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We show that the single-particle Green’s functions used in many body theory have an elegant
description in the form of hyperfunctions. We summarize the necessary hyperfunction concepts. We
show that the analytical properties and the relations between different Green’s functions are natural
within this formulation. Important results from the standard formalism are recovered straightfor-
wardly. We argue that hyperfunctions could possibly provide a powerful new tool for many body
theory, if the formalism could be developed beyond single-particle Green’s functions.

I. INTRODUCTION

The Matsubara formalism [IH3] is a cornerstone of
modern many body theory. Quantum mechanical time
evolution is Wick-rotated to imaginary times. The time
evolution operator then has the same form as a Boltz-
mann weight, which allows to write thermal expecta-
tion values as integrals over imaginary time. For non-
interacting systems, a Wick-theorem holds for imaginary
time ordered expectation values, which ultimately en-
ables diagrammatic perturbation theory at nonzero tem-
peratures.

In the standard formalism, the Wick rotation is under-
stood as an analytic continuation of the correlation func-
tions to imaginary times. Calculations are performed
with imaginary times and frequencies. Thereafter, the
physically relevant correlations are obtained by analytic
continuation back to real times and frequencies. In the
following, we want to present an alternative approach us-
ing hyperfunctions. We concentrate on two-point correla-
tion functions, which are ubiquitous in many body theory
especially in the form of single-particle Green’s functions.
The relations between the imaginary and real time and
frequency domains are natural within the hyperfunction
formulation. The well known analytical properties and
the relations between retarded, advanced, and Matsub-
ara Green’s functions become straightforward and the
relation to physical observables is immediate.

The paper is structured as follows. In Sec. [l we
informally introduce the concept of hyperfunctions. In
Sec. we present a more concrete formulation of hy-
perfunction theory developed in Ref. [4]. This formu-
lation is more practical for physicists, and we summa-
rize some results that will be useful in the treatment of
Green’s functions. In Sec. [[V] we show how the Green’s
function formalism can be described by hyperfunctions.
We work out the relations between the Matsubara, re-
tarded and advanced Green’s functions and the spectral
density. Furthermore, we recover the important result
that the retarded and advanced Green’s functions in real
frequency can be obtained by analytical continuation of
the Matsubara Green’s function from the imaginary Mat-
subara frequencies. In Sec. [V] we discuss our findings

and try to foreshadow how the hyperfunction approach
to many body theory can be developed beyond single-
particle Green’s functions.

II. HYPERFUNCTIONS

Hyperfunctions were introduced by Mikio Sato in
1958 [5], and an intuitive explanation due to Penrose can
be found in Ref. [6]. In this section, we give an informal
introduction to the basic concept.

Consider two open regions FT and F~ of the complex
plane (or more generally of an arbitrary Riemann sheet)
as depicted in Fig. The regions share a portion ~y of
their boundaries. Note that because both regions are
open, neither of them includes v. F* and F~ may or
may not overlap. Now let F' be a holomorphic function

. FIG. 1. Hyperfunctions are de-
SF < T fined as equivalence classes of
pairs of holomorphic functions on
open regions F1, and F~ of the

, complex plane, which share a por-
‘ tion v of their boundaries.

on F* and let F~ be a holomorphic function on F~.
A hyperfunction can then be defined as an equivalence
class of the pair (|F'T, F~|). Two pairs of functions are
equivalent if they differ only by a global function ¢ which
is holomorphic on the union of F*, F~ and 7, i.e.

(FHF )= (F" +¢,F +¢l). (1)

Informally, a hyperfunction can be interpreted as the
difference between F'™ and F~ in the limit close to 7.
Clearly, the difference does not change upon addition of
a globally holomorphic function ¢.

Specifying v as the real line, and F+ and F~ as the up-
per and lower complex half plane respectively, one finds
that any Schwartz-distribution f of arbitrary order can



be represented as [7]

dim [T i) - i) ployde = (.91
(2)

where ¢ is a test function in Schwartz’s sense and F*,
F~ are holomorphic on the upper and lower complex half
planes respectively, excluding the real line. The above re-
lation shows that hyperfunctions offer an alternative ap-
proach to generalized functions, which are usually treated
within distribution theory or as limits of sequence func-
tions. Indeed, by the above relation one can show that
the Dirac delta 6(x) can be represented by F7T(z) =
F~(z) = 1/2miz, and the Heaviside step function can
be represented by FT(z) = F~(z) = —log(—2)/2mi. We
remark that hyperfunctions are even more general than
distributions, i.e. there are hyperfunctions which are not
Schwartz distributions [7].

III. APPLIED HYPERFUNCTION THEORY

Physical applications of hyperfunctions exist in rela-
tivistic quantum field theory [7], fluid dynamics [4], and
Twistor theory [8]. Applications to statistical many body
theory are to our knowledge not yet described in the lit-
erature. To establish this connection, it will be crucial
to understand the Fourier transform of a hyperfunction
on the real line. Luckily, this was already worked out by
Isao Imai [4]. In this section, we summarize the termi-
nology and relevant calculational tools as presented by
Imai, with only slight adaptions.

First, we define the domains 7+, F~ and . We choose
7 to be the real line or a section thereof. F* (F~) shall
be an open set in the upper (lower) complex half plane
whose boundary includes . Then, we may simplify our
notation. Because the domains F* and F~ have no over-
lap, one can write

(1F"(2), F~(2)]) = F(2) , 3)

where F(z) is a function which is holomorphic in both
FT and F~ but not necessarily on .

The connection to ordinary functions and distributions
is established by virtue of Eq. . We define the limit

f(z) = lim [F(x+ie) — F(x —ie)] , (4)

e—0t

where x is real. If this limit exists, we say that f(z) is
the value of the hyperfunction at z. Even if the limit
does not exist, we denote the hyperfunction by f(x) and
call F(z) the generating function. We write

f(z) =HF F(z) (5)
F(z) =GF f(z) , (6)

where GF stands for generating function and HF stands
for hyperfunction. Note that the generating function is

not unique; different generating functions may generate
the same hyperfunction due to the equivalence (|1f).

The sum of two hyperfunctions f(x) and g(z) can
straightforwardly be defined in terms of their generating
functions F(z) and G(z) as

f(x) + g(z) = HF [F(2) + G(2)] (7)

It is obvious that if the value f(z) + g(x) as defined by
Eq. exists, it is the sum of f(z) and g(z), i.e. the
hyperfunction sum reduces to the ordinary sum in the
case of ordinary functions. In a similar manner, one can
define the multiplication of a hyperfunction f(x) with an
analytic function ¢(z) by

¢(x)f(z) = HF ¢(2) F (=) (8)

where ¢(z) is the analytic continuation of ¢(z). A general
product between two hyperfunctions cannot be defined
without restrictions to the hyperfunctions.

The derivative of a hyperfunction can be defined as

9. f(z) = HF 0. F(z) 9)

which again for ordinary functions reduces to ordinary
differentiation.

A definite integral over a hyperfunction f(z) can be
defined in terms of a contour integral of the generating
function F(z) as

‘[ﬂmME—LF@W, (10)

where the contour C is a loop enclosing the interval [a, b]
on the real line, as shown in Fig. The equivalence
to the integral of an ordinary function can be seen by
deforming the contour towards the real line in the upper
and lower half plane. Then, the reverse directions of the
paths above and below the real line produces the minus
sign in the definition of the value (4)) and the integral of
an ordinary function is recovered.

e - C FIG. 2. The definite
integral of a hyperfunc-

a¢ : » ¢ tion is defined in terms
. jb of a closed contour in-
R — tegral of the generating

function.

For an ordinary function f(z), the Fourier transform
is defined as

9= [ rwet. ()

The Fourier transform can be generalized to hyperfunc-
tions by defining the generating function G(¢) as

dz

GH(Q) = [ PG (122)
G (O = [ SEFEe (120)



a) FIG. 3. a) For the
l} g+ < Fourier transform, the
> integration loop is ex-
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b) I - Because ¢ and ¢~ are
R el g € arbitrary, they can be
)_‘ > moved to join at a

SN point ¢ on the real axis
if the hyperfunction is
regular there.

where the integration contours [ and r are as shown in
Fig. Bp. The integration contours need some clarifica-
tion. They result from extending the limits of a definite
integral, which is a loop integral of the generating func-
tion, to +00. For Im ¢ > 0 the exponential of the Fourier
transform converges only towards the left of the integra-
tion loop, while for Im{ < 0 it converges only towards
the right. Thus, the integration loop is split at arbitrary
points points ¢t and ¢, dividing it into left and right
part. Defined this way, the hyperfunction ¢g(§) generated
by G(¢) is the Fourier transform of the hyperfunction
f(x) generated by F(z). This definition reduces to the
usual Fourier transform in the case of ordinary func-
tions. While the generating function G(¢) depends on the
choice of ¢t and ¢, the hyperfunction g(£) is indepen-
dent of this choice. This can be proven by showing that
a displacement of ¢y or c_ simply adds an entirely holo-
morphic function to both G*(¢) and G~ (¢), which does
not change the hyperfunction. As a consequence, the in-
tegration contour can be deformed such that ¢, and c_
meet at a point ¢ on the real axis where f(c) is regular,
as shown in Fig. 3p.
The inverse Fourier transform can be defined by

F(z) = — / dCG(O)ei< | (13a)

F(s) = — / dCGC)ei (13b)
l

Note that due to the opposite sign in the exponential, the

contours [ and r are interchanged. Defined this way, the

inverse Fourier transform of an ordinary function reduces

to

fw- [ e g(e)ee (14)

which is the usual definition of the inverse Fourier trans-
form.

IV. HYPERFUNCTION FORMULATION OF
GREEN’S FUNCTIONS

The central point of our discussion is a reinterpreta-
tion of the Matsubara Green’s function as the generating

function of the spectral density. In the conventional for-
mulation, the time ¢ is Wick rotated to a purely imagi-
nary time 7 = it. We will define the Matsubara Green’s
function in terms of the complex time variable

u=t—1ir, (15)

where we include a negative sign in the imaginary part
to be consistent with the usual Wick rotation. Assuming
a time independent hamiltonian, the Matsubara Green’s
function can be written as

Gl c(u) = —(T- {A(u) B(0)}) . (16)

Here, () denotes a thermal expectation value. A and
B are two time independent quantum operators, and
A(u) and B(u) are their respective time evolutions in the
Heisenberg picture, analytically continued to the complex
time u. T¢ is Wick’s time ordering operator for imaginary
times, which sorts larger 7 to the left and accompanies
each permutation of operators with a factor of . € can in
principle be arbitrarily chosen as +1 or —1. However, in
diagrammatic perturbation theory, where A and B are
usually creation and annihilation operators, one has to
choose ¢ = +1 for bosons and ¢ = —1 for fermions so
that the Wick theorem can be used.

The key observation is that G4 _(u) fulfills all prop-
erties of a generating function. To clarify this, we note
that in the upper complex half plane of u we have 7 < 0,
while in the lower half plane we have 7 > 0. Thus by
evaluating the time ordering in G4l _(u) explicitly, we
may write 7

Gp e (u) = —(B(0)A(u)) ,
Gip.e(u) = —(A(u) B(0)) .

(17a)
(17b)

One can show via the spectral representations of the cor-
relation functions that G4 _(u) is holomorphic in the

region —3 < 7 < 0 above the real line and G5 _(u)
is holomorphic in the region 0 < 7 < 3 below the real
line [2, @, [10], where § is the inverse temperature. We
illustrated this hyperfunction structure in Fig.

FIG. 4. Hyperfunction picture of the Matsub-
ara Green’s function, which is holomorphic in
the intervals —f <7 <0and 0 < 7 < 3.

We may now ask which hyperfunction is generated by
G5 . (u). Calculating its values according to the defini-



tion leads to
lim [G%B’E(t +ie) —

e—0+t

G o(t —ie)] =([A(t), B(0)]_.)

=27 SAB,a(t) ,
(18)

where we denote by [-, -] the commutator and by [, ]+
the anticommutator. Sap.(t) is known as the spectral
density, a central physical quantity which is directly re-
lated to spectroscopy experiments [10]. We conclude that
the Matsubara Green’s function is a generating function
of the spectral density,

21 Sape(t)

To reveal the analytical properties of the Green’s
functions, we perform the inverse hyperfunction Fourier
transform from complex time u to complex frequency

= HF G4y, (u) (19)

z=w+iy, (20)

and denote the transformed Matsubara Green’s function
by G35 (2). According to the definition , Glp . (2)
is given by

G]XIEE( ) -

du G%B,E(u)ei“z , (21a)

Glpo(e) = = [ Gy e (2
where the integration contours [ and r are as shown in
Fig. Bp. We choose ¢ = 0 as the point where [ and r
cross the real axis and deform the contours towards the

real axis as shown in Fig.

________ s = »{

FIG. 5. The integration contour of the Fourier
transform is deformed such that it runs closely
above and below the real axis.

Inserting the definition of the Matsubara hyperfunc-
tion and performing the limits ©v — ¢ from above
and below the real line, the integrals may be writ-
ten as

GAp.(2 )Z/OOO dt [~e(B(0)A(t)) + (A(t)B(0))] ",

(22a)
0
Gip.(2) :[ dt [(B(0)A(t)) — (A(t)B(0))] ¢ .
(22b)

In these expressions, we identify the retarded and ad-
vanced Green’s functions

G (t) = —i0(t)([A(t), B(0)]_,) ,
Ap e (t) = i0(=1)([A(t), B(O)] ),

(23a)
(23b)

which allows us to write

G =i [ aGi.met, ()
s =i [ deGin.0e . )

This reveals an exact analogy with the standard formal-
ism, where the retarded and advanced Green’s functions
in frequency space can be written in terms of one unified
Green’s function Gap (w + iy), such that in the upper
complex half plane G = G™' and in the lower half plane
G = G*, with a branch cut on the real line. Hence
in the complex frequency domain, we identify the hy-
perfunction Fourier transform of the Matsubara Green’s
function with the Green’s function,

GAMB,E(Z) =iGaB.:(2), (25)

up to a factor of 4.

Per construction, G%B’S(z) is a generating function for
the spectral density in the frequency domain. By virtue
of the identification , this is equivalent to

2nSap(w) = h%l i|Gap,e(w+i€) — Gape(w —i€)]
e—
= ZGIX}S@ (w) - iGilVB,s(w) ) (26)

which is an important result known from the standard
formalism. In the case of a real valued spectral density,
this directly leads to the Kramers-Kronig relations.

To conclude this section, we want to show the con-
nection of the hyperfunction Fourier transform to the
Matsubara frequencies. Usually, the Matsubara Green’s
function in frequency space is obtained as a Fourier se-
ries of the imaginary time Matsubara Green’s function
on the interval —f3 < 7 < 3, which leads to the discrete
Matsubara frequencies[d-11]. We therefore evaluate the
inverse hyperfunction Fourier transform of the complex
time Matsubara Green’s function at the imaginary
Matsubara frequencies z = iw,. Here, w, is a bosonic
Matsubara frequency if € = +1 and a fermionic Matsub-
ara frequency if e = —1, i.e.

2nm
Wn = (2,8n+1)7r
B

with arbitrary integer n. For the exponential in the
Fourier transform, we then get a relation reminiscent of
the Kubo-Martin-Schwinger condition[T2HI4],

ife =41

27
ife=-1" (27)

it=iT) (iwn) _ pi(t—iT+iB)(iwn) (28)

Recalling that the Matsubara Green’s function also ful-
fills the Kubo-Martin-Schwinger condition

GAMB7E (t - ZT) = 8C~;1A4B,a (t

for 0 < 7 < 8, we see that the integrand of the Fourier
transform is invariant under a complex time shift of

—ir+iB)  (29)



FIG. 6. The integration contour of the Fourier
transform is deformed towards the real axis in
the upper complex half plane, and towards the
line 7 = B in the lower half plane.

u — u + 8. We leverage this invariance by deforming
the integration contours [ and r in the lower half plane
towards the line 7 = 3, as shown in Fig.[f] Then, the con-
tour integrals near the real line cancel with the integrals
near 7 = [ and only the integrals along the imaginary
axis from 0 to —if are left. The hyperfunction Fourier
transform thus reduces to

N B )
G (i) = i / dr GYy (—ir)d™n . (30)
0

where the upper (+) and lower (-) branch of é%éfa(iwn)
can be written in the same expression since the integra-
tion contours are the same. There is a subtlety with the
bosonic zero frequency, as it lies neither in the upper nor
in the lower half plane. However, the limit of iw, — 0
is the same from above and below. Eq. is identical
to the Fourier series of the imaginary time Matsubara
Green’s function known from the standard formalism up
to a factor of . The factor of ¢ is the same as encountered
before in Eq. , which proves that the Fourier compo-
nents of the Wick rotated Matsubara Green’s function
are given by the values of the complex frequency Green’s
function at the Matsubara frequencies. This identifica-
tion is familiar from the standard formalism and implies
that the retarded and advanced Green’s functions in real
frequency can be obtained by analytical continuation of
the Matsubara Green’s function from the imaginary Mat-

subara frequencies to the real axis.

V. DISCUSSION AND OUTLOOK

We have shown that single-particle Green’s functions
can be described elegantly by hyperfunctions. The spec-
tral density can be interpreted as a hyperfunction which
is generated by the Matsubara Green’s function. The
analytical structure of Matsubara, advanced, and re-
tarded Green’s functions in time and frequency, as well as
their relations to each other can be understood as natu-
ral consequences of the hyperfunction Fourier transform.
Within the hyperfunction formulation, it is straightfor-
ward to show that advanced and retarded Green’s func-
tions in real frequency can be obtained by analytic con-
tinuation from the imaginary Matsubara frequencies.

Up to the level of our analysis, the hyperfunction for-
malism represents a surprising simplification of the con-
ventional formalism. The question is whether the hy-
perfunction formulation can be developed beyond single-
particle Green’s functions. Since hyperfunctions can be
defined in more than one complex dimension [7], it seems
likely that higher order Green’s functions might also have
an elegant hyperfunction description. Consequently, this
may lead to a hyperfunction description of diagrammatic
perturbation theory and related methods, or even to
novel approximations. Another possibility could be a hy-
perfunction formulation of non-equilibrium correlations,
where the Keldysh-formalism[I5] could serve as a start-
ing point.

It is hard to predict where a further development of the
hyperfunction approach might lead. In any case, the hy-
perfunction formulation of Green’s functions seems to be
a promising contender for a conceptually new approach
to many body theory.
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