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Abstract— In this paper, we consider the policy evaluation
problem in multi-agent reinforcement learning (MARL) and
derive exact closed-form formulas for the finite-time mean-
squared estimation errors of decentralized temporal difference
(TD) learning with linear function approximation. Our analysis
hinges upon the fact that the decentralized TD learning method
can be viewed as a Markov jump linear system (MJLS). Then
standard MJLS theory can be applied to quantify the mean and
covariance matrix of the estimation error of the decentralized
TD method at every time step. Various implications of our
exact formulas on the algorithm performance are also discussed.
An interesting finding is that under a necessary and sufficient
stability condition, the mean-squared TD estimation error will
converge to an exact limit at a specific exponential rate.

I. INTRODUCTION

Reinforcement Learning (RL) provides a general paradigm
for solving sequential decision making tasks, and has re-
ceived much research attention in recent years [1]–[3]. An
important task in RL is the policy evaluation, which aims to
estimate the value function for any given policy. Temporal
difference (TD) learning combined with various function
approximators has been widely used for model-free policy
evaluation [4], [5]. The asymptotic behaviors of TD learning
are well understood via applying the ordinary differential
equation (ODE) method [6]–[8]. Recently, there has been a
growing interest in finite-time analysis of TD learning with
linear function approximation in various settings [9]–[13].

In this work, we focus on the multi-agent reinforcement
learning (MARL) setting [14], and study the finite-time be-
haviors of decentralized TD learning [15]. To perform multi-
agent policy evaluation, a group of agents will cooperate
to learn the global value function via exchanging local in-
formation over a communication network. Specifically, each
agent can observe the global state of the shared environment,
and execute control actions based on a local policy. Then
each agent will receive local rewards, and collaborate over
the network to evaluate the global value function. The idea
of decentralized TD learning is that the agents can share
their local TD estimates with neighbors and then reach a
consensus for a good estimate for the global value function.

The asymptotic convergence of decentralized TD learning
is well understood [15]. More recently, several upper bounds
for the finite-time mean-squared estimation errors of decen-
tralized TD learning have been obtained under a variety of
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assumptions [16]–[20]. Specifically, the IID noise case was
covered in [16], and the more general Markov noise case has
been addressed in [17]–[20]. To complement these existing
upper bounds, our paper presents new exact formulas for
finite-time mean-squared estimation errors of decentralized
TD learning with linear function approximation. We adopt
the setup in [18] where the Markov noise is considered
and the projection in TD updates is removed. We view the
decentralized TD learning method as a Markovian jump
linear system (MJLS), and apply standard results in the
MJLS theory [21] to quantify the finite-time estimation errors
exactly. Various implications of our exact formulas on the
algorithm performance are also discussed. One important
finding is that under a necessary and sufficient stability con-
dition, the mean-squared TD estimation error will converge
to an exact limit at a specific exponential rate. We also apply
perturbation analysis to characterize how the learning rate
choice will affect the algorithm performance.

It is worth mentioning that our work is inspired by
a recent line of research on control-oriented analysis for
iterative learning/optimization algorithms [22]–[34], and can
be viewed as an extension of [12], which applies the MJLS
theory to analyze the centralized TD learning algorithms.

II. PRELIMINARIES

A. Notation

The set of n-dimensional real vectors is denoted as Rn.
Let 1n ∈ Rn be a vector whose elements are all 1. We denote
the n × n identity matrix as In. The kronecker product of
two matrices A and B is denoted as A⊗B. Let vec denote
the standard vectorization operation that stacks the columns
of a matrix into a vector. Let sym denote the symmetrization
operation, We use diag(Hi) to denote a matrix whose (i, i)-
th block is Hi and all other blocks are zero. The spectral
radius of a square matrix H is denoted as σ(H). Clearly, H
is Schur stable if σ(H) < 1. The eigenvalue with the largest
magnitude of H is denoted as λmax(H). The eigenvalue with
the largest real part of H is denoted as λmax real(H).

B. Multi-agent reinforcement learning

In this paper, we consider the policy evaluation problem
in multi-agent reinforcement learning. Specifically, M agents
will cooperate over a communication network G to compute
the value function for a multi-agent Markov decision process
(MDP) in a shared environment. The multi-agent MDP is
described by the following tuple(

S, {Am}Mm=1, P, {Rm}Mm=1, γ,G
)
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where S is a finite set of global states shared by all the
agents, Am is a finite set of actions available to agent m,
P is the global transition kernel for the shared environment,
Rm is the local immediate reward observed by agent m, γ is
the discount factor, and G is the communication network. At
every time step k, each agent m will observe the global state
sk ∈ S of the shared environment, and then take an action
akm ∈ Am based on a local policy πm. As a consequence
of the joint actions of all the agents, the shared environment
will transit to a new state sk+1 ∈ S . In addition, each agent
m will also receive a reward Rm(sk, sk+1) which is only
revealed locally.1 We emphasize that there is no centralized
policy that can access all the action/reward information. The
agents can only communicate with each other through the
network G = (M, E), where M := {1, 2, . . . ,M} is the
vertex set, and E := V × V represents the edge set. Let
Nm ⊂M denote the neighbor(s) of agent m ∈M.

For multi-agent policy evaluation, the agents will coop-
erate over the network G to compute the so-called value
function which is defined to be the following expected sums
of discounted rewards:

VG(s) = E

[
1

M

∑
m∈M

∞∑
k=0

γkRm(sk, sk+1)|s(0) = s

]
. (1)

One can show that the value function VG(s) satisfies the
following multi-agent Bellman equation:

VG(s) =
∑
s′∈S

Pss′

[
1

M

∑
m∈M

Rm(s, s′) + γVG(s′)

]
. (2)

where Pss′ denotes the transition probability from the current
state s to the next state s′ under the stationary policies
{πm}Mm=1. For many applications, the transition model is
unknown, and the multi-agent Bellman equation cannot
be directly solved. Next, we will review the decentralized
temporal difference (TD) learning which can be used for
model-free policy evaluation.

C. Decentralized TD(0) with linear function approximation

When the size of the state space S is very large, exact
computation of VG for all s ∈ S will be intractable. In this
paper, the linear function approximation is considered, and
the value function will be estimated as VG(s) ≈ φT(s)θ,
where φ is some pre-selected feature vector, and θ ∈ Rp is
the weight to be determined. Then a good estimator for the
value function can be obtained by finding the optimal weight
θ∗ that minimizes the so-called projected Bellman error.

In the decentralized setting, the reward/action information
is kept locally, and the agents have to cooperate over the
communication network for finding θ∗. The idea of de-
centralized TD learning is that the agents can just share
their local TD estimates of θ∗ with their neighbors via the
communication network G and then reach a consensus for
a global estimate. The network topology is captured by the

1At step k, the reward Rm will actually depend on sk , akm, and sk+1.
Since the local policy πm does not change over time, we slightly abuse our
notation by using Rm(sk, sk+1) to denote the reward under policy πm.

Algorithm 1: Decentralized TD(0) Algorithm
Input: α > 0, φ(s) ∀ s ∈ S, W , γ
Initialization: {θm(0)}m∈M
Iteration:
For k = 0, 1, · · · , agent m ∈M implements
a. Exchange θkm with agent m′ ∈ Nm
b. Observe sk,sk+1, and Rm(sk, sk+1)
c. Update the weight:

dk = (γφ(sk+1)− φ(sk))Tθkm +Rm(sk, sk+1)

θk+1
m =

∑
m′∈M

Wmm′θkm′ + αφ(sk)dk.

weighted adjacency matrix W . Let the mm′-th entry of W be
denoted as Wmm′ . Note that W is set to satisfy Wmm′ > 0
for m′ ∈ Nm, and Wmm′ = 0, otherwise. Then the agents
can share their local TD estimates according to W .

Now we formalize the decentralized TD(0) method, and
a pseudo code is provided as in Algorithm 1. Each agent m
updates the local weight θkm as a estimate of θ∗. At every
iteration, each agent m first exchanges its estimation with
the neighbors in Nm, and then make the following update:

θk+1
m =

∑
m′∈M

Wmm′θkm′ + αφ(sk)dk, (3)

where α is the learning rate, Wmm′ ∈ [0, 1] is the network
weight for the edge (m,m′), and dk is given by

dk = (γφ(sk+1)− φ(sk))Tθkm +Rm(sk, sk+1). (4)

The above algorithm combines TD learning with consensus.
It is expected that θkm will converge to some neighborhood
around θ∗ if the learning rate is properly chosen.

D. Problem statement

In this paper, we are interested in exact analysis of the
finite-time estimation error 1

M

∑M
m=1 E

∥∥θkm − θ∗∥∥2 for the
above decentralized TD(0) method. We will present closed-
form analytical formulas to quantifying such TD estimation
errors and discuss the implications for algorithm performance
and design. Our analysis requires some standard assumptions
used in the literature [17]–[20]. First, we adopt the following
assumption on the underlying communication structure.

Assumption 1: The communication network is connected
and undirected. The matrix W is doubly stochastic, i.e.,∑M
m=1Wmm′ = 1 for all m′, and

∑M
m′=1Wmm′ = 1 for

all m.
Recall that θ∗ is the solution to the projected multi-agent

Bellman equation. To ensure the existence and uniqueness
of θ∗, the following standard assumption is required.

Assumption 2: The Markov chain {sk} is irreducible and
aperiodic2. All feature vectors are linearly independent.

2Since the policies {πm}Mm=1 have been fixed over time, the random
process {sk} just becomes a Markov chain



III. MAIN ANALYSIS FRAMEWORK VIA MJLS THEORY

A. Connections between decentralized TD(0) and MJLS

Markov jump linear systems have been extensively studied
in the controls literature [21]. Typically, a MJLS is governed
by a state-space model in the following form:

ξk+1 = H(zk)ξk +G(zk)uk, (5)

where ξk is the state, uk is the input, and zk is the so-
called jump parameter sampled from a Markov chain. In this
section, we show that the decentralized TD(0) method (3)
can be viewed as a special case of (5) such that existing
analysis tools from the MJLS theory [21] can be readily
applied. To rewrite (3) as a MJLS, we can first augment[
(sk+1)T (sk)T

]T ∈ S ⊕S as a new vector zk. We set n :=
|S|2 , and then there is a one-to-one mapping from S ⊕S to
the set N = {1, 2, · · · , n}. Without loss of generality, {zk}
can be set up as a Markov chain sampled from N . Given
any zk, we define A(zk) and b(zk) as follows:

A(zk) = φ(sk)(γφ(sk+1)− φ(sk))T, (6)

bm(zk) = Rm(sk, sk+1)φ(sk). (7)

Therefore, we can rewrite (3) as

θk+1
m =

∑
m′∈M

Wmm′θkm′ + α
(
A(zk)θkm + bm(zk)

)
, (8)

Next, we define the following two matrices3:

Θ :=
[
θ1 θ2 · · · θM

]
∈ Rp×M ,

B(zk) :=
[
b1(zk) b2(zk) · · · bM (zk)

]
∈ Rp×M .

Then, the update rule (8) can be compactly rewritten as:

Θk+1 = αA(zk)Θk + ΘkWT + αB(zk). (9)

Now it becomes obvious that we can just vectorize (9) to get
a MJLS with zk being the jump parameter.

To analyze the TD estimation error in (9), some charac-
terization for θ∗ is needed. Assumption 2 implies that the
Markov chain {zk} admits a unique stationary distribution
with only positive entries. In addition, there exists a matrix
Ā and vectors b̄m (for all m ∈M) such that:

lim
k→∞

E(A(zk)) = Ā, lim
k→∞

E(bm(zk)) = b̄m. (10)

It can be further shown that all the eigenvalues of Ā have
strictly negative real parts. i.e., Ā is Hurwitz [7]. Let b̄ =
1
M

∑M
m=1 b̄m. Consequently, the optimal weight θ∗ exists

and has to be the unique solution to the equation Āθ∗+ b̄ =
0. See [17]–[20] for more explanations. Now we can define:

Θ∗ :=
[
θ∗ θ∗ · · · θ∗

]
∈ Rp×M . (11)

Denoting Ψk = Θk −Θ∗, we can rewrite (9) as follows:

Ψk+1 = αA(zk)Ψk+ΨkWT+α(B(zk)+A(zk)Θ∗). (12)

3To ease the application of the MJLS theory, our definitions are slightly
different from the ones used in [17], [18].

We can vectorize (12) and obtain

vec
(
Ψk+1

)
= (IM ⊗ (αA(zk)) +W ⊗ Ip) vec(Ψk)

+ α vec
(
B(zk) +A(zk)Θ∗

)
, (13)

which is a special case of the MJLS model (5). If we set
nξ = Mp and denote ξk = vec(Ψk) ∈ Rnξ , then (13) is
equivalent to

ξk+1 = H(zk)ξk +G(zk), (14)

where H(zk) ∈ Rnξ×nξ and G(zk) ∈ Rnξ are specified as

H(zk) = αIM ⊗A(zk) +W ⊗ Ip,
G(zk) = α vec

(
B(zk) +A(zk)Θ∗

)
.

Clearly, (14) is a special case of (5) with uk = 1 for all k.
At every iteration, the jump parameter zk ∈ N is sampled
from the underlying Markov chain. When zk = i, we denote
H(zk) = Hi and G(zk) = Gi. Obviously, we have H(zk) ∈
{Hi}ni=1 and G(zk) ∈ {Gi}ni=1 for all k.

It is straightforward to verify that the mean-squared esti-
mation error for the decentralized TD(0) method satisfies

1

M

M∑
m=1

E
∥∥θkm − θ∗∥∥2 =

1

M
E
∥∥vec(Ψk)

∥∥2 =
1

M
E
∥∥ξk∥∥2 .

For convenience, we denote δk := 1
ME

∥∥ξk∥∥2. In the existing
literature [17]–[19], there are several upper bounds for δk.
Next, we will show how to apply well-known results from
the MJLS theory [21] to obtain exact formulas for δk.

B. Exact formulas for finite-time estimation errors

Now we apply standard MJLS theory [21, Proposition
3.35] to analyze the decentralized TD learning scheme (14).
We will show that the mean and covariance of {ξk} are
governed by a simple LTI system.

To apply the MJLS theory, we need the following notation:

qki = E(ξk1{zk=i}), Qki = E(ξk(ξk)T1{zk=i}),

where 1{zk=i} is an indicator function defined as 1{zk=i} =
1 if zk = i and 1{zk=i} = 0 otherwise. Obvious, the mean
and covariance of ξk can be calculated as

E(ξk) =

n∑
i=1

qki , E(ξkξ
T
k ) =

n∑
i=1

Qki .

Based on standard results in the MJLS theory [21, Proposi-
tion 3.35], we can calculate qkj and Qkj iteratively as follows:

qk+1
j =

n∑
i=1

pij(Hiq
k
i + pkiGi),

Qk+1
j =

n∑
i=1

pij(HiQ
k
iH

T
i + 2 sym(Hiq

k
i G

T
i ) + pkiGiG

T
i ),

where pij := P(zk+1 = j|zk = i), and pki := P(zk = i). Re-
call that the mean-squared TD estimation error is defined as
δk = 1

ME
∥∥ξk∥∥2. Denoting (qk)T :=

[
(qk1 )T · · · (qkn)T

]



and Q̂k := vec(
[
Qk1 , · · · , Qkn

]
), and we can just vectorize the

above recursion and obtain the following simple LTI system:[
qk+1

Q̂k+1

]
=

[
H11 0
H21 H22

] [
qk

Q̂k

]
+

[
ukq
ukQ

]
, (15)

δk = CδQ̂k, (16)

where H11, H21, H22, Cδ , ukq , and ukQ are given by

H11 =

p11H1 . . . pn1Hn

...
. . .

...
p1nH1 . . . pnnHn

 ,
H22 =

p11H1 ⊗H1 . . . pn1Hn ⊗Hn

...
. . .

...
p1nH1 ⊗H1 . . . pnnHn ⊗Hn

 ,
H21 =

p11S1 . . . pn1Sn,
...

. . .
...

p1nS1 . . . pnnSn

 ,
Cδ =

1

M
(1T
n ⊗ vec(Inξ)

T),

ukq =

p11G1 . . . pn1Gn
...

. . .
...

p1nG1 . . . pnnGn


p

k
1Inξ

...
pknInξ

 ,

ukQ =

p11G1 ⊗G1 . . . pn1Gn ⊗Gn
...

. . .
...

p1nG1 ⊗G1 . . . pnnGn ⊗Gn



pk1In2

ξ

...
pknIn2

ξ

 .
Notice that the term Si is defined as Si = Hi⊗Gi+Gi⊗Hi

for all i ∈ N . The LTI system representation (15) is quite
standard for MJLS models [12], [21]. Based on (15), the
mean and covariance of {ξk} can be exactly calculated as

qk = (H11)kq0 +

k−1∑
t=0

(H11)k−1−tutq, (17)

Q̂k = (H22)kQ̂0 +

k−1∑
t=0

(H22)k−1−t(H21q
t + utQ). (18)

This directly leads to the following result.
Theorem 1: The finite-time estimation error of decentral-

ized TD(0) can be calculated as

δk = Cδ(H22)kQ̂0 +

k−1∑
t=0

Cδ(H22)k−1−t(H21q
t + utQ).

Proof: Combining (18) with (16) immediately leads to
the desired conclusion.

Our formulas have several important implications which
will be discussed later.

Remark 1: Previous work on finite time analysis of decen-
tralized TD(0) relied on the following decomposition [18]:

θkm − θ∗ = (θkm − θ̄k)︸ ︷︷ ︸
“consensus error”

+ (θ̄k − θ∗)︸ ︷︷ ︸
“optimality error”

, (19)

where θ̄k = 1
M

∑M
m=1 θ

k
m is the average of the local TD esti-

mates from all agents. Since W is doubly stochastic, averag-
ing (3) over all m leads to θ̄k+1 = θ̄k+α

(
A(zk)θ̄k + b̄(zk)

)
,

where b̄(zk) = 1
M

∑M
m=1 bm(zk). It is obvious that the

iterative process of {θ̄k} reduces to the “single-agent” TD(0)
scheme, whose finite-time behaviors have been well under-
stood [11]. Existing work addressed the consensus error term
separately, and various upper bounds for the mean-squared
TD estimation errors have been obtained [17]–[19]. Using
our MJLS approach, such a decomposition is not needed, and
exact formulas for the TD estimation errors are obtained.

C. Implications for algorithm performance

Now we discuss some implications of our exact formulas.
• Stability: The LTI system (15) is stable if and only if
H22 is Schur stable.4 Notice that H22 depends on W and
α. In the next section, we will show that we can choose
sufficiently small α to achieve σ(H22) < 1 and ensure the
stability of (15).
• Steady-state estimation error: If σ(H22) < 1, then

the system (15) is stable and the estimation error δk is
guaranteed to converge to a stationary value. To see this,
notice that the Markov chain {zk} will converge to a sta-
tionary distribution geometrically fast under Assumption 2.
Denote pk :=

[
pk1 pk2 · · · pkn

]T
and p∞ := limk→∞ pk.

Then the limits of ukq and ukQ also exist. We denote u∞q :=

limk→∞ ukq and u∞Q := limk→∞ ukQ. We have

u∞q =

p11G1 . . . pn1Gn
...

. . .
...

p1nG1 . . . pnnGn


p
∞
1 Inξ

...
p∞n Inξ

 ,

u∞Q =

p11G1 ⊗G1 . . . pn1Gn ⊗Gn
...

. . .
...

p1nG1 ⊗G1 . . . pnnGn ⊗Gn


p
∞
1 In2

ξ

...
p∞n In2

ξ

 .
If σ(H22) < 1, the system (15) is stable. Based on standard
LTI results (e.g. Proposition 3 in [12]), (qk, Q̂k, δk) will
converge to some exact limit values which are given as

q∞ = lim
k→∞

qk = (I −H11)−1u∞q ,

Q̂∞ = lim
k→∞

qk = (Inn2
ξ
−H22)−1(H21q

∞ + u∞Q ),

δ∞ = lim
k→∞

δk = Cδ(Inn2
ξ
−H22)−1(H21q

∞ + u∞Q ).

Our analysis characterizes the exact limit of δk, while the
existing results from [17]–[19] lead to various upper bounds
on lim supk→∞ δk. Notice q∞ 6= 0 in general. In the next
section, we will show q∞ = O(α), Q̂∞ = O(α), and δ∞ =
O(α) for small α if Assumptions 1 and 2 are given.
• Convergence rate: The convergence rate of δk can

also be characterized using standard LTI theory. Based on
Assumption 2, we have ‖pk − p∞‖ ≤ cρ̃k for some c and
0 < ρ̃ < 1. Here ρ̃ is the mixing rate of {zk}. A direct
application of [12, Proposition 3] leads to the following
estimation error bound:

δ∞ − C1ρ
k ≤δk ≤ δ∞ + C1ρ

k, (20)

4By Proposition 3.6 in [21], H11 is Schur stable if H22 is Schur stable.
Hence the stability of (15) is completely determined by σ(H22).



where ρ := max{σ(H11) + ε, σ(H22) + ε, ρ̃} < 1 captures
the convergence rate, and C1 is some constant. Here ε
can be any arbitrarily small positive number. Clearly, the
convergence rate ρ depends on σ(H11), σ(H22), and ρ̃.
When ρ̃ is the dominating rate, increasing α may not improve
the convergence speed. However, σ(H11) will eventually
becomes the dominating term when α is small enough. It is
also worth mentioning that σ(H11) and σ(H22) depend on
W . This dependence characterizes how the network topology
will affect the convergence rate of the decentralized TD(0)
method. More discussions on the dependence of ρ on α will
be given in the next section.

IV. DISCUSSIONS ON LEARNING RATE TUNING

In this section, we will show that the following results
hold for small α:

σ(H22) = 1 + 2 real(λmax real(Ā))α+ o(α) < 1, (21)
σ(H11) = 1 + real(λmax real(Ā))α+ o(α) < 1, (22)
δ∞ = O(α). (23)

Based on such perturbation analysis results, it is expected
that one can decrease the learning rate α to stabilize the
learning process and obtain a smaller steady-state estimation
error δ∞. However, decreasing α leads to a larger value of
σ(H11), meaning that the convergence is slowed down. Such
design trade-off is consistent with the upper bounds for δk

in the existing literature.
The analysis in this section relies on the perturbation

theory. For simplicity, we denote A(zk) = Ai and B(zk) =
Bi when zk = i ∈ N . We also denote the transition matrix
of {zk} as Pz . Hence the (i, j)-th entry of Pz is equal to pij .

A. Eigenvalue perturbation analysis
To show (21) and (22), we will perform eigenvalue per-

turbation analysis. The following fact is useful.
Fact 1: Suppose λ is a semisimple eigenvalue of K0

with multiplicity r. Suppose Y =
[
yT1 · · · yTr

]T
and

X =
[
x1 · · · xr

]
, where (y1, · · · , yr) and (x1, · · · , xr)

are chosen to be independent left and right eigenvectors of
K0 associated with eigenvalue λ and satisfy Y X = Ir. Then
there are r eigenvalues for the perturbed matrix K0 + αK1

yielding the first-order expansion λ + ηα + o(α) for small
α, where η is an eigenvalue of the r × r matrix Y K1X .

Now we apply the above well-known fact5 to analyze
σ(H11) and σ(H22).
• Analysis for σ(H11): Let us specify K0 and K1 as

K0 = PT
z ⊗W ⊗ Ip, K1 = (PT

z ⊗ Inξ) diag(IM ⊗Ai).
Then we have H11 = K0 + αK1. From Assumptions 1 &
2, we know that λmax(K0) = 1 is a semisimple eigenvalue
of K0 with multiplicity p. After examining the eigenvectors
associated with λmax(K0), we choose Y = 1

M 1T
n⊗1T

M ⊗ Ip
and X = p∞ ⊗ 1M ⊗ Ip such that Y X = Ip. We can verify

Y K1X =
1

M

n∑
i=1

p∞i (1T
M ⊗ Ip)(IM ⊗Ai)(1M ⊗ Ip).

5See the remark placed behind [35, Theorem 2.1] for more explanations.

After simplification, we get Y K1X =
∑n
i=1 p

∞
i Ai = Ā.

Therefore, we can obtain the following result:

λmax(H11) ≈ 1 + λmax real(Ā)α+ o(α),

which directly leads to the perturbation formula (21).
• Analysis for σ(H22): To prove (22), we can just choose
K0 = PT

z ⊗ (W ⊗ Ip) ⊗ (W ⊗ Ip) and set K1 to be equal
to the following matrix

(PT
z ⊗ In2

ξ
) diag(IM ⊗Ai ⊗W ⊗ Ip +W ⊗ Ip ⊗ IM ⊗Ai).

Then we have H22 = K0 +αK1 +O(α2). Under mild tech-
nical conditions, we can drop the second-order term O(α2).
Based on Assumption 1 & 2, we know λmax(K0) = 1 is a
semisimple eigenvalue of K0 with multiplicity p2. We can
choose Y and X as

Y =
1

M2
1T
n ⊗ 1T

M ⊗ Ip ⊗ 1T
M ⊗ Ip,

X = p∞ ⊗ 1M ⊗ Ip ⊗ 1M ⊗ Ip.
(24)

Obviously, we have Y X = Ip2 . It is also straightforward to
verify Y K1X = Ā⊗ Ip + Ip ⊗ Ā. Therefore, we have

λmax(H22) ≈ 1 + 2λmax real(Ā)α+ o(α),

which leads to the perturbation result (22).

B. Steady-state estimation error analysis

To show (23), we will use the Laurent expansion of matrix
inverse. Our analysis is formalized as follows.

Corollary 1: Under Assumptions 1 & 2, the following
result holds for sufficient small α:

q∞ = O(α), Q̂∞ = O(α), and δ∞ = O(α).
Proof: We will use the following fact which can be

viewed as a special case of [36, Theorem 2.9].
Fact 2: Given a singular matrix D0. let U be a matrix

whose columns form a basis of the null space of D0. In
addition, let V be a matrix whose columns form a basis for
the null space of DT

0 . Suppose the perturbed matrix D0 +
αD1 is nonsingular for small α. If V TD1U is nonsingular,
then (D0+αD1)−1 satisfies the first-order Laurent expansion
(D0 + αD1)−1 = 1

αU(V TD1U)−1V T +O(1).

First, we apply the Laurent expansion approach to analyze
q∞ = (I−H11)−1u∞q . In this case, we choose D0 and D1 as

D0 = Innξ − PT
z ⊗W ⊗ Ip,

D1 = −(PT
z ⊗ Inξ) diag(IM ⊗Ai).

Under Assumptions 1 & 2, the null space of D0 is the same
as the eigenspace of PT

z ⊗W⊗Ip for the eigenvalue 1. Hence
we choose U = p∞ ⊗ 1M ⊗ Ip. Similarly, the null space of
DT

0 is characterized by V = 1
M 1n⊗1M ⊗ Ip Then we have

V TD1U = −Ā, which is nonsingular. Therefore, we have

(I −H11)−1 =
1

α
UĀ−1V T +O(1),

Notice Gi = O(α) for all i ∈ N . Hence we have u∞q =
O(α). This leads to the following result:

q∞ = (I −H11)−1u∞q =
1

α
UĀ−1V Tu∞q +O(α).



Due to the fact that Āθ∗ + b̄ = 0, it is straightforward to
verify 1

αUĀ
−1V Tu∞q = 0. Hence we have q∞ = O(α).

The Laurent expansion for (I − H22)−1 can be done in
a similar way. We can choose U = X and V = Y T where
(X,Y ) is given by (24). Then it is not difficult to verify
Q̂∞ = O(α). Finally, we have δ∞ = CδQ̂∞ = O(α). This
completes the proof.

Remark 2: The connectedness of the underlying network
is essential for our perturbation analysis. Clearly, the choices
of (U, V ) (for the steady-state error analysis) or (Y,X) (for
the eigenvalue perturbation analysis) rely on the connected-
ness of W . However, our analysis does not make it explicit
how the spectral gap of W will affect the convergence
rate. How to interpret our exact formula for δk in the large
learning rate regime is not fully clear at this moment. It may
be interesting to investigate whether σ(H11) and σ(H22)
yield simple upper bounds which have a more explicit
dependence on the spectral gap of W . That can potentially
lead to some estimation error bounds which are easier to
interpret and more consistent with the results in [18].

V. CONCLUSION
In this paper, we applied the MJLS theory to study de-

centralized TD learning with linear function approximation.
We present exact formulas for the mean-squared estimation
errors of the decentralized TD(0) method, and discuss several
implications on the algorithm behaviors.
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