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Targeting functional parameters with semiparametric Bayesian

inference
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Abstract

Typical Bayesian inference requires parameter identification via likelihood parameterization, which

has invited criticism for being less flexible than the Frequentist framework and subject to misspecification.

Though misspecification may be avoided by functional parameter inference under a nonparametric model

space, there does not exist a flexible Bayesian semiparametric model that would allow full control over the

marginal prior over any general functional parameter. We present the technique of θ-augmentation which

helps us manipulate nonparametric models into semiparametric ones that directly target any functional

parameter. The method allows Bayesian probabilistic statements to be drawn for any estimator that

is defined as a functional of the empirical distribution without requiring a likelihood function, thus

providing a path to Bayesian analysis in problems like causal inference and censoring where there do not

exist well-accepted likelihood functions.

Keywords: Bayesian; Functional parameter; Semiparametric.

1 Introduction

This paper is concerned with the problem of making Bayesian inference regarding a functional parameter of
the data-generating distribution of an independent and identically distributed collection of random variables.
Specifically, we construct inference for θ : F → Θ, a finite-dimensional map from the space of distributions,
F , to the parameter space, Θ, while retaining a marginal subjective prior distribution pθ for the functional of
interest. Functionals regularly targeted in the literature include the minimizer of an expected loss function,
that is, argmint∈Θ

∫

l(x, t)F0(dx), solution to estimating equations, that is, {t ∈ Θ :
∫

g(x, t)F0(dx) = 0},
or in general, any function of the data-generating distribution, F0. The approach of targeting functional
parameters is uncommon in Bayesian inference and differs from the usual goal of targeting parameters that
appear naturally in, say, de Finetti’s representation, or in a likelihood formulation. We believe that targeting
such functional parameters is key to avoiding model misspecification in general, and provides proper Bayesian
inference in problems without well-accepted parametric likelihood functions.

In typical Bayesian inference, we have, through Bayes rule, an explicit expression for the posterior dis-
tribution of likelihood parameters that is proportional to the likelihood function times a prior distribution.
Under the most general form of de Finetti’s representation theorem for infinitely exchangeable sequence of
observables, the likelihood function is based on a nonparametric distribution function, and the corresponding
prior, which we denote by Q, is a distribution over the space of nonparametric distribution functions. Ad-
ditional restrictions on the observable, e.g. symmetry (see Bernardo and Smith (1994), Chapter 4), leads to
a reduction of the support of prior Q, to concentrate over the space of parametric models. These additional
restrictions are not always correct, in the sense of the true data-generating model being in the support of Q,
but make Bayesian calculations relatively simple. Furthermore, if we choose parametric likelihoods where a
subset of the parameter vector coincides with the target parameter, then our subjective prior pθ can be used
in the definition of Q thus ensuring coherence between our marginal subjective prior and the full Bayesian
prior model. Due to these advantages, an overwhelming number of applications of Bayesian inference are
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restricted to parametric models with the target parameter coinciding with a part of the likelihood parame-
terization. However, since parametric likelihoods arise out of extraneous restrictions beyond exchangeability,
they are subject to misspecification (Walker, 2013). Some flexibility is gained by using semiparametric like-
lihoods, but the target parameter typically remains defined through the parameterization of a parametric
conditional likelihood which facilitates marginal prior specification but is subject to misspecification, e.g.
Ray and van der Vaart (2020). Furthermore, there are simply problems where we have trouble specify a
likelihood that is parameterized in terms of the target of inference, e.g. causal inference (see Stephens et al.
(2022)). The practice of defining the target as a subset of the likelihood parameter is therefore thought of
as a limitation of Bayesian inference compared to Frequentist methods where plug-in methods relying on
the empirical distribution function essentially allow the targeting of any parameter. This limitation together
with the issue of misspecification are not features of the Bayesian paradigm, but rather consequences of the
simplifications made for the sake of more straightforward computation; yet they have led many researchers
to shy away from the likelihood altogether.

The desire to be likelihood-free has led to the advent of pseudo-Bayesian methods for likelihood-free
inference. One method, the Bayesian empirical likelihood (BEL) method (Lazar, 2003), uses the empirical
likelihood function (Owen, 1990) for a parameter defined as a functional of the empirical distribution instead
of the true likelihood function, in a Bayesian style prior-to-posterior update. The obvious downside is that
the method is not genuinely Bayesian, as the empirical likelihood function is data-dependent. In problems
where the definition of the target parameter requires intermediary nuisance parameters, whether we profile
over the nuisance parameter first in the profile empirical likelihood function or perform a marginalization of
the joint BEL posterior, the choice is arbitrary and leads to different posterior distributions. In the general
Bayes (GB) method (Bissiri et al., 2016), which coincides with the Gibbs posterior (Jiang and Tanner, 2008;
Zhang et al., 2006), the target parameter is defined and connected to the observable random quantity through
a loss function rather than the likelihood. Based on a genuine loss function of the form l(x, θ), where x is
the observed data and θ the target parameter, the GB solution, which is the Gibbs posterior, is simply
proportional to exp(−l(x, θ))pθ(θ) with our subjective prior given by pθ. The GB methods does have a
criterion for parameter identification, that is, the requirement that argminθ∈Θ

∫

l(x, θ)dF0(x) identifies the
true parameter value in the data-generating mechanism F0, which restricts the loss function that can be
used but cannot guarantee the loss function to be unique. Furthermore, many of the arguments in support
of the GB method given by Bissiri et al. (2016) depend on having a genuine loss function, but in pure
parametric inference problems, it is often the case that we do not possess a genuine loss function l(x, θ) that
represents the cost of discrepancy between the observed data x and, in the language of decision theory, the
decision/action θ. Another problem, shared by both BEL and GB method, is that these systems of inference
are incapable of generating predictive inference without further assumptions as they do not specify the
distribution of the observables. Furthermore, in these pseudo-Bayesian systems the substitutions we make in
place of the likelihood function depends on the target of inference, which brings up the question of whether
any two “probability” statements for two different parameters are jointly coherent, or do they violate the
rules of probability as was the case with fiducial inference and confidence distributions (Lindley, 1958; Cox,
2006). Given the increased interest in and downsides of likelihood-free pseudo-Bayesian inference, we aim to
find a fully Bayesian alternative to address these use cases. Our solution is to target functional parameters
of the distribution for the observable while keeping the likelihood model fully nonparametric in order to
avoid misspecification; see Ghosh and Ramamoorthi (2003) or Ghosal and van der Vaart (2017) for general
methods in Bayesian nonparametrics, and Rubin (1981) for the related method of Bayesian bootstrap.

Although nonparametric models have long been considered to be beneficial in avoiding misspecification
(Hjort et al., 2010), we typically observe incoherence between the subjective prior pθ and the chosen non-
parametric model. This arises due to the functional parameter being map from the space of distributions for
the observable to some parameter space, therefore a nonparametric prior Q over the space of distributions
for the observable induces a belief distribution for the functional parameter which seldom matches pθ.There
is, however, a simple technique that will allow us to work with nonparametric models and at the same time
ensure the required subjective marginal prior distribution for any functional parameter is reflected in the
nonparametric prior. We refer to this method as θ-augmentation.
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The θ-augmentation method, to be introduced shortly, allows us to fully specify a subjective prior for a
functional parameter despite it not being a parameter in the nonparametric likelihood, thus ensuring con-
veyance of important prior information regarding the functional parameter and efficient inference. Through
separation of parameter definition from likelihood parameterization, we may tackle with ease the problems
that currently do not have well-accepted likelihoods, examples including causal inference and missing data
problems. By adopting the θ-augmentation method, Frequentist tools such as inverse probability weighting
and matching can be easily ported to the Bayesian framework. Our method is also potentially of interest in
areas of application that typically deal with low sample sizes, where Bayesian inference may be preferred over
the Frequentist, based on its interpretation in finite-sample inference but where previous implementations
of Bayesian models are either parametric (thus subject to misspecification) or nonparametric and lacking in
precise control over the marginal subjective prior for the target parameter, see for example the meta-analysis
of Burr and Doss (2005)

In this paper, we will introduce the theory of θ-augmentation, address techniques to sample from the
posterior of a θ-augmented model, discuss suitable and practical choices of nonparametric models on which to
apply θ-augmentation for consistent inference. We provide two simulation studies, the first of which is aimed
at highlighting the performance of θ-augmented model for Bayesian inference over competing likelihood-free
pseudo-Bayesian methods under the simple setting of estimating the mean and variance, and the second
of which is an application in inference with missing data, to demonstrate how one may achieve “double
robustness” that is hard to achieve with previous methods for Bayesian inference in missing data problems.

2 Theory of θ-augmentation of models for Bayesian inference

2.1 Defining a θ-augmented model

Let the target functional target parameter be denoted by θ. Without loss of generality, let M(R) denote
the space of all probability distributions over the real line, and Σ a σ-algebra over this sample space. The
underlying idea to the θ-augmented model for semiparametric inference is to modify a convenient “proposal”
probability model PΠ = (M(R),Σ,Π) according to the contours of the model space given by target parame-
ter θ. The proposal model PΠ is a model for the distribution for the observable random variable. The theory
for θ-augmentation presented here has two prerequisites, namely 1) infinite exchangeability of the random
variables of which the observed data (x1, . . . , xn) are a finite realization, and 2) existence of a single domi-
nating measure for all models in the prior model space almost surely, see p.17 of Ghosh and Ramamoorthi
(2003), which we shall refer to as the probability model being dominated.

Suppose we have θ : M(R) → R
d, d ∈ Z

+. Let there be a function m : R
d → R

+ s.t. the com-
posite function m ◦ θ : M(R) → R

+ is a Σ-measurable positive function that is integrable, that is,
∫

M(R)
m(θ(FX ))dΠ(FX) < ∞. We define a new probability measure Π⋆, the θ-augmented measure, to

be,

Π⋆(A) =

∫

M(R) 1[FX ∈ A]m(θ(FX))dΠ(FX )
∫

M(R)m(θ(FX))dΠ(FX )
, (1)

for any measurable event A in Σ. This construction is conceptually similar to a slicing, or partitioning, of
the model space based on θ(FX) = t and, for every model in this sub-space, adjusting its probability content
by a factor m(t).

We can verify that Π⋆ is a valid probability measure on (M(R),Σ). Let the normalizing constant of
Π⋆ be ZΠ⋆ =

∫

M(R)
m(θ(FX))dΠ(FX ). The measure of any event A ∈ Σ under the unnormalized measure

Π⋆ZΠ⋆ is equal to the expectation of the measurable non-negative function m(θ(FX))1[FX ∈ A] taken under
Π. The countable additivity of Π⋆ZΠ⋆ can easily be verified. Therefore Π⋆ is a probability measure; it is a
distribution over random measures and its definition depends on both m and Π.

While we see Eqn. (1) as a recipe for constructing semiparametric models from nonparametric ones
via parameter augmentation, the corresponding change of measure can also be regarded as generalizing
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the usual approach to importance sampling, with Π⋆ playing the role of the target distribution and Π the
biasing distribution. Typically, importance sampling is not performed with nonparametric distributions.
Our construction of Π⋆ in Eqn. (1) ensures that the Radon–Nikodym derivative of the target distribution
Π⋆ with respect to Π depends only on the functional parameter θ; in this case that derivative is (m◦ θ)/ZΠ⋆ .

As a probability model for FX , we define the θ-augmented probability model, denoted as TA(m,PΠ),
to be the probability model which inherits the sample space and σ-algebra of PΠ, and is equipped with
the measure Π⋆ as defined according to Eqn. (1). We will refer to m(·) as the weighting function, and
refer to PΠ as the proposal model, and Π as the proposal measure. For simplicity, we will state Π⋆ as the
probability measure of a TA(m,PΠ) model, as often as needed, so that the parameters m and PΠ associated
with a Π⋆ are understood clearly. The domain of the weighting function m will be indicated explicitly in its
specification, to remove any ambiguity with regards to the construction of Π⋆. Appropriate choices of PΠ

will be discussed in Section 4.
One of our primary goals is to specify a θ-augmented model such that the corresponding marginal prior

distribution of θ is equal to our subjective prior. Whether the induced distribution is absolutely continuous
with respect to the Lebesgue measure or discrete will depend on the particular PΠ and the functional of
interest. The important point is that the induced marginal prior and our subjective prior should be dominated
by the same measure. Below we give a prescription to achieve the desired marginal prior distribution for when
PΠ induces an absolutely continuous distribution over θ. The technique easily generalizes to the discrete
case.

Let qΠθ denoting the density function of θ induced by the proposal measure Π. Let the marginal subjective
prior density be denoted by pθ. To achieve the correct marginal prior for a θ-augmented model, we may
choose

m = pθ/q
Π
θ ,

where pθ/q
Π
θ denotes point-wise division of pθ by qΠθ . As a convention in this paper, if f and g are two

functions with the same domain, we shall use fg or f · g to denote the point-wise product of these functions,
and f

g or f/g to denote point-wise quotient.

We can verify that the correct marginal prior results. Denote by FΠ⋆

θ the distribution function of θ
induced by the measure Π⋆ of the TA(m = pθ/q

Π
θ ,PΠ) model, we have that

FΠ⋆

θ (t) =

∫

M(R) 1[θ(FX) ≤ t] pθ(θ(FX))

qΠ
θ
(θ(FX))

dΠ(FX)

ZΠ⋆

(2)

∝

∫ ∞

−∞

1[u ≤ t]
pθ(u)

qΠθ (u)
· qΠθ (u)du =

∫ t

−∞

pθ(u)du, (3)

i.e. the density function corresponding to FΠ⋆

θ (t) is exactly pθ. The simplification from Eqn. (2) to (3) is
due to 1[θ(FX) ≤ t]pθ(θ(FX))/qΠθ (θ(FX )) depending only on the value of θ(FX).

In the case that the distribution for θ induced by the proposal model is discrete, with the probability
mass function (PMF) of our subjective prior be denoted by Pθ and the PMF of θ induced by PΠ denoted
by QΠ

θ , choosing m = Pθ/Q
Π
θ as the weighting function achieves the required marginal distribution over θ

under the TA model.

2.2 Posterior distribution under the θ-augmented model

We first discuss the posterior distribution of θ | x̃n under the TA model in the case that the distribution
for θ induced by the proposal model is absolutely continuous with regards to the Lebesgue measure. Let
FX ∼ TA(m = pθ/q

Π
θ ,Π) a priori. Because we restrict ourselves to PΠ where every FX in the space of

random measures is dominated by the same dominating measure almost surely, Bayes rule applies. Let qΠθ|x̃n

represent the density function of θ | x̃n induced by Π. We obtain FΠ⋆

θ|x̃n
, the distribution function of θ | x̃n
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induced by Π⋆, as

FΠ⋆

θ|x̃n
(t | x̃n) ∝

∫

M(R)

1[θ(FX) ≤ t] ·

n
∏

i=1

FX(xi)dΠ
⋆(FX) (4)

∝

∫

M(R)

1[θ(FX) ≤ t] ·
pθ(θ(FX))

qΠθ (θ(FX))
·

n
∏

i=1

FX(xi)dΠ(FX) (5)

∝

∫

M(R)

1[θ(FX) ≤ t] ·
pθ(θ(FX))

qΠθ (θ(FX))
· dΠ(FX | x̃n) (6)

=

∫ t

−∞

qΠθ|x̃n
(u | x̃n)

qΠθ (u)
· pθ(u)du. (7)

Bayes rule is important here in order to deduce the form of the posterior distribution of θ under Π⋆. Had it
not applied, the form of FΠ⋆

θ|x̃n
would have to be found through other means similar to other non-dominated

models in Bayesian nonparametrics, and the weighting function pθ/q
Π
θ may not have appeared in FΠ⋆

θ|x̃n
as

elegantly as it did in Eqn. (7).
There are several observations to be made based on Eqn. (4)-(7). Firstly, let qΠ

⋆

θ|x̃n
denote the target

posterior density function corresponding to FΠ⋆

θ|x̃n
, we have that

qΠ
⋆

θ|x̃n
∝
(

qΠθ|x̃n
/qΠθ

)

pθ.

This expression shows clearly that, after seeing the data, our marginal prior distribution pθ is modified
by qΠθ|x̃n

/qΠθ , which we term the effective likelihood. Secondly, the posterior distribution for FX is again
distributed according to a θ-augmented model, but now the proposal model is equipped with measure
Π(· | x̃n).

In the case that the distribution for θ induced by the proposal model is discrete, and assuming FX ∼
TA(m = Pθ/Q

Π
θ ,PΠ) a priori, we have that

Π⋆(θ = t | x̃n) ∝
Pθ(t)

QΠ
θ (t)

QΠ
θ|x̃n

(t | x̃n),

for t in the support of QΠ
θ .

Parametric consistency of posterior inference under the θ-augmented model obtains if the PΠ exhibits
parametric consistency and the weighting function m is bounded. The boundedness condition is typically
satisfied as we require that m be an integrable function under the measure Π, otherwise may be achieved by
a truncation of the parameter space. The proof is straightforward and hence given in Appendix A, which
also provides additional details on the parametric consistency of weakly consistent nonparametric models,
for functional parameters defined via estimating equations.

2.3 Multivariate θ and marginal inference

The method of θ-augmentation is not limited to θ ∈ R
1. In the case that the target parameter is θ =

(θ1, . . . , θd) ∈ R
d. As a simple extension to Eqn. (2), a θ-augmented model with the weighting function

m(θ1, . . . , θd) =
pθ(θ1, . . . , θd)

qΠθ (θ1, . . . , θd)
, (8)

will lead to the prior marginal density of θ being exactly pθ(θ1, . . . , θd) as required.
We may also flexibly specify a subjective prior marginally for a subset of the parameter vector, if we lack

well-formed knowledge for the whole parameter vector. Suppose we partition the d-dimensional parameter
vector θ as

θ = (T1, T2), T1 ∈ R
d1 , T2 ∈ R

d2 , d1 + d2 = d,
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and we have a well-informed subjective prior for T1 only. We may assert this partial information, i.e.
requiring that we match marginal prior pT1

in our model, by letting

m(θ) = m(T1, T2) =
pT1

(T1)× qΠT2|T1
(T2)

qΠT1,T2
(T1, T2)

=
pT1

(T1)

qΠT1
(T1)

, (9)

where qΠT2|T1
is the conditional distribution of the remaining parameters given T1, induced by Π. Then,

marginal prior of T1 under the corresponding θ-augmented model will be exactly pT1
as required, but for the

parameters in T2, marginal prior under this θ-augmented model will be

Π⋆(T2 ≤ t2) =

∫ ∫

1[T2 ≤ t2]
pT1

(T1)

qΠT1
(T1)

qΠT1,T2
(T1, T2)dT1dT2

=

∫ t2

−∞

[
∫ ∞

−∞

qΠT2|T1
(u | T1)pT1

(T1)dT1

]

du.

This shows that a construction of θ-augmented model through Eqn. (9) automatically adjusts the marginal
prior (and posterior) of untargeted dimensions of θ coherently based on the laws of probability. We see that
prior knowledge regarding T1 will be informative of T2 if qΠT2|T1

depends on T1 under the proposal measure
Π. The above method for inferring multivariate θ while supplying a prior for a subset of θ is a coherent
system for joint inference on the whole θ vector or marginally on any subset.

3 Sampling from the target posterior

Suppose that PΠ induces a distribution for θ that is absolutely continuous, and we conduct Bayesian inference
based on the model

X ∼ FX , FX ∼ TA(m = pθ/q
Π
θ ,PΠ).

The Bayesian posterior for θ has the density qΠ
⋆

θ|x̃n
∝
(

pθ/q
Π
θ

)

qΠθ|x̃n
. In the case that the proposal model

induces a distribution for θ that is discrete, Bayesian inference via the θ-augmented model will have a very
similar form as the above. We therefore discuss sampling based on the continuous version of the posterior
distribution for θ, which easily generalizes to the discrete version.

When posterior inference on the target θ is required, the most efficient way to obtain samples from the
marginal posterior density qΠ

⋆

θ|x̃n
is direct sampling either via the inverse cumulative distribution function

method, or grid approximation. Sampling via Markov chain Monte Carlo (MCMC) is also possible, and can
be particularly advantageous when dealing with joint inference for multivariate θ.

A simple Metropolis–Hastings (MH) algorithm proposes moves in the space of FX based on the proposal
measure a posteriori, Π(· | x̃n). In the case that independent sampling of FX from Π(· | x̃n) is possible, the
acceptance ratio of a move from FX to F ′

X is

A(F ′
X , FX) = min

(

1,
pθ(θ(F

′
X))/qΠθ (θ(F

′
X))

pθ(θ(FX))/qΠθ (θ(FX))

)

. (10)

In the case that Gibbs sampling, a special case of MH, from Π(· | x̃n) is possible, we have that the acceptance
ratio for each conditional move is also according to Eqn. (10). Marginal inference is obtained by transfor-
mation of sampled FX to θ. These two special cases of the MH algorithm are sufficient to address sampling
from the posterior θ-augmented model under the specific choices of PΠ we outline in Section 4.

Other MH proposal distributions are possible, but the advantage of using exactly Π(· | x̃n) as the MH
proposal is that the acceptance ratio involves only values of θ thus one need not keep track of the full FX
when running the Markov chain. To satisfy the integrability requirement of the weighting function, we will
most often choose a model PΠ that induces a qΠθ that is wider than our subjective prior pθ. As a result,
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the posterior qΠ
⋆

θ|x̃n
will be less spread out than qΠθ|x̃n

, and the default choice of Π(· | x̃n) as the proposal

distribution for the MH algorithm is appropriate. The algorithm will be efficient if qΠ
⋆

θ|x̃n
is similar to qΠθ|x̃n

.

If closed form expressions for qΠθ and qΠθ|x̃n
are unavailable, a practical solution is to substitute with

estimated versions obtained via common density estimation packages, e.g. the R library ks (Duong, 2020)
for density estimation up to six dimensions. Prior to performing direct sampling, we require estimates of
both qΠθ and qΠθ|x̃n

, whereas for MCMC sampling, we require only an estimate of qΠθ . We found that, if

we choose PΠ with the requirement that the induced qΠθ|x̃n
has essentially no weight in the tail regions of

qΠθ , then the use of estimated q̂Πθ and q̂Πθ|x̃n
in our proposed sampling schemes produces good samples for

approximating the required target distributions.

4 Nonparametric proposals for the θ-augmented model

As seen in Appendix A, one way to guarantee the parametric consistency of the θ-augmented model is to en-
sure that the proposal model, PΠ, is at least weakly consistent for the data-generating distribution. As such
we may wish to avoid nonparametric Bayesian models based on conditional likelihoods to prevent misspeci-
fication. We find the general class of infinite kernel mixture models to satisfy our needs, since the posterior
distribution is known to converge to the joint data-generating distribution weakly (Ghosh and Ramamoorthi,
2003) with minimal conditions. We also note that, as a prerequisite in the present theory, suitable nonpara-
metric proposal models must necessarily be dominated, which means that every random distribution in the
support of the proposal model is dominated by the same measure.

The Dirichlet process mixture (DPM) of continuous kernels is a special case of the infinite kernel mixture
model that is dominated and well-studied in terms of algorithms and asymptotics (Ghosal et al., 1999;
Wu and Ghosal, 2010). In the case that the observable is a vector with both discrete and continuous parts,
there exists a DPM of general linear models (Hannah et al., 2011) for estimation of the joint density/mass
function, which is weakly consistent for the data-generating distribution under certain assumptions. With
a DPM as the proposal model, posterior sampling from the target θ-augmented model can be performed as
recommended in Section 3 based on blocked Gibbs sampling from the DPM (Ishwaran and James, 2001).
If we consider the extra computation required on top of standard Gibbs sampling from PΠ in order to
obtain inference under the θ-augmented model, this additional computation is low in complexity for several
important use cases, including estimation of the coefficients of linear regression. But in general we may be
presented with a significant amount of additional computational burden depending on the form of θ. As an
example, a functional defined as the solution to

∫

g(x, t)dFX(x) = 0, where g is nonlinear, will likely not have
a closed-form expression, and therefore we may need to solve this estimating equation through numerical
means every time we find ourselves in need to map a sampled random mixture distribution to θ.

In order to infer with ease any general functional parameter based on any type of observable, we consider
an alternative type of infinite kernel mixture model— the Dirichlet process (DP), which is known to be weakly
consistent for the data-generating distribution (Ghosal and van der Vaart, 2017). The typical Dirichlet
process supported on the real line is not dominated, thus violating a prerequisite of the θ-augmented model.
A simple adjustment is to instead consider the data as recorded to finite precision which may be modelled
with a Dirichlet process with a discrete base distribution, which is dominated. The practical implications
of rounding on finite sample inference is minimal if the precision is high, especially considering that most
computers perform finite precision arithmetic unless otherwise specified. We find the Dirichlet process with
a discrete base distribution particularly useful as it can be applied to model observable vectors with both
discrete and continuous parts. The discreteness of random measures in the sample space of the Dirichlet
process makes transformation of random FX to θ straightforward, which, combined with the availability of
independent sampling for DP, results in efficient posterior sampling from the θ-augmented model.
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Table 1: Results for estimating µ and σ2 jointly, Section 5.1. Performance metrics were estimated based
on 300 datasets at each sample size n, based on joint highest density credibility regions. The largest Monte
Carlo standard errors for results in columns 3 and 4 are less than 0.03 and 1 respectively

Coverage prob. Average size
Sample size Method of 95% joint CR of 95% joint CR
n = 20 TAB 0.98 30

BB 0.80 30
BEL 0.84 26
GB 0.78 26

n = 50 TAB 0.96 15
BB 0.88 14
BEL 0.89 13
GB 0.87 13

5 Simulation studies

5.1 Joint estimation of the mean and variance parameters

Bayesian inference via the θ-augmented model, or θ-augmented Bayesian inference for short, is asymptotically
well justified. We performed a simulation study to highlight the strengths of θ-augmented Bayesian inference
in small sample inference against three competitors, namely the Bayesian bootstrap (Rubin, 1981), Bayesian
empirical likelihood (Lazar, 2003), and the general Bayes method (Bissiri et al., 2016).

We considered the problem of mean and variance estimation from exchangeable random observables Xi,
i = 1, . . . , n. The target parameter is therefore θ = (µ, σ2). In the case of general Bayes method we identified
the joint parameter via m-estimation with tuning weights chosen based on asymptotic tuning; see Appendix
B. For θ-augmented Bayesian inference, we used a θ-augmented model with m = pµ,σ2/qΠµ,σ2 , and PΠ being
a Dirichlet process with the precision of 0.5 and a base distribution that is a discretized version of the
Normal(µ0 = 0, σ2

0 = 100) distribution. Posterior sampling for θ-augmented Bayesian inference is performed
using the MH algorithm in Section 3.

Details regarding the competing methods, definition of evaluation metrics, model specifications, im-
plementations, and various sampling procedures undertaken are provided in Appendix B. Here we briefly
mention that the data is generated according to a skewed distribution, where for all i ∈ {1, . . . , n},

Xi = −6Zi + Ti, Ti ∼ Normal(µ = 5, σ2 = 4), Zi ∼ Bernoulli(0.25),

and that we use the same joint prior,

1/σ2 ∼ Gamma(α = 6.623, β = 60.442), µ | σ2 ∼ Normal(µ0 = 3.5, σ2
0 = σ2),

for all methods requiring a subjective prior distribution; this prior was specified such that the marginal prior
mean of variance parameter matching the variance of data-generating distribution, and the marginal prior
mean of mean parameter matching the mean of data-generating distribution.

The results of our simulation are summarized in Table 1 for joint inference and Table 2 and Table 3 for
marginal inference. The results for the Bayesian empirical likelihood method were obtained based on approx-
imations to posterior distributions with a low number of Monte Carlo samples, due to high computational
demand, and is therefore to be interpreted with a larger margin of error.

In joint inference, only θ-augmented Bayesian inference achieved a coverage level close to nominal at the
sample sizes tested. At any given sample size, the size of 95% credibility region of θ-augmented Bayesian
inference was similar to that of competing methods while achieving much better coverage. For marginal
inference on the variance parameter, out of all methods investigated, the θ-augmented Bayesian inference
had the smallest bias and the closest estimated coverage probability to nominal level, at any given sample

8



Table 2: Results for marginal inference of µ, Section 5.1. Performance metrics were estimated based on
300 datasets at each sample size n. The largest Monte Carlo standard errors for results in columns 3 to 6
are less than 0.02, 0.03, 0.05 and 0.05 respectively

Coverage prob. Average size Absolute Average
Sample size Method of 95% CR of 95% CR bias quadratic risk
n = 20 TAB 0.95 2.61 0.05 0.92

BB 0.93 2.70 0.10 1.03
BEL 0.95 2.59 0.08 0.91
GB 0.93 2.63 0.06 0.93

n = 50 TAB 0.94 1.73 0.04 0.40
BB 0.92 1.76 0.01 0.42
BEL 0.94 1.79 0.02 0.42
GB 0.94 1.77 0.05 0.41

Table 3: Results for marginal inference of σ2, Section 5.1. Performance metrics were estimated based on
300 datasets at each sample size n. The largest Monte Carlo standard errors for results in columns 3 to 6
are less than 0.03, 0.03, 0.2 and 1.3 respectively

Coverage prob. Average size Absolute Average
Sample size Method of 95% CR of 95% CR bias quadratic risk
n = 20 TAB 1.00 9.6 0.6 11

BB 0.83 9.6 1.0 17
BEL 0.88 8.3 0.9 10
GB 0.82 8.4 1.6 11

n = 50 TAB 0.98 7.2 0.4 6
BB 0.88 7.1 0.6 8
BEL 0.91 6.4 0.5 6
GB 0.86 6.8 1.1 6

9



size. Since variance is a function of the first and second moments, poor performance of general Bayes
posterior inference was likely due to the skewness of the distribution of X2 (see Figure 1 of Appendix B)
conflicting with the assumptions of the general Bayes method. Similarly, as posteriors for Bayesian bootstrap
and Bayesian empirical likelihood are related to the empirical distribution, the empirical distribution of X2

was likely unrepresentative of the population. Interestingly, the θ-augmented Bayesian inference may have
accounted for this with the incorporation of the weighting function pµ,σ2/qΠµ,σ2 ; the induced proposal prior

qΠµ,σ2 captures the skewness of the variance parameter a priori due to sampled FX from the prior proposal
model assigning large weights on a small number of support points, which mimics taking a small sample
from the population.

In marginal inference of the mean, all methods performed relatively well. The results presented in Table
2 did not highlight one method above others as being uniformly superior.

5.2 Estimating the mean with data missing at random

We consider the problem of estimating the mean of a random variable Y when some observations are missing
at random, while an auxiliary variable X is observed always. Let C be the indicator for whether variable
Y is observed. When Y is said to be missing at random, it means that C ⊥ Y | X , or equivalently, that
Pr(C | X,Y ) = Pr(C | X). The observed data is the collection (ciyi, ci, xi), i = 1, . . . , n. The problem was
studied by Ray and van der Vaart (2020) via a semiparametric conditional likelihood based approach which
was not “doubly robust”.

We can obtain doubly robust semiparametric Bayesian inference by using the θ-augmented model if we
define the functional parameter appropriately. The key here is to borrow directly from the Frequentist
literature a consistent estimator that can be viewed as a functional of the empirical distribution. Let Fn
denote the empirical distribution of a sample of size n, and E(Fn) denote an expectation taken with respect
to Fn. We define an augmented inverse propensity weighted (AIPW) estimator (Robins et al., 1994) as

µAIPW(Fn) = E(Fn)

[

ζ̂(X ; β̂0(Fn), β̂1(Fn)) + C

{

Y − ζ̂(X ; β̂0(Fn), β̂1(Fn))

p̂(X ; ψ̂0(Fn), ψ̂1(Fn))

}]

, (11)

where p̂(x;ψ0, ψ1) =
{

1 + e−(ψ0+ψ1x)
}−1

, and ζ̂(x;β0, β1) = β0 + β1x, and

(

β̂0(Fn), β̂1(Fn)
)

=
{

(b0, b1) ∈ R2 : E(Fn)

[

(1 X)⊤ {Y − (b0 + b1X)} | C = 1
]

= 0
}

, (12)

(

ψ̂0(Fn), ψ̂1(Fn)
)

=

{

(s0, s1) ∈ R2 : E(Fn)

[

(1 X)⊤
(

C −
1

1 + e−(s0+s1X)

)]

= 0

}

. (13)

The Frequentist estimator µAIPW(Fn) will be consistent if either Y | X followed a linear model or C | X
follow a logistic regression model in the true data-generating distribution. Eqn. (11) - (13) also provide the
form of the functional target parameter, µAIPW(·), which can take any distribution for the observable as its
argument. The notation E(·), which appears throughout Eqn. (11) - (13), is used here to emphasize a change
in the measure of an expected value when we pass in a different distribution as the argument to µAIPW(·).
Under the Bayesian paradigm, a probability distribution over the space of distributions for the observable
induces a probability distribution for µAIPW.

As for an appropriate Bayesian prior, we note that a Dirichlet process with discrete base distribution
is weakly consistent for the data-generating distribution (Ghosh and Ramamoorthi, 2003). Using this as
the proposal model of a θ-augmented model will result in consistent posterior parametric inference if either
Y | X followed a linear model or C | X follow a logistic regression model in the data-generating distribution,
according the results in Section A and the Appendix. Here we assume that real-world measurements are of
finite precision, so that the model space is dominated as required.

The remainder of this section provides some insight into the small sample Frequentist performance of
the Bayesian posterior of µAIPW under the θ-augmented model, and demonstrates double robustness. In a
simulation study, we compared the performance of the θ-augmented model for inferring µAIPW under four
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Table 4: Evaluation of the θ-augmented Bayesian inference of the mean of Y with data missing at random
with the µAIPW functional. Datasets were generated according four mechanisms, Model C.0.1- C.0.4, which
are detailed in Appendix C. Performance metrics were estimated based on 500 or more datasets at each
sample size n. The largest Monte Carlo standard errors for the results in columns 3 to 6 are less than 0.02,
0.2, 0.04 and 0.5 respectively

Model Sample size CP of 95% CR Avg. size of 95% CR Abs. bias Avg. quadratic risk
C.0.1 20 0.93 5.3 0.12 3.9

50 0.94 3.3 < 0.01 1.5
100 0.93 2.3 < 0.01 0.7
500 0.95 1.0 < 0.01 0.1

C.0.2 20 0.89 8.5 0.61 11.2
50 0.92 5.9 0.20 5.6
100 0.90 4.5 0.11 3.9
500 0.91 2.3 < 0.01 0.8

C.0.3 20 0.93 5.5 0.09 4.4
50 0.94 3.4 0.01 1.8
100 0.94 2.4 0.02 0.8
500 0.97 1.1 0.01 0.2

C.0.4 20 0.89 9.4 1.09 13.7
50 0.83 6.6 0.72 8.6
100 0.78 5.2 0.68 5.5
500 0.76 3.0 0.40 2.1

data-generating mechanisms all with the unconditional mean of Y of 6. Model C.0.1 has conditional means
matching p̂ and ζ̂, Model C.0.2 has a conditional mean of Y | X that is misspecified, Model C.0.3 has a
conditional probability Pr(C = 1 | X) that is misspecified, and, finally, Model C.0.4 has both Pr(C = 1 | X)
and conditional mean of Y | X both misspecified. The details for these models are found in Appendix C.

Bayesian inference was performed with the following model:

(X,C,CY ) ∼ FX,C,CY , FX,C,CY ∼ TA(m = pµAIPW
/qΠµAIPW

,PΠ = Model C.0.5).

The marginal prior for µAIPW was assumed to follow a Normal(µ = 6, σ2 = 50) distribution. The proposal
model was a Dirichlet process with a discrete base measure, with specifications given in Model C.0.5 in
Appendix C. This proposal model induced a prior qΠθ that was sufficiently diffuse compared to the posterior,
thus we do not observe any issues from the use of estimated density q̂Πθ in the Metropolis–Hastings sampling
algorithm. The performance metrics we used in this section are the same as those of Section 5.1. Results
for θ-augmented Bayesian inference over repeated datasets are summarized in Table 4. Based on the results,
we see that the θ-augmented model generated posterior inference with good finite sample properties, and
a convergence towards the true mean, except in the case of Model C.0.4 where the Frequentist estimator
µAIPW(Fn) would not be consistent either.

6 Discussion and conclusion

In this paper, we developed the method of Bayesian semiparametric inference via a θ-augmented model
for inferring functional parameters. The θ-augmentation method presented in Section 2 provides a way to
adjust any dominated proposal model via a simple weighting ratio to achieve the desired marginal prior
distribution for a particular functional target parameter without requiring it being part of the likelihood
specification. Construction of a θ-augmented model from some proposal model is achieved via the usual
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importance sampling formula. Inference via a θ-augmented model is easy to implement computationally
according to the proposed algorithms. Section 2.3 highlights the flexibility of the method in modelling
partial information on a multivariate target parameter, which has benefits in real world situations where
a subset of the parameter is more studied than others, perhaps in regression analysis with a number of
covariates. We are also free to target a low dimensional parameter even when a large number of nuisance
parameters are involved in defining the target, e.g. in estimation of skewness, requiring only marginal prior
for valid statistical inference.

Though nonparametric models already exist for functional parameter estimation, we typically do not
have full control over the marginal prior for the functional parameter, which implies that the opportunity
to incorporate useful information is being overlooked. The simulation study in Section 5.1 stands to remind
us that addition of well-informed prior information for the target functional can lead to better finite-sample
performance and more efficient inference, if we compare the performance of nonparametric BB with that of
the semiparametric θ-augmented model.

The method of Bayesian inference via the θ-augmented model may be used to translate many existing
Frequentist tools into a Bayesian setting, provided that the Frequentist estimator is expressed as a functional
of the empirical data distribution. This is an important advantage as Frequentist estimators need not be
motivated by the likelihood function. Although we are accustomed to tackling Bayesian inference by firstly
analyzing the structure of the sampling distribution/likelihood function, writing it down explicitly in terms
of the target parameter, this approach can produce less than desirable posterior inference when the likelihood
function is misspecified or unavailable. However, it could be that the problem has a simple and well accepted
Frequentist solution. For example, the problem of confounding in treatment effects is typically addressed
by inverse probability of treatment (IPT) weighting under a Frequentist framework. Application of the θ-
augmented model to this type of problem removes the need for correct structuring of the likelihood function.
Further work is needed to understand and quantify any additional advantages with regards to performance
of θ-augmented Bayesian inference compared with likelihood-based Bayesian methods. Work remains to
demonstrate θ-augmented Bayesian inference with real datasets and under various other settings where an
appropriate likelihood function may not exist.

Since the posterior under a θ-augmented model is proportional to qΠθ|x̃n
· pθ/q

Π
θ , when we employ the

Dirichlet process model as the proposal model, we can tune the function qΠθ|x̃n
towards the Bayesian bootstrap

by choosing DP precision to be close to zero. This may be a good strategy for specifying a proposal model
for data analysis as the Bayesian bootstrap is known to be well-behaved. Though in implementations with
the DP as the proposal model, discretization of the base distribution is required, it may be justified by the
practical limitation that all real world measurements must be made with finite precision, and is likely not
an issue in small sample inference. Of course, should one disagree with the discreteness in distributions
sampled from the DP, they may choose the Dirichlet process mixture model to be the proposal model, which
is equally valid theoretical but with higher computation requirement.

While a great variety of functional parameters are suitable for Bayesian inference with the θ-augmented
model, there is currently a limit as to the type of feasible proposal models. By requiring that the proposal
model of a θ-augmented model be necessarily dominated, we are limited in the class of nonparametric mod-
els that can be used to describe the observable random variable. Extension of the theory of θ-augmented
Bayesian inference may be interesting to see how this requirement may be relaxed to make more nonparamet-
ric methods available as the starting point of Bayesian semiparametric inference for functional parameters.

The method may be challenging to implement when a high-dimensional joint prior distribution must be
satisfied for a high-dimensional functional parameter. In most problems, the denominator of the weighting
function, qΠθ , of a θ-augmented model has to be estimated. To this end, we may employ the R library ks,
which provides functions for density estimation in up to six dimensions. Further research is needed to tackle
this problem either from the algorithmic or theoretical front. Also relating to algorithms, further research
on algorithmic efficiency of θ-augmented Bayesian inference in large samples is helpful to determine the
applicability of the θ-augmented model to large datasets.

Finally, choosing targets of inference that are functionals of the distribution for the observable provides
a simple way to avoid model misspecification and counters the perception that the Bayesian paradigm is
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more limiting than the Frequentist simply because it always requires a likelihood. The simple technique of θ-
augmentation provides a mechanism to transfer one’s subjective knowledge regarding a functional parameter,
just as we are trained to do so for a likelihood parameter, to facilitate efficient Bayesian inference and
a complete coherence of the Bayesian model while offering the opportunity to work with a completely
nonparametric model space.

Acknowledgement

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada for their
support.

Appendix A Asymptotics

General consistency and distributional results

Consistency of a Bayesian procedure for a parameter typically refers to a type of convergence in proba-
bility. Ghosal (1997) defines consistency for a Bayesian posterior P (· | x̃n) for a parameter as, for every
neighbourhood U of θ0

lim
n→∞

P (U | x̃n) = 1 a.s. PF0
, (14)

where F0 denotes the data-generating distribution, and θ0 = θ(F0).
It is easy to see that the consistency of a θ-augmented model depends on the proposal model. Presume

we conduct Bayesian semiparametric inference with the θ-augmented model TA(m = pθ/q
Π
θ ,PΠ). Suppose

that the proposal model PΠ equipped with measure Π satisfies consistency per complement of Eqn. (14),
that is, for every neighbourhood U of θ0, limn→∞ Π(θ ∈ U c | x̃n) = 0 a.s. PF0

. If the particular weighting
function pθ/q

Π
θ is bounded by a number M , then clearly the induced distribution of θ under the posterior

Π⋆(· | x̃n) is consistent for θ0 as

lim
n→∞

Π⋆(θ ∈ U c | x̃n) = lim
n→∞

∫

1 [θ(FX) ∈ U c] · pθ(θ(FX ))/qΠθ (θ(FX))dΠ(FX | x̃n)

≤ lim
n→∞

M

∫

1 [θ(FX) ∈ U c] dΠ(FX | x̃n) = 0

We can ensure to satisfy pθ/q
Π
θ < M because, as we need to ensure integrability of the weighting function

in a θ-augmented model, in practice we will almost always choose a proposal measure where the induced qΠθ
is more heavy-tailed than pθ, satisfying the boundedness condition.

Given a general valid weighting function m, the form of TAB posterior, which is proportional to m ·qΠθ|x̃n
,

has clear parallels in standard Bayesian inference with qΠθ|x̃n
taking the place of the likelihood function; see p.

287 of Bernardo and Smith (1994) for a development of asymptotics in standard Bayesian inference. Suppose
that qΠθ|x̃n

has a unique maximum tq,n, and a Hessian matrix at tq,n of Σ−1
n . We may expand log qΠθ|x̃n

about

its maximum tq,n to obtain log qΠθ|x̃n
(θ) = log qΠθ|x̃n

(tq,n)−
1
2 (θ − tq,n)

⊤(Σ−1
n )(θ − tq,n) +Rn, with Rn being

the remainder term. Suppose that m(θ) has a unique maximum t0, and a Hessian matrix at t0 of H0. An
expansion of logm about its maximum t0 gives logm(θ) = logm(t0) −

1
2 (θ − t0)

⊤H0(θ − t0) + R0, where
R0 is some remainder term. We assume regularity conditions that make Rn and R0 negligible for large n.
Then, qΠ

⋆

θ|x̃n
(up to proportionality constant) may be approximated by

exp

(

−
1

2
(θ − tq,n)

⊤(Σ−1
n )(θ − tq,n)−

1

2
(θ − t0)

⊤H0(θ − t0)

)

for large n, which is the kernel of a Normal(tn, Hn) distribution, where Hn = H0 + Σ−1
n and tn =

H−1
n

(

H0t0 +Σ−1
n tq,n

)

. If we have parametric consistency under the proposal model, then the curvature
of log qΠθ|x̃n

about its maximum as given by Σ−1
n must increase with sample size. For large enough n, H0
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will be negligible compared to Σ−1
n , which warrants an approximation of qΠ

⋆

θ|x̃n
based on Normal(tq,n,Σ

−1
n ),

which is also an approximation for the posterior for θ under the proposal model.
It is clear that asymptotic behaviour of inference based on the θ-augmented model depends on that of the

proposal model. In particular, we can deduce parametric consistency of nonparametric proposal models that
are weakly consistent for the data-generating mechanism, for functionals defined via continuous estimating
equations.

Parametric consistency of θ-augmented Bayesian posterior for parameters de-

fined via estimating equations when the proposal model is weakly consistent

Conditions for asymptotic consistency of Bayesian nonparametric models can be found throughout standard
references in Bayesian nonparametrics, e.g. Ghosal and van der Vaart (2017) and Ghosh and Ramamoorthi
(2003). In this section we identify the conditions for parametric consistency of Bayesian posteriors based on θ-
augmented models, for functional parameters defined via estimating equations. We assume weak consistency
of the nonparametric proposal model. We assume that the data-generating distribution has a density f0,
and the nonparametric proposal probability model with the measure Π, is supported on random measures
admitting density functions f . Generalization of the results to probability models supported on random
distribution functions is straight forward.

We have that, for functional parameters defined via an estimating equation g(x, t), that is, θ(f) =
{

t ∈ Θ s.t.
∫

g(x, t)f(x)dx = 0
}

, boundedness of g(x, t), continuity of g(x, t) in x and t, integrability of
∫

g(x, t)f(x)dx for all f in the support of Π, integrability of
∫

g(x, t)f0(x)dx, and weak consistency of the
proposal model together imply parametric consistency under the proposal model.

This stems from the definition of weak consistency (Definition 1 of Ghosal et al. (1999)). Given bounded
continuous functions φi, i = 1, . . . , k, for ǫ > 0, let

U =

{

f ∈ F :

∣

∣

∣

∣

∫

φi(x)f(dx) −

∫

φi(x)f0(dx)

∣

∣

∣

∣

< ǫ, i = 1, 2, . . . , k

}

(15)

be a weak neighbourhood of f0. A probability model with measure Π is said to be weakly consistent for f0 if
with Pf−

0

probability 1, Π(U | X1, X2, . . . , Xn) → 1 for all weak neighbourhoods U of f0. The boundedness

condition for φi’s that define a weak neighbourhood may not be satisfied by g(x, t) when the domain of
the function is not compact at any given t. In this case, a work around is to truncate x to be within some
bounds – this is generally possible to do when the observables are natural/physical phenomena. It is therefore
assumed that g(x, t) at any given t can be used to define weak neighbourhoods in the development of the
subsequent proof.

For estimating equations that lead to explicit solutions for the parameter, in the form of θ(f) =
∫

k(x)f(dx) for some general function k(x), parametric consistency is immediately apparent. For exam-
ple, when θ(f) :=

∫

xf(dx), weak consistency of a model for f0 implies, for all ǫ > 0,

lim
n→∞

Π

({

f ∈ F :

∣

∣

∣

∣

∫

xf(dx)−

∫

xf0(dx)

∣

∣

∣

∣

< ǫ

}

| X1, X2, . . . , Xn

)

= 1,

due to
{

f ∈ F :
∣

∣

∫

xf(dx)−
∫

xf0(dx)
∣

∣ < ǫ
}

being a weak neighbourhood per definition given in Eqn. (15).
Similar arguments apply to show parametric consistency for estimating the k-th moment, variance/covari-
ance, coefficients for linear regression or, in general, simple functions of moments when Slutsky’s theorem
applies.

Now consider the case that the parameter θ is defined as the solution to some estimating equation.
Without loss of generality assume θ ∈ R. Let h0(t) =

∫

g(x, t)f0(x)dx such that h0(θ0) = 0, i.e. the
estimating function identifies the true parameter θ0 under the true data generating mechanism f0. We
assume that θ0 is unique, and sgn h0(θ0 + δ) 6= sgn h0(θ0 − δ), i.e. the function h0 has opposite signs at the
two sides of θ0. By the continuity of g(x, t) in t for any x, the function h0 is continuous. Then, for ǫ small
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enough, we can define

Ca(ǫ) = {t ∈ Θ : h0(t) = ǫ}, Cb(ǫ) = {t ∈ Θ : h0(t) = −ǫ},

ta(ǫ) = arg min
t∈Ca

|t− θ0|, tb(ǫ) = arg min
t∈Cb

|t− θ0|,

i.e. ta, tb are the closest points to θ0 with |h0(t)| equal to ǫ. Due to continuity of h0(t), ǫ1 < ǫ2 =⇒
|ta(ǫ1)− θ0| ≤ |ta(ǫ2)− θ0|, similarly for tb, so that these points can only get closer to θ0 when we decrease
the deviation ǫ. Define

Uta,tb(ǫ) =
{

f ∈ F :

∣

∣

∣

∣

∫

g(x, ta(ǫ))(f(x) − f0(x))dx

∣

∣

∣

∣

< ǫc,

∣

∣

∣

∣

∫

g(x, tb(ǫ))(f(x) − f0(x))dx

∣

∣

∣

∣

< ǫc
}

,

which are weak neighbourhoods of f0 indexed by ǫ, for arbitrary c. We will set c according to ǫ, such that
when ǫ < 1, c > 1, whereas when ǫ ≥ 1, c < 1. We have that

ǫ < 1, c > 1, and f ∈ Uta,tb(ǫ) OR ǫ > 1, c < 1, and f ∈ Uta,tb(ǫ)

=⇒

∫

g(x, ta(ǫ))f(x)dx ∈ (ǫ − ǫc, ǫ+ ǫc) > 0 and

∫

g(x, tb(ǫ))f(x)dx ∈ (−ǫ− ǫc,−ǫ+ ǫc) < 0

=⇒ θ(f) ∈ (min (ta(ǫ), tb(ǫ)) ,max (ta(ǫ), tb(ǫ)))

=⇒ |θ(f)− θ0| < max(|ta(ǫ)− θ0|, |tb(ǫ)− θ0|),

the second to last implication is due to continuity of g(x, t) in t for any x hence that of
∫

g(x, t)f(x)dx.
Define e(ǫ) = max(|ta(ǫ)− θ0|, |tb(ǫ)− θ0|). Hence Uta,tb(ǫ) ⊆ {f ∈ F : |θ(f)− θ0| < e(ǫ)}. Recall that both
ta(ǫ) and tb(ǫ) → θ0 as ǫ→ 0 (monotonically), such that e(ǫ) → 0 monotonically as ǫ→ 0.

Then, given weak consistency of the proposal model PΠ with measure Π, ∀ǫ > 0, we have,

lim
n→∞

Π(Uta,tb(ǫ) | X1, X2, . . . , Xn) = 1

=⇒ limΠ(|θ(f) − θ0)| < e(ǫ) | X1, X2, . . . , Xn) = 1.

Hence, posterior parametric inference for a parameter defined via estimating equation g(x, t) that is
continuous in t and integrable will be consistent if the proposal nonparametric model is at least weakly
consistent for the true data-generating distribution f0. The result above easily extends to the case where
the data-generating distribution is discrete or a mixed distribution, by considering the definition of weak
neighbourhoods of distribution functions which appears on p. 81 of Ghosh and Ramamoorthi (2003).

Parametric consistency of θ-augmented Bayesian posterior for parameters de-

fined via estimating equations when the proposal model is the Dirichlet process

In the case that PΠ is the Dirichlet process, we have that for functional parameters defined via an estimating
equations g(x, t), parametric consistency does not require a boundedness condition on g(x, t). We have that
continuity of g(x, t) in x and t, integrability of

∫

g(x, t)dF (x) for all F in the support of Π, and integrability
of
∫

g(x, t)dF0(x) at any given t together imply the parametric consistency of PΠ.
To see this, the proof contained in the previous section can be used, with the only modification being the

definition of the neighbourhood Uta,tb(ǫ) as

Uta,tb(ǫ) =
{

F ∈ F :

∣

∣

∣

∣

∫

g(x, ta(ǫ))d(F (x) − F0(x))

∣

∣

∣

∣

< ǫc,

∣

∣

∣

∣

∫

g(x, tb(ǫ))d(F (x) − F0(x))

∣

∣

∣

∣

< ǫc
}

.
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Let the prior DP under the proposal model be denoted by DP(φ,G0). We take note of Theorem 4.16 of
Ghosal and van der Vaart (2017), the final assertion of which implies that, at every fixed t,

∫

g(x, t)dF0(x)

is the limit of the random quantity
∫

g(x, t)dF (x), where F ∼ DP
(

φ+ n, ( φ
φ+n )G0 + ( n

φ+n )Fn

)

. As this

limit is a constant, Proposition 4.3 of Ghosal and van der Vaart (2017) implies that

1 = lim
n→∞

Π

(
∣

∣

∣

∣

∫

g(x, ta(ǫ))d(F (x) − F0(x))

∣

∣

∣

∣

≤ ǫc | X1 . . . , Xn

)

≤

lim
n→∞

Π(Uta,tb(ǫ) | X1, . . . , Xn) ,

∀ǫ > 0 at arbitrary c, as long as g(x, t) is a integrable function at any fixed t.

Appendix B Details regarding Section 5.1

Introduction of competing methods

We give some details to the alternative Bayesian semiparametric methods under comparison in Section 5.1.
We wish to obtain posterior inference conditional on some dataset x̃n = (x1, . . . , xn). As usual, the target
functional is denoted by θ.

Let FX(·; w̃n, x̃n) denote a discrete distribution function for observable X that is parameterized by
a weight vector w̃n = (w1, . . . , wn) with wi ≥ 0 assigned to observed data point xi, i = 1, . . . , n, and
∑n

i=1 wi = 1; that is,

FX(·; w̃n, x̃n) =

n
∑

i=1

wi1(−∞,xi](·).

The Bayesian bootstrap posterior (Rubin, 1981) is a distribution supported on random FX(·; w̃n, x̃n) condi-
tional on the observed x̃n, of which the weight vector is a-posteriori distributed as

(w1, . . . , wn) | x1, . . . , xn ∼ Dirichlet(1, . . . , 1).

This posterior over random distributions for the observable induces a probability distribution for the func-
tional parameter θ, which we take to be Bayesian bootstrap posterior distribution for θ. The method easily
generalizes to θ = (µ, σ2).

The Bayesian empirical likelihood (Lazar, 2003) method substitutes the profile empirical likelihood func-
tion Rn(t; x̃n) (Owen, 1990) for the true likelihood function in the usual Bayesian calculations, where

Rn(t; x̃n) = max
w̃n∈Sn−1

{

n
∏

i=1

wi : θ(FX(·; w̃n, x̃n)) = t

}

.

Given a subjective prior pθ(t) for the target parameter, the Bayesian empirical likelihood posterior is
πBEL(θ|x̃n) ∝ Rn(θ; x̃n)pθ(θ). In our simulation study, to infer θ = (µ, σ2), Rn was defined as

Rn(µ, σ
2; x̃n) := max

w̃n∈Sn−1

{

n
∏

i=1

wi :
n
∑

i=1

(xi − µ) = 0 and
n
∑

i=1

1

n
(xi − µ)2 − σ2 = 0

}

,

and Bayesian empirical likelihood posterior as proportional to Rn(µ, σ
2; x̃n)pµ,σ2(µ, σ2).

The general Bayes (GB) method of Bissiri et al. (2016) is used for estimating a functional parameter that
is defined as the minimizer of the expectation of a loss function l(x, t). This loss function has the property
that under the true data-generating distribution F0, the true value θ0 is identified by

θ0 = argmin
t∈Θ

∫

c · l(x, t)dF0(x), (16)
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given arbitrary constant c. Suitable loss functions are typically selected to correspond to the loss functions
of well-known consistent m-estimators. Given constant c and dataset x̃n, the general Bayes method proposes
the conditional density function

πGB(θ | x̃n) ∝ exp

(

−c

n
∑

i=1

l(xi, θ)

)

pθ(θ) (17)

as the optimal choice for describing belief regarding θ, for reasons detailed in Bissiri et al. (2016).
In the context of θ = (µ, σ2), we note that there does not exist any distribution-free M-estimator for the

variance parameter directly, and therefore consider the joint estimation of the first two moments instead.
We note that the loss functions

l1(x,m1) = (x−m1)
2

l2(x,m2) = (x2 −m2)
2

separately identifies the first moment, µ, and the second raw moment, µ′
2. However, M-estimation for joint

inference of the first and second moments is unusual, and we found ourselves modifying the original GB
posterior in Eqn. (17) to produce efficient estimation of (µ, µ′

2) in our simulation study. Specifically, we
modified Eqn. (17) as

πGB(µ, µ
′
2 | x̃n) ∝ exp

(

−

n
∑

i=1

l1/2(xi, µ, µ
′
2)
T × C × l1/2(xi, µ, µ

′
2)

)

pµ,µ′

2
(µ, µ′

2), (18)

where

l1/2(x,m1,m2) =

[

x−m1

x2 −m2

]

,

and C a 2× 2 matrix. The chosen loss function for joint inference on (µ, µ′
2) is therefore l

1/2(xi,m1,m2)
T ×

C × l1/2(xi,m1,m2), which satisfies the identification criteria as shown in Eqn. (16).

Simulation setup

We generated the data according to Model B.0.1, which is a skewed distribution. The density function for
observable X under Model B.0.1 is shown in Figure 1.

Model B.0.1. (Data-generating mechanism)

X = −6Z + T

T ∼ Normal(µ = 5, σ2 = 4)

Z ∼ Bernoulli(0.25).

For methods under evaluation that require a subjective prior distribution, the same prior was utilized.
This prior was a Normal-Inverse-Gamma (NIG) distribution with the marginal prior mean of variance param-
eter matching the variance of data-generating distribution, and the marginal prior mean of mean parameter
matching the mean of data-generating distribution; see Model B.0.2. The densities of the marginal prior
distributions are shown in Figure 2.

Model B.0.2. (Joint subjective prior pµ,σ2(µ, σ2) in Section 5.1)

1/σ2 ∼ Gamma(α = 6.623, β = 60.442)

µ | σ2 ∼ Normal(µ0 = 3.5, σ2
0 = σ2).
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Figure 1: Marginal density functions of random observable X and X2 generated by Model B.0.1. The
density function of X is shown on the left-hand-side, and that of X2 is shown on the right-hand-side.
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Figure 2: Marginal density functions of subjective prior according to Model B.0.2. The marginal subjective
prior for µ is shown on the left, and for σ2 on the right.
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To implement θ-augmented Bayesian (TAB) inference, we assumed the Bayesian prior model

X ∼ FX

FX ∼ TA(m = pµ,σ2/qΠµ,σ2 ,PΠ = Model B.0.3)

for the observable, qΠµ,σ2 being the density function of (µ, σ2) induced by PΠ a priori. The Dirichlet process
model detailed in Model B.0.3 was the chosen proposal model for this TA model.

Model B.0.3. (Proposal model for the θ-augmented inference in Section 5.1)

FX ∼DP(φ,G′
0)

G′
0 = Discretized version of continuous distribution G0,

with mass assigned to points {ih | i ∈ Z} for fixed bin width h s.t.

G′
0(X = ih) =

∫

1(2i− 1)h/2 ≤ x ≤ (2i+ 1)h/2]dG0(x)

G0 = Normal(µ0 = 0, σ2
0 = 100)

φ = 0.5

h = 1e− 5.

In the simulation study, TAB inference was obtained via Markov chain Monte Carlo (MCMC) according
to the method outlined in Section 3 with 4 × 105 runs for each dataset. We note that the parametric
density function induced by the proposal a priori, qΠµ,σ2 , is much more disperse than the subjective prior;

see Figure 3. The parametric posterior induced by the proposal model a posteriori, qΠµ,σ2|x̃n
, is also much

more concentrated than qΠµ,σ2 for the generated datasets. Therefore substitution of estimated q̂Πµ,σ2 for qΠµ,σ2

in the MCMC provided a good approximation to the exact TAB posterior under the θ-augmented model;
see Figure 4 for an example. Marginal inference on µ and σ2 were obtained by marginalization of the joint
posterior.

The general Bayes posterior for (µ, µ′
2), i.e. Eqn. (18), was obtained for each simulated dataset via the

MCMC approximation, with a Markov chain length of 1× 105 for each dataset. For each Markov chain, the
tuning matrix, C, was chosen based on the dataset; specifically it was set 1/2 times the inverse of sample
variance covariance matrix of (x, x2). This choice was made based on asymptotic tuning and similar in
spirits as Section 3.2 of Bissiri et al. (2016). As for pµ,µ′

2
(µ, µ′

2), it was obtained through reparametrization

of pµ,σ2(µ, σ2) via the change of variable formula. For a given dataset x̃n, the corresponding MCMC proposal
distribution was a multivariate Gaussian distribution with mean of (x̄n,

1
n

∑n
i=1 x

2
i ) and variance of C/n,

truncated to valid values of (µ, µ′
2) satisfying µ′

2 − µ2 > 0. MCMC samples of (µ, µ′
2) were subsequently

transformed to (µ, σ2) to approximate πGB(µ, σ
2 | x̃n), πGB(µ | x̃n) and πGB(σ

2 | x̃n).
Finally, to implement Bayesian empirical likelihood inference, the profile empirical likelihood function

Rn was obtained via the iterative least squares technique described in Section 3.14 of Owen (2001). Due
to a lack of explicit formula for Rn, finding good proposal distribution for the MCMC approximation of
a Bayesian empirical likelihood posterior requires trial-and-error. On the first pass, we chose the MCMC
proposal distribution based on the posterior NIG distribution that would have resulted from a misspecified
normal likelihood with a conjugate NIG prior equivalent to our subjective prior, while scaling the shape
and rate parameters by 0.25 to ensure that the proposal distribution was disperse enough. This method of
setting the proposal distribution worked well most of the time; we show a plot comparing the default MCMC
proposal for Bayesian empirical likelihood inference to the target Bayesian empirical likelihood posterior of
a particular dataset in Figure 5. Due to the low dimensionality of the target parameter, it was feasible
to visually check for the quality of the MCMC proposal distribution. When the aforementioned MCMC
proposal did not work well, it was adjusted until it became wider than the Bayesian empirical likelihood
posterior. Due to the time intensive nature of the iterative least squares algorithm for finding Rn at given
values of (µ, σ2), each MCMC chain contained just 1× 104 runs.
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Figure 3: Contour plots comparing qΠµ,σ2 , in solid lines, versus the pµ,σ2 , in dotted lines. In this plot,
distributions are parameterized in terms of mean and log variance.
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Figure 4: Contour plot of a posterior distribution under the θ-augmented model, in black, and that of the
corresponding posterior under the proposal model, in grey, based on a particular dataset with 20 samples.
The contours are shown under (µ, σ2) parameterization because the posterior densities do not concentrate
around 0 for σ2 to necessitate a conversion to log variance scale.
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Figure 5: Contour plot of a Bayesian empirical likelihood posterior distribution (solid lines) and that of
the corresponding Bayesian empirical likelihood MCMC proposal distribution (in grey dotted lines) based
on a particular dataset. Square dots mark the locations (on a grid) outside of the valid parameter space
as given by the convex hull condition. The figure shows the contours under (µ, σ2) parametrization since
the Bayesian empirical likelihood posterior in question is not concentrated around 0 for σ2 to necessitate a
conversion to log variance scale.
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Performance of the four competing methods were explored at two sample sizes (n = 20, n = 50). At
each sample size level, 300 datasets were generated, and the performance metrics were calculated based on
the collection of posterior distributions conditional on each dataset. We calculated the coverage probability
and expected size of 95% highest posterior density region for joint and marginal inference. For marginal
inference, we also calculated the absolute bias of the Bayes estimator, which is the mean of a Bayesian
posterior, and the expected quadratic risk, EF0

[
∫

(µ−µ0)
2π(dµ | x̃n)], EF0

[
∫

(σ2 −σ2
0)

2π(dσ2 | x̃n)]. Results
from the simulation study is summarized in Table 1 for joint inference and Table 2, Table 3 for marginal
inference.

Appendix C Details regarding Section 5.2

In Section 5.2, we simulated the data from four data-generating mechanisms, given in Model C.0.1- C.0.4.
We conducted Bayesian inference with a θ-augmented model with the proposal model being Model C.0.5.

Model C.0.1. (Data Generating Distribution 1)

β1 = 0.5;β0 = 1

σ2
ǫ = 4

X ∼ Normal(10, 100)

e ∼ Normal(0, 4)

Y | X = 1 + 0.5X + e

C | X ∼ Bernoulli
(

p = (1 + exp (−(X − 10)/10))
−1
)

Model C.0.2. (Data Generating Distribution 2)

X ∼ Normal(10, 100)

e ∼ Normal(0, 4)

Y | X = 0.006(X2 + 40X + 400) + e

C | X ∼ Bernoulli
(

p = (1 + exp (−(X − 10)/10))−1
)

Model C.0.3. (Data Generating Distribution 3)

β1 = 0.5;β0 = 1

X ∼ Normal(10, 100)

e ∼ Normal(0, 4)

Y | X = 1 + 0.5X + e

C | X ∼ Bernoulli (p = Φ((X − 10)/10)) .

Model C.0.4. (Data Generating Distribution 4)

β1 = 0.5;β0 = 1

X ∼ Normal(10, 100)

e ∼ Normal(0, 4)

Y | X = 0.006(X2 + 40X + 400) + e

C | X ∼ Bernoulli (p = Φ((X − 10)/10)) .
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Model C.0.5. (Proposal model for estimating the mean with data missing at random)

FX,C,CY ∼ DP(φ,G′
0)

φ = 0.5

h = 1e− 4

G′
0 = Discretized version of G0X ×G0C ×G0CY (· | C),

with mass assigned to points {(ih, c, jh) | i, j ∈ Z} for fixed bin width h s.t.

G′
0(X = ih, C = c, CY = jh | h) = G0C(c)×

∫ ∫

1[(2i− 1)h/2 ≤ x ≤ (2i+ 1)h/2]×

1[(2j − 1)h/2 ≤ cy ≤ (2j + 1)h/2]dG0X(x)dG0CY (y | c)

G0X = Normal(µ = 10, σ2 = 1)

G0C = Bernoulli(0.2)

G0CY (· | C = 1) = Normal(µ = 0, σ2 = 502)

G0CY (· | C = 0) = 0 with probability 1.

There is a computational limit on the precision parameter of the proposal Dirichlet process model, such
that while we know as φ tends to 0 the posterior distribution under the proposal model better approximates
the Bayesian bootstrap, the prior distribution under the proposal model becomes harder and harder to sample
from. Here, the results were obtained with the φ parameter of the proposal model set to 0.5, which has worked
well in past experience. Several considerations in particular influenced our choice of a base distribution for
the proposal model. Firstly, we note that the functionals of interest involves weighting of the residuals of
regression (Y −E[Y | X ]) by the inverse of p̂(C = 1;X). As such, the target functional is extremely sensitive
to extreme values of X is in the support of the distribution for the observables. When specifying the proposal
model, we chose a base distribution for X that does not place much weight in the extreme values of observed
X , in order to have the effective likelihood, qΠθ|x̃n

/qΠθ , resemble the Bayesian bootstrap, which is known to
have good asymptotic properties. Secondly, we decided that the proposal model base distribution for CY
should be sufficiently wide to reflect our relative lack of information in Y a priori. The base distribution
for C curiously plays a role in terms of how much the prior base distribution contributes to the posterior
distribution of the functional- if chance of observing Y is small in the base distribution, then the proposal
posterior will be more data driven. In the simulation each posterior distribution under the θ-augmented
model was obtained via an MCMC chain with 1× 105 runs.

The Frequentist metrics for evaluating the resulting posterior inference are the same as those of Section
5.1, and are detailed in Appendix B. These measures of performance were estimated with a minimum of 500
datasets from each data-generating mechanism.
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