which allows managing an arbitrary number of ware-
houses and product types. Through a rich set of numerical experiments,
we compare the performance of different deep reinforcement learning
algorithms under various supply chain structures, topologies, demands,
capacities, and costs. The results of the experimental plan indicate that
deep reinforcement learning algorithms outperform traditional inventory
management strategies, such as the static (s, Q)-policy. Furthermore, this
study provides detailed insight into the design and development of an
open-source software library that provides a customizable environment
for solving the supply chain inventory management problem using a wide
range of data-driven approaches.

Keywords: artificial intelligence · deep learning · reinforcement learning
· smart manufacturing · inventory management.

1 Introduction

Supply chain inventory management (SCIM) is a sequential decision-making
problem consisting of determining the optimal quantity of products to produce
at the factory and to ship to different distribution warehouses over a given time
horizon. As evidenced by the helpful roadmap of [2], deep reinforcement learning
(DRL) algorithms are rarely applied to the SCIM field, although they can be
used to develop near-optimal policies that are difficult, or impossible at worst, to
achieve using traditional methods. Indeed, the uncertain and stochastic nature
of products demand, as well as lead times, represent significant obstacles for
mathematical programming approaches to be effective, with specific reference
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to those cases where the modeling of SCIM’s entities is reasonable, for example,
assuming a finite capacity of warehouses [9].

Regarding the DRL algorithms that have been currently applied to tackle
the SCIM problem, we found that they suffer the following limitations: i) given
a supply chain structure (e.g., divergent 3 two-echelon 4), no DRL algorithm
has been deeply tested with respect to different topologies (i.e., by changing the
number of warehouses); ii) no extensive experiments have been performed on the
same supply chain structure by varying different configurations (e.g., demands,
capacities, and costs); iii) no extension has been proposed for comparing different
DRL algorithms and determining which one is more appropriate for a particular
supply chain topology and configuration, as suggested by [1,2].

Furthermore, relevant aspects of the SCIM problem have not yet been ad-
dressed efficiently [23], for example: i) the sequence of events required to reproduce
and validate a simulation model is not always well-defined or given. Hence, making
available a consistent and universal open-source SCIM environment can improve
reusability and reproducibility, especially if implemented with standard APIs
(like those of OpenAI Gym 5). In this way, it is also possible to import DRL
algorithms from reliable libraries and focus solely on their fine-tuning, instead
of developing them from scratch; ii) DRL algorithms are typically compared
with some standard static reorder policies. However, their performances are not
always compared with those achieved by an oracle, i.e., a baseline who knows
the optimal action to take a priori, thus making it difficult to evaluate the DRL
effectiveness in real-world environments (the only paper in which an oracle is in-
troduced is [6]); iii) none of the DRL papers available in the specialized literature
considers a multi-product approach, whereas it has been considered relating to
other solution methods [23]. Considering more than one product type increases
the dimensionality and complexity of the problem, consequently requiring an
efficient implementation of the SCIM environment and DRL algorithms.

This paper makes the following contributions to the SCIM decision-making
problem:

– Design and formulation of a stochastic and divergent two-echelon SCIM
environment under seasonal demand, which allows an arbitrary number of
warehouses and product types to be managed.

– Comparison of a set of state-of-the-art DRL algorithms in terms of their
ability to find an optimal policy, i.e., a policy which maximizes the SCIM’s
profit as achieved by an oracle.

3 In a linear supply chain, each participant has one predecessor and one successor; in
a divergent supply chain, each has one predecessor but can have multiple successors,
while the opposite is true in a convergent supply chain. Finally, in a general supply
chain, each participant can have several predecessors and several successors.

4 A supply chain can include multiple stages, called formally echelons, through which
the stocks are moved to reach the customer. When the number of echelons is greater
than one, we refer to a multi-echelon supply chain.
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– Evaluation of performances achieved by state-of-the-art DRL algorithms and
comparison to a static reorder policy, i.e., an (s, Q)-policy, whose optimal
parameters have been set through a data-driven approach.

– Design and run of a rich experimental plan involving different SCIM topologies
and configurations as well as values of hyperparameters associated with DRL
algorithms’.

– Design and development of an open-source library for solving the SCIM
problem 6, thus embracing the open science principles and guaranteeing
reproducible results.

The rest of the paper is organized as follows: Section 2 is devoted to introducing
and providing main reinforcement learning (RL) definitions and notation, also
highlighting how RL approaches have dealt with the SCIM problem; in this
section, we also describe the state-of-the-art DRL algorithms and how they
have been used to address the SCIM problem. Section 3 describes the main
methodological contributions of this paper. The rich experimental plan is then
reported in Section 4, while the results of numerical experiments are presented
in Section 5. Lastly, discussions and conclusions are given in Section 6.

2 Literature Review

While reinforcement learning has recently achieved remarkable results in the
field of artificial intelligence, mainly when applied to video games and gaming in
a more general sense [13,18,20], its deployment in industrial settings has been
less extensive. Despite RL proving to be effective in solving complex sequential
decision-making problems, its translation into industrial use cases is still emerging,
devising a concrete opportunity for further explore its potentialities [23].

Essentially, RL adopts the Markov Decision Process (MDP) framework to
represent the interactions between a learning agent and an environment [19]. As
shown in Figure 1, at each time step t, the agent observes the current state of
the environment, St ∈ S, chooses an action, At ∈ A(St), and obtains a reward,
Rt+1 ∈ R ⊂ R; then, the environment transitions into a new state, St+1. The goal
of RL is thus to find an optimal policy, π∗ : S → A, that maximizes the expected
discounted return, Gt =

∑T
k=t+1 γ

k−t−1Rk, where 0 ≤ γ ≤ 1 is a hyperparameter
called discount rate.

One of the most common approaches for solving the SCIM problem through
RL algorithms turns out to be Q-learning. This approach is based on a tabular
and temporal-difference (TD) algorithm that learns how to determine the value
of an action At in a state St, referred to as the Q-value, in accordance with the
following update rule: Q (St, At)← Q (St, At) + αδt, where 0 ≤ α ≤ 1 is a hyper-
parameter called learning rate, and δt = [Rt+1 + γmaxa Q (St+1, a)−Q (St, At)]
is the TD error. Q-values of each state-action pair are stored in a table, known
as Q-table, where each state is represented by a row and each action by a
5 The OpenAI Gym library is available on https://www.gymlibrary.dev.
6 Our open-source library is available on https://github.com/frenkowski/SCIMAI-Gym.

https://www.gymlibrary.dev
https://github.com/frenkowski/SCIMAI-Gym
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Fig. 1. Agent-environment interface in an MDP (taken from [19]).

column. Through the Q-learning algorithm, Q-values associated with each state-
action pair are estimated and, once convergence has been achieved (which is
guaranteed under certain conditions [7]), an optimal policy can be easily ob-
tained by identifying, for each state, the action with the highest Q-value, that is,
π∗(St) = argmaxa Q (St, a).

In [3], which is one of the most cited RL articles about SCIM, the authors
proposed an approach based on Q-learning to address (a centralized variant of)
the SCIM problem consisting of a linear supply chain with four participants. In
particular, they defined the current system state as a vector consisting of the four
inventory positions in terms of current stock levels. However, considering that
inventory positions thus defined may take infinite values, applying this strategy
appears unfeasible since the Q-table would be in turn infinite. Consequently, the
authors discretized the state space into nine intervals. In this way, the possible
state values amount to 94. Regarding actions, their approach determines the
number of products to order via the d+x policy; precisely, if a participant in the
previous time step received a request for d product units from the succeeding
stage, the d+x policy requires ordering d+x units to the preceding stage in the
current time step. The learning process’s objective is hence to determine the
value of the unknown variable x according to the given system state. For limiting
the Q-table size, x was constrained by the authors to belong to [0, 3] so that the
possible number of actions amounts to 44.

Obviously, by defining restricted state and action spaces, the resulting Q-table
appears to be more manageable. However, analyzing various RL studies [23], it
becomes evident that the Q-tables implemented are typically huge and, thus,
unscalable. For example, the Q-table adopted by [3] has a number of cells equal
to (94 · 44 =) 1 679 616, equivalent to the number of states multiplied by the
number of actions. Consequently, expanding the size of the state or action spaces
might not be feasible, as the Q-tables can no longer be handled.

Consequently, tabular RL methods can only be applied to discretized or
constrained state and action spaces. However, discretization leads to a loss of
crucial information, in addition to being unsuitable for real-world scenarios; thus,
we need improved RL methods to address the SCIM problem effectively.

In this respect, deep reinforcement learning is a combination of RL with deep
learning (DL) which promises to scale to previously intractable decision-making
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problems, i.e., environments with high dimensional state and action spaces.
DL is rooted into artificial neural networks (ANNs) [10], which are universal
approximators capable of providing an optimal approximation of highly nonlinear
functions. In practice, function parameters θ are adjusted during the learning
process in order to maximize the expected return (or, alternatively, to minimize
the TD error).

The DRL algorithms we implemented belong to the policy-based methods,
which can learn a parameterized and stochastic policy, πθ ≈ π∗ with π : A×S →
[0, 1], to select actions directly (as opposed to the Q-learning algorithm, which is
part of value-based methods [19]). Inside them, policy gradient methods offer a
considerable theoretical advantage through the policy gradient theorem, and the
vanilla policy gradient (VPG) algorithm [21] is a natural result of this theorem;
however, the high variance of gradient estimates usually results in policy update
instabilities [22]. Also to mitigate this issue, [16] proposed an actor-critic algorithm
(which means that a policy and a value function are simultaneously learned) called
trust region policy optimization (TRPO), which bounds the difference between
the new and the old policy in a trust region. Proximal policy optimization (PPO)
[17] shares the same background as TRPO, but has demonstrated comparable
or superior performance while being significantly simpler to implement and
tune. Asynchronous advantage actor-critic (A3C) [12] is also one of the available
state-of-the-art actor-critic algorithms. Its core idea is to have different agents
interacting with different representations of the environment, each with its
parameters. Periodically (and asynchronously), they update a global ANN that
incorporates shared parameters. For interested readers, an in-depth and more
rigorous discussion on the various DRL algorithms can be found in [4].

To the best of the authors’ knowledge, only few papers have implemented
DRL algorithms to solve the SCIM problem, despite some restrictions. More in
detail, an extension of deep Q-network (DQN) [13] has been proposed in [14] to
solve (a decentralized variant of) the SCIM problem. The authors revealed that
a DQN agent, which basically involves an ANN instead of a Q-table to return
the Q-value for a state-action pair, can learn a near-optimal policy when other
supply chain participants follow a base-stock policy; under a base-stock policy,
each participant orders in each time step t a quantity to bring its stocks equal
to a fixed number s, known as the base-stock level, to determine in an optimal
way. Because DQN requires a restricted action space cardinality, the authors
performed numerical experiments using a d+x policy, with x constrained to one
of the following intervals: [-2, +2], [-5, +5], and [-8, +8].

Alternatively, authors in [15] proposed the VPG algorithm to address a
two-echelon supply chain with stochastic and seasonal demand. Due to storage
capacity constraints, the authors designed a dynamic action space. As a result,
the number of products to ship is determined also by considering the number of
stocks actually present in the warehouses. To evaluate the VPG performance,
three different numerical experiments are presented, and the results show that
the VPG agent is able to outperform the (s, Q)-policy employed as a baseline in
all three experiments. In this context, the (s, Q)-policy can be expressed by a
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rule: at each time step t, the current stock level is compared to the reorder point
s. If the stock level falls below the reorder point s, then the (s, Q)-policy orders
Q units of product; otherwise, it does not take any action. Also in this case, the
parameters s and Q are to be determined optimally.

Using the same supply chain structure but with ten warehouses and a normal
distribution, authors in [5] applied and tuned the A3C algorithm for two different
numerical experiments. The authors restricted the action space by implementing
a state-dependent base-stock policy, and the results show that A3C can achieve
performance comparable to state-of-the-art heuristics and approximate dynamic
programming algorithms, despite its initial tuning remaining computationally
intensive.

Finally, in the experimental scenario analyzed by [1], a general four-echelon
supply chain with two nodes per echelon is presented. The system state consists of
product quantity currently available and in transit across the supply chain, plus
future customer demands. To deal with the optimization problem, the authors
proposed the PPO algorithm, while a deterministic linear programming agent
(i.e., considering a deterministic demand) is employed as a baseline. Results of
numerical experiments show that PPO still achieves satisfactory results.

3 Problem Definition

The SCIM environment we propose is primarily motivated by what was presented
and discussed in [8,15]. Inspired by these works, we designed a divergent two-
echelon supply chain that includes a factory that can produce various product
types, a factory warehouse, and a certain number of distribution warehouses; an
example of this structure is shown in Figure 2.

Fig. 2. A divergent two-echelon supply chain consisting of a factory and its
warehouse (first echelon), plus three distribution warehouses (second echelon).
Shopping carts represent customers’ demands.

In our formulation, we assume that the factory produces I different product
types. For each product type i, the factory decides, at every time step t, its
respective production level ai,0,t (we assume j = 0 for the factory and 1 ≤ j ≤ J
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for the distribution warehouses), that is, how many units to produce, considering
a fixed production cost of zi,0 per unit. Moreover, the factory warehouse is
associated with a maximum capacity of ci,0 units for each product type i (this
means that the overall capacity is given by

∑I
i=0 ci,0 = c0). The cost of storing

one unit of product type i at the factory warehouse is zSi,0 per time step, while the
corresponding stock level at time t equals qi,0,t. At every time step t, ai,j,t units
of product type i are shipped from the factory warehouse to the distribution
warehouse j, with an associated transportation cost of zTi,j per unit. For each
product type i, each distribution warehouse j has a maximum capacity of ci,j
(
∑I

i=0 ci,j = cj), a storage cost of zSi,j per unit, and a stock level at time t equal
to qi,j,t. The demand for product type i at distribution warehouse j for time
step t is equivalent to di,j,t units, while each unit of product type i is sold to
customers at sale price pi (which is identical across all warehouses).

Products are non-perishable and provided in discrete quantities. Additionally,
we assume that each warehouse is legally obligated to fulfill all the submitted
orders. Consequently, if an order for a certain time step exceeds the corresponding
stock level, a penalty cost per unsatisfied unit is applied (the penalty cost for
product type i is obtained by multiplying the penalty coefficient zPi by the sale
price value pi). Unsatisfied orders are maintained over time, and we design them
as a negative stock level (which corresponds to backordering); this also implies
that when the penalty coefficient is particularly high (e.g., zPi ≥ 1), the agent may
not be able to generate a positive profit if it causes backlog orders. Consequently,
it should prefer a policy that leads to accumulating stocks in advance in order to
pay storage costs rather than penalty costs.

3.1 Environment Formulation

In this subsection, we formalize the RL problem as an MDP. More precisely,
we introduce and define the main components of the SCIM environment that
we propose in this paper: the state vector, the action vector, and the reward
function.

The state vector includes all current stock levels for each warehouse and
product type, plus the last τ demand values, and is defined as follows:

st = (q0,0,t, . . . , qI,J,t, dt−τ , . . . , dt−1) ,

where dt−1 = (d0,1,t−1, . . . , dI,J,t−1). It is worth noticing that the actual demand
dt for the current time step t will not be known until the next time step t+ 1.
This implementation choice ensures that the agent may benefit from learning the
demand pattern so as to integrate a sort of demand forecasting directly into the
policy. Additionally, we include the last demand values in order to enable the
agent to have limited knowledge about the demand history and, consequently, to
gain a basic comprehension of its fluctuations (similar to what was made originally
by [8]). In our SCIM implementation, the agent can access the demand values
of the last five time steps, even if preliminary results suggest that comparable
performances are obtained by accessing the last three or four time steps.
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Regarding the action vector, we chose to implement a continuous action space
(i.e., the ANN generates the action value directly) consisting, for each product
type, of the number of units to produce at the factory and of the number of units
to ship to each distribution warehouse:

at = (a0,0,t, . . . , aI,J,t) . (1)

Usually, a relatively small and identical upper bound is typically adopted for all
the action values to reduce the computational effort. However, the drawback is
that this might lead to a significant drop in terms of performance. Indeed, if the
upper bound is set too small, the agent may select an inefficient action given that
the optimal one is outside the admissible range. Otherwise, if the upper bound
is set too high, the agent may repeatedly choose an incoherent action, i.e., one
that falls within the admissible range but exceeds a specified maximum capacity,
consequently slowing down the training process.

Our implementation thus provides a continuous action space with an inde-
pendent upper bound for each action value, in order to find a trade-off between
efficiency and performance. In practical terms, the lower bound for each value
is simply zero. In fact, it would be illogical to produce or ship negative quanti-
ties of products. Conversely, the upper bound for each distribution warehouse
corresponds to its maximum capacity with respect to each product type (by
referring to Equation (1), 0 ≤ ai,j,t ≤ ci,j). To guarantee that the factory can ad-
equately handle the various demands, its upper bound amounts to the sum of all
warehouses’ capacities with regard to each product type (0 ≤ ai,0,t ≤

∑J
j=0 ci,j).

We expect to improve both efficiency and performance with this intuition, as
the action space is bounded (and hence restricted) but contains only coherent
(and possibly optimal) actions. We specify that available stocks are not explicitly
considered when the agent chooses an action. However, producing or shipping a
number of stocks that it is not possible to store leads to a cost and, therefore,
an implicit penalty for the agent. We also assume that there are no lead times
both for production and transportation (or, to refer to the literature, we consider
constant lead times equal to 0 ). This assumption allows us to isolate the primary
dynamics of the problem without the additional effects of lead times, thus making
the problem easier to address and manage.

To evaluate the performance of the DRL agents, we simulate a seasonal
behavior by representing the demand as a co-sinusoidal function with a stochastic
component, defined according to the following equation:

di,j,t =

⌊
dmaxi

2

(
1 + cos

(
4π(2ij + t)

T

))
+ U (0, dvari)

⌋
, (2)

where ⌊·⌋ is the floor function, dmaxi
is the maximum demand value for each

product type, U is a random variable uniformly distributed on the support
(0, dvari) representing the demand variations (i.e., the uncertainty), and T is the
final time step of the episode. At each time step t, the demand may vary for
each distribution warehouse j and product type i while maintaining the same
behavior, as can be seen in Figure 3.
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Fig. 3. Some instances of different demands behavior generated according to
Equation (2) for different topologies and configurations of the SCIM problem: (a)
one product type and one distribution warehouse with dmax = 5 and dvar = 3; (b)
one product type and three distribution warehouses with dmax = 7 and dvar = 2;
and (c) two product types and two distribution warehouses with dmax = (3, 6)
and dvar = (2, 1) (referring to the values in round brackets, the first denotes the
first product type, whereas the second indicates the second product type).

The reward function for each time step t is then defined as follows:

rt =

J∑
j=1

I∑
i=0

pi · di,j,t −
I∑

i=0

zi,0 · ai,0,t −
J∑

j=1

I∑
i=0

zTi,j · ai,j,t

−
J∑

j=0

I∑
i=0

zSi,j ·max(qi,j,t, 0) +

J∑
j=0

I∑
i=0

zPi · pi ·min(qi,j,t, 0).

(3)

The first term represents revenues, the second one production costs, while the
third one transportation costs. The fourth term is the overall storage costs. The
function max is implemented to avoid negative inventories (i.e., backlog orders)
from being counted. The last term denotes the penalty costs, which is introduced
with a plus sign because stock levels would already be negative in the eventuality
of unsatisfied orders. The DRL agents’ goal is thus to maximize the supply chain
profit as defined in the reward function. By design, revenues are always calculated
regardless of whether the demand is effectively satisfied; however, in the event
of unsatisfied orders, the penalty costs will impact the actual return for each
time step in which backlog orders are counted (in the amount of the penalty
coefficient).

Finally, the state’s updating rule is defined as follows:

st+1 = (min[(q0,0,t + a0,0,t −
J∑

j=1

a0,j,t), c0,0], · · · ,

min [(qI,J,t + aI,J,t − dI,J,t) , cI,J ] , dt+1−τ , · · · , dt).
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This implies that, at the beginning of the next time step, the factory’s stocks are
equal to the initial stocks, plus the units produced, minus the stocks shipped.
Similarly, the distribution warehouses’ stocks are equal to the initial stocks, plus
the units received, minus the current demand. When surplus stocks are generated,
a storage cost is imposed; otherwise, a penalty cost is considered. Lastly, the
demand values included in the state vector are also updated, discarding the oldest
value and concatenating the most recent one.

4 Numerical Experiments

Once the environment has been specified, we implemented the agents according
to three different state-of-the-art DRL algorithms: A3C, PPO, and VPG, which
have been briefly introduced in Section 2. In this respect, we relied on the
implementations made available by Ray 7, an open-source Python framework that
is bundled with RLib, a scalable RL library, and Tune, a scalable hyperparameter
tuning library. An advantage of Ray is that it natively supports OpenAI Gym.
As a result, we exploited the OpenAI Gym APIs to develop the simulator
representative of the environment and used for the agents’ training process.

To assess and compare performances achieved by the adopted DRL algorithms,
we also implemented a static reorder policy known in the specialized literature as
the (s, Q)-policy. In our implementation, we opted to make reordering decisions
independently; this means that the (s, Q)-policy parameters, si,j and Qi,j , can
differ for each warehouse and product type (this policy is still defined static
because these parameters do not change over time). To find the best possible
parameters that maximize Equation (3), we developed a data-driven approach
based on Bayesian optimization (BO). In this way, the solution method does
not require making any assumptions or simplifications, and hence it is no longer
problem-dependent; therefore, it can be applied to any SCIM topology and
configuration just as it happens for DRL algorithms (they share, in fact, the
same identical simulator).

To compare DRL and BO approaches, we also implemented an oracle, that
is, a baseline that knows the real demand value for each product type and
distribution warehouse in advance and can accordingly select the optimal actions
to take a priori.

4.1 Scenarios Considered

A rich set of numerical experiments have been designed and performed to compare
the performances of DRL algorithms and BO under three different scenarios.
Each scenario is associated with different demand patterns with respect to
each product type and distribution warehouse (i.e., seasonal and stochastic
fluctuations). Furthermore, each scenario has different capacities and costs for
evaluating in-depth the adaptability and robustness of DRL algorithms.

7 The Ray library is available on https://www.ray.io.

https://www.ray.io


Comparing DRL Algorithms in Two-Echelon Supply Chains 11

Under the one product type one distribution warehouse (1P1W) scenario, the
supply chain is set to manage just one product type. Accordingly, it consists of
one factory, a factory warehouse, and one distribution warehouse; thus the input
dimension of the ANN (representing the state vector) is equal to 7, given by
the number of warehouses (i.e., 2, including the factory warehouse) times the
number of product types (i.e., 1), plus the last demand values for each distribution
warehouse and product type (i.e., 5), while the output dimension of the ANN
(expressing the action vector) is 2, equivalent to the number of warehouses
(including the factory warehouse) multiplied by the number of product types.
Under the 1P1W scenario, which consists of five experiments (as summarized in
Table 1 of the supplementary material 8), sale prices and costs are manipulated
so as to increase or decrease revenues and, consequently, the margin of return.
Moreover, in the first experiment, we bound the warehouses’ capacities in such a
way that they are smaller than the maximum demand value (also considering
the stochastic demand variation). This decision is made to study whether DRL
algorithms are able to learn an efficient strategy, i.e., a strategy capable of
predicting a growing demand and thus saving and shipping stocks in advance.
Analogously, we expect a greater quantity of stocks to be stored and shipped
when storage and transportation costs are low, while we expect the opposite
when these costs are high. Finally, we generate multiple penalty coefficients to
determine whether a hefty punishment forces DRL algorithms to be more or less
effective, with particular attention to the more challenging experiments where
low revenues and high costs are considered.

The one product type three distribution warehouses (1P3W) scenario concerns
a more complex configuration, consisting of a factory, a factory warehouse, and
three distribution warehouses. Even in this case, the supply chain still manages
a single product type, while the input and output dimensions of the ANN are
equal to 9 and 4, respectively; hence, the difficulty of the problem is increased
because there is a higher number of both ANN parameters to be optimized and
actions to be determined. The design of the five experiments follows that of the
previous 1P1W scenario. However, a remarkable difference is found in storage
capacities and costs (as depicted in Table 2 of the supplementary material 8). In
fact, we set warehouses’ costs to be directly proportional to their corresponding
capacities, that is, the less storage space we have, the more expensive it is to store a
product. This scenario is also designed to investigate the DRL algorithms strategy
when capacities increase, given that the search space of optimal actions grows
accordingly. Furthermore, we are interested in studying how DRL algorithms react
when demand, with the associated costs (i.e., production and transportation),
becomes greater than actual capacities, considering that the supply chain now
consists of three distribution warehouses and, consequently, the SCIM problem
becomes more challenging to be tackled.

Finally, in the two product types two distribution warehouses (2P2W) scenario,
the supply chain consists of two product types, a factory with its warehouse,

8 The supplementary material is available on https://github.com/frenkowski/
SCIMAI-Gym.

https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
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and two distribution warehouses. With this design, the number of parameters
to optimize is still higher, considering that the ANN input dimension is equal
to 26, while the ANN output dimension is 6. Due to computational time, we
performed just three experiments under this scenario (as reported in Table 3
of the supplementary material 8). Regarding the demand, we explore demand
variations which can be different or equal, according to the specific experiment.
Additionally, we thought of something different concerning storage capacities and,
consequently, the search space of optimal actions. Indeed, in the last experiment,
warehouses’ capacities for the first product type are designed in descending
order, while for the second product type in ascending order; this implies that,
for example, the second distribution warehouse can store the minimum amount
of stocks for the first product type and the maximum amount for the second
product type. We expect that this imbalance, especially when combined with
greater uncertainty, makes the SCIM problem more unexpected and, thus, more
difficult to be effectively solved.

5 Results

To compare the performances between DRL algorithms, BO, and oracle, we
simulated, for each scenario and experiment, 200 different episodes. Each episode
consists of 25 time steps, and we reported the average cumulative profit achieved,
i.e., the sum of the per-step profit at the last time step T . All experiments
were run on a machine equipped with an Intel® Xeon® Platinum 8272CL
CPU at 2.6 GHz and 16 GB of RAM. The hyperparameters of DRL algorithms
selected for tuning have been chosen following what is presented in the Ray
documentation and discussed in the papers [1,5] (they are reported in Table 4 of
the supplementary material 8, along with their corresponding values). To early
stop training instances associated with bad hyperparameters configurations, we
also implemented, through Ray, the asynchronous successive halving (ASHA)
scheduling algorithm [11]. It is important to note that the simulation results
presented and commented in this section have been obtained by selecting, for
each algorithm and experiment, the respective best training instance 9.

Results of numerical experiments under the 1P1W scenario are summarized
in Table 1a. BO and PPO achieve a near-optimal profit in the first experiment
where the demand is greater than warehouses’ capacities, whereas A3C and VPG
perform slightly worse. All DRL algorithms achieve comparable results in the
second and simpler experiment, with higher revenues but lower transportation
and penalty costs. In the third and more complex experiment, which, on the
contrary, involves lower revenues and higher transportation costs and penalties,
the optimal profit is relatively small, but PPO tends to behave better than other
DRL algorithms. BO, PPO, and A3C obtain satisfactory profits in the fourth
and more balanced experiment, with increasing revenues and maximum demand
9 All the figures regarding the three scenario and related to the convergence and the

behavior of DRL algorithms and BO are available on https://github.com/frenkowski/
SCIMAI-Gym.

https://github.com/frenkowski/SCIMAI-Gym
https://github.com/frenkowski/SCIMAI-Gym
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value but reducing uncertainty, while VPG seems to perform poorly. The main
difficulty here is represented by a wider search space (caused by greater storage
capacities) and higher storage costs, especially for the factory. In the fifth and
last experiment, the demand uncertainty increases, the penalty costs decrease,
and it is more expensive to maintain stocks at the distribution warehouse rather
than at the factory, but all DRL algorithms achieve comparable and near-optimal
results.

Table 1b summarizes the results for the 1P3W scenario, which in design is
similar to the 1P1W scenario. The first experiment is characterized by a high
maximum demand value, especially if compared with the capacities of the factory
and of the first distribution warehouse; with this setting, BO performs worse
than DRL algorithms. However, as PPO, it obtains a nearly optimal profit in the
second experiment, where a simpler configuration is investigated. In the third
and more challenging experiment, none of the algorithms achieves a profit greater
than zero, with PPO achieving the worst one. Still, PPO outperforms A3C and
VPG in the fourth and more balanced experiment, characterized by an increased
search space and higher storage costs. Finally, BO and PPO achieve the best
profits in the fifth experiment, where uncertainty and search space are increased,
but fewer penalties are considered.

To conclude, Table 1c summarizes performances under the 2P2W scenario.
The first experiment provides a balanced configuration, with maximum demand
values and variations that change according to the specific product type, storage
costs at the factory greater than those at the two distribution warehouses, and
revenues particularly high for the first product type. Under such a mix, PPO
achieves a good profit, as it also does A3C, which overcomes BO. For the second
experiment, sales prices for the second product type are increased and, accordingly,
the associated revenues grow as well. Even storage and transportation costs are
decreased, while penalties increase. With this configuration, PPO still obtains a
nearly optimal result, and the same happens for VPG, while BO also behaves
well. In the third experiment, capacities are increased, and we design alternating
storage costs; this means, for example, that maintaining stocks of the first product
type at the factory warehouse is the most inexpensive option while maintaining
stocks of the second product type is the most expensive. The results allow us to
conclude that PPO, followed by VPG, continues to perform successfully, whereas
BO seems to suffer the most.

6 Discussions and Conclusions

Results of numerical experiments demonstrated that the SCIM environment we
propose is effective in representing states, actions, and rewards; indeed, the DRL
algorithms we implemented have achieved nearly optimal solutions in all three
investigated scenarios. In detail, PPO is the one that better adapts to different
topologies and configurations of the SCIM environment achieving higher profits
than other algorithms on average, although it fails to reach a positive profit in
the most challenging experiment of the 1P3W scenario. VPG frequently appears
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to converge to a local maximum that seems slightly distant from PPO, especially
when the number of warehouses increases, but it still obtains acceptable results.

It is worthwhile to mention that the BO approach also shows remarkable
results, especially when the search space of optimal actions is limited, as in the
1P1W scenario. When compared to DRL algorithms, the BO approach seems
to suffer more when there are two product types or when the demand exceeds
the capacities. This is mainly due to the static and non-dynamic nature of the
(s, Q)-policy, which does not allow developing an effective strategy, for example,
for saving stocks in advance, but, conversely, culminates in a myopic behavior.
Nevertheless, the absence of hyperparameters to be tuned offers a considerable
advantage.

Table 1. Results related to the three scenarios considered: (a) for the 1P1W
scenario, it is possible to note how BO and PPO obtain near-optimal profits in
general, while A3C and VPG seem more distant in terms of performance; (b) in
the 1P3W scenario, PPO performs better than BO and other DRL algorithms
on average, except in the third and more challenging experiment; (c) results
concerning the 2P2W scenario suggest that PPO behaves well typically, whereas
BO seems slightly inferior compared to the other DRL algorithms.

(a)

A3C PPO VPG BO Oracle

Exp 1 870 ± 67 1213 ± 68 885 ± 66 1226 ± 71 1474 ± 45
Exp 2 1066 ± 94 1163 ± 66 1100 ± 77 1224 ± 60 1289 ± 68
Exp 3 −36 ± 74 195 ± 43 12 ± 61 101 ± 50 345 ± 18
Exp 4 1317 ± 60 1600 ± 62 883 ± 95 1633 ± 39 2046 ± 37
Exp 5 736 ± 45 838 ± 58 789 ± 51 870 ± 67 966 ± 55

(b)

A3C PPO VPG BO Oracle

Exp 1 1606 ± 139 2319 ± 122 803 ± 154 486 ± 330 3211 ± 60
Exp 2 2196 ± 104 3461 ± 120 2568 ± 112 3193 ± 101 3848 ± 95
Exp 3 −2142 ± 128 −4337 ± 216 −2638 ± 121 -1682 ± 196 772 ± 21
Exp 4 −561 ± 237 2945 ± 135 656 ± 140 1256 ± 170 4389 ± 64
Exp 5 1799 ± 306 2353 ± 131 1341 ± 79 2203 ± 152 2783 ± 91

(c)

A3C PPO VPG BO Oracle

Exp 1 2227 ± 178 2783 ± 139 1585 ± 184 2086 ± 173 3787 ± 102
Exp 2 1751 ± 83 2867 ± 90 2329 ± 98 2246 ± 114 3488 ± 63
Exp 3 1414 ± 128 2630 ± 138 2434 ± 156 552 ± 268 3549 ± 103
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6.1 Future Research

This paper can be extended and improved in many directions as:

– Develop a more comprehensive SCIM environment, for example, by con-
sidering additional configurations mentioned in [9] (e.g., different demand
distributions or different customers’ reactions to backordering).

– Take into account the non-linearity of transportation costs (e.g., introducing
a fixed cost independent of the number of stocks shipped effectively), as well
as non-zero leading times.

– Use real-world data to validate DRL algorithms and check whether they
improve the performances of currently used SCIM systems in practice.

Lastly, even the BO approach could be extended to other standard static
reorder policies, such as the base-stock policy, which has exactly half of the (s,
Q)-policy parameters and can therefore enable faster convergence times.
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