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Abstract

In this paper, first we compute the energy of a special partitioned matrix
under some cases. As a consequence, we obtain the reciprocal distance
energy of the complete multipartite graph and also we give various other
energies of complete multipartite graphs. Next, we show that among all
complete k-partite graphs on n vertices, the complete split graph C'S(n, k—
1) has minimum reciprocal distance energy and the reciprocal distance
energy is maximum for the Turan graph T'(n,k). At last, it is shown
that the reciprocal distance energy of the complete bipartite graph K, ,,
decreases under deletion of an edge if 2 < m < 7, whereas the reciprocal
distance energy increases if 8 < m. Also, we show that the reciprocal
distance energy of the complete tripartite graph does not increase under
edge deletion.
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1 Introduction

Graphs considered in this paper are simple, connected and undirected. We denote
the eigenvalues of a Hermitian matrix H of order n by \{(H) > X\(H) > ... >
A (H). For a graph G with vertex set V(G) = {vy,vq,...,v,} and edge set
E(G), the distance between two distinct vertices v; and v; is denoted by d(v;, v;)
and is equal to the length of a shortest path connecting the vertices v; and

Vs

;. The reciprocal distance matrix of G, well-known as Harary matrix, is a

symmetric matrix of order n, denoted by RD(G) and its ijth entry is equal to
1

d(Ui, ’Uj)
for the design of topological indices in the year 1993, see [9]. The well-known

if i # j, 0 otherwise. This matrix was introduced by Ivanciuc et al.

topological index derived from the reciprocal distance matrix is the Harary index,
see [23]. In [11], Ivanciuc et al. used the largest eigenvalue of the RD(G) as one
of the structural descriptor to develop structure—property models for the normal
boiling temperature, molar heat capacity, standard Gibbs energy of formation,
vaporization enthalpy, refractive index, and density of 134 alkanes Cs—C'o. In [3],
Das obtained a lower and upper bound for the largest eigenvalue of the reciprocal
distance matrix of a graph. Also, Nordhaus-Gaddum-type bounds for the largest
eigenvalue of the reciprocal distance matrix were obtained therein. Graphs with
maximum spectral radius of the reciprocal distance matrix in the classes of graphs
(bipartite graphs) with fixed matching number and graphs with given number of

cut edges were determined in [7].

Energy of a graph is a well-known graph invariant derived from the adjacency
spectrum of a graph. This graph invariant nowadays known as ordinary energy
of a graph was introduced by Gutman in connection with Hiickel theory [4]. In
analogous to the definition of graph energy, Gilingér and Cevik in [6] introduced
Harary energy of a graph, also called reciprocal distance energy of a graph. It
is denoted by Egp(G) and is defined as Epp(G) = Y1 |N(RD(G))|. Several

lower and upper bounds for the reciprocal distance energy in terms of graph



parameters are given in [1, 2, 12, 14]. In [19], Ramane et al. constructed
pairs of reciprocal distance equienergetic graphs by determining the reciprocal
distance energy of line graph of certain regular graph, and its complement. In
[20], reciprocal distance equienergetic graphs are presented using the reciprocal
distance spectrum of some generalized composition of graphs. Recent studies on

the reciprocal distance matrix can be found in [15, 24].

The energy of a complex matrix M is the sum of all singular values of the matrix
M and is denoted by £(M). The definition of energy of a complex matrix was put
forward by Nikiforov as an extension of the concept of graph energy, see [16] for
more details. We denote a complete k-partite graph by K, n,.. .. The complete
split graph C'S(n, k) is a graph on n vertices obtained by taking one copy of the
complete graph K and joining each of its vertices with n — k isolated vertices,
ie., CS(n,k) = K, r11..1. The Turan graph T'(n, k) is the complete k-partite
graph on n vertices given by T'(n, k) = K41 4+1....q+1.0.4....¢» Where n = kq+r and
r > 0. We denote the adjacency matrix of G by A(G). For terminologies not
defined in the paper, we refer to [5, 13].

In Section 2 of the paper, we compute the energy of a special partitioned matrix
under some cases. As a consequence, we obtain the reciprocal distance energy
of the complete multipartite graph and also we give various other energies of
complete multipartite graphs. In Section 3, we show that among all complete k-
partite graph on n vertices, the complete split graph C'S(n, k — 1) has minimum
reciprocal distance energy and the reciprocal distance energy is maximum for
the Turan graph T'(n, k). In Section 4, it is shown that the reciprocal distance
energy of the complete bipartite graph K, ,, decreases under deletion of an edge
if 2 < m < 7, whereas the reciprocal distance energy increases if 8 < m. Also,
we show that the reciprocal distance energy of the complete tripartite graph does

not increase under edge deletion.



2 Energy of a special partitioned matrix

Let My, Ms, ..., M (k > 2) be real symmetric matrices of order ny,ns, ..., ng
such that M;1,, = r;1,,, where r; > 0, and trace(M;) = 0. Denote by M =

MMy, My, ..., My, al, a square matrix of order n = ny +ny+. ..+ ny, defined as

M, adpyxny  OJnyxns o adp, xny,
adpyxn, My aJnyxns o gy xny,
M = ,
adn, xny @ny_yxno o M aJn,_ xny,
aJp, scn aJp, xns o aJn, xng_; M, ]

where a (# 0) is a real constant and Jn;xn; 18 a rectangular matrix of order n; xn;

with all its entries equal to 1.

r ; r T

Let — = max {—Z} and -~ = min {—Z} In this section, we compute
ny 1<i<k | n; n 1<i<k | n;

the energy of the matrix M = M[M;, Ms, ..., My, a] under some cases. As a

consequence, we determine the reciprocal distance energy of complete multipartite

graph and also other energies of complete multipartite graph are obtained. For

a Hermitian matrix H, S~(H) denote the sum of all negative eigenvalues of H.

The following lemma is a quantitative formulation of Sylvester’s law of inertia

due to Ostrowski.

Lemma 2.1 (Ostrowski [18]). Let A be a Hermitian matriz of order n and S
be a real non-singular matriz of order n. Then M\ (STAS) = 0;)\;(A), where
A (STS) < 6; < A (ST9).

The following result is widely used in the study of graph eigenvalues.

Lemma 2.2. [8] Let M = N+ P, where N and P are Hermitian matrices of order
n. Then for 1 < i,57 < n, we have (i) N\i(N) + XN;(P) < Aipj—n(M) (i + 7 > n)
and (ii) Aipj1 (M) < N(N) + X(P) (i+j—1<n).



Theorem 2.3. For the matrix M = M[My, My, ..., My, a] as defined above. We

have

k
. : Tk
. E(M) = E(M;) ifa>0 and —a+ — > 0.
00 = ) i "
it. E(M) = 2 (M) if M; has at most one positive eigenvalue, namely r;, for
1<i<k, and—a+ﬁ§0.
ny

k
iii. E(M) = ZS(MZ) —2 (M) if a < 0 and a(k — 1) + Z—k < A\, <0 for all
i=1 k

1<i<Ek.

Proof. Let s; denote the number of positive eigenvalues of the matrix M; and let
Ait = Nig 2> o0 2> Nigy = Ai(si4+1) = - - = Ain, be the eigenvalues of the matrix M.

Then

EM;) = Xt + X2+ .o+ X)) T Nisy — Nigsit1) — -+ — i,
= —2(Ni(s;41) F Ai((sit2)) + - -+ Ain;)  ( Because, trace(M;) = 0)
= —25 (M) (2.1)

Since M; is a real symmetric matrix of n;, there exists an orthogonal matrix
P; such that P'M;P; = D;, where D; is a diagonal matrix of order n; having
Ai1s Ai2, - ., Nip, as its diagonal entries. Further, since M;1,, = r;1,,, we have

Aie = 1; for some 1 < ¢ < n;, and without loss of generality, we can assume that

1,

. 7 T o

the first column of P; is equal to . Therefore, P Jy,xn, P = \/Milj€n,xn;
(]

where €, xn; 18 a rectangular matrix of order n; x n; whose all entries are 0, except

the first diagonal entry which is equal to 1. Consider

M, adpyxny  OJnyxns o aJn, xn,,
adpyxn, M, g xns o gy xny,
M =
adn, xny @ny_yxno o M4 adn, . xny,
i p; xn, aJp; xns o aJn, xng_; M, |




[ P1D1P1T aJnl XMno aJanng aJnl X Mg
aJng XMnq PZDQPQT aJnang aJng XN
aJnk,l Xni aJnk,l Xng Pk*leflplz—‘_l aJnk,1 XNy
aJnanl aJnang aJnank,l PkaP];r |
[P0 0 ... 0] D, APl JoyxnysPo aPl gy sy Ps
0 P2 0 c. 0 CLPQTJnQanpl D2 CLPQTJnQXngpg
0 O Pk*l 0 aP]z—‘_lc]nk71><n1 Pl aP]z—‘_ljnk71><n2P2
i 0o 0 ... 0 P, ] aP,;fJnkaPl anJnkaPQ
aPlJusn P 1 PE 0 0 .. 0]
aPQTJnQXnkPk 0 P2T 0 - 0
D4 aP,llJnk_lxnkPk 0 0 P,zll 0
anJnank_lPk_l Dy, 1L 0 0 0 PkT ]
[P, 0 0 .0 T D, /M 1M2€E0, xns ar/N1N3E0, xns
0 B O ... 0 /M2 €0y iy D, /N2 N3E05 %1
0 0 Py 0 /M 1M1 €y g On/Ti—1T02€n,_ xny
i 0 0 . 0 P, | /M1 €n,y xcmy /T N2C0, xcny




Dy

/TN Cny xy, I PlT 0 0
A\/N2M €y x 0 P 0
/T 1Mk €ny_ xm, o o0 ... P,
Dy, L0 0 ... 0

a\/ nknkflenankfl

Let

M/

D,
a V n2n1€n2 XNy

af\/ nk—lnlenk_l XNy
A~/ nknlenk X711

Dy

a’\/ nknk‘—lenk XNp—1

Then from equation (2.2) the matrices M and M’ are similar. Thus Spec(M)

a V n1n2en1 Xng
D,

a nk—l”ZGnk_l Xno

a nk”ZGnk X 19

NiNk€en, XN

a
a\/ n2nken2 XN

a nk—lnkenk_ank

Dy,

a\/ n1n3€n1 Xns
a\/ n2n3€n2 Xns

0

Pl

Spec(M'). Now, consider det(xI — M'). Expanding det(xI — M') by Laplace’s

method along all the columns except 15, (ny + 1), (ny +ny + 1), ... (ny +

No + ...+ np_1 + 1™ columns, we get

det(xl — M) = det(x] — M") [ [ [det(a] — Dy)(x — ;)]

=1



where

T AA/T1 Mo A+/M11M3 R A~/ M T
AA/T21q T9 QA+/M2M3 R A~/ MM

M// = .
A /MNp—1M1  Ar/Nf—_1MN2 Ce Tk—1 QA /Mp—1MNE
| A~/ M A~/ M T2 Ce QA /MM -1 Tk |
Thus,
k
Spec(M) = |_J(Spec(M;)\{r:})| ) Spec(M”). (2.2)
i=1
Since trace(M) = 0 and r; > 0, we get
k
EM) = —2) S (M;)—25(M")
i=1
k
= Z E(M;) — 25~ (M"), by equation (2.1). (2.3)

i=1
Note that M" = C(aJyxy — aly + D)C, where C' = diag(\/n1, /N2, - - .,+/Nx) and
D = diag (ﬁ, E, e E) . Thus the matrices M" and (aJgxy — aly) + D are
ny No N
congruent to each other. Thus by Sylvester’s law of inertia the matrices M” and
(aJgxr — aly) + D have same rank, inertia and signature.
Case I: Suppose a > 0 and —a + T > 0. By Lemma 2.2, we have
N
)\k(akak - a]k) + )\k(D) S )\k(aJka - (]Jk + D)
Therefore,
0 S —a + T—k S )\k(aJka - (]Jk + D)
N
Thus, aJyxr — al, + D is positive semidefinite. Since M” and aJyxr — al, + D

are congruent, it follows that M"” is positive semidefinite. Hence S~(M") = 0.

So, from (2.3), we get



Thus proof of (i) is done.
Case II: Suppose M; has at most one positive eigenvalue, namely r;, for 1 <i <k,

and —a + il < 0. By Lemma 2.2, we have
ni

)\Q(CLkak — CL[k -+ D) S )\2(&Jk><k — a[k) —+ )\1<D)

Therefore,

Ao(adps — aly + D) < —a+ ;—1 <0.
1

Thus, aJy«r—alx+ D has only one positive eigenvalue. Since M and aJyx,—alp+
D are congruent matrices, it follows that M” has only one positive eigenvalue.
Also, since M; has at most one positive eigenvalue, namely r;, for 1 <i < k, M
has only one positive eigenvalue by (2.2). Further since trace(M) = 0, we must
have £(M) = 2\ (M). This proves (ii).

Case III: Suppose a < 0 and n +alk—1) < Ny, <0 forall 1 <i<k. From

m
Lemma 2.2, we get

Me—1(adixk — ali) + (D) < Np—q(adyxp — aly, + D)

and
Me(adgsr — aly + D) < Me(adixr — aly) + A (D).
Therefore,
0< —a+ 2—’; < Neo1(aJyui — aly, + D)
and
Ne(ayxi — aly + D) < a(k — 1) + ;—11 <0.

Thus aJyxr — ali + D has at most one negative eigenvalue. Since aJyy, — alj +
D and M” are congruent matrices, M"” has at most one negative eigenvalue.
Moreover, A\,(M") < Ap(aJyxr — aly + D), by Lemma 2.1. Therefore by (2.2),
A(M") = N\, (M) because \p(M") < a(k—1) + ;—11 < Ain,;- Hence from equation
(2.3), we get E(M) = Zle E(M;) — 2X,(M). This completes the proof. O



Corollary 2.4. [21] The distance energy of the complete multipartite graph

ne 18 equal to 4(n — k), where n =ny;+no+...+ngand ng >ng > ... >

..... -

Proof. From the definition of the distance matrix of a connected graph, the

distance matrix of the complete multipartite graph K, n,.. ., 1S
; 2(n; — 1
My —10 ). 2T — Lo )s o 2 — I ), 1], Since —14+10 = 1420 =1 _
n; n;
2
1——>0forall i and E(2(J,, — I,)) = 4(n; — 1), from Theorem 2.3 (i), we get
n;

Ep(G) = 2 EQ(n, — 1)) = 221 4ni — 1) = 4(n — k). o

Corollary 2.5. The reciprocal distance energy of the complete multipartite graph
G = Kn, o, 15 equal to 2X(RD(G)).

.....

Proof. From the definition of the reciprocal distance matrix of a connected graph,

the reciprocal distance matrix of the complete multipartite graph G is
. T n; — 1
M[%(Jn1 —1,,), %(Jn2 —1ny)s -, %(Jnk —1I,,,),1]. Since —1+ = -1+ 5
1 (2 7

< 0 for all 4, from Theorem 2.3 (ii), we get Erp(G) = 22X\ (RD(G)). O

2 2n;
Corollary 2.6. [17] The Seidel energy of the complete multipartite graph G =

Koy no....ne With k > 31is equal to 2(n—k)—2X,(S(G)), where n = ny+ng+. . .+ny.

.....

Proof. From the definition of the Seidel matrix of a graph, the Seidel matrix of
the complete multipartite graph G is S(G) = M|[J,, — Iny, Jny — Lngy -y Jny, —

I, , —1].Therefore from Theorem 2.3 (iii) we are done. O

Corollary 2.7. [22] The energy of the complete multipartite graph G = Ky, ny....ny.
is 201 (A(G)).

Proof. The adjacency matrix of G is M = M]0,,,,0,,,...,0,,, 1], Where 0,, is a

null matrix of order n;. Therefore by Theorem 2.3 (ii), the corollary follows. [

Corollary 2.8. The complementary distance energy of G = Ky, n,....n, 15 2A1(CD(G)).

-----

10



Proof. The complementary distance matrix [10] of the complete multipartite

i i—1
graph G is M[J,, —In,, Jny —Inys - - s Jny — In,» 2] Since N IR WL =

n; n;

1
-1+ — < 0 for all ¢, from Theorem 2.3 (ii), we get Ecp(G) = 2X\(CD(G)). O

Corollary 2.9. The reciprocal complementary distance energy of G = Ky, ny...ny

is2(n — k), wheren =ny+mns+ ...+ n, andny >nyg > ... > ng > 2.

Proof. The reciprocal complementary distance matrix [10] of the complete multipartite

1 i 1
graph G is M[J,, — Loy, Jny — Lngs oy Iny — I, 1/2]. Since -5 + i -3 +
n;
1 1 1 '
n =5 > 0 for all ¢ and E(J,, — I,;) = 2(n; — 1), from Theorem 2.3 (i),
n; T,
we get Erop(G) = 2(n — k). O

3 Extremal complete multipartite graphs with
respect to reciprocal distance energy

In this section, we show that among all complete k-partite graph on n vertices,
the complete split graph C'S(n,k — 1) has minimum reciprocal distance energy
and the reciprocal distance energy is maximum for the Turan graph 7'(n, k).

We need the following Cauchy’s interlace theorem.

Lemma 3.1. [8] Let M be a Hermitian matrix of order n and let N be a principal

submatrix of M of order k. Then A\, (M) < N(N) < \(M) fori =1,2,... k.

Lemma 3.2. Let G1 = K, »,
where ng — ngy1 > 2. Then \(RD(Gs)) > M (RD(GY)).

Proof. Let Vi, V5, V3, ..., Vi denote the vertex partition sets of the complete
multipartite graph G;. Let V; = {v;1,vi,...,0in, }. Then form the definition
of the complete multipartite graph, the vertices v;1,vjo, ..., Vi, are symmetric.
Since the reciprocal distance matrix of (; is non-negative, it follows from Perron-
Frobenius theory that A\;(RD(G)) is simple and there exists an unit eigenvector
X (say) corresponding to the eigenvalue \j(RD(G,)) with all its entries being

11



positive. Let x;1, T, . . . 2;, be the components of X corresponding to the vertices
Vi1, Vig, - - -, Uin,.  SUppose x;; # xy, for 1 < jok < n;. Let X' be the vector
obtained from X by interchanging the components z;; and z;;. Then the vectors
X and X' are linearly independent and RD(G1)X' = A\ (RD(G1))X', because
xi; 7# T, and the vertices v, vio, . .., Uin, are symmetric. Therefore multiplicity
of Mi(RD(Gy)) is at least 2, a contradiction. Hence ;1 = x5 = ... = x;,,, for all
1 <i<k Letn=n;+ny+...+n, From Rayleigh quotient inequality, we

have

M(RD(G9)) > XTRD(G9) X
1

= X7 [é(J,M —I,)+ %A(GQ)]X

1 1
= XTQ(J,M — L)X + §XTA(G2)X

1
= X7 (Joen = L)X+ Y wpay,
vipv;q €E(G2)
1 Ns+1 ns—1
- XTé(Jan - In)X + Z LipTjq — Z LonL(s+1)j T Z LonaLsj
j=1 J=1

vipVig €E(G1)

= XT%(JM,L —I,)X + %XTA(Gl)X — N1 Ton, T(s1)1 + (s — 1)Ton, Ts1
= X"RD(G1)X — Nt 1Tsn, T(st1)1 + (s — 1) Tgn, Ts1
= M(RD(G1)) = Ns1Tsn, T(s41)1 + (s — 1) Ton, T (3.1)
Now, consider
k np 1 n;
M (RD(Gh))zin = ; ; o+ 5 ; Tig
pi

- 1
— Z?’pr‘pl + 5(712 — 1)1‘21
p=1

pFi

- (ni +1)
= an.'lfpl — 5 Ti1-
p=1

12



Therefore,

k
, where X = anxpl. (3.2)

p=1

2X

Ti1 =

Using equation (3.2) in (3.1), we get A (RD(Gs2)) — A (RD(Gh))

—Nst1 I Ng — 1
2)\1 RD G1 + Nst1 + 1 2)\1(RD(G1)) -+ Ng + 1

> 2Xwg),,

2)\1 nerl) — 2)\1<RD(G1)) +n 2ns+1 — 1)
2)\1 RD )) ¥ nar1 + 1)(2A (RD(GY)) + ns + 1)

> 2Xzg,

(3.3)

= 2Xuxg,, (
< RD(Gl)) +ng — 27’LS+1 —1 )
2)\1 RD Gl + Nsi1 -+ 1)(2)\1(RD(G1)) +ng + 1)

Since RD(K,, n,.,) is the principal submatrix of RD(G:), by Lemma 3.1, we

have

M(RD(G1)) = M(RD(Ky )

<ns + N1 — 2+ \/ng + 14ngn, 1 + n§+1)

!
4
1
> 5(77,5 -+ Ngy1 — 1) (34)
Using equation (3.4) in (3.3), we get A (RD(Gs2)) — A (RD(Gh))

2ng — Mg — 2
(2M(RD(GY)) + nsir + 1) (2 (RD(G1)) + ns + 1))

> 2X:L‘8n5<

> 0.

Thus A\ (RD(Gs5)) > A\ (RD(G4)). Hence the proof of the theorem. O

Theorem 3.3. Let G be a complete k-partite graph on n vertices. Then
Erp(CS(n,k —1)) < Erp(G) < Erp(T'(n, k)).
Moreover, the left equality holds if and only if G = CS(n,k — 1) and the right

equality holds if and only if G = T'(n, k).

13



Proof. Let G = Ky, ny,..m,- Then n=mny +n9 + ... + ny.

Left inequality: Suppose ng > 2. Then consider the graph G = K, 41n5-1....n, -
From Lemma 3.2, we get \\(RD(G)) > A\ (RD(Gy)). Thus by Corollary 2.5,
we have Egrp(G) > Erp(G1). Now, if ng — 1 > 2. Then by a similar argument,
Erp(Gh) > Erp(Gs), where Gy = Ky i9m,-2. n,. Thus Epp(G) > Erp(Ga).

Repeating, no—1 times, we get Egp(G) > Erp (Kony+ny—1.ms....my.1)- Hence Egp(G) >

.....

5RD<KTL1+11271,113 ..... nk,l) > 8RD<Kn1+n2+n372,n4 ..... nk,1,1> >0 > 8RD<ank71,1,...,1,1>-
Therefore, Egp(G) > CS(n, k —1).

Right inequality: If ng — ngy; > 2 for some 1 < s < k. Then by Lemma
3.2, M(RD(G)) < M(RD(Gh)), where Gi = Ky ntnl oy Ty = 1y for
i # 5,5+ 1, n, =n,—1and n,, = ngy + 1. Thus Egp(G) < Erp(Gh).
Now, if nj —nj,; > 2 for some 1 < ¢ < k. Then by a similar argument, we
get Erp(G1) < Erp(Ga), where Gy = Koy p  n, mi = mj for i # &t + 1,
n{ = n; — 1 and nf,;, = n;,; +1. So, Erp(G) < Erp(G2). Repeating the
process until the difference of size of any two partitions is less than 2, we get

gRD(G) < ERD(T(n, k’)) ]

4 Reciprocal distance energy change of some
complete multipartite graph due to edge deletion

In this section, we study the change in reciprocal distance energy of complete

bipartite graph K, , and the complete tripartite graph K, ,, due to edge deletion.

Lemma 4.1. [8] Let A and B be two real symmetric matrices of same order such

that 0 < A < B. Then M (A) < \(B).

0 a leXp CJqu

a 0 CJlXp leXq
bl, cl, b(Jpxp — 1) cIpxq
cl, b1, cJysp b(Jyxq — 1)
constants. In the following lemma, we give the spectrum of the matrix FE.

Let £ = , where a, b and c are real

14



Lemma 4.2. The spectrum of the matrix E consists of —b with multiplicity
p+ q— 2 and the four roots of the polynomial t* + (—bp — bg + 2b)t> + (b*pq —
Apq —20%p —2b%q — *p — *q — a® + b*)t* + (2b3pq — 2bc*pq + a*bp + a?bq — 2abep —
2abeq — b3p — bPq — bc*p — bc*q — 2a2b)t — a*b*pq + a*c*pq + 2pqab®c — 2pgac® +
b'pg — 2pgb*c® + c*pq + a’b*p + qa’b? — 2ab*cp — 2ab*cq — a’b>.

Proof. Let e; j be a column vector of size p+¢+2 with its ith and jth entries equal
to 1 and -1, respectively, and the remaining entries are 0. Then Fes; = —bes ;
for j =4,5,...,p+2 and EFep3; = —bepysj for j =p+4,p+5,...,p+q+2.
Thus —b is an eigenvalue of E corresponding to the p+ ¢ — 2 linearly independent
eigenvectors ez ; (j =4,5,...,p+2)and ep3; (J=p+4p+5,....p+q+2).
Thus we have listed p + ¢ — 2 eigenvalues of E. Let ti,t9,t3 and t4 be the
remaining eigenvalues of F corresponding to the eigenvectors X, X5, X3 and
Xy, respectively. Let e; be the column vector with its ith entry equal to 1 and
the rest of the entries equal to 0. Also, let ¢/ (i < j) be the column vector with
its kth entry equal to 1 if ¢+ < k < j, and 0 otherwise. Then the vectors eq, es,
eht?, egig”, es; (J=45,...,p+2) and epy3; (J=p+4,p+5,....p+q+2)
form a linearly independent set with p + ¢ + 2 elements. Since the matrix E is
real and symmetric, it has p 4+ ¢ + 2 linearly independent eigenvectors. Thus the
vectors X1, Xo, X3 and X, are in the linear span of the vectors ey, es, e§+2 and
eﬁi%”. Let X; = a;e; +bjes +cie§+2 +die§ig+2 fori =1,2,3,4. Then EX; = t;X;
implies b;a+ ¢;bp+d;cq = a;t;; a;a+ ce;p+bd;q = bit;; ba;+cb; +b(p—1)¢; +cdiq =
citi; ca; + bb; + ceip + dib(q — 1) = dit;. Thus EX; = t;X; if and only if

—t; a bp cq
a —t; cp bg B
det c bp—-1)—t cq =0
c b cp blg—1)—1t;

Therefore the remaining four eigenvalues of the matrix E are the roots of the
equation t* + (—=bp — bq + 2b)t> + (b*pq — c2pq — 2b%p — 2b%q — *p — 2q — a® +
bA)t? + (20°pq — 2bc*pq + abp + a*bq — 2abep — 2abeq — bPp — b3 q — be*p — beq —
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2a2b)t — a®b?pq + a*cpq + 2pgab®c — 2pgac® + bipg — 2pgb*c® + cipg + a?b*p +
qa’b?® — 2ab’cp — 2ab*cq — ab?. O

Lemma 4.3. The reciprocal distance spectrum of K, ,\{e} consists of —1/2 with
multiplicity m~+n—4 and the four roots of the polynomial 144 t*+(=72m — 72 n + 288) A3+
((—108 7 — 108) m — 108 g + 344) A\2+((—108n — 22) m — 221 + 136) A+(21 n — 41) m—
41 n + 57.

Proof. We have the reciprocal distance matrix of K,,,\{e} as

0 % %J1><p J1><q

1 1
1§ 0 . JIXp §J1Xq ’
§1p 11n §<Jpxp - [p) . Jpxq

1q §1q qup §<quq - [q)

where p=m — 1 and ¢ = n — 1. Letting a = 1/3, b = 1/2 and ¢ = 1 in Lemma
4.2, we get the reciprocal distance spectrum of K, ,,\{e}. O

Theorem 4.4. We have Erp(K,,\{e}) < Erp(Ky,) if2 <q <7, and Epp(K,4\{e}) >
Erp(Kqq) if q 2 8.

Proof. From Lemma 4.3, the reciprocal distance spectrum of K, ,\{e} consists

of —1/2 with multiplicity 2q — 4; %q — % + 1—12 \/81q2+72q— 128; %q — % —
L /81¢2 +72q—128; —1 q—%—l—% \/91q2 +24q—32 —1q—1-L /92 +24¢ - 32.
Thus for ¢ = 2, Erp(K,,\{e}) = 3t g\/85 < Erp(K,,) =5, and for ¢ > 3, we

have

1 1 1
Erp(K 4 \{e}) =2 <§q—1+ﬁ\/81q2+72q— 128+E\/9q2+24q—32).

Let X =L \/81¢>2+72¢—128 and Y = -5 \/9¢>+ 24 ¢ — 32. Then

1, 7, 35 17

17 77 T 1897 16

(2XY)* — <q+%)2 — (X2 4+Y?) 2 =

If 2<q < 7. Then from the above equation, we get
2
< 0.

(2XY)? — <q + %)2 — (X?+Y?)
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Thus

(X+Y) < <q+%)2.

Therefore, X +Y < g+ 1orsqg—1+X+Y < 3¢— 1. Hence Epp(K,,\{e}) <

Erp(Kqyq)
If ¢ > 8. Then we have

1y 1B, 35 17
BT T C T

73 35 17
> 2q2_4_8q2_1_8q_ﬁ

23, 35 17

(2XY)? — <q + %)2 —(X*+Y?) 2

AR T
17 17

= 997 16

> 0

(X+Y)* > <q+%)2.

Therefore, X +Y > g+ 2 orlg—1+ X +Y > 3g— 1. Hence Epp(Ky,\{e}) >
Erp(K,,). This completes the proof. O

Theorem 4.5. We have Erp(K, - \{e}) < Erp(Kpqr)-

Proof. Case I: If p,q > 2. Then similar to Lemma 4.2, the reciprocal distance

spectrum of K, ,,.\{e} consists of —1/2 with multiplicity p + ¢ +r — 5, and

the five roots of the polynomial p(t) = 32¢° + (—=16p — 16q — 16 + 80) t* +

(—24q—24r —32)p+ (—24r —32)q — 327 + 104) t3+[((—20r — 36) ¢ — 36 r—

20) p+ (=367 — 20) ¢ — 47 + 68] 2+[((—207 — 12) g — 127 — 10) p + 26 + (—127
—10)qlt+ (=5r—=3)p+ (=5r —3) ¢+ 371+ 5.

Case II: If p=q=1. Then the reciprocal distance spectrum of K, ,,\{e} consists

of —1/2 with multiplicity » — 1, and the three roots of the polynomial p(t) =

SN+ (4— A1) N2+ (=167 —2) A —Tr — 1.
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Case III: If p > 2 and ¢ = 1. Then the reciprocal distance spectrum of K, ,,\{e}

consists of —1/2 with multiplicity p+r — 3, and the three roots of the polynomial
p(t) =16t*+(—8p — 87 + 24) t*+((—12r — 24)p — 247 + 24) t*+((—22r — 16) p
—8r+12)t+ (=br—3)p—2r+2.

By Descarte’s rule of signs, the polynomial p(¢) has exactly one positive root.

Thus Erp (K, - \{e}) = 2\ (RD(K,,,\{e})). Since Epp (K, 4.,) = 2M(RD(K, 4.r

and A\ (RD(K,,,-\{e})) < M(RD(K,,,)) by Lemma 4.1, we are done. O
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