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Abstract: We present and discuss well known conditions for ultraviolet finiteness and asymptotic
safety. The requirements for complete absence of ultraviolet divergences in quantum field theories
and existence of a non-trivial fixed point for renormalization group flow in the ultraviolet regime are
compared based on the example of a six-derivative quantum gravitational theory in d = 4 spacetime
dimensions. In this model, it is possible for the first time to have fully UV-finite quantum theory
without adding matter or special symmetry, but by inclusion of additional terms cubic in curvatures.
We comment on similarities and some apparent differences between the two approaches, but we
show that they are both compatible to each other. Finally, we motivate the claim that actually
asymptotic safety needs UV-finite models for providing explicit form of the ultraviolet limit of
Wilsonian effective actions describing special situations at fixed points.
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1. Introduction

The behaviour of quantum gravity (QG) models at very high energies, so in the ultraviolet (UV)
regime, was always of big interest for research in theoretical gravity. Quantum considerations in the
perturbative framework force us to use modified gravity models as viable and consistent models for
QG dynamics. This is because of the well known fact of quantum non-renormalizability of the theory
based on the Einstein–Hilbert gravitational action. In this note we want to compare the methodology
and conditions between ultraviolet-finite and asymptotically safe theories. We will consider them on
a particular example of higher derivative gravities in d = 4 spacetime dimensions. To be definite, the
model with six derivatives in the gravitational dynamics will be for these purposes studied here. After
the considerate analysis, we decided that the 6-derivative gravitational theory, being in the general
class of higher derivative local gravitational models, better shows the differences between the two
approaches for UV-completion of gravitational theories. Namely, we believe it does this better than
4-derivative Stelle quadratic theory, which in d = 4 is simply perturbatively renormalizable model
[1]. In a pure gravity case, this last model is not completely without perturbative UV divergences (is
not UV-finite), but it can reach a non-trivial fixed point of the renormalization group (RG) flow in the
UV regime (can give rise to the asymptotically safe model as found in [2]). The longer discussion
of this issue is presented in Section 2.1, where we point out that the conformal window is not
possible for pure Stelle gravity. However, the case of pure six-derivative gravity offers for us such a
possibility, probably for the first time. Pure refers to a gravitational theory which is a quantum theory
of only metric degrees of freedom, without addition of matter fields or additional symmetry (like
in supergravity cases). Such a modified gravity model with six derivatives in its defining classical
action, first studied on the quantum level in [3], is a good and interesting theoretical laboratory for
investigations of various perturbative and also non-perturbative RG flows.

In the framework of quantum field theories (QFT) of fundamental interactions, one of the biggest
theoretical problems is the proper form of UV-completion of theories which work well at some low

ar
X

iv
:2

20
4.

09
85

8v
1 

 [
he

p-
th

] 
 2

1 
A

pr
 2

02
2



2 of 30

energy regimes. One could simply view them as effective theories valid in these energy ranges. As
such, they must work well there. The interesting conceptual question is what happens with these
theories when the energy scale is increased. There are various possible options here—one positive is
that the model in question can be renormalizable (perturbatively or non-perturbatively). However,
this is not the end of the story in the UV regime since even some renormalizable theories may meet
some problems on the way towards the UV regime. A possible danger is for example, the presence
of the Landau pole for running coupling parameters. Then, such models are not UV-complete. A
first possible resolution is to require that the models are not only renormalizable but that they are
also asymptotically free (AF) in the UV regime and that the couplings tend to vanishing values in the
high energy limits. This scenario is realized, for example in the UV-consistent QCD—theory of strong
interactions. We remark however, that in such a model the UV divergences are still present but that
they are fully under control and hence are not anymore dangerous and that the couplings do not run
to divergent values at any finite (or at infinite) energy scales.

The renormalizability brings the additional control over divergences that one encounters by
doing higher order (loop) computations in the QFT framework within the perturbative calculus very
frequently used for considerations of quantum corrections. Unfortunately, this is not the case for
Einsteinian gravity in d = 4. In the latter theory the control over perturbative infinities is lost when
the situation is considered off-shell, at the two-loop or higher order of accuracy, or when the matter
fields are added to the quantum system.

One of the way out for the problem of infinities in QG, is to consider higher-derivative theories
in d = 4 starting first with quadratic gravity of Stelle. Then, the renormalizability is regained, but
the price is the higher-derivative nature of classical and quantum dynamics with various instabilities.
Another option as proposed by Weinberg in 1979 [4] is to solve the problem with perturbative UV
divergences by demanding an existence of a non-trivial fixed point (FP) [5] of RG flow in the UV
regime. This last scenario is inherently non-perturbative in values of coupling parameters since at the
FP the running couplings must attain some finite non-zero values. In this way the situation differs
from the trivial or Gaussian FP, where the FP values are vanishing. We also note that in AS the
problem of higher derivative instabilities is probably solved by the arguments which were presented
in [6], which show that the Boulware–Deser ghosts are most probably fictitious particles. Contrary
to the solution proposed by Weinberg of the problem of UV divergences, usually in the perturbative
framework, another approach is proposed. Namely one seeks to find a theory so special and tuned
that all UV divergences disappear that there are no issues with them and all the perturbative loop
integrals are perfectly finite regarding the UV limits of integration.

The above two approaches for definitely solving the problem with UV infinities have a lot in
common. There are however some subtle but important differences that we want to discuss and
oppose in this article. We believe that the analysis of such dissimilarities will be beneficial for
bringing together the research directions and for finding a unified description of QFT of QG which
is without any problem at arbitrary high energy scales. For this goal, we will present the results
of the analysis for the promising model of six-derivative gravitational theories, which can be made
completely without infinities in the UV regime.

In full generality, a consistent model of QFT of fundamental interactions, like in the case of
QG for metric fluctuations hµν for the quantum graviton fields, must be defined as an interpolating
theory between two FPs of RG (or in the special case, like of QED, we must invoke some threshold
phenomena in IR to decouple massive charged modes). This relates to the necessity of having the
possibility to define the interpolating c-function as this was emphasized in [7,8] for any well-defined
QFT model. One of the two FPs may be in the infrared (IR) regime and we will not discuss here the
infrared safety notion related to it. The second FP must be in the UV regime and its presence there is
required for UV-completion of the QFT model.

It is well known that QFT valid at all energy scales (without any other form of UV-completion
like by string theory or by some quantum theory of some other non-local objects) should be defined
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as an interpolating QFT between two FPs—between IR and UV regimes. These two endpoints FP of
RG are musts, otherwise for finite or infinitely large (or infinitely small) energies the RG flow in the
theory reaches a dangerous Landau pole, and this means that the description of the quantum system
in terms of continuous field theory of point-like particles fails, or at least that the perturbativity fails
and one has to resort to study some non-perturbative effects here. For the question of UV consistency
the IR problems do not matter and the IR FP is unnecessary. The safe situation for the IR regime
of the theory can be obtained, for example, if threshold phenomena decouple all interacting modes
(by giving them mass) and only free (Abelian) massless modes remain, then there is no need for
IR FP of interactions since there are no IR interactions. There exist possible UV-completions by a
quantum theory of something else and these are not relativistic fields and we will not discuss them
here. However, here and in the QFT approach to QG, the field-theoretical description of the quantum
system is assumed to be valid at all energy scales. Hence QFT of fundamental interactions must be
defined with the sense at all energy scales and the two FPs must exist (some of them may be of course
trivial Gaussian FP describing a free non-interacting theory).

Next, these two FPs may be found in QFT of completely different sets of active degrees of
freedom from the point of view of UV and IR FPs, respectively. So we must allow for the possibility of
transmutation and of changing the nature of degrees of freedom of the theory in the course of RG flow.
Still, we require them to be quantum fields with point-like nature of excitations around the vacuum.
We should also allow for the impact of the important effects due to threshold phenomena when some
degrees of freedom acquire mass, they decouple, and are effectively integrated out on the level of
functional integral. In such a case, they are absent from the spectrum at lower energies, towards the
IR limit. The vacuum for these theories (both in the UV and IR regimes) is always the same since
it has to be defined non-perturbatively and exactly as the stable state with minimal value of energy.
This definition is independent of the energy of quantum fluctuations, regardless whether they are at
UV FP (infinitely large energies) or at the IR FP (infinitely small energies). All this is needed for the
consistent description of the scheme of QFT valid at all energies and with the RG flow in it which
interpolates between the two FPs.

In the next two subsections we briefly discuss the main ideas behind the theoretical notions
of UV-finiteness in quantum field theories and also behind the asymptotic safety (AS). The second
section will be devoted for a short presentation of the six-derivative gravitational theories in d = 4.
We will also quote the main results for exact beta functions of perturbative couplings there. In the
main section of this paper, we analyze the similarities and differences between AS and UV-finite
scenarios based on the example six-derivative theory. Finally we draw our conclusions and comment
on a possibility of unified framework and how UV-finiteness should be incorporated in the UV safety
scenario.

1.1. UV-Finiteness

In the first case, one typically relies heavily on the perturbative approach. It is not so surprising
since the first place where one meets dangerous UV divergences is during the expansion of quantum
predictions of general QFTs in small coupling parameters. The ultraviolet divergences are the most
ubiquitous theoretical phenomena appearing in almost any QFT models. Contrarily, if the QFT
model is very special, then these infinities may be absent. Such situations typically call for an
enhancement of symmetries to full quantum conformal symmetry. However, here we want to speak
about perturbative UV divergences. If they are absent in all orders of perturbative calculus, then we
can say that the theory is UV-finite. Since, for example, at the one-loop level, these UV divergences
are related to the perturbative beta functions of the couplings of the theory, then an equivalent
reformulation of the conditions for UV-finiteness reads

βi = 0, (1)
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where the index i counts all the couplings gi of the theory. For this the general theory we write in
the form defined by the action S = ∑i giOi, where Oi lists all classical terms built out of fields and
derivatives of the model.

The condition in (1) is not typically satisfied for any value of the perturbative couplings gi
of the model. The situation must be very fine-tuned to have βi = 0 to all loop orders (and also
non-perturbatively). This requirement must also hold at any energy scale since the running energy
scale E is never an explicit argument of the equation in (1). In the language of RG flows such a special
theory sits at the FP of RG all the RG time and never leaves it. This is obvious since RG running
phenomena arise from the ability to absorb all UV-divergent quantities in bare non-observable
parameters of the model. In the case of UV-finite theories, there is no RG running and the theory
is scale-invariant on the full quantum level. Likely this last symmetry can be promoted to the full
quantum conformal invariance.

There are few known examples of theories that they are completely UV-finite in the standard
relativistic QFT framework. Enhanced symmetry helps in finding such models, but this is not a
necessary ingredient. We can mention here an example ofN = 4 super-Yang-Mills theory [9] and also
ofN = 4 supergravity due to Fradkin and Tseytlin [10]. These models require the highest possible for
consistency level of supersymmetry in their formulations. However, in other gauge-scalar-Yukawa
models as found by Litim and Sannino in [11,12], the UV-finiteness is with a less degree of symmetry.

Generally, it is very difficult to find QFT models completely without any perturbative UV
divergences at any loop orders and such UV-finite theories are very special. Of course, they do
not show any problem in the UV regime and they are definitely UV-complete quantum models of
field theory. Strictly speaking UV-finiteness should also hold non-perturbatively and one should
avoid in such models also possible UV divergences that one could find in some non-perturbative
approaches to QFT. We envisage therefore the possibility that infinities and divergences can be also
non-perturbative in some schemes. The condition for complete absence of UV divergences is typically
a non-linear condition in all couplings of the theory and first it is difficult to find one. Secondly it is
even more difficult to solve it for couplings and in this way define completely the position of the FP
where the RG flow effectively stops.

In some matter theories (without gravity) UV-finiteness may be viewed as some additional
condition on the quantum dynamics. It gives rise to enhanced conformal symmetry on the quantum
level, but in matter models as we have seen for QCD this is not essential. The problem with
UV-completion still may be solved even if the UV divergences are present even in the asymptotically
very high energies. This only means that one has to perform renormalization of these divergences
also at infinite energies.

However, in the gravitational setup UV-finiteness of some QG theory is a very desirable feature
since only with it consequently promoted to full conformal invariance in the general-relativistic
(GR) setup, we can deal with the problem of singularities of the classical gravitational field. As
emphasized in [13–15] full conformal symmetry on the quantum level is a key ingredient for the
successful resolution of singularities. One of the prerequisite for this is that the quantum theory
should be completely without divergences and conformal symmetry should not be broken at very
high energies. Of course, for the issue of singularities we need only to study the UV regime of the
theory. The important question here is how quantum corrections help or destabilize the solution of the
problem with these pathologies in classical theory. An example of the theory which solves these issues
on the classical level is a conformal gravity (Weyl gravity) in d = 4 spacetime dimensions. For the
stabilization of these resolutions one has to ensure that quantum effects do not destroy this conformal
symmetry of the classical theory, or in other words, that conformal symmetry is also preserved in the
quantum theory. This is achieved when there is UV-finiteness and there are no divergences and the
quantum effective action also enjoys the important feature of being conformally symmetric. Hence
UV-finiteness is a must for consistent QG model if it has to deal also with spacetime singularities.
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On the other side, one has to recover the Einsteinian GR in the IR limit as it was explained
above. However, the problem of infinities is in the opposite UV regime. The situation at the highest
energies should be very symmetric and one can view that the IR phase is a spontaneously broken
phase, where the conformal symmetry is not present in the vacuum state of the theory. From
the UV-consistent theory we require the complete cancellation of infinities and reaching the UV
conformal phase. Moreover, this conformal phase does not extend for all energies, especially for
the low energies (or even Planckian energies). In the IR the breaking of quantum conformality is
expected [16] and is welcomed there to provide a consistent description of IR low-energy gravitational
phenomena, like gravitational scattering amplitudes, cosmological perturbations [17], gravitational
threshold phenomena [18], etc.

1.2. Asymptotic Safety

Asymptotic safety (AS) is an approach that in turn generalizes the notion of asymptotic freedom
for all running coupling parameters [19]. It describes this both in the perturbative as well as in
non-perturbative attitude towards quantum physics.

The idea of Asymptotic Safety scenarios came from Weinberg and it was proposed in 1977 [4].
This was in close analogue to asymptotic freedom (AF), which makes strong interactions not so
strong in the UV regime due to non-trivial RG flow of Yang–Mills coupling. The idea of asymptotic
safety was that many problems of Einstein quantum gravity are also solved in a similar way due
to non-trivial RG flow of coupling parameters in the gravitational theory. One of the problem is
the famous non-renormalizability of Einstein–Hilbert (E-H) gravity (with or without cosmological
constant) and in d = 4 spacetime dimensions, off-shell, at one-loop level and coupled to some mater
species, or also in pure gravity at the second loop level as proved by explicit computation of UV
divergences by Goroff and Sagnotti [20,21]. The other issues concern the unitarity bound on the
scattering amplitudes of graviton-graviton interactions, which is apparently broken in the theory
based just on E-H action at energies of the scattering gravitons being of the order of the Planck scale.
Although it is well known that the E-H gravity is unitary two-derivative theory these two problems
deal really with the UV regime of the quantum gravitational theory, where the simple E-H theory is
untenable on the full quantum level.

The idea of Weinberg to solve the non-renormalizability issue and the growth without bound of
the quantum scattering amplitudes was to invoke the situation that in the UV regime a non-trivial
fixed point (FP) is met of the RG flow of running coupling parameters in the gravitational action,
which is typically taken as different from the one given by the E-H truncation action. The values
of the couplings are non-zero and can be also not very small, so the existence of such a FP is truly
a non-perturbative issue to settle which one probably needs to use methods of non-perturbative
field theory and RG flows there. One still can hope that such a non-Gaussian FP can be reached
by methods of perturbation theory in some various small deformation parameters (not necessarily
like the coupling)—they could be dimension of spacetime away from d = 4 or similar ones. The
existence of non-trivial FP apparently solves the problem of non-renormalizability since now in the
UV regime the theory is without divergences, without RG flows, since the FP is met. This is also often
called as non-perturbative renormalizability. Although for example, the issue of non-perturbative
form of UV divergences of the theory and whether they are present here or not is only rarely
considered. In turn, there may exist also non-perturbative divergences of the QFT models and the
issue of their reabsorption in some models of field theory is well posed too. Speaking maybe too
conservatively, one could say that in this last sense one has non-perturbative renormalizability, if even
non-perturbative divergences are possible to be absorbed in the counterterms of the form identical to
the terms present in the original action of the model. After all, the notion of the effective action of
any QFT model is not restricted only to the perturbative calculus, and also its divergent part has the
meaning independently of using it. Then the issue of renormalizability of these non-perturbative
UV-divergences is sensible too and this would constitute the core part of the conservative definition.



6 of 30

Of course, then the UV-completion by non-perturbative UV FP of RG flow for all couplings is
conceptually something else and this requires the departure from the original conservative definition
of what was renormalizability. To support more modern point of view we can remark that Wilson
and others [22] have formally shown that the existence of a non-trivial UV FP (with non-perturbative
values of couplings) guarantees renormalizability of the theory in the first sense (possibility to absorb
all perturbative UV-divergences of the model in question computed via loop integrals in counterterms
of the original action). Moreover, the number of parameters needed to reabsorb such divergences
equals the number of relevant directions of the RG flow near that UV FP.

One shall not forget the reasons why we have RG flow in the QFT at the first place. Historically
first classical models of field theories were with constant coupling parameters. Then one could
have thought of models with spacetime-dependent coupling parameters as unnecessary complication
since they would typically break homogeneity of the spacetime. Originally coupling parameters
in field theory were constants. The great discovery and also the great puzzle of interacting QFT
in the perturbative framework came with infinities. They were unwanted, but theoreticians had
to learn how to live with them and to deal with them in such a way to bring the predictions
back to finite values. This was finally achieved in the advent of renormalization of infinities
in QFT. The divergences were reabsorbed in counterterms of the theory. This was possible in
any renormalizable QFT model. However, there was also a price to pay for this possibility—the
couplings could not be anymore constant, they would have to show dependence on the arbitrary
renormalization energy scale µ. In this way they could be viewed as dependent on the fifth external
dimension being the energy. However, this is fully consistent with relativistic symmetries of the
underlying spacetime, if the extended 5-dimensional background spacetime is maximally symmetric
and negatively curved. The dependence on the energy as the dependence on additional dimensions
can be further developed in the framework of AdS/CFT correspondence and its generalizations.
Coming back to the perturbative framework, the reason for RG flow is traced back to the presence
of UV divergences. If the latter were not present, then we would have only finite renormalization
of couplings and not an ensuing RG flow. Hence all the story with perturbative RG flows started
because of infinities. One can very carefully isolate them from the functional of the quantum effective
action of the theory. There they could be both of the perturbative and also non-perturbative character.
Hence the notion of renormalizability and its further generalizations should primarily deal with these
divergences and the possibility of their reabsorption in the original terms of the theory named here
as counterterms. Additionally, this story of UV divergences can be finally closed too, if the theory
is completely UV-finite. Therefore UV-finiteness is a very natural generalizations to the notion of
(perturbative) renormalizability.

It is however a fact that at the non-trivial (non-Gaussian FP), the theory by definition does not
show any RG effects. The issue with non-renormalizability is more tricky here, since one cannot say
then whether the perturbative or non-perturbative UV divergences are still there or not. As a matter
of fact about divergences presence one derives by looking at the asymptotic behaviour of various
integrals, so then a special limiting procedure must be performed to accomplish this task. Instead, the
situation with an UV FP of RG is that one is sitting at the FP already and for all the time, and then one
cannot change the energy scale and cannot perform any asymptotic limit to see the behaviour when
the FP is reached. It is true that what is really important is not that whether the FP exists or not but
rather how it reached there in the UV regime. We can concentrate just on the leading asymptotics with
the most relevant behaviour. One could derive whether the perturbative (or also non-perturbative)
UV divergences are there so whether the problem with non-renormalizability is ameliorated or not.
For example, from the paper by Kogut and Wilson [22], it was established that the FP with a finite
number of IR-relevant directions gives rise to renormalizability in the perturbative scheme.

As mentioned above, in the AS programme for UV-completion of some interacting QFT models,
one is more interested in the way how the FP is reached in the UV than just the location of this FP
in the parameter space (moreover, the last one is not invariant under arbitrary coupling redefinitions,
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hence it does not possess any observable physical meaning). To find a fixed point of RG, one studies
the solution in the parameter space of the equation βi = dgi(t)

dt = 0, where t is the variable of the
logarithmic RG time. To quantify the way FP is reached, one must study higher derivatives of the

flow of the couplings gi(t), for example the second derivatives β′i = d2gi(t)
dt2 and evaluate them at

the FP, so with the condition that βi = 0. However, from the theoretical point of view much better
quantities are the following derivatives put in the matrix form Mij =

∂βi
∂gj(t)

, which do not show now

any explicit t-dependence and they are autonomous in the system of all running couplings gi = gi(t).
The eigenvalues of such a matrix (so called stability matrix) of derivatives are related to the so called
critical exponents of the theory at the FP. This issue is studied extensively in all FRG papers, since
these critical exponents are thought to be observable physical quantities as we know, for example,
from the theory of critical phenomena applied to the condensed matter physics. Close to the FP
one has non-trivial scaling of couplings in a form of various power laws that are parametrized by
these critical exponents. The computation of these critical exponents is one of the main task of the
theoretical description of the situation at the FP.

Moreover, as it was explicit in the original Weinberg’s construction besides the existence of a
non-trivial FP in UV to make the theory safe (from the problems of the UV regime), one must also
ensure that the dimensionality of the critical surface on which such a FP lays is finite. Such a surface is
typically parametrized by the relevant directions from the point of view of the FP in question, which
is located in the UV regime. Then this classification of the ir/relevant directions is sensitive which FP
this is – in the UV or in the IR we speak about. To each relevant direction correspond an operator in the
action of a theory that when it is included it drives the RG flow away from the FP. Simply unmodified
theory is at the FP, while the deformation by adding some operator breaks the scale invariance and the
RG flow starts taking us away from the FP when the energy scale is lowered compared to the formally
infinite abstract theoretical energy scale of the UV FP. The deformation action is of the general form

Sdef =
∫

d4x
√
|g|giOi, (2)

where we summed over all deformation parameters and their coupling parameters gi. Each of this
coupling should reach a finite FP value in the UV, and away from the FP we should see its non-trivial
RG running.

Additionally, if the operators are (classically) marginal from the point of view of the non-trivial
UV FP, then the running coupling at least in the vicinity of such FP should be logarithmic with the
energy scale, but the value it attains in the limit of infinite energies should be finite and typically
non-zero (for a non-Gaussian FP). There are known examples of the studies how such non-trivial FPs
can be reached when going towards the UV regime, with explicit both perturbative (at the one-loop
level) and non-perturbative forms of the running of the coupling parameters.

The second requirement from Weinberg about finite number of relevant directions is very
important for the predictability of the theory since the theory with FP existing but with infinitely
many ways how it can be reached is not useful physically since this vast infinite freedom of
choices for infinitely many relevant couplings does not constrain at all the physics at some finite
intermediate energy scale, which is neither in the UV, nor in the IR. Of course, we could also add
an arbitrary (possibly even infinite) number of irrelevant deformations from the point of view of UV
FP with some irrelevant coupling parameters. The scaling of such irrelevant couplings would be
g ∼ g∗ + ckα +O(kα−1), with α > 0. For relevant couplings (in my terminology) one would have that
α < 0. We remark that since relevant couplings from the UV FP perspective run to fixed values g∗,
when k→ +∞, so towards the UV FP, they do not change or modify anything regarding the question
of how the UV FP is reached. This is why they are irrelevant from the point of view of the UV physics.
(However, they can be relevant from the point of view of IR, where also their scaling exponent α

may change to something else like α′ possibly being or positive or negative.) As for the issue with
irrelevant couplings with α > 0 the situation with them must be definitely under full control and they
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are not unconstrained as relevant couplings were at the UV FP. For α > 0, one has that the running in
the UV leads to a blow-up g → +∞, unless c = 0. In order to avoid this and reach the FP, one has to
lie on the UV critical surface, so the initial condition is such that the constant c = 0 for all irrelevant
deformations (in terminology with α > 0) and thus at the level of the effective action one would
have all such operators multiplying the corresponding (generally non-zero) fixed-point values of the
couplings g = g∗. This also means that all possible operators consistent with symmetries and particle
content of the theory must be kept in the action (unless by chance we have that g∗ = 0). However,
in the case of six-derivative gravitational theory we also add here a requirement from effective field
theory that the number of derivatives in them is not bigger than 6.

Finally, we could also add some marginal operators with marginal logarithmic running RG flow
of couplings, but here as usual with marginal deformations, the situation needs further attention (and
for example going to the higher order in the perturbation theory) to finally pinpoint the issue whether
they are marginally relevant or irrelevant operators due to higher order corrections. They then could
fall into one of the two categories described above.

The conditions for asymptotic safety (AS) should solve the problems with perturbative
non-renormalizability of some theories (like quantum gravity) and also should tame the growth of
some scattering amplitudes beyond the unitarity bound and also up to infinity for infinite energies.
The operational definitions of couplings due to Weinberg is to read them from some observed
physical process, when it is sure that they are physical observables and they are well defined and
measurable, at least in principle. Then the physical requirement of AS means that the physical
scattering amplitudes or cross sections tend to some finite values for the energy of scattering particles
tending to infinity. The theory is then indeed safe regarding the possible infinities present in the
observables of the theory. However, this very operational scheme is very difficult to realize in practice
for theoretical computations and for finding evidence for the existence or not of the fixed point and for
the characteristic of the critical surface, on which it lays. One rather uses the theoretical and abstract
scheme of computation with abstract energy scale and computes correlations in terms of abstract,
non-physical coupling parameters of the theory. For example, in AS approach to the UV-completion,
this is done right away using the vertex expansion [23] and references therein. Only later, in standard
perturbation calculus approach, one has to physically dress all the quantities computed theoretically
like Green functions (on-shell), scattering amplitudes [24–27] and couplings. The usage of this scheme
in principle leads to some other important questions. We have to keep in mind that AS makes
the situation under control in the deep UV regime, asymptotically at the point where the energies
are formally infinite. However, in practical aspects of quantum gravitational physics we will be
more interested in situation at some intermediate energies, where the energies are of the order of
Planck energy or beyond (trans-Planckian energies) and make the situation safe there regarding the
scattering amplitudes. The RG flow from the UV to the IR has also been studied in many papers in
the framework of AS and in functional renormalization group (FRG), e.g., in [28] (pure gravity and in
the quadratic approximation) and also in [29] (coupled gravity-matter systems).

The main conditions for AS are formulated in such a way that they touch upon the issue
of existence of a non-trivial fixed point (FP) in the UV regime, which must also lay on a
finite-dimensional critical surface parameterized locally in the vicinity of this FP by a finite number
of relevant directions. All these relevant directions correspond to the deformations that could be
added to the original action of the theory at the UV FP, so to the UV action. Then one violates the
scale-invariance present in the FP and causes a non-trivial RG flow down with energies. The relevant
operators with respect this UV FP parametrize locally the tangent space to the critical manifold where
the touch point is precisely the FP in question. Besides these conditions imposed in the UV regime of
the theory, for the physical consistency and phenomenological viability the RG flow in the whole
parameter space down with energies must also possess some further special features when it is
considered on the phase diagram. We will not consider them in more details here. We just want
to remark that the scenario for AS or UV-finiteness regards really the situation at infinite energies,
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where the theoretical problems are the most severe. However, one knows that to compare with QG
phenomenology one must really study the RG flow phenomena at physical energy scales, like around
the Planck scale. The conditions in the UV regime should leave some imprint and when one runs
down with energies, then for example the effective action functional should be constrained because
of this very particular asymptotics in the UV regime.

AS for Dimensionless Couplings and Dimensional Transmutation for Dimensionful Ones

Finally, when looking for pieces of evidence for AS scenario in the UV regime, we need to discuss
the beta functions βi of which couplings gi we will seriously consider for finding a non-trivial UV FP
of RG. In the perturbative calculus, it is well known that only logarithmic divergences in the formal
UV-cutoff (as put in momentum space) are universal and unambiguous in any models of QFT. The
infamous power-law like UV divergences (cf. their description in [30]) are not in such a class since
they can be easily reabsorbed and they do not require and they do not cause any RG flow. (After
all, we remind the reader that the true reason for the RG flow of coupling parameters, which were
originally thought of to be always constant in the classical physics, is that there are non-absorbable
in the field redefinition logarithmic UV divergences that need counterterms and renormalization and
hence also introduction of bare and running coupling parameters gi(t). In the last expression we
denote by t the logarithmic RG-time which is defined as t = ln(k/k0) with some reference energy
scale k0 and with the running energy scale k.) The power-law UV divergences are ambiguous and
for example they depend on the scheme of regularization used to find them, hence the information
contained in them can never be physical and will never have any influence on true observables of
theoretical models in QFT.

Due to the above reasons, we only study the AS conditions for couplings whose RG flow is
determined in the perturbative approach from logarithmic UV divergences. If the theory is only
with higher derivatives and does not contain in their original defining action any subleading terms
with the smaller number of derivatives, then the couplings with the above description are simply
dimensionless gravitational constants. For example, in d = 4 these are couplings in front of
GR-covariant terms of dimension four, so in front of R2 and C2 terms, where R denotes the Ricci
scalar and C the Weyl tensor. Their RG flow is read from logarithmic UV divergences. We will only
concentrate on them in the QG models without subleading terms. The six-derivative gravitational
theory that we will present results of in the next section is precisely of this type. The running of
other prominent gravitational couplings (like of the Newton’s constant GN or of the cosmological
constant λ) in the minimal six-derivative gravitational models is absent, while when one adds also
some subleading terms in the number of derivatives, like R2, C2 or the E-H R term, then the RG flow
for them is back and it should be then read exclusively from logarithmic UV divergences now present
also in such an extended model. The computations of this type were first presented in [31,32].

A corresponding FRG study of the system with six derivatives has been done recently in [33] to
the one-loop perturbative level, extending at the same time the original work on Stelle gravity from
[34–36] and later from [2] to the case of d = 6 spacetime dimensions. In this new setup much more
non-trivial FPs were found. This can be viewed also an extension of our work with six-derivative
quantum gravitational dynamics to the case of six dimensions, where the latter theory is a minimal
renormalizable gravitational model. However, as it is obvious from counting of constraints βi = 0 for
all 10 couplings of such a model in d = 6 and comparing this with the number of active couplings of
the theory on which one-loop divergences are dependent, such a minimal model cannot be UV-finite,
although of course there is much more UV FPs found in the perturbative AS framework. The
reason is the presence of the topological term (an analogue of the Gauss-Bonnet/Euler term from
four dimension) which does not give any impact for one-loop UV divergences. However the UV
divergence proportional to this term and the corresponding beta function for this coupling has to
be made vanish in fully UV-finite model. Hence we see that we have by one too many equations
than the number of independent couplings (the value of the topological coupling is arbitrary—it is
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completely unconstrained from the conditions of perturbative UV-finiteness) and such an algebraic
system is generically without solutions. One can resort here to getting partial UV-finiteness only in
some subsectors of couplings, similarly like this was done in the case of quadratic gravity in [2]. It
is true that in the framework of the paper [33], the cubic terms like R3 are present; however, they
do not play the role of cubic killers since couplings in front of them in the minimal renormalizable
model (which must have six derivatives in d = 6) do exhibit RG running (perturbative even at the
one-loop level). This in clear contradiction to the six-derivative model as considered here, where the
couplings in front of cubic killers operators [3] do not run. Therefore, if one would like to make the
presented model in six dimensions completely UV-finite, then one should first promote the theory
to super-renormalizable by including 8-derivative or even higher 10-derivative kinetic terms in the
action. In the next step, one could use quartic killers (of the type R4) to kill all the beta functions,
although then the algebraic system of equations is non-linear. If instead the theory would be with 10
derivatives, in d = 6, then addition of quintic killer terms would definitely solve the conditions for
UV-finiteness. (This is analogous to the construction of 8-derivative QG UV-finite model in d = 4
as presented in [37–39].) Additionally, one can add some matter or (super-)symmetries to make
the model of [33] completely UV-finite and with the vanishing anomaly coefficient b6 = 0. Such
conclusions can be extended to any minimal renormalizable theory containing terms with up to
d = 2n derivatives of the metric in d spacetime dimensions. In particular, this explains the difference
between full AS and only partial UV-finiteness of the Stelle quadratic gravity in d = 4 as analyzed in
[2].

As we emphasized above in the six-derivative gravitational model studied in this article, we
will not have any logarithmic perturbative UV divergences proportional to the terms whose front
coupling coefficients play the role of the Newton’s gravitational constant or of the cosmological
constant. Therefore, we will not discuss the findings related to the Reuter’s FP of gravitational
theory giving the first evidence for asymptotic safety scenario in gravity [40]. Actually, we know
that these results give a theoretical solution to the theoretical problems of non-renormalizability
of the E-H action in d = 4 spacetime dimensions [41]. However, we think that perhaps there
is no any observable physics at intermediate energy scales behind them and they are only purely
theoretical developments. First and foremost we believe that the true quantum gravitational theory
should be with higher derivatives in their defining actions. The corresponding strong arguments
given by DeWitt and Utiyama are already quite old [42]. Moreover, these results as obtained in [43]
are scheme-dependent and also gauge- and gauge-fixing dependent, hence they cannot have any
true gauge-invariant physical meaning. Moreover, they are read from ambiguous power-law like
divergences in the perturbative calculus. There they are read for dimensionful couplings and this
typically creates more problems with their universality in the framework of RG flows.

Instead of looking for something like the Reuter’s FPs for dimensionless Newton’s constant and
dimensionless cosmological constant [44], we would prefer to look for completely unambiguous
situation of the RG flow of the couplings gR in front of the R2 and gC in front of the C2 terms,
respectively. Their RG flows is gauge-independent, universal and unambiguous in six-derivative
gravitational theory as we explained in the next section of this contribution. In this way we
will look for analogous of FP as first found by Fradkin and Tseytlin for conformal supergravity
four-dimensional quantum models [10].

Here, we remark that in a general situation the RG running is not physical and is not observable
quantity. Additionally, the location of the FP is not physical, but the critical exponents are observable.
However, first at the one-loop level the running of dimensionless coupling parameters is physical
and observable and it has to do with the counting of perturbative degrees of freedom of the theory
(both real and virtual in a specific sense). Moreover, the running at the one-loop perturbative level
around the Gaussian FP is completely universal since any coupling redefinition, which preserves
the perturbativity of couplings cannot change the results for these beta functions. In a more special
situation it is possible to give an unambiguous physical meaning to the running of couplings, if the
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symmetry is involved. For example, the NSVZ exact beta functions are universal and observable since
they have a very beautiful geometrical interpretation. As explained in [45,46] they are related to the
counting of zero modes, the dimension of the corresponding moduli spaces, and also they express
the number of the instantonic zero modes [47], which, in turn, is related to the number of nontrivially
realized and hidden symmetries in the model. They have the geometric nature implying that the
one-loop exact expressions for beta functions of Kähler sigma models have universal observable
meaning despite that their expressions are fully non-perturbative. Being observable quantities, they
are also renormalization-group invariant.

The similar situation also happens in the case of six-derivative gravitational theories, where
due to the enhanced renormalizability properties (so called super-renormalizability as explained
in Section 2), the exact expressions for beta functions, which happen to coincide with one-loop
expressions, have also true physical meaning. There is a hidden symmetry behind this which lets
everyone to give them a new geometrical interpretation. Only in such situation we can give a sensible
meaning to the one-loop expressions for six-derivative gravitational theories and for the FPs of RG
found there. Here, these quantities play the role of observables, because already in them one can
show theoretically that all scheme dependencies mentioned above drop out, as it should be. Precisely
in this situation, these beta functions, RG flows and the position of the FPs may have an invariant
physical and geometrical meaning. The analogous conditions occur for the case of FPs of RG found
first by Fradkin and Tseytlin in [10] in the model of 4-dimensional conformal supergravity. There
when one concentrates on only dimensionless coupling constant parameters (in front of the square
of the Weyl tensor C2), one derives the same universal conclusions about the RG flow, FP structure,
critical exponents, etc.

One of the most disappointing features of RG flows for made dimensionless Newton’s constant
GN (or cosmological constant λ) is their gauge dependence of special FP values [48]. Additionally,
also the expressions for anomalous dimensions of various operators show some spurious dependence.
These are some unacceptable statements in any gauge theory since they cannot simply lead to
any definite observable physical consequences being gauge-variant (it does not matter whether this
dependence is strong or only light, any dependence is wrong and incorrect). Such ideas to work with
physical effects of gauge-dependent quantities clearly contradict from the definition the postulate of
gauge invariance for relativistic field theories. After all, in such gauge models, one were able to treat
gauge invariances in a relativistic manner but the price was to introduce a lot of gauge redundancy
baggage. This was of course under the proviso, that this baggage will be completely unobservable
and will not have any impact on physical effects of the theory. The relativistic formalism of QFT was
rescued by the condition that everything gauge-dependent will never be observable. Or in more clear
words in the formalism we have added some spurious degrees of freedom, only needed to save and
marry Lorentz symmetry and gauge invariance. However, they do not carry with themselves any
physically relevant information. Now, we think that deriving physical consequences (like scattering
amplitudes) from explicitly gauge-dependent detailed description of the purported UV FPs is wrong
since the latter have to be scheme-independent. This task can be then at best viewed as an incorrectly
set exercise and this will not have any impact on physics at all. One of the way to solve this issue with
explicit gauge dependence is to use some special formalism like presented in [49–51]. This is why in
this paper we will not comment any more on the Reuter type of FPs, which were the original basis for
the AS program in QG research [40].

We add that it is natural to expect that the FP values of couplings in general are not physical,
in particular, couplings can always be redefined or non-linearly rescaled, and thus it is completely
normal that FP values depend on the scheme. This also happens in condensed matter physics. At the
same time, these dependencies must disappear in physical observables (i.e., in scattering amplitudes
like computed in [27,52]) and thus there these dependencies are not an issue. The existence of FPs
must be an universal statement (i.e., gauge- and scheme-independent), while their precise location in
the parameter space is not. In correctly computed scattering amplitudes (as in [52]) there should not
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be seen any dependence on the gauge-fixing, scheme or the method of calculations. This is actually
a good check for the formalism in which they are computed. In standard QFT, the amplitudes are
obtained from gauge-dependent Green functions. For example, in the perturbative approach the
independence and universality of the former ones is secured by famous Weinberg theorem about
scattering on-shell amplitudes.

Eventually, we comment that in our theories (in particular in six-derivative QG) some values
of the Newton’s constant and the cosmological constant must be attained in the IR regime. This is
likely due to the mechanism of dimensional transmutation, when the RG flow is run towards lower
energies, and the model transforms into something else—into some IR description of gravitational
physics and there it is not any more six-derivative QG theory. Of course, in such a regime the
conditions for AS or for UV-finiteness do not hold any more and the RG flow has already taken
place. The effective IR description can be probably accurate if one assumes that this is just E-H
gravity plus some small corrections. We explain that the values of GN and of λ that are reached
in the IR regime must probably arise due to the phenomena of dimensional transmutation, since
these are for the dimensionful gravitational couplings. In this way our theories resemble very much
the theory of strong interactions—QCD, where in the UV regime they are well described by the
Yang-Mills theories together with some matter species and characterized completely by only one
dimensionless Yang-Mills coupling parameter gYM. While in the IR regime of the QCD, the famous
ΛQCD scale arises and this is a dimensionful quantity of mass dimension and the theoretical most
accepted mechanism for its generation is this mentioned above dimensional transmutation. We think
that the same mechanism is at work also for dimensionful gravitational constants (GN and λ) and
for this the issue of an existence of UV FP is probably not very relevant. Instead, in this paper we
concentrate on dimensionless couplings gR and gC and for them we do not need to invoke any special
mechanism in the IR regime.

2. Six-Derivative Gravitational Model

In this section we present briefly the main aspects of the considerations on the quantum level
of the recently proposed model of six-derivative in the gravitational action in d = 4 spacetime
dimensions. For more details we refer the interested reader to the review paper in [3]. Such
six-derivative model of QG is a simple next order generalization of the original model as presented
for Stelle in 1977. We consider it here on the quantum level since then it has some additional benefits
in comparison to the general higher-derivative models of gravity. Roughly speaking regarding
perturbative UV divergences this model behaves even better than the original Stelle gravity.

The Lagrangian of the six-derivative gravitational model reads

L = ωCCµνρσ�Cµνρσ + ωRR�R + LK. (3)

From this Lagrangian we construct the action of our higher-derivative QG model, here with six
derivatives as the leading number of derivatives in the UV regime, by the formula

SHD =
∫

d4x
√
|g|L. (4)

Above by Cµνρσ we denote the Weyl tensor (constructed from the Riemann Rµνρσ, Ricci tensor
Rµν and Ricci scalar R and with coefficients suitable for the case of d = 4). Similarly we can write for
the “square” scalar of the Weyl tensor

C2 = C2
µνρσ = CµνρσCµνρσ = R2

µνρσ − 2R2
µν +

1
3

R2. (5)
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Finally, to denote the box operator we use the symbol � with the following definition, i.e.,
� = gµν∇µ∇ν which is a GR-covariant analogue of the d’Alembertian operator known from the
flat spacetime case.

It is important to emphasize here that the Lagrangian (3) describes quite general six-derivative
theory describing the propagation of gravitational fluctuations around flat spacetime. For this
purpose it is important to include terms that are quadratic in gravitational curvature. As it is
obvious from the construction of the Lagrangian in (3) for six-derivative model we have to include
terms which are quadratic in the Weyl tensor or Ricci scalar and they must contain precisely one
power of the covariant box operator � = gµν∇µ∇ν (which is constructed using the GR-covariant
derivative ∇µ). These two terms exhaust all other possibilities since all other terms which are
quadratic and contain two covariant derivatives can be reduced to the two above. This is achieved
by exploiting various symmetry properties of the curvature Riemann tensor as well as cyclicity
and Bianchi identities. The basis with Weyl tensors and Ricci scalars is the most convenient when
one wants to study the form of the propagator of graviton around flat spacetime. The QG model
with the Lagrangian (3) is definitely the simplest one that describes the most general form of the
graviton propagator around flat spacetime, in four spacetime dimensions and for the theory with six
derivatives.

The special part of the Lagrangian in (3) contain terms that are cubic in curvatures. The explicit
form of them in d = 4 after using all of symmetries and identities reads,

LK = s1R3 + s2RRµνRµν + s3RµνRµ
ρRνρ + s4RRµνρσRµνρσ

+s5RµνRρσRµρνσ + s6RµνρσRµν
κλRρσκλ . (6)

These terms are essential for killing the beta functions hence the common name for them—killers.
As one can see they are all constructed as terms cubic in gravitational curvatures, while here six
various contractions are possible. The coefficients si will be determined in a moment from the
condition of all-loop (or exact) UV-finiteness.

One can make the following additional remark here. Looking at the kinetic terms in the
Lagrangian (3), one can see that this type of construction bears great similarity to other higher-order
derivative models, for example Hořava gravity (and Einstein–Aether theory to a lesser extent [53,54]).
These models were analyzed, for example, in [55–57], where a special attention was put on their
coupling to matter sectors. Moreover, some higher-derivative anisotropic operators were constructed
and discussed in [58].

The six-derivative model, as presented here, is to some extent similar to the original
higher-derivative model of Stelle quadratic gravity in d = 4 [1]. As emphasized before, higher
derivatives are inevitably generated from matter quantum loops [42]. However, compared to the case
of quadratic gravity, the model described by the Lagrangian in (3), possesses also some significant
differences due to the “higher than minimal number of higher derivatives”. For renormalizable
models in d = 4, the dynamics with four derivatives is enough to achieve full renormalizability. By
increasing the number of derivatives, the theory is still renormalizable. However, as we will describe
in details below, the theory with six and more derivatives is super-renormalizable. Hence it possesses
more distinct features of better convergence of loop integrals in the UV limits. Finally, this leads to the
first UV-finite model of pure quantum gravity in d = 4. As we emphasized in the introduction such a
goal was not possible to be reached in the minimal model of quadratic gravity with four derivatives in
d = 4. In other words, we can term the theory from (3) as described by “higher than higher-derivative”
quantum gravitational model.

Before presenting the final results for UV divergences of this theory, we briefly discuss the
quantum properties of the theory based on the Lagrangian (3). First, from the form of perturbative
propagator around flat spacetime ηµν for the graviton field, so for the fluctuations of the metric
hµν = gµν − ηµν, we see that in the UV regime there is a suppression of the form k−6. This is higher
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fall-off of the propagator than in standard Einsteinian theory and also than in Stelle quadratic theory
with four derivatives, where it is like k−4. This already implies that the theory has better control over
perturbative UV divergences.

From the more precise analysis of power counting of UV divergences one sees a few important
features here of the six-derivative model. First, this theory is renormalizable [59] and the bound
on the dimensionality of counterterms and of the superficial degree of divergences is ∆ 6 4. For a
situation at the generic loop order L, the following bound on ∆ is found: ∆ 6 4− 2(L− 1) [3]. This
signifies that when higher loops are analyzed (L > 1), then there is more and more restricted form of
possible GR-covariant UV divergences of the model. In what follows below, we will only analyze for
simplicity counterterms built out with terms containing precisely four derivatives of the background
metric tensor. The other counterterms with smaller number of derivatives receive contributions also
from higher loops (up to the order L = 4 when the quantum theory is completely UV-finite).

From the bound ∆ 6 4 we derive that UV divergences at any loop level L can at most contain four
derivatives of the metric. Since we read the beta functions of running couplings in the perturbative
framework from corresponding UV divergences of the model, then we immediately conclude that
couplings ωC and ωR in front of terms with six derivatives in the Lagrangian in (3) never show any
RG running behaviour. Hence these are constant non-running coupling parameters of the theory.
Therefore, this implies that the situation with RG flow in this quantum model is simpler (than in
Stelle theory for example) and is not so involved, despite that in the original definition of the model
in 3 we have significantly more couplings. In this way, we reduce the non-linearity of the system
of equations for the RG evolution of couplings and one can solve it hierarchically starting with the
couplings in front of terms with six derivatives (these are constants). Next are couplings for the terms
with four derivatives and after solving for them we can read unambiguously the RG running of the
effective Newton’s constant GN (as described in [32]). Finally, knowing the RG flow for effective GN
one derives and solves for the RG equation for the running cosmological constant Λ (as described
in [31]). We remark that in the minimal super-renormalizable model as described by the Lagrangian
3, there are no subleading terms with four, two or zero derivatives on the metric and hence to the
one-loop order in this model we do not have any unambiguous running of the couplings GN and Λ.
Therefore, below we focus on UV divergences and related RG flows only for couplings θC, θR and θGB
in front of terms in the divergent action with precisely four derivatives of the metric.

When one considers only terms in the UV-divergent action with dimensionless couplings (for
which the condition of AS has gauge-invariant and independent meanings), then the form of the
one-loop divergent action reads, following [60]

Sdiv = −1
ε

∫
d4x
√
|g|
(

βRR2 + βCC2 + βGBGB
)

, (7)

where by GB we denote the famous Gauss-Bonnet term in d = 4 dimensions. In the above formula
ε is a regulator (related to the one often used in DIMREG scheme) that when it is sent to zero the
infinities are seen. Second advantage is that the theory is super-renormalizable meaning only first
few loops (a finite number of them) gives divergent result. However, more importantly, when one
analyzes from the power counting formula for ∆ the number of derivatives necessary in counterterms,
then for terms of dimension 4 (like these in the action in (7)) one finds that only one-loop quantum
corrections to the divergences contribute here. This means that for the terms R2, C2 and for GB only
contributions at the one-loop level must be taken. Hence by knowing the results at the first loop we
know the effect of performing all loop resummations. The results are therefore one-loop exact. The
quantum one-loop super-renormalizability that we meet in this model is encouraging us and we can
also easily made the theory’s control over perturbative UV divergences complete – that is by playing
with the additions to the Lagrangian in (6) we can satisfy the conditions βi for all i (i.e., i = R, C, GB).
Moreover, we do not need to study here higher loops!
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We finally remark that the whole notion of super-renormalizability (differently than just ordinary
renormalizability) is inherently related to the perturbative development of the quantum model
and perturbative loop integrals evaluated for parametrically small values of the coupling constants.
Hence for it is almost practically impossible to find a non-perturbative meaning like the AS is.

Other advantages for studying the divergences with dimensionless couplings in front in
d = 4 dimensions, are that in this super-renormalizable model, the expressions for one-loop
ultraviolet divergences are completely gauge-invariant, independent and also they do not depend
on any gauge-fixing parameters, nor of parametrization ambiguities for definition of quantum fields
(whether it is hµν or hµν or some other combination taken as the basic quantum variable) or details of
the scheme chosen for renormalization or regularization of the quantum theory [61]. Finally these
leading UV divergences containing four partial derivatives on the metric tensors are completely
independent on some subleading terms in the number of partial derivatives that can be added to
the action in (3). This is again a consequence of power counting and of arguments of the character of
dimensional analysis.

In this way such beta functions for dimensionless gravitational couplings are pieces of genuine
observable quantities that can be defined in super-renormalizable models of QG. They are universal,
unambiguous, independent of spurious parameters needed to define the gauge theory with local
symmetries, and moreover they are exact, but still being computed at the one-loop level in
perturbation calculus. They are clearly very good candidates for the good physical observable in
QG models. Therefore all these nice features gives us even more encouragement towards analyzing
the structure of such physical quantities, to understand this based on some theoretical considerations
and to use this QG model for the comparative description between AS and UV-finiteness.

All these above nice features of the six-derivative QG model makes it further worth
studying as an example of an exact and non-trivial RG flows in QG. Here we have exactness
of one-loop expressions for running θR(t), θC(t) and θGB(t) coupling parameters together with
super-renormalizability. This exact character of UV divergences is one of the most powerful and
beautiful features of the super-renormalizable QG model here. Therefore this model gives us a very
promising theoretical laboratory for studying RG flows in general quantum gravitational theories
understood in the quantum field-theoretical framework.

The computation of the UV divergences in the model (3) was done recently in [3]. The details
of the methods used to obtain them were presented to some extent in this recent article. The method
consists basically of using the Barvinsky-Vilkovisky trace technology [62] to compute functional
traces of differential operators giving the expression for the UV-divergent parts of the effective action
at the one-loop level. The main results were obtained in background field method and from UV
divergences in [3] we read the beta functions of running gravitational couplings. The results for them
in six-derivative gravitational theory in d = 4 spacetime dimensions were the main achievements
there.

2.1. Killer Terms

Now, we discuss in greater details the role of the cubic killer terms in the action (3) contained
collectively in LK. These terms again will come with front coefficients si (for i = 1, . . . , 6) of the
highest energy dimensionality, equal to the dimensionality of the coefficients ωC and ωR. Hence they
could contribute to the leading four-derivative terms with UV divergences of the theory as written in
(7). The general form of them was given in the list in (6).

Actually, these terms are essential for making the gravitational theory with six-derivative actions
completely UV-finite. However, for renormalizability or super-renormalizability properties of the model
in (3), these terms are not necessary, e.g., they do not make impact on the renormalizability of the
theory and therefore should be regarded as non-minimal ones. The set of terms in (6) is complete in
d = 4 for everything what regards terms cubic in gravitational curvatures. This non-trivial statement
is due to various identities in d = 4 as proven in [63].
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These cubic terms are also sometimes called “killers” of the beta functions since they have
profound effects on the form of the beta functions of all dimensionless gravitational couplings in
the theory. This is very easy to explain. These terms are generally of the type sR3 and they are added
to the original Lagrangian of six-derivative theories, where the main terms were of the type ωR�R
(important for flat spacetime graviton’s propagator). It is well known that to get UV divergences at
the one-loop level one has first to compute the second variational derivative operator (Hessian) Ĥ
from the full action. The contributions from cubic killers to it will be of the form sR or higher in
powers of curvatures. The second step is to derive the logarithm of the Hessian and subsequently the
functional trace of such a matrix-valued differential operator (i.e., Tr ln Ĥ). Next, when computing
the trace of the functional logarithm one uses the known expansion of the logarithm in a Taylor series
according to

ln(1 + z) = z− 1
2

z2 + . . . . (8)

Hence one needs to take for sure up to the square of the contribution sR to the Hessian from
the cubic killer term. The third power would be too much because of the following observation—we
must remember that we are looking for terms of the general type R2 in the UV-divergent part of
the effective action at the one-loop level. Hence the contribution to Sdiv of the cubic killer would
produce the addition of the following general type f (s)R2, where yet unknown functions f (s) can
be polynomials up to the second order in the coefficients si of these killers. Now, requiring the total
beta functions vanish (for complete UV-finiteness) we need in full generality to solve the system of
some quadratic equations in the coefficients si. The only potential problem for finding coefficients of
the killers can be that some solutions of this system reveal to be complex numbers, rather than real.
However, we need to require that all si coefficients to be real for the definiteness of the classical action
(for example in the Euclidean case of the signature of the metric). Therefore this issue requires a subtle
and more detailed mathematical analysis, but the preliminary results based on [3,37,64] show that in
most of the cases the UV-finiteness is possible and easily can be achieved by adding some cubic killer
operators from (6) with real coefficients si.

Below for definiteness we provide a sample result for these coefficients si which make the full
QG model from (3) completely UV-finite. One can choose the following values for the coefficients si
and a relation ωR = ωC,

s1 = s2 = 0, s3 = 5,
s4

ωC
≈ −0.847625,

s5

ωC
≈ 2.1177,

s6

ωC
≈ −9.83078. (9)

This choice is not by any means unique and one should scan a space of parameters for other
numerical solutions. The figures above are given also by exact formulas from solving some resulting
cubic equations, and using Cardano formulas, but we will not need them here. One finds that
real coefficients are quite generic solutions here to the system of three quadratic algebraic equations
coming from requirements that βR = βC = βGB = 0 in (7).

One can compare the situation here with cubic killers to the more known situation where the
quartic killers are used to obtain UV-finiteness of gravitational theories. The second approach seems
to be preferred one since the contribution of quartic killers (of the type schematically as R4) in
d = 4 to UV divergences is always linear and proportional to R2 schematically. To solve a linear
system of equations with linear coefficients, one always finds solutions and they are always real. This
approach was successfully applied to QG theories in [37], to gauge theories in [65], to the theories on
de Sitter and anti-de Sitter backgrounds [66] and also in general non-local theories [39]. One shows
that the UV-finiteness may be an universal feature of quantum field-theoretical interactions in nature
[38]. Moreover, this feature of the absence of perturbative UV divergences is related to the quantum
conformality as advocated in [14,67].
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For swift comparison with other results we give also the expressions for perturbative one-loop
UV divergences in d = 4 for standard quadratic Stelle gravity [34–36]. They are shown below

Γ(1)
div = − 1

2ε(4π)2

∫
d4x
√
|g|
{
−133

20
C2 +

(
−5

2
x′2 +

5
2

x′ − 5
36

)
R2 +

196
45

GB
}

(10)

with x′ =
θR
θC

,

where in the original action of Stelle gravity the RG running couplings are θR and θC according to

SStelle =
∫

d4x
√
|g|
(

θRR2 + θCC2
)

. (11)

One sees that for this one-loop situation one can have without matter or additional symmetry
arguments, only the restricted UV-finiteness in the R2 sector of UV divergences. This is obtained for
some special value of the ratio x′ = 3(3±

√
7) which approximate to x′− ≈ 1.06275 or x′+ ≈ 16.9373.

This is regarding the generic situation in quadratic four-derivative gravity. Such situation was also
studied for the first time for the sake of conditions for AS in [2].

The authors of [2], in their paper indeed found AS for all couplings although these couplings
were redefined and an overall rescaling of the total divergent action by the inverse Weyl coupling was
performed. However, the point is the following. Even in the case of the model reaching UV AS as
analyzed in [2] the divergent part of the effective action was non-zero, or in other words the coefficient
of the trace anomaly, so called b4 coefficient in d = 4 spacetime dimensions is non-vanishing. We must
admit that the results of [2] fully agree with the one-loop computation obtained earlier by Fradkin,
Tseytlin and independently by Avramidi in [35,36]. The most clear interpretation of these results is
that for none of the values of the x′ ratio, all independent terms in (11) (so C2, R2 and GB terms) can
be cancelled out and hence this divergent part of the effective action is always non-zero. Hence the
pure quadratic theory is never fully UV-finite, and only in the sector of R2 divergences UV-finiteness
is possible.

One would find it useful for pedagogical purposes to compare the situation in pure Yang–Mills
theory (YM) in d = 4, where in the UV one meets AF, which is a subcase of AS. However, the one-loop
divergent effective action in this model is independent on the coupling and it is non-zero, hence
the theory is not finite, although it reaches a (trivial) UV FP of RG flow. In such a model also the
trace anomaly does not vanish (b4 6= 0) if it is coupled to the external metric. We think that the
similar situation happens for the coupling in front of the Weyl tensor C2 in Stelle gravity since its FP
value also shows AF in this subsector of couplings. Therefore, in pure quadratic gravity, there is no
conformal window possible for the model, while the AS in the UV regime is still an option. One of the
important point of the present paper is that the vanishing of the full trace anomaly, divergent part of
the effective action and consequently the existence of the conformal window for the pure gravitational
model is achieved for the first time in the theory with six derivatives, which is analyzed here. One
then can understand that this special UV-finite model sitting at the conformal window is a subcase of
perturbatively realized AS models of quantum gravity.

In six-derivative gravity one has quite a similar situation but with some significant differences.
For definiteness we consider here the situation completely without killer operators in (6). Then the
running couplings are θR(t), θC(t) and θGB(t), but they themselves do not source the RG flow since
the last one comes only from non-running ωR and ωC. In such a situation the exact one-loop results
for UV divergences in 6-derivative gravitational theory in d = 4 reads as follows

Γdiv = − 1
2ε(4π)2

∫
d4x
√
|g|
{(2x

9
+

397
40

)
C2 − 7

36
R2 +

1387
180

GB
}

, (12)
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where in this case the fundamental ratio of the theory is defined as x = ωC
ωR

. In this case, only the C2

sector of UV divergences can be made finite and this partial UV-finiteness is achieved for the value
x∗ = − 3573

80 = −44.6625 of the fundamental ratio. An attempt to discuss, understand and analyze
the structure of these UV divergences (in comparison with divergences as presented in (11) for Stelle
gravity) an interested reader may find in [68].

In the generic situation, the two couplings θR(t) and θGB(t) run in such a way that in the deep UV
regime asymptotic freedom is achieved in them. Their values tend for t→ +∞ to infinity, respectively
to −∞ for θR and to +∞ for θGB, so the initial conditions for the RG flows so we avoid Landau pole
in must be such that θR(t = 0) < 0 and that θGB(t = 0) > 0. For the case of the θC(t) coupling the
situation is more complicated. If the value of x = x∗, then this is an example of UV-finiteness and
AS in this sector of C2 divergences and this value of the non-running coupling θC is kept fixed at all
energies, not only in the UV regime. We are then sitting at the non-trivial FP of RG. If non-running
x is smaller or bigger than x∗, then there is a non-trivial running for θC(t) and the conditions for AF
in the UV regime are similar to the stipulated above. If x < x∗, then βC < 0 and we must require an
initial condition that θC(t = 0) < 0, while in the opposite case if x > x∗, then respectively βC > 0 and
the initial condition that θC(t = 0) > 0 ensures that we meet AF in the deep UV regime without any
dangerous Landau pole on our way towards it.

3. UV-Finiteness Versus Asymptotic Safety in Six-Derivative Gravitational Model

Here we discuss and compare asymptotic safety approach to HD QG, which gives a lot of success
for quantum field theory of gravitational interactions treated both on the perturbative as well as on
the non-perturbative level. We would like to compare this approach with the other one offering full
UV-finiteness of any Green function or scattering amplitude. This last case is realized by first making
the theory with six-derivative (so super-renormalizable) and later by adding some special operators
cubic in gravitational curvature. One then ends up with completely finite theories (without UV
divergences). We mentioned already above that in the original Stelle theory we can only make the R2

sector of UV perturbative divergences at the one-loop level finite. Contrary, in the pure six-derivative
theory (without terms cubic in curvatures) it is possible by adjusting values of the fundamental ratio
x of the theory to make instead the C2 sector of UV divergences completely finite.

In this section, we compare the conditions for UV-finiteness and for asymptotic safety based
on the particular example of a six-derivative QG model as presented in the previous Section 2. We
also discuss the common practices that are used to extract some physical information from these two
approaches towards the UV-completion of QG models. At first sight, there is a lot of similarities
between these two research directions [69]. However, as we will point out also below there are some
distinct differences, but this does not exclude the possibility for the unification and merging of the
two approaches towards consistent QFT of quantum gravitational interactions.

First similarity is that in both approaches, one studies the same condition, namely

βi = 0. (13)

And this is the starting common point of two approaches. Here, we want to emphasize the
differences. In models which are UV-finite, this condition of vanishing beta functions should hold
for all running couplings of the theory and at all energy scales. This requirement may look as much
stronger, but this is a true condition for the quantum model to look the same at any energy scale,
hence there are no divergences possibly spoiling the conformal invariance of the quantum theory.

Instead, in the AS paradigm, the condition (13) is to be put only in the UV regime of the RG
flow. Only in the limits of infinite energies, we shall find a situation safe with UV divergences and
only then we should reach a non-trivial FP, this is the asymptotic condition. Moreover, while in the
approach with UV-finiteness, we require complete absence of all UV divergences, here for AS we may
consider some sectors of couplings, in which there is a non-trivial FP, but some other couplings may
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run towards AF in the UV regime, and hence in the last case the UV divergences are still present (as
also explained in full details below). We described previously that one can think of UV-finiteness as
the special case of the AS, where the equation (13) for all couplings must hold at all energy scales
and not as a special autonomous condition in the parameter space. Therefore, the condition for
vanishing of conformal anomaly are more special than just for the existence of the non-trivial FP
of RG flow. Generically, the AS describes a special point in the parameter space, when the condition
(13) is solved for the running coupling parameters. (Actually at the FP they do not run anymore since
they take their fixed valued there.) In different vein by closely analyzing the perturbative asymptotic
safety models as introduced by Litim and Sannino in [12], one sees that the requirement there for
perturbative AS is equivalent to the vanishing of UV divergences. Hence in such a situation the
UV-finiteness for some sectors of couplings is a prerequisite for fully developed AS scenario. In
the last perturbative model, where the AS is guaranteed, the UV-finiteness condition is put on the
UV action since at lower energies the action may not be at the conformal window. It reaches the
conformality only for asymptotically high energies due to the RG flow of dimensionless couplings.
The consistency condition for the good behaviour in the infinite limit of energies (AS) is translated
into the perturbative language as the condition for absence of ultraviolet divergences of perturbative
loop integrals in the limiting theory described by the UV action. This also shows the complementarity
between these two approaches to the problems of UV-completion and the UV limits of RG flows.

We remind here that in an example of AF theories, which are in a sense a trivial subset of AS
theories, the perturbative UV divergences are present even in the UV regime of very high energies
(the b4 coefficient of the trace anomaly never vanishes since it is constant as computed to the one-loop
level), while the perturbative couplings do run to zero values as it is required consistently with
asymptotic freedom in the UV—the example of the QCD model is very paradigmatic here. To be
more explicit when one writes schematically the YM action as α−1

F F2, the perturbative coupling is αF,
that is the loop expansion is in powers of this αF. One has at the tree-level the action proportional
to the starting power α−1

F . Then at the first loop level, one finds that Γ(1) ∼ α0
F – is independent

on the couplings and finally starting from two loops we see that for example Γ(2) ∼ αF and in full
generality Γ(L) ∼ αL−1

F . This confirms that again in pure YM theory the divergences are still there at
the one-loop level and even in the situation when the trivial Gaussian FP is reached in the UV, and
the coupling is zero, that is we have that when k → +∞ then αF(k) → 0, they are still present there
and for example cause the non-vanishing of the trace anomaly. This is true even at the Gaussian FP
where the couplings are formally zero. At the Gaussian FP we have that βαF = 0, however for the
inverse coupling ωF = α−1

F needed to write the classical action in the form ωFF2 there is no condition
that βωF = 0 at the FP. Instead, this last beta function is there constant (βωF = const), because it is
constant at all energy scales to the one-loop accuracy.

Therefore to refine our comparison between AS and UV-finiteness, we can say that they are
very compatible to each other, except the AF sectors of the couplings of the theory, where the UV
divergences generically still remain. In the last sectors the conditions for AF, despite the unambiguous
presence of divergences as explained above, are still consistent with AS although they are not
consistent with UV-finiteness. This is the only known exception so far.

Moreover, we remark that when there is a FP (free or safe, or both) there will be generically
plenty of trajectories approaching this point. Only few special trajectories will reach the FP. Other
trajectories will stay some RG time in the vicinity of the FP and eventually they will escape (they are
not UV-complete) and they correspond to inconsistent theories, for example whose UV divergence
cannot be cured. If these diverging trajectories did not exist (i.e., if the fixed point is fully UV
attractive), the theory would have an infinite (for infinite couplings in the truncation) or unbounded
number of relevant directions and thus it would not be predictive (and renormalizable), although it
formally reaches a UV FP. Of course, this situation is not satisfactory. On the diverging trajectories
(not reaching the UV FP) the running of couplings under RG flow may lead to somewhere else
(extreme regions) in the parameter space (like an asymptotic Landau pole for some couplings at
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infinite energies), where the theory is ill defined as well. Therefore also this situation should be
definitely excluded from considerations of AS.

Therefore, here we would say that UV-finiteness is more restrictive condition because the FP is
for all couplings and for all energy scales. One could even say that the theory without renormalization
is easier to solve exactly, since what matters is mainly the classical level of such a model and the
conformal symmetry helps with it. An important essence of the AS program is that the emphasis
should be put also on studies of the way how the FP is approached in the UV regime, not only the
mere existence of the FP at the infinite energies. One could even risk a statement that UV-finiteness
is needed for asymptotic safety at the close vicinity of the FP in order to have a full control over
perturbative divergences in the scheme of expansion in small coupling parameters. The RG flow
from the UV to the IR has also been studied in many papers in the framework of AS and in functional
renormalization group (FRG), e.g., in [28] (pure gravity and in the quadratic approximation) and
also in [29] (coupled gravity-matter systems). One can also explicitly integrate out the RG flow and
compute the scale-dependent effective action Γk as this was done for example in [70,71]. One of the
goal of such a following of the flow towards the IR limit was to get the following limit Γk→0 = Γ,
which gives the definition of the standard (quantum) effective action of the theory.

The second set of differences stems from the fact that as it was obvious from the example of
quadratic Stelle gravity understood on the quantum level, it is impossible to have a fully UV-finite
theory there, while in some sectors of couplings the AS is possible. At the end such a model of pure
QG with only dimensionless coupling constants does not entail the possibility in d = 4 to ameliorate
the problem with divergences of QFT. In AS program, the models with dimensionless couplings
in gravity are usually considered, however, as we pointed out on the example of six-derivative
gravity from the previous section, the addition of higher order operators in gravitational curvatures
is essential for the success of the construction of the UV-finite QG theories. To our knowledge the
consistent addition of cubic or quartic operators in gravitational curvatures for the AS program
in the framework of super-renormalizable QG models and the better control of the FPs in the UV
regime was never studied before in the literature. Our papers ([3,68]) instead suggest that these
terms are crucial for having better control of perturbative UV divergences. In QG models, which
are super-renormalizable only divergences at the one-loop level matters and one possible way to kill
them is to add these terms higher in curvatures. This is one solution in pure QG models, where the
matter fields are not added.

Here one should also mention that there are studies of conditions for AS in models with additions
of terms quartic and cubic in curvatures (see e.g., [33,72]), and also in the f (R) approximation, where
R is the Ricci scalar of the spacetime and f (x) is an arbitrary function. In the last truncation the beta
functions have been impressively computed up to the order R70 [73]. These studies add significantly
to our understanding of situation with AS when cubic and quartic terms are included. The inclusion
of terms of the type C�C and R�R together with terms cubic in curvatures O(R3) was done here for
the first time. We remind that the first group of terms (being quadratic in gravitational curvatures)
have the impact on the improved scaling of the propagator in the UV regime and it is entirely
responsible for the super-renormalizability property of the six-derivative gravitational theory. The
addition of terms precisely cubic in gravitational curvatures (and with no covariant derivatives acting
between them) is motivated by effective field theory (EFT) considerations since all such terms contain
precisely 6 (partial) derivatives on the metric tensor after expansion around flat spacetime and for the
quantum field hµν. In EFT all terms with given number of derivatives must be potentially included
for theoretical completion of the framework. The expansion in number of derivatives is also counted
by powers of the high energy scale M, so this is a kind of derivative expansion or an expansion in
the inverse powers of the big mass parameter M. Finally, we remark that the terms with higher
powers like R4 or up to R70 are not needed to be explicitly added here, if one works to the order of
six derivatives. Moreover, the basis of all terms as presented in (6) is complete in d = 4 spacetime
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dimensions since terms of all tensorial structure are present there (up to various identities holding in
d = 4).

Another option is to add some matter fields (or supersymmetric multiplets of fields) in such a
way that even pure QG model with dimensionless coupling parameters is UV-finite. The example
here is mentioned before N = 4 conformal supergravity which is this highly supersymmetric
analogue of scale-invariant Weyl gravity in d = 4. In such a case without killer operators and
without higher order terms, but in coupled QG model, one can find complete absence of UV
divergences and presumably at the same time also conditions for AS in the UV regime. This
model due to Fradkin and Tseytlin is probably one of the most promising for solving problems
of QG and for having at the same time AS in the UV regime and UV-finiteness, together with
local conformal symmetry and supersymmetry of matter and gravitational interactions. In general,
however, classically scale-invariant QG models, may enjoy partial AS in some sector of couplings,
but they are never fully UV-finite if the theory is in such a pure form. On this example one sees very
well the differences between AS and UV-finiteness approaches to the problems of divergences in QFT
models of QG.

One more difference can come from the observation that in AS scenario for QG, the FP
values for the couplings are very special and they are grouped in isolated points on the parameter
space (defined by coordinates being coupling parameters of the theory). Therefore the situation
to find a FP is fine-tuned, and as the name suggests, these are points (so 0-dimensional objects)
in higher-dimensional parameter space of the theory. In contrary, the approach with UV-finite
theory restricts couplings to lay on some one-dimensional curves being submanifolds in the
bigger parameter space. Or they could be even higher dimensional submanifolds of FPs in
super-renormalizable theories. From this point of view, one could say that the situation with UV-finite
theory is less restrictive. However, another point of view is that having a fixed point or a line fixed
points (or even a plane of them) does not make a difference, they are all solutions to the defining
equation βi = 0. Instead, one could consider the situation in UV-finite theories as more fine-tuned
since there the action of the model is restricted to have a few operators only, put there by hand, in
order to have UV-finiteness. As we remarked previously, the UV-finite models can be viewed as
special cases to the more broad class of UV-complete AS models.

The standard illustrative example one can recall here is given by the situation in N = 4
super-Yang–Mills theory, where if the coupling space is parametrized by Yang-Mills gauge coupling g,
Yukawa coupling y and the quartic self-interactions of scalars λ, then theN = 4 theory is obtained by
putting two constraints on g, y and λ. Such theory is fully conformal on the quantum level analyzed
around flat spacetime background. There are then no UV divergences and the theory sits all the
time at a FP. If the value of the coupling is non-zero, then this is a non-trivial FP. As one can see by
counting constraints, the condition for UV-finiteness in this case is a one-dimensional curve, which
can be parametrized for example by the value of the Yang–Mills coupling g. The other couplings
are then functions of it. The non-trivial FP is met for any value of the g coupling, so this is strictly
speaking a line of FP of RG and moving on this line does not cost any energy and there is no any RG
flow within it.

A similar situation one also meets in the QG model with six derivatives. There the complete
UV-finiteness (absence of the R2, C2 and the GB divergences) is obtained when the ratios s

ωC
, as

presented in (9), are fixed, but the values of the coupling ωC can be for this arbitrary, provided that
this is not zero. We also find a line of FPs here and the condition for UV-finiteness does not determine
uniquely the value of s, neither of ωC, only their ratio is fixed for the condition of UV-finiteness. Here
we denote by s a generic coupling in front of the killer operators from (6) admitting that in our case
of six-derivative QG in d = 4 there are six different non-running parameters si.

This last situation situation is reminiscent of what happens in AS paradigm to QG models, when
one can rescale by the overall coupling the whole action. Then the couplings which appear there
are basically the ratios and the condition for AS is insensitive to the overall coupling. If it was
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reintroduced there, then the condition for true AS would again define for us not just isolated points,
but a line of them on the parameter space. However, we remark that for full UV-finiteness one cannot
perform such procedure since if one rescales by the overall divergence of the action, then one loses
all other divergences since relative coefficients between divergent terms of the effective action stay
typically in finite mutual relations.

Finally, we must mention that for proper framing theoretically AS in the UV regime must
embody the case of UV-finiteness. This is because of the presence of another issue within the AS
program. This issue which must be taken into account is that the presence of a non-trivial UV FP
must be necessarily accompanied by the UV-finiteness of the functional of the Wilsonian effective
action when the last one is to be computed at the formally infinite energy scales. Otherwise, the
whole construction of AS theory in the UV will not work and the UV divergences will still inevitably
show up. Thus, AS would not be UV-safe. This means that it must exist an UV action functional that
is an UV endpoint of the RG trajectory as followed by Wilsonian effective action. One typically knows
that the UV effective action is a very complicated object since it may describe a theory with a lot of
derivatives, or even a non-local one. But just for its consistency such a functional must be UV-finite
at the infinite energy scale, in the opposite case the UV divergences are still there.

The precise logical construction here is as follows. The UV limit of the Wilsonian effective action
must exist as an action describing fully the UV physics, if this is understood as effective field theory.
On the other hand, it must also exist as a well defined endpoint of the RG flow at energies E∞. Such
action is typically call as the UV action. Sometimes people also call it as a bare or classical action of
the theory, although in principle it has no relations to the classical action which was presumably there
before the quantization process. In AS program it is often assumed that the UV action exists but its
explicit construction is almost never showed. It is incorrect to think that it is the simplest action of
the local theory in the UV limit. For consistent removal of divergences such local actions must come
with very special properties. One can treat this UV action as a basis for quantum theory and ask the
question of what happens in theoretically “even higher energies” E > E∞. For consistency of the
whole AS program, the UV divergences for “even higher energies” E > E∞ should be absent. (Here
we assume the following sequence of limits, first E→ +∞ and only later E∞ → +∞).

Hence, we conclude that necessarily the functional for the UV action must be itself UV-finite
when it is understood as the basis for some QFT. Otherwise we run back into a problem of
pathological infinities. Moreover, if one is able to provide an explicit construction for the UV-finite
action, then one can give a satisfactory question to the old question in studies of RG flows—of what is
the explicit form for the UV action for a consistent QFT which reaches a non-trivial UV FP. Previously,
the existence of such actions was only hypothesized—now we can provide explicit examples of local
UV action functionals, also in the gravitational frameworks.

Unfortunately, we remark that the issue of the proper construction of a true UV-finite UV
Wilsonian effective action in the theories that reach AS in the UV regime is typically neglected in
the literature. Maybe because one has not had good examples of UV-finite quantum gravitational
theories. They are not easily constructible using Einstein–Hilbert action or even Stelle gravity actions
in d = 4 spacetime dimensions. As we emphasized earlier for this issue one must include higher
derivatives than four-derivative actions or add some very special matter content which probably needs
to be related also by some symmetry to the pure gravitational sector.

Complete UV-finiteness is not possible there without adding some special matter content (like in
HD supergravity withN = 4 due to Fradkin and Tseytlin). Instead the case of six-derivative theories
is the first one in which one obtains for a model with enhanced symmetry all beta functions vanishing,
exactly, which here is equivalent to the situation at the one-loop due to super-renormalizability
properties. In this way one can find the example of a HD gravitational theory which completely
describes the situation at the UV fixed point of the RG flow. Hence one gives rise to a more detailed
description of the AS program for QG by specifying an explicit example of the Wilsonian effective
action that is there at the UV FP. One now understands that for the AS to work at the very high
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energies it is not enough that a hypothetical FP exists, the critical surface is finite dimensional, but also
that there exists an action which describes the physics precisely at the UV FP and which is completely
without UV divergences.

After all, we remark that the title of the seminal paper by Weinberg [4] was about UV divergences
in gravitational theories. Of course, this paper started the whole revolution related to the AS program.
The theoretical problem considered there was exactly with UV divergences and how to solve them
to get the quantum theory UV-finite and UV-safe and as Weinberg coined it—asymptotically safe
meaning safe from UV divergences (so finite) at asymptotically high energies. This is in close
similarity to the origin of the terminology for AF theories, which are free for asymptotically high
energies, so in the deep UV regime. We think that it is worth, following Weinberg, to come back,
to unify and to appreciate again UV-finiteness considerations for asymptotically safe models of QFT
since this is a necessary ingredient for the latter ones.

In this section, we discussed and compared the asymptotic safety approach to HD QG with the
other one offering full UV-finiteness of any Green function or scattering amplitude. This last case was
realized by first making the theory with six-derivative (so super-renormalizable) and later by adding
some cubic killer operators to end up with completely finite theories (without UV divergences). We
mentioned that in the original Stelle theory we can only make the R2 sector of UV perturbative
divergences at the one-loop level finite, and complete UV-finiteness is not possible there without
adding some special matter content (like in HD supergravity withN = 4 due to Fradkin and Tseytlin).
Instead the case of six-derivative theories is the first one in which one obtains for a model with
enhanced symmetry all beta functions vanishing, exactly, which here is equivalent to the situation
at the one-loop due to super-renormalizability properties. In this way one can find the example of
a HD gravitational theory which completely describes the situation at the UV fixed point of the RG
flow.

4. Conclusions

In this paper, we described the two approaches towards a consistent formulations of quantum
field theories of gravitational interactions valid at arbitrary high energy scales. We discussed both
UV-finiteness and also Asymptotic Safety as apparently different ways of achieving UV-completion
of gravity without necessity of invoking string theory or any other non-local extensions of standard
physics. They are not rivals to each other. On the contrary, they possess a lot of common features
and only superficial differences that upon closer inspection and analysis show the two different
sides of the same coin. We showed that these differences can be understood and explained and that
the mathematical basis for the two approaches is very similar. It is however a fact that typically
UV-finiteness is considered for theories which are perturbative in coupling parameters, while AS is
inherently rather a consequence of non-perturbative phenomena since FP values of couplings are not
needed to be assumed to be small. This points to the problem that methodologies used to study these
two approaches are usually different like perturbative vs. non-perturbative physics.

We still think that these two approaches can be unified and that they need each other. For
example, we emphasized above that although the non-perturbative formulation of AS does not
assume the smallness of any coupling parameter, it must be consistent with the results obtained
in the perturbative framework where this smallness is assumed and exploited. One particular
and pertinent finding here is that the UV action functional, which describes the physics at the UV
FP of RG flow, which stays at the core of AS paradigm, must itself entail the model UV-finite,
when it is considered in standard perturbation theory. This implies that for consistency and for
explicitness the AS program must contain the results already known from the perturbative approach
to the UV-finite theories. Although as we remarked before UV-finiteness may also regard the
non-perturbative divergences. This is why we think we can properly call the AS scenario not merely
as non-perturbative renormalizability, but as a non-perturbative UV-finiteness in some theories. It is
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obvious that the full non-perturbative results (in AS) cannot go in contradiction with the perturbative
results (from UV-finite theories). This last statement is true generally.

Let us summarize here the main ideas of this paper. The goal was exactly to compare the two
approaches (UV-finiteness and AS) to perennial problems of quantum gravity with the conclusion that
they are very similar and should not be viewed as rivals to each other. In this article, we wanted to
point out similarities and the potential differences may be traced back only to the differences between
perturbative and non-perturbative approaches to QFT. We think the honest conclusion now is that the
class of perturbatively UV-finite theories is a subset of the theories which are generally asymptotically
safe, both in non-perturbative or as well as in perturbative framework. Simply UV-finiteness is a more
restrictive requirement than just AS since the former is related to the vanishing of trace anomaly
coefficient b4 at all energy scales, and not only to the situation at an ultraviolet FP of RG reached at
infinite energies.

In the course of our investigations, we first provided examples where these relations between AS
and UV-finite theories can be studied both perturbatively and non-perturbatively. We pointed to the
scalar-gauge-Yukawa theories, in which perturbative analysis shows that they can be with guaranteed
AS and also with perturbative UV-finiteness. It was more difficult to find similar examples in the
case of QG models. For this one necessarily needs to study higher-derivative modified models of
gravity. We remarked that in pure gravity models, in d = 4 these are gravitational models due to
Stelle with second powers of gravitational curvatures and with precisely four derivatives in the action,
UV-finiteness in all sectors is impossible. This is in a close similarity to the case of pure non-Abelian
gauge gauge theory in d = 4, which is known that cannot be finite at the quantum level. In the
last case one has to add charged matter, and for higher loop finiteness the matter must be of both
fermionic and scalar types and matter interactions must consist of Yukawa scalar-fermion interactions
as well as also of quartic scalar interactions. The examples of gauge UV-finite theories are here highly
supersymmetric N = 4 super-Yang–Mills theories and also less symmetric scalar-gauge-fermion
models of Litim and Sannino. The same considerations for gravity are way more complicated.

For the case of QG, in the quest for UV-finite theories one very (super-)symmetric option was to
consider conformal supergravity withN = 4 as the analogue of the super-Yang–Mills theory. Besides
this very symmetric option we decided to study pure gravitational models but with higher than usual
number of higher derivatives. The considerations of six-derivative quantum gravitational models
comes here with advantages that they were super-renormalizable and UV-finiteness was achieved to
all loop orders. Our expressions for the beta functions were exact since there are no divergences
at higher loop level, moreover they were exact, scheme and gauge parameter and gauge fixing
independent. Based on such expressions after adding killers (cubic terms in gravitational curvatures)
one could easily get an UV-finite theory at the one-loop perturbative level. However, this result
we extended to all perturbative loops by the power of the super-renormalizability argument since
divergences were expected and checked to be present only at the first loop level. On this example
of some explicit UV-finite models of six-derivative QG we were able to discuss various differences
and also similarities between the AS and UV-finiteness approach to the role of perturbative and
non-perturbative UV divergences in the theory. This was the main purpose of studying here such
an example of UV-finite pure six-derivative QG theory.

Here, we analyzed and constructed all gravitational terms in the action with up to six derivatives
on the metric. Of course, one can take models with more derivatives (with a finite number of them
giving rise to local higher derivatives theories) or even fully non-local models (with a formally infinite
number of derivatives) [25,39]. We just restricted to 6-derivative models since in this hierarchy these
are the simplest and they are the first after Stelle quadratic theory in d = 4 spacetime dimensions.
We showed that what was not possible for quadratic gravity is possible for six-derivative model and
then the b4 coefficient vanishes, there is no trace anomaly on the quantum level and the theory sits at
the conformal window. As one can see from the the formula (9), there is also a significant freedom
(as opposed to fine-tuning situations) to satisfy the conditions for UV-finiteness since for example
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the values of the coefficients of ωC and si are not determined separately, and only their ratio is
specified for the conditions that all three beta functions of dimensionless couplings are zero here. We
emphasized previously in the text that this is one example of UV-finite theory, but actually there are
an infinite amount of them. The preliminary analysis shows that the allowed region for UV-finiteness
spans a 3-dimensional compact region in a 7-dimensional parameter space of all couplings of the
Lagrangian in (3) (one coupling is removed here due to the overall rescaling of the action by ωC 6= 0
coefficient, for example). However, the analytic description of this region is a difficult algebraic task.
Hence one could say that the conditions for UV-finiteness are quite generic ones and these infinity of
models mean that they are not fine-tuned. Similar advantages we also find in models, which are AS
in the UV regime.

In some standard matter theories, like QCD for example, just perturbative renormalizability
or AS is enough to have a well defined matter model, which is quantum consistent. However, as
we repeated many times above, in quantum gravity we may look for UV-finiteness because of the
problem with spacetime singularities of classical gravitational theory. Moreover, for renormalizable
models one can verify experimentally the RG running of couplings, while in the UV conformal
gravitational phase such phenomena could not be seen, even in theory. We think this is one of the
distinguishing features of these models. Besides this, in mere renormalizable models, the couplings
take different values than in the non-UV-finite models, so we expect that predictions for some
observables will be different. Additionally, there is a vast literature on the implications of conformal
windows for models of particle physics phenomenology (e.g., [74–76] and also in [77,78]), so there are
definitely clear observational signatures here.

One could also pose a question of how to recover the standard two-derivative Einsteinian gravity
(popularly known as the first example of a generally relativistic theory) from this six-derivative model,
which is moreover selected to be UV-finite after conditions in (9). The answer is very simple since
one can freely add terms subleading with the number of derivatives to the Lagrangian in (3). In
particular, one can add there the Einstein–Hilbert term, Stelle quadratic terms R2 and C2 or even a
cosmological constant term. One can supplement the conditions for UV-finiteness since then two
new beta functions are there to cancel (of the cosmological constant and of the Newton’s coupling)
according to the results from [31,32]. In this new situation one again may find full finiteness in
the UV regime. On the other hand, when one goes towards IR the terms with smaller number of
derivatives become more and more important and effectively the action of the theory takes the form
of Einstein–Hilbert action (possibly with the cosmological constant term). In this way the known IR
gravitational physics is fully recovered here.

Instead, the quest for UV-finite theories is a completely UV question. Then in such regime the
theory may be completely different than the theory, which remains in the IR regime. As we know and
expect (based on [42], for example) in the UV regime higher derivatives are inevitable and then the UV
action necessarily differs from the two-derivative Einstein–Hilbert action, which is safely recovered
in the IR regime of the theory. We already emphasized in the introduction to this paper that the
quantum conformality in the UV is needed for the consistent resolution of spacetime singularities1,
which is first done on the classical level of conformal Weyl C2 gravity and later this is not destabilized
by quantum corrections, if the conformal symmetry is fully realized in the UV regime. It is exactly
that regime, where the theory should reach the description of point-like singularities which are so
ubiquitous problems for classical Einsteinian general relativity theory. This could be viewed as one
of the most pressing reasons why the classical gravity is not a complete theory and why it has to
be quantized right away. Moreover, the theory in the UV regime must be changed and it cannot be
a two-derivative gravitational theory anymore. We find that that theory which solves the problem

1 Another options for a consistent resolution of GR spacetime singularities are provided by some non-local models or when
one addsR3 operators (and higher) since they are sufficient to solve black hole singularities problem even in the presence
of the Einstein–Hilbert part of the action (see, e.g., [79,80]).
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of short distance singularities and at the same time of UV divergences must incorporate conformal
symmetry on the quantum level. Hence, one of the necessary conditions is that the trace anomaly
completely vanishes b4 = 0 and one cannot bypass this condition by any overall rescalings. This
gives rise naturally also to UV-finite theories. The examples of conformal anomaly-free theories were
already well studied in the past [81]; however, in this work we extended the discussion for pure
six-derivative gravitational theories (without matter species), where such UV-finiteness was possible
for the first time.

We comment that the conformal symmetry is probably the last one to be found in the UV regime
of particle physics. This is because probing it in principle requires access to infinitely high energies,
or at least arbitrarily high. In the UV conformal gravitational phase all scales should be practically
identical, so this is practically the same situation as at the FP of RG flow. The condition for cancellation
of conformal anomalies is very powerful since then it implies that the theory is completely without
divergences. We can eventually quote the famous words of late Paul Dirac about QFT. He believed
that in a fully consistent quantum theory of the world all infinities present in QFT (like in QED on
which he worked extensively) should be absent. This we achieved in UV-finite models of quantum
gravity.

We admit that the situation at the UV FP, so formally at infinite energies, provided that it exists
and that some UV action at it is UV-finite, is not the end of the story with QG. This only solves the
pending and long standing theoretical problem with infinities within QG models. Of course, the
last one due to conformal enhanced symmetry at the FP is also related to the issue of resolution
of spacetime singularities. However, these two theoretical problems and their successful solutions
within the QFT framework do not address the phenomenological consequences of QG models at
some finite energy scales, for example around the Planck energy scales (MPl = 1019 GeV). However,
the philosophy that we have in mind is the following. After solving all theoretical problems in the
UV for QG, we finally could have a consistent theoretical model for QG as a QFT and within this
we should run down in energies and check for some observable predictions of the theory. Then, we
can make relations of these QG models to QG phenomenology, physics of the SM of particle physics
coupled to gravity, unifications of gravity with other interactions, cosmology, black hole physics, sub-
and trans-Planckian gravitational physics.

For this ambitious goal one has to leave the UV FP, and start a deformation of the UV-finite UV
action functional for the gravitational theory. The conformal symmetry and scale-invariance which
were the situation at the FP must at lower energies be somehow broken (there are various ways
of doing this, cf. [16,17]) and the ensuing RG flow will start immediately. The model will not be
anymore at infinite energies, will not be at the UV FP, the running effective Wilsonian action [70,71,82]
will be different than the action of UV-finite theory, the couplings will start to run down with the
energy and they will not be anymore equal to their FP values. The RG flow will be back non-trivial,
but the conformal perturbation theory (CPT) will allow for its studies around the non-trivial UV FP.
Following such RG flows within the framework of CPT or FRG one should be able to reach physical
energy scales like the mentioned above physical Planck scale MPl. For this one can use the methods of
Wilsonian (RG-running) effective actions Γk (as done for example in [70,71]). There, at lower energies,
one will not be in the AS regime, and because of this, the UV AS scenario will not be at work since
one will not be there in the formally deep UV regime. (If one looks at the face value at the Wilsonian
effective action, then the quantum theory based on it likely will not be UV-finite). However, the form
of the interpolating (effective) action at these energies will have imprinted on itself the conditions
that the theory satisfied in the deep UV regime (AS and UV-finiteness) and then this means that such
effective theory at the energies E ∼ MPl will be very special and unique. We also remark that the full
quantum effective action Γ describes the theory across all energies. For large energies, the couplings
or form-factors [25] reach the AS/UV-finite regime, for small energies one should recover GR, and
for intermediate energies (e.g., inflationary scale or Planck scale) one can describe the crossover or a
smooth transition between the two phases of the theory. We emphasize that at intermediate energies
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the two theories described by Γk, there with k ∼ MPl, are still consistent, since their UV-completion
is achieved independently in the UV regime and the corresponding theories at higher energies are
well defined. The predictions of such theories at intermediate gravitational energies for observable
gravitational physics will be of our next great interest.

This is the final important link of the theory to the reality and to the observational physics. We
plan to work on this in the future since the theoretical framework for QFT of gravity within the
UV-finite or AS is consistent and established now. Moreover, these two approaches seem to be very
promising in solving the theoretical problems of QG within well tested field-theoretical framework.
We are also in possession of explicit formulations of QG models that satisfy the above conditions both
perturbatively and non-perturbatively. The link to QG phenomenology will create a possibility and
a necessity for some final tests or verification of the theoretical ideas for quantum modified gravity
that we advocated in this work.
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