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Abstract: The aim of this paper is to show that the concept of probability is best understood

by dividing this concept into two different types of probability, namely physical probability and

analogical probability. Loosely speaking, a physical probability is a probability that applies to

the outcomes of an experiment that have been judged as being equally likely on the basis of

physical symmetry. Physical probabilities are arguably in some sense ‘objective’ and possess

all the standard properties of the concept of probability. On the other hand, an analogical

probability is defined by making an analogy between the uncertainty surrounding an event of

interest and the uncertainty surrounding an event that has a physical probability. Analogical

probabilities are undeniably subjective probabilities and are not obliged to have all the standard

mathematical properties possessed by physical probabilities, e.g. they may not have the property

of additivity or obey the standard definition of conditional probability. Nevertheless, analogical

probabilities have extra properties, which are not possessed by physical probabilities, that assist

in their direct elicitation, general derivation, comparison and justification. More specifically,

these properties facilitate the application of analogical probability to real-world problems that

can not be adequately resolved by using only physical probability, e.g. probabilistic inference

about hypotheses on the basis of observed data. Careful definitions are given of the concepts

that are introduced and, where appropriate, examples of the application of these concepts are

presented for additional clarity.
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tist probability; Internal and external strength of a probability distribution; Organic fiducial
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1. Introduction

While the study of probability in the field of mathematics is highly developed, it has

proved, over the years, to be difficult to find an adequate answer to the simple ques-

tion of what is the philosophical meaning of the concept of probability, see for example

Fine (1973), Gillies (2000) and Eagle (2011). Nevertheless, resolving this issue may have

substantial implications in terms of how probabilistic methods are applied to tackle real-

world problems, e.g. the problem of how statistical inference should be performed in any

given situation.

With regard to this issue, two different types of probability will be identified in the

present paper. The first type of probability will be called physical probability. A physical

probability will be defined in Section 2 but, loosely speaking, it is a probability that

applies to the outcomes of an experiment that have been judged as being equally likely on

the basis of physical symmetry. The second type of probability will be called analogical

probability. An analogical probability is defined by making an analogy between the

uncertainty surrounding an event of interest and the uncertainty surrounding an event

that has a physical probability.

A physical probability will be considered as being the type of probability that is the

closest we can get to an objective probability, while an analogical probability will be

classed, without doubt, as being a subjective probability. Apart from these two types

of probability, no space will be allowed for other types of probability, which means that

a proposed probability of another type that can not be dismissed as being a flawed

definition of probability will be regarded as being a way of trying to measure or estimate

either physical or analogical probability.

We will define physical probability, or in other words ‘objective’ probability, such

that this type of probability possesses all of the standard properties of the concept of

probability. For example:

Some standard properties of probability

1) A probability must lie in the interval [0, 1].

2) If the probability P (E) of an event E is zero then E is impossible, while if P (E) = 1

then E is certain. On the other hand, if 0 < P (E) < 1 then E may or may not occur.
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3) If A and B are mutually exclusive events then P (A ∪ B) = P (A) + P (B), i.e. proba-

bilities are additive.

4) The probability of an event B conditional on an event A having occurred, i.e. the

probability P (B |A), is defined by the expression: P (B |A) = P (A ∩B)/P (A).

We will avoid the common practice of referring to the kinds of properties of physical

probabilities just listed as being rules or axioms since these are arguably inappropriate

terms to use which can lead to confusion.

Analogical probabilities, i.e. subjective probabilities, do not need to have any of the

properties of physical probabilities although usually, for convenience, we will restrict

analogical probabilities so that they do have one or more of these properties, e.g. it is

usual for subjective probabilities to be restricted so that they at least have properties (1)

and (2) just listed. Nevertheless, many authors have tried to argue that it is unacceptable

for subjective probabilities not to have all the mathematical properties that are possessed

by physical probabilities. These types of argument fall broadly into two categories:

1) Arguments based on proposing a set of axioms that we may reasonably expect would

naturally be adhered to by any rational agent and then showing that if the agent always

adheres to these axioms, then he will always follow the standard ‘rules’ of probability.

Examples of arguments of this type can be found, for example, in Savage (1954), Fish-

burn (1986), Bernardo and Smith (1994) and Jaynes (2003).

2) Arguments based on showing that if an individual chooses not to adhere to the stan-

dard ‘rules’ of probability, then the individual will suffer undesirable consequences such

as a guaranteed financial loss. Dutch book arguments clearly fall into this category, see

for example Ramsey (1926) and de Finetti (1937).

However, it can be easily appreciated that the most popular arguments falling into

the first of these categories are individually based on one or more axioms that are not so

reasonable, and it would seem fair to expect that this would be the case for all arguments

that may fall in this category. For example, axioms that may seem to be quite acceptable

in the simplest of examples but which are certainly not acceptable in all examples that

are imaginable, or axioms that would only be acceptable to someone who, for some
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unclear reason, is already sold on the idea that subjective probabilities should obey the

standard ‘rules’ of probability. Furthermore, it is apparent that the kind of undesirable

consequences of not following the standard ‘rules’ of probability that are identified by

the types of argument falling into the second category just mentioned will only arise

by constraining the individual in question to obey additional rules that, from any real

practical viewpoint, he is not naturally obliged to obey, e.g. to buy and sell gambles at

the same price. Therefore, we will justifiably put to one side arguments that attempt to

make the case that subjective probabilities are obliged to have the same mathematical

properties as physical probabilities. By doing this, we are, for example, clearly opening

the door to the possibility that post-data probability distributions can be placed over

model parameters without using Bayes’ theorem.

Finally, it will often be useful to think of the class of all analogical probabilities,

i.e. subjective probabilities, as being divided into two sub-categories, namely personal

subjective probabilities and communal subjective probabilities. We will define a personal

subjective probability of any given event as not only being a probability that is subjective

but a probability that we would not expect to be accepted as the probability of the event

concerned by many other people apart from an individual of interest. On the other hand,

a communal subjective probability will be defined as a probability of any given event that

despite being subjective would be accepted as the probability of this event by many (if

not most) individuals who are in the same broadly defined information state.

Let us now briefly describe the structure of the paper. In the next section, the con-

cept of physical probability is defined. In particular, this section begins by defining the

key notion of similarity, which underlies the definitions of both physical and analogical

probability. Separate definitions of the concept of physical probability are then given for

the cases where this type of probability is discrete and where it is continuous.

Following on, having used the notion of physical probability to define the concepts

of discrete and continuous reference sets of events in Section 3.1, these latter concepts

are called upon in Sections 3.2 and 3.3, along with the idea of similarity, to define the

concept of analogical probability. In particular, the notion of non-additive analogical

probability is defined and analysed in Section 3.2, which is an analysis that is then used

to justify the definition and discussion of the notion of additive analogical probability

in Section 3.3. This latter section is a long section that contains various definitions
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that relate to how practical issues can be resolved by applying concepts associated with

analogical probability, e.g. probability elicitation via the concept of the internal strength

of a probability distribution and comparisons of the representativeness of already elicited

or derived distributions via the concept of the external strength of a distribution. In

Section 3.6, this latter concept is then applied to a long-running controversy concerning

what and how big is the advantage of using the fiducial argument as opposed to Bayesian

reasoning to address a particular class of problems in statistical inference. Of special

interest to some readers may be the discussion in Section 3.5 of how the concept of

frequentist probability fits into the ideas put forward in the present paper. The final

section of the paper, i.e. Section 4, contains some concluding remarks.

2. Physical probabilities

Definition 1: Similarity

Let S(A,B) denote the similarity that a given individual feels there is between his con-

fidence (or conviction) that an event A will occur and his confidence (or conviction)

that an event B will occur. For any three events A, B and C, it will be assumed that

an individual is capable of deciding whether or not the orderings S(A,B) > S(A,C)

and S(A,B) < S(A,C) are applicable. The notation S(A,B) = S(A,C) will be used

to represent the case where neither of these orderings apply. To clarify, it is not being

assumed that S(A,B) and S(A,C) are necessarily numerical quantities. Furthermore,

for any fourth event D, it will not be assumed, in general, that an individual is capable

of deciding whether or not the orderings S(A,B) > S(C,D) and S(A,B) < S(C,D) are

applicable. Therefore, a similarity S(A,B) can be categorised as a partially orderable

attribute of any given pair of events A and B. This is exactly the same definition of the

concept of similarity as used in Bowater (2018b) and is essentially the same definition of

this concept as used in Bowater (2017a) and Bowater (2017b).

Definition 2: Discrete physical probabilities

Let O = {O1, O2, . . . , Ok} be a finite ordered set of k mutually exclusive, exhaustive and

equally likely outcomes of a well-understood physical experiment, which means that an
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outcome is the random drawing out of a particular object from a known population of

objects, e.g. randomly drawing a ball out of an urn containing k distinctly labelled balls.

To clarify, it will be assumed that if O(1) and O(2) are two subsets of the set O that

contain the same number of outcomes, then the following is true:

S

 ⋃
Oj∈O(1)

Oj,
⋃

Oj∈O(1)

Oj

 = S

 ⋃
Oj∈O(1)

Oj,
⋃

Oj∈O(2)

Oj


for all possible choices of the subsets O(1) and O(2). In making this assumption, we

have therefore, in effect, defined the circumstances in which the outcomes O = {O1, O2,

. . . , Ok} would be described as being ‘equally likely’ to occur without using an already

established concept of probability. Also, we have, in effect, defined what is meant by

‘randomly’ drawing a ball out of an urn of balls in the example that was just mentioned.

Under the assumptions that have just been made, an event E that is defined by:

E =
⋃

Oj∈O(E)

Oj (1)

where O(E) is a given subset of the set O, will have the probability:

P (E) = |O(E)|/k (2)

in which |O(E)| denotes the number of outcomes in the set O(E).

Definition 3: Continuous physical probabilities

Let V be the outcome of a well-understood physical experiment that must take a value

in the interval Λ = (0, 1). Also, it will be assumed that if Λ(1) and Λ(2) are two subsets

of the interval (0, 1) that have the same total length, then the following is true:

S({V ∈ Λ(1)}, {V ∈ Λ(1)}) = S({V ∈ Λ(1)}, {V ∈ Λ(2)})

for all possible choices of the subsets Λ(1) and Λ(2).

For instance, let us consider the act of randomly spinning a wheel of unit circumference,

and let us assume that any specific position on the circumference of the wheel is measured

as the distance in a given direction around the circumference from a given point on the
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circumference. Here, the outcome of a spin of the wheel, as defined by the position on

the circumference of the wheel when it stops that is indicated by a fixed pointer in its

centre, could be regarded as being an example of the variable V .

Under the assumptions that have just been made, an event E that is defined by:

E = {V ∈ Λ(E)} (3)

where Λ(E) is a given subset of the interval (0, 1), will have the probability:

P (E) = |Λ(E)| (4)

in which |Λ(E)| denotes the total length of the set Λ(E).

Properties of physical probabilities

It should be clear that physical probabilities have all the standard properties of the

concept of probability, e.g. properties (1) to (4) in the list of such properties that was

given in the Introduction.

3. Analogical probabilities

3.1. Reference sets of events

Definition 4: Discrete reference set of events

Under the assumptions of Definition 2 (discrete physical probabilities), a discrete refer-

ence set of events R is defined by:

R = {R(λ) : λ ∈ Λ} (5)

where R(λ) = O1 ∪O2 ∪ · · · ∪Oλk and Λ = {1/k, 2/k, . . . , (k − 1)/k}.

Definition 5: Continuous reference set of events

Under the assumptions of Definition 3 (continuous physical probabilities), a continuous

reference set of events R is defined by equation (5), but now with the event R(λ) defined

to be the event {V < λ} and the set Λ defined as in Definition 3, i.e. as the interval (0, 1).
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3.2. Non-additive analogical probabilities

Let us consider defining the analogical probability of any given general event E, e.g. the

event of there being more than one centimetre of rain tomorrow or the event of a given

US presidential candidate being elected, as follows:

P (E) = arg max
λ∈A

S(E,R(λ)) (6)

where R(0) is an impossible event, while if λ > 0, the event R(λ) is as defined in Defini-

tion 4 or Definition 5, and where A is the set {0, 1/k, . . . , (k−1)/k, 1} if the event R(λ)

is defined as in Definition 4 for λ > 0, while A is the interval [0, 1] if the event R(λ) is

defined as in Definition 5 for λ > 0. To clarify, the probability P (E) is the value of λ ∈ A
that maximises the similarity S(E,R(λ)). Here we could imagine gradually increasing

λ from a value of λ for which the event R(λ) is considered less likely than the event E

until the point where the event R(λ) is no longer considered less likely than R(λ). The

value of λ at this point would be the probability of the event E.

This type of probability clearly has property (1) in the list of standard properties of the

concept of probability given in the Introduction, and it would be reasonable to assume

that this type of probability would always have property (2) in the list of the properties

in question. However, the scenario that has just been presented is overly idealised since,

of course, the following could be true for a value of λ that satisfies the condition on the

right-hand side of equation (6):

S(E,R(λ)) < S(R(λ), R(λ)) (7)

and indeed, the following may also be true:

S(E,R(λ)) < S(R(λ− a), R(λ)) and S(E,R(λ)) < S(R(λ+ b), R(λ)) (8)

where a and b are given positive constants and where λ− a, λ+ b ∈ A. In the situations

identified by equations (7) and (8), it will often be the case that the value of λ that

satisfies the condition on the right-hand side of equation (6) will not be unique, and in

fact, it may be very difficult to specify exactly which values of λ should be inside or out-

side the set of values of λ that satisfies this condition. Therefore, in these circumstances,

the probability P (E) defined by equation (6) would be imprecise, and if upper and lower
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limits were placed on this probability, then these limits themselves may well also be

imprecise.

Furthermore, if it was assumed that the event R(λ) was defined according to Defini-

tion 4 for λ > 0 and the value of k was chosen to be small enough such that the value

of λ that satisfies the condition on the right-hand side of equation (6) was unique then,

in general, this value of λ, i.e. the probability P (E), would not satisfy the following

condition:

P (E) = 1− P (Ec) = 1− arg max
λ∈Λ

S(Ec, R(λ))

i.e. the probabilities of the event E and its complement Ec would not be additive.

It can be argued that it is convenient for probabilities to be additive since without

this property it would not be possible to place a standard probability distribution over

any given uncertain quantity. Taking this into account, a type of analogical probability

that is additive will be put forward in the next section. It will be recognised though that

the kind of information concerning what is felt about the uncertainty of events that is

gained from allowing probabilities to be non-additive is important. With regard to the

concept of additive probability that will be proposed, this information will be represented

by what will be referred to as the strength of a probability distribution.

3.3. Additive analogical probabilities

Basic properties of the type of probability to be developed

The type of analogical probability that will be developed in this section will be assumed

to have properties (1) to (3) in the list of standard properties of the concept of probability

given in the Introduction. However, it will not be assumed that the analogical probability

of an event B given that an event A has already occurred is always defined in accordance

with the expression P (B |A) = P (A ∩ B)/P (A), even in those cases where we would

generally endorse the use of the analogical probabilities of the event A∩B and the event

A, i.e. we will not assume that property (4) in the list of standard properties of probability

being referred to always holds.
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Definition 6: Internal strength of a continuous distribution

Let a given continuous random variable X of possibly various dimensions have two pro-

posed distribution functions FX(x) and GX(x). Also, we will specify the set of events

F [a] as follows:

F [a] =

{
{X ∈ A} :

∫
A
fX(x)dx = a

}
for a ∈ [0, 1] (9)

where {X ∈ A} is the event that X lies in the set A and fX(x) is the density function

corresponding to FX(x), and we will specify the set G[a] in the same way but with respect

to the distribution function GX(x) instead of FX(x).

For a given discrete or continuous reference set of events R, we will now define the

distribution function FX(x) as being internally stronger than the distribution function

GX(x) at the resolution level λ, where λ is any value in the set Λ corresponding to the

set R, if

min
A∈ F [λ]

S(A,R(λ)) > min
A∈ G[λ]

S(A,R(λ)) (10)

Definition 7: Internal strength of a discrete distribution

Let a given discrete random variable X that can only take a value x that belongs to the

finite or countable set {x1, x2, . . .} have two proposed distribution functions FX(x) and

GX(x). Also, let the event R∗(bi) be the event {V < bi}, where the random variable V

is as defined in Definition 3 except that, in addition, this variable will be assumed to be

independent from the variable X, and where bi ∈ [0, 1] for i ∈ {1, 2, . . .}. Given these

assumptions, we will furthermore specify the set of events F [a] as follows:

F [a] =

{
∞⋃
i=1

(R∗(bi) ∩ {X = xi})

∣∣∣∣∣
∞∑
i=1

[ bi ∈ (0, 1) ] ≤ 1 ∧
∞∑
i=1

bifX(xi) = a

}
(11)

for a ∈ [0, 1], where fX(x) is the probability mass function corresponding to FX(x), and

[ ] on the right-hand side of this equation denotes the indicator function, and we will

specify the set of events G[a] in the same way but with respect to the distribution func-

tion GX(x) instead of FX(x). To clarify, all events in the set F [a] would naturally be
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assigned a probability of a under the probability mass function fX(x) for the variable X.

For a given discrete or continuous reference set of events R, we will now define the

distribution function FX(x) as being internally stronger than the distribution function

GX(x) at the resolution λ, where λ ∈ Λ, if the condition in equation (10) is satisfied with

respect to the definitions of the sets F [a] and G[a] currently being used.

One of the reasons for the first predicate in the definition of F [a] in equation (11),

i.e. the condition that at most only one value in the set {b1, b2, . . .} is not equal to

0 or 1, is that without this predicate there would be an event in the set F [a] that

would be effectively equivalent to the event R∗(a), in particular it would be the event

corresponding to setting bi = a ∀i. In other words, there would be an event in this set

that would have the undesirable property of having a definition that does not depend on

how the distribution function of interest FX(x) is specified. The practical importance of

this issue will perhaps be more clearly seen when this definition of F [a] is used again in

Definition 9.

Definition 8: Elicitation of probability distributions

The elicitation process of a probability distribution function for any given continuous or

discrete random variable X will be assumed to begin by the proposal of a distribution

function GX(x) for this variable. It will then be naturally assumed that we try to adjust

the distribution function GX(x) so that it better represents what is known about the

variable X. In particular, another step in the elicitation process will be taken if, for

an appropriate choice of the resolution λ, an alternative distribution function FX(x) is

judged as being, according to the definitions just given, internally stronger than the

distribution function GX(x). If this is the case, then the distribution function FX(x)

would become the current proposed distribution function for X, and the same step would

then be repeated until no improvements to this distribution function can be made.

The rationale behind this way of formalising the elicitation process of a distribution

function is based on making the quite natural assumption that, for an appropriate choice

of the resolution λ, the adequacy of any given distribution function GX(x) as a repre-

sentation of our knowledge about the random variable X can be measured by how large
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the similarities are in the set {S(A,R(λ)) : A ∈ G[λ]}. Also, in attempting to take

steps forward in the elicitation process being discussed, it would seem quite reasonable

to put more attention on trying to increase the lowest similarities in this set without

decreasing by too much, or at all, the highest similarities in this set. Doing this would,

of course, have the effect of increasing the minimum similarity on the right-hand side of

equation (10). Therefore, we have hopefully justified the role of what has been defined

as the internal strength of a distribution function in the elicitation process in question.

However, observe that there is no guarantee that the distribution function that is

elicited for any given variable of interest will be unique, and therefore no guarantee that

the probability that is elicited for any given event or hypothesis will be unique, which is

of course a property that is also possessed by the type of probability that was discussed

in Section 3.2. This is because there may be a set F ∗ of possible distribution functions

FX(x) for a given variable X, each member of which is regarded to be internally stronger

than any function FX(x) not in this set, but not internally stronger than any other

function FX(x) within this set. It would be hoped, though, that usually the distribution

functions in the set F ∗ would be fairly similar to each other. In this type of situation,

it is recommendable that any statistical analysis that requires a distribution function for

X as an input incorporates a sensitivity analysis over the functions FX(x) in the set F ∗.

Definition 9: External strength of a continuous or discrete distribution

Let two random variables X and Y of possibly different dimensions have, respectively,

distribution functions FX(x) and GY (y) that have been derived using any type of pro-

cedure, including via the use of direct elicitation or via the use of a formal or informal

system of reasoning, e.g. derived by applying standard properties of the concept of prob-

ability such as the ones listed in the Introduction. To clarify, no assumption is being

made about whether the variables X and Y are discrete or continuous, e.g. one of these

variables may be continuous, while the other one may be discrete.

Also, if the variable X is continuous, then let the set of events F [a] be as defined

in equation (9), while if this variable is discrete, then let the set F [a] be as specified

in equation (11). Furthermore, depending on whether the variable Y is continuous or

discrete, let the set of events G[a] be defined as the set F [a] was defined in equation (9)
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or (11) but with respect to the variable Y instead of the variable X and the distribution

function GY (y) instead of FX(x). Finally, we will specify the minimum similarity SF and

the maximum similarity SG as follows:

SF = min
A∈ F [λ]

S(A,R(λ)) and SG = max
A∈ G[λ]

S(A,R(λ)) (12)

For a given discrete or continuous reference set of events R, we will now define the

function FX(x) as being externally stronger than the function GY (y) at the resolution λ,

where λ ∈ Λ, if

max
M ∈MA

SF > max
M ∈MB

SG (13)

where MA and MB are two given sets of reasoning processes that could be used to

evaluate the minimum similarity SF and the maximum similarity SG, respectively, and

M ∈ M denotes ‘over all reasoning processes in the set M’. The term ‘externally

stronger’ is being used here because we are comparing distribution functions for different

random variables rather than for the same random variable which was the case in the

definitions of the ‘internal strength’ of a distribution function.

It is evident that, in any particular case, the definition of external strength just pre-

sented may depend on the choices that are made for the setsMA andMB. However, in

many cases, this issue can be avoided to a great extent by choosing the setsMA andMB

to be large enough so that they arguably contain all methods of reasoning that are rele-

vant to evaluating the similarities concerned, meaning that the condition in equation (13)

effectively becomes simply that SF > SG. As we will see later though, sometimes useful

insights may be gained by considering cases where MA and/or MB exclude potentially

relevant methods of reasoning for performing the evaluations in question.

Definition 10: Comparing the representativeness of the distributions of

different variables

A distribution function FX(x) will be regarded as better representing our knowledge

about the variable X than a distribution function GY (y) represents our knowledge about

the variable Y if, for an appropriate choice of the resolution λ, the function FX(x) is
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regarded as being externally stronger than the function GY (y) according to Definition 9

with the sets MA and MB chosen to contain all relevant methods of reasoning for

evaluating the similarities SF and SG.

In comparison to the condition in equation (10), which is the basis of the definition

of internal strength, it is naturally appealing to have the maximum similarity SG on

the right-hand side of equation (13) instead of the minimum similarity over the set

{S(A,R(λ)) : A ∈ G[λ]}, as this of course implies that all the similarities in this latter

set will be less than any similarity in the set {S(A,R(λ)) : A ∈ F [λ]}. However, it

would not have been sensible to have defined the concept of internal strength such that

the maximization instead of the minimization operator appears on the right-hand side of

equation (10), since if satisfying such a strong condition had been required in order for

a step in the elicitation process described in Definition 8 to have taken place, the ease

with which such a process could develop would have been generally impeded.

Example 1 of the application of Definition 10

To give an example of the application of Definition 10, let us compare a uniform distribu-

tion function FX(x) over the interval (0, 1) for the output X of a pseudo-random number

generator that has been carefully designed to produce approximately uniform random

numbers in the interval (0, 1) with a distribution function GY (y) elicited by a given doc-

tor for the change Y in average survival time that results from the administration of an

untested new drug in comparison to a standard drug. We will assume that the resolution

λ is some value in the interval [0.05, 0.95].

Let us first observe that, all the similarities in the set {S(A,R(λ)) : A ∈ F [λ]} may

well be regarded as being quite high. This is because the event R(λ) is the outcome

of a well-understood physical experiment, while any event in the set F [λ] may well feel

like it can be almost treated as though it is the outcome of a well-understood physical

experiment. On the other hand, the doctor’s uncertainty about whether or not any

given event in the set G[λ] will occur could be regarded as depending largely on his

incomplete knowledge about highly complex biological processes in the human body.

Therefore, it could reasonably be expected that if the sets MA and MB contain the
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simple method of direct evaluation, then the doctor would consider the function FX(x)

as being externally stronger than the function GY (y) according to Definition 9, which can

be regarded, according to Definition 10, as a formal way of expressing the view that the

function FX(x) performs better than the function GY (y) at representing the uncertainty

that these functions are intended to represent.

Example 2 of the application of Definition 10

To give a second example of the application of Definition 10, let us imagine that an

election for a state governor has five candidates, and a political analyst has assigned,

using a simple process of elicitation, analogical probabilities to the events z1, z2, ..., z5

of each one of these candidates winning. In particular, let HZ(z) be the distribution

function that the analyst has placed over this exhaustive set of events.

Also, let us suppose that there are two urns that both contain 100 balls, where each

ball may be either red or blue in colour. In the first urn, the ratio of red to blue balls

is entirely unknown, i.e. there may be from 0 to 100 red or blue balls in the urn. By

contrast, in the second urn it is known that there are exactly 50 red balls and 50 blue

balls. We will denote the outcomes of drawing a ball out of the first urn and the second

urn in this example as the random variables X and Y , respectively, and the distribution

functions for these two variables will be denoted as FX(x) and GY (y), respectively.

Furthermore, we will imagine that, in eliciting the distribution function FX(x), the

analyst being referred to would choose to give a probability of 0.5 to both the events

of drawing out a red ball and drawing out a blue ball from the first urn. Clearly the

same probability of 0.5 would be assigned to these events if we used the second urn in

place of the first urn simply by using the concept of discrete physical probability outlined

in Definition 2. To clarify, it will be assumed therefore that, as far as the analyst is

concerned, the distribution functions FX(x) and GY (y) are the same.

Since both FX(x) and GY (y) are defined with regard to only two possible events, the

sets of events F [λ] and G[λ] will each only contain two events whatever choice is made

for the value of the resolution λ. To give a simple example, in the case where λ = 0.5,

the set F [λ] just contains the events of drawing out a red ball and drawing out a blue

ball from the first urn, while the set G[λ] contains the same two events but with respect
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to the second urn. Also, with relevance to the case where λ = 0.5, given the ambiguity

surrounding the uncertainty about whether or not any given one of the two events in

the set F [0.5] will occur, it should be fairly clear why the analyst in question is likely

to decide that the similarities between the event R(0.5) as specified in Definitions 4 or 5

and the events in G[0.5] are higher than the similarities between the event R(0.5) and

the events in F [0.5]. Of course, by doing this, he would be effectively deciding that the

distribution function GY (y) is externally stronger than the distribution function FX(x)

at a resolution level of 0.5 according to Definition 9, assuming that the setsMA andMB

in this definition are allowed to contain any relevant method of reasoning for evaluating

the similarities concerned. A similar line of reasoning can be used to justify the analyst

drawing the same conclusion with respect to other values for the resolution λ under the

assumption that λ is not very close to 0 or 1.

Let us now assess the nature of the distribution function that the analyst has placed

over the possible outcomes of the state governor election race, i.e. the distribution function

HZ(z). Given that the factors that can influence which of the five candidates is elected

are likely to be considered vague and difficult to weigh up, it should be fairly clear why

the analyst is likely to regard this distribution function HZ(z) as being externally weaker,

according to Definition 9, than the distribution function GY (y) just discussed, with the

same assumptions in place about the sets MA and MB and the range of the resolution

λ as were just made. However, it would be much less easy to predict, under the same

assumptions, whether any given political analyst in the situation of interest would decide

that what he chooses to be his distribution function HZ(z) is externally stronger, weaker

or neither stronger nor weaker than what in the current example has been defined as

the distribution function FX(x). According to Definition 10, what has just been stated,

can be regarded as simply a formal way of saying that the analyst is likely to feel that

the function HZ(z) performs worse than the function GY (y) but perhaps not worse than

the function FX(x) in representing the uncertainty that these functions are intended to

represent.
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Definition 11: Criterion for choosing the best formally derived distribution

function

Let FX(x) and GX(x) be two proposed distribution functions for a random variable X

that have been derived using two separate methods of reasoning, and let us also assume

that the random variable Y in Definition 9 is equivalent to the variable X. Under these

assumptions, the function FX(x) will be favoured over GX(x) as being the distribution

function of X if, for an appropriate choice of the resolution λ, it is externally stronger

than GX(x) according to Definition 9 with the sets MA and MB chosen to contain all

relevant methods of reasoning for evaluating the similarities SF and SG.

Therefore, the function FX(x) will be favoured over GX(x) as being the distribution

function of X if it can be regarded, according to Definition 10, as better representing our

knowledge about the variable X than the function GX(x). An example of the application

of the criterion just given that uses a definition of the concept of external strength

that is not identical but very similar to Definition 9 was presented in Section 3.7 of

Bowater (2018b).

Definition 12: Best reasoning system for justifying the importance of a given

distribution

Let FX(x) be a distribution function that can be derived by using two different methods

of reasoning M0 and M1. Also, let us assume that, in Definition 9, the random variable

Y is equivalent to the variable X and the distribution function FX(x) is equivalent to the

distribution function GY (y), which naturally implies that the maximum similarity SG on

the right-hand side of equation (13) should become the maximum similarity SF . Under

these assumptions, the method of reasoning M0 will be regarded as better justifying the

adequacy of FX(x) as a representation of what is known about the variable X than the

method of reasoning M1 if, for an appropriate choice of the resolution λ, the condition

in equation (13) holds when the set MA contains only the method of reasoning M0 and

the set MB contains only the method of reasoning M1.

A detailed example of the application of the definition just given will be presented in
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Section 3.6.

Sensitivity to the choice of the resolution λ

A criticism that could be made of the definitions of internal and external strength that

have been set out in the present section, i.e. Definitions 6, 7 and 9, is that the conditions

in equations (10) and (13) on which these definitions are based may be affected by the

choice of the resolution level λ.

With regard to this issue, it is known that people generally have difficulty in weighing

up the uncertainty associated with the occurrence of events that are very unlikely or

very likely to occur, which is a disadvantage that could apply if λ was less than say 0.05

or greater than say 0.95. On the other hand, it could be argued that the further that

λ is away from the value 0.5, the greater the detail in which the characteristics of the

distribution functions involved in the Definitions 6 to 12 may be explored.

In conclusion, we will not try to pretend that inconsistencies can never arise due to

the conditions in equations (10) and (13) being satisfied for one choice of λ but not for

another choice of λ. Nonetheless, it would be expected that, in many applications, the

definitions that are based on these conditions, i.e. Definitions 6, 7 and 9, will be largely

insensitive to the choice made for the value of the resolution λ as long as we assume that

λ is not too close to 0 or 1, e.g. it is in the range [0.05, 0.95], which is what we have

assumed in the examples that have been considered so far.

3.4. Semi-additive analogical probabilities

In the previous section, it was, in effect, assumed that analogical probabilities are fully

additive in the sense that the probability of any given union of disjoint events is obtained

by simply adding together the probabilities of the individual events concerned. However,

it may often be convenient to assume that analogical probabilities are only semi-additive

in the sense that the probabilities of some unions of disjoint events are indeed obtained

via the summation of the probabilities of the events concerned, while for other unions of

disjoint events this method is not necessarily valid.

For example, let us consider the case where a joint distribution has been placed over
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two given random variables X and Y . With reference to the properties of additive

analogical probabilities given at the start of Section 3.3, we know that the density or

mass function of the variable X conditional on an observed value y of the variable Y is

not always defined by the formula: p(X |Y = y) = p(X, Y = y)/p(Y = y), where p(X, Y )

is the joint density or mass function of X and Y . However, it may be the case, in certain

situations, that it is not even convenient that the marginal distribution of X is defined

by marginalising the joint distribution of X and Y with respect to Y . This is because,

if we are only interested in expressing our uncertainty about the variable X rather than

our uncertainty about both the variables X and Y including their interdependence, then

it may be better to assign a marginal distribution to X directly rather than obtain such

a distribution indirectly by using the joint distribution of X and Y . Therefore, in this

respect, we may sometimes wish to allow analogical probabilities to be only semi-additive

rather than fully additive.

3.5. Frequentist probabilities

Let us define the frequentist probability of a given event as the proportion of times that

the event occurs in the long run. This definition of probability is popular, and in fact,

in recent times, it can be regarded as the standard way of objectively trying to define

the probability of any given event. Nevertheless, it is a definition of probability with a

clear defect, which is that if a frequentist probability needs to be determined through

the observation of the event of interest in repeated trials, then we will never be able to

determine this probability precisely, and in fact, after any given number of trials we will

only be able to make a statistical inference about the probability concerned. Moreover,

given that there is arguably no clear way in which such a statistical inference about

a frequentist probability could be formed in a purely objective manner, it would seem

reasonable to conclude that, in these circumstances, a frequentist probability is in fact a

type of subjective probability.

It is of interest, though, to consider how close a frequentist probability comes to being

what, in Section 2, was defined as being a physical probability. Clearly, if outcomes are

repeatedly generated from a well-understood physical experiment as such an experiment

was specified in either Definition 2 or 3, then, as the number of trials increases, the
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proportion of times a given event E occurs, where E is as defined in equation (1) or (3),

will tend in probability to the physical probability of the event E as specified in either

equation (2) or (4). In this type of situation, it is therefore reasonable to conclude that the

frequentist probability of the event E is equivalent in nature to the physical probability

of the event E.

On the other hand, if a probability is of the original type of frequentist probability

that we considered in this section, i.e. it is the long-run proportion of times a given

outcome E occurs in repeated trials of an experiment that is effectively a black box, e.g.

the proportion of times a biased coin when tossed comes up heads, then let us consider

the outcomes of a large number, say a million, trials of this experiment. In particular,

observe that the proportion of times that the event E occurs in these trials, which we

will denote as the proportion p̂, could be viewed, in certain circumstances, as being the

approximate physical probability of the event E occurring in the next trial that will

take place. This is because we may be able to regard the next trial as being similar in

nature to taking a random draw from the outcomes of the trials that have already taken

place with these outcomes being treated as the outcomes O1, O2, . . . , Ok of the type of

well-understood physical experiment specified in Definition 2.

However, although we could use such a line of reasoning to argue that a frequentist

probability of the type under discussion is close in nature to being a physical probability,

it is a line of reasoning that is based on some quite important assumptions. First, it

needs to be assumed that the trials in question are independent from each other, and

second, we need to suppose that the proportion of times that the event E occurs does

not change over time. Also, given these two assumptions, the proportion p̂ needs to be

assumed to be ‘approximately’ equal to the proportion of times the event E will occur in

the long run which, as has already been discussed, is a controversial assumption to make.

The need for the three assumptions just highlighted, which in any particular case

are likely to be very debatable assumptions, makes it clear that by applying the line of

reasoning being referred to, we would be, in fact, interpreting frequentist probability in

terms of physical probability using the concept of analogy. Therefore, it can be strongly

argued that the type of frequentist probability under discussion should be classified as

being a given type of what, in Section 3, was defined to be analogical probability rather

than as being a type of ‘approximate’ physical probability.
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3.6. Applying the concept of strength to the Bayesian-fiducial controversy

In this section, we will apply the concept of external strength to the controversy about

whether fiducial reasoning is of any use in circumstances where the fiducial density of

a parameter of interest is equal to a posterior density of the parameter that is derived

by substituting a given choice of the prior density of the parameter into Bayes’ theorem.

We will choose to restrict our attention to the case where inferences need to be made

about the mean µ of a normal distribution that has a known variance σ2 on the basis of a

random sample x of n values drawn from the distribution concerned, since it will be seen

that the issues that are explored in analysing this case are relevant to many other cases.

The type of fiducial inference that will be applied will be organic fiducial inference, which

was originally presented in Bowater (2019) and further discussed in Bowater (2020) and

Bowater (2021a) before being clarified and modified in Bowater (2021b).

Let it be assumed that very little or nothing was known about µ before the sample x

was observed. In a Bayesian analysis, it would be quite conventional to try to represent

this lack of knowledge by placing a diffuse symmetric prior density over µ centred at

some given value for its median µ0. Assuming this has been done, let the corresponding

prior and posterior distribution functions be denoted as D(µ) and D(µ |x), respectively.

Also, let the set of events Dµ[a] be defined as the set F [a] was defined in equation (9)

but with respect to the variable µ rather than the variable X, and the prior distribution

function D(µ) rather than the generic distribution function FX(x). Similarly, we will

define the set Dµ|x[a] as the set F [a] was defined in equation (9) but with respect to

the variable µ and the posterior distribution function D(µ |x). Furthermore, in applying

Definition 9, we will quite naturally assume that the similarities in the set {S(A,R(λ)) :

A ∈ Dµ[λ]} are evaluated before the data x are observed and that this assessment is

carried out by using the simple method of direct evaluation. Finally, it will be supposed

that the resolution λ is some value in the interval [0.05, 0.95].

Under these assumptions, it would be expected that the similarities in the set

{S(A,R(λ)) : A ∈ Dµ[λ]} would all be regarded as being very low. In fact, we would

expect that it would be difficult, if not impossible, to find a directly elicited distribution

function for any random variable in any context that could be regarded as being exter-

nally weaker than the prior distribution function D(µ) according to Definition 9. This is
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because, apart from needing to satisfy the condition that it is diffuse and symmetric, the

choice of the prior density function for µ when there is very little or no prior information

about µ will be extremely arbitrary, implying that the definition of the events in the set

Dµ[λ] will be just as arbitrary. For example, if λ = 0.5 then the set Dµ[λ] will contain

the events {µ < µ0} and {µ > µ0} which clearly depend on the very arbitrary choice of

the prior median µ0. A similar point about how the choice of the location of the prior

density of µ can affect the definition of the events in the set Dµ[λ] can be made with

respect to other values of λ in the range of interest, i.e. [0.05, 0.95]. Furthermore, for all

values of λ in this range, the events in the set Dµ[λ] will of course also generally depend

on the arbitrary decision that needs to be made about how diffuse the prior density for

µ should be over the real line.

As was discussed in the Introduction, subjective probabilities do not need to have

any of the properties of physical probabilities. Moreover, the assumption was never

made in Sections 3.2 to 3.4 that analogical probabilities possess property (4) in the list

of standard properties of probability given in the Introduction. Therefore, if we have

subjectively elicited a pre-data distribution for a parameter θ, and if also we know the

likelihood function of this parameter given the observed data, then we have no special

reason to assume that the most appropriate post-data distribution of θ is the posterior

distribution of θ obtained by substituting our pre-data distribution of θ into Bayes’

theorem. In addition, if we have, in some manner, obtained a post-distribution of the

parameter θ, then there is no special reason to assume that the prior distribution of

θ that is consistent with this post-data distribution according to Bayes’ theorem is the

most appropriate representation of our knowledge about θ before the data were observed.

On the other hand, in any particular scenario, we may feel justified in constructing the

post-data distribution of θ using the standard Bayesian approach that was just described

if we feel that, in the scenario concerned, good analogies can be made between what, in

Section 2, were defined as being physical probabilities and the prior probabilities of the

parameter θ lying in given intervals of the real line, i.e. we may be able to justify the

application of Bayes’ theorem by using the concept of analogy. However, although this

type of strategy may prove to be useful in many applications, it does not really get off

the ground in solving the problem of inference that is of current interest since we have

effectively already established that, according to Definition 9, the external strength of
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the prior distribution function of µ would be relatively low.

Furthermore, if we look at this issue another way by insisting that the similarities

in the set {S(A,R(λ)) : A ∈ Dµ|x[λ]} are, nevertheless, evaluated after the data have

been observed by using only Bayesian reasoning, then it would seem difficult to argue

that these similarities should be generally that much larger than the similarities in the

set {S(A,R(λ)) : A ∈ Dµ[λ]}, assuming that the conditions under which these latter

similarities are evaluated are as described earlier. To clarify, what is meant by Bayesian

reasoning here is any system of reasoning that is related to the way that Bayes’ theorem

updates the prior to the posterior density function of µ by combining it with the likeli-

hood function of µ given the data x. In other words, with the same assumption in place

about how the similarities in the set {S(A,R(λ)) : A ∈ Dµ|x[λ]} are evaluated, it may

not be easy for us to find a subjective distribution function that we would be prepared

to assign to any random variable in any context which we would regard, according to

Definition 9, as being externally weaker than the posterior distribution function D(µ |x).

Let us now observe that it would be considered common practice to try to approximate

the posterior distribution function D(µ |x) with a distribution function C(µ |x) that is

the result of using Bayes’ theorem to update, on the basis of the data x, a prior density

function of the form c(µ) = constant ∀µ ∈ (−∞,∞). Similar to how the set Dµ|x[a]

was defined, let the set Cµ|x[a] be defined as the set F [a] was defined in equation (9) but

with respect to the variable µ and the distribution function C(µ |x). However, we should

point out, of course, that it would seem inappropriate to refer to C(µ |x) as a posterior

distribution function since it is based on a prior density function c(µ) that does not have

all the standard properties of a probability density function, in particular it is clearly an

improper density function. Also if, in applying Definition 9, we assume that the similar-

ities in both the set {S(A,R(λ)) : A ∈ Dµ|x[λ]} and the set {S(A,R(λ)) : A ∈ Cµ|x[λ]}
are evaluated after the data have been observed by using only Bayesian reasoning, then,

since the function C(µ |x) is being used as nothing more than an approximate form of the

function D(µ |x), the external strength of the function C(µ |x) relative to other distribu-

tion functions is naturally inherited from D(µ |x), i.e. it must be roughly equivalent to

the external strength that is assigned to D(µ |x) relative to other distribution functions.

Having made these observations, we will now turn our attention to the application

of organic fiducial inference to the case of interest. In doing this, the terminology and
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methodology that will be used corresponds to Bowater (2019) and Bowater (2021b), nev-

ertheless the way that organic fiducial inference will be applied to this case is essentially

equivalent to what was outlined in both Bowater (2017b) and Bowater (2018a).

Since the sample mean x̄ is a sufficient statistic for µ, it can naturally be assumed to

be the fiducial statistic Q(x) in this particular case. For the sake of argument, let us

also suppose that the primary random variable (primary r.v.) Γ has a standard normal

distribution. Making these assumptions effectively implies that it is being assumed that

the data set x was generated by the following data generating algorithm:

1) Generate a value γ for the primary r.v. Γ by randomly drawing this value from the

standard normal distribution.

2) Determine the observed sample mean x̄ by setting Γ equal to γ and X equal to x̄ in

the following expression:

X = µ+ (σ/
√
n )Γ (14)

which effectively defines the distribution of the unobserved sample mean X .

3) Given µ and σ, generate the data set x from the joint density function of this data set

conditioned on the already generated value of the sample mean x̄.

As it is being assumed that very little or nothing was known about µ before the data x

were observed, it is quite natural to specify the global pre-data function for µ as follows:

ωG(µ) = a for µ ∈ (−∞,∞), where a > 0. According to Principle 1 of Bowater (2019),

we now may define the fiducial density function of µ by setting X equal to x̄ in equa-

tion (14) and then treating the value µ in this equation as being a random variable, which

implies that this density function is alternatively specified by the expression:

µ |σ2, x ∼ N(x̄, σ2/n) (15)

The validity of this density function as a post-data density function for µ clearly depends

on the argument that the density function of the primary r.v. Γ after the data x were

observed, i.e. the post-data density function of Γ, should be the same as the density

function of Γ before the data x were observed. In the terminology of Bowater (2019),

this argument would be regarded as being the strong fiducial argument applied to the
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example of interest.

We should point out that the fiducial distribution function of µ defined by equa-

tion (15) is the same as the distribution function C(µ |x) that was referred to earlier.

However, in applying Definition 9 to assess the external strength of this distribution

function relative to other distribution functions, it now will be assumed that fiducial rea-

soning is the only type of reasoning that will be used to evaluate the similarities in the

set {S(A,R(λ)) : A ∈ Cµ|x[λ]}. By fiducial reasoning it is meant any system of reasoning

that directly attempts to justify the fiducial argument that was just described.

To help us make the assessment of external strength in question, let us re-analyse one

of the balls-in-an-urn examples that were outlined in Bowater (2017b). In the example

of interest, it is imagined that someone, who will be referred to as the selector, randomly

draws a ball out of an urn containing seven red balls and three blue balls and then,

without looking at the ball, hands it to an assistant. The assistant, by contrast, looks at

the ball, but in doing so, conceals it from the selector, and then places it under a cup.

The selector believes that the assistant smiled when he looked at the ball. Finally, the

selector is asked to assign a probability to the event that the ball under the cup is red.

We will assume that it is uncertain whether the assistant knew from the outset that the

selector would be asked to assign a probability to this particular event.

In this scenario, let us now imagine that, relative to other distribution functions of

interest, the selector wishes to evaluate the external strength of the Bernoulli distribution

function BY (y) that corresponds to assigning a probability of 0.7 to the event that the

ball under the cup is red (y = 1), and a probability of 0.3 to the event that it is blue

(y = 0). This means that, if the set B[a] is defined as the set F [a] was defined in equa-

tion (11) but with respect to the variable Y instead of the variable X and the distribution

function BY (y) instead of FX(x), then the selector will need to evaluate the similarities

in the set {S(A,R(λ)) : A ∈ B[λ]}, which of course will contain only two similarities

since, for any λ ∈ (0, 1), the set B[λ] can only contain two events.

In doing this, it will be assumed that the selector takes into account the fact that a

smile by the assistant would be information that could imply that it is less likely or more

likely that the ball under the cup is red. Therefore, his evaluation of the similarities in

question must depend on his subjective judgement regarding the meaning of the assis-

tant’s supposed smile. Nevertheless, he may feel that, if the assistant had indeed smiled,
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he would not really have understood the smile’s meaning. Let it be assumed that this is

indeed the case.

For this reason, let us briefly consider the scenario in which after drawing the ball

out of the urn, the selector had, without looking at the ball, placed it directly under the

cup, rather than giving the assistant an opportunity to look at the ball. In this case, the

event of the ball under the cup being red would usually be regarded as having a physical

probability of 0.7. Therefore, it would be expected that, for any given λ ∈ [0.05, 0.95],

he would assess both of the similarities in the set {S(A,R(λ)) : A ∈ B[λ]} as being

equal to the highest possible similarity that can exist between two events. Of course,

such an assessment does not directly apply if we switch back to the original scenario.

Nevertheless, under the assumptions that have been made, it would be expected that,

in the original scenario, the selector would regard both of the similarities in the set

{S(A,R(λ)) : A ∈ B[λ]} as being at least close to the highest possible similarity that can

exist between two events.

Returning to the evaluation of the relative external strength of the fiducial distribution

function C(µ |x), let us now make an analogy between the uncertainty about the value

γ of the primary r.v. Γ after the data have been observed and the uncertainty about the

colour of the ball under the cup in the abstract scenario that has just been outlined. In

particular, given that very little or nothing was known about µ before the data x were

observed, the event of observing the data should be akin to the event of the selector

believing that the assistant smiled when he looked at the ball chosen by the selector in

the abstract scenario in question, and hence the event of observing the data should have

little or no effect on the nature of the uncertainty that is felt about the value of γ.

As a result if, the post-data distribution function of Γ is chosen to be equal to the

distribution function of Γ before the data were observed, i.e. equal to a standard normal

distribution function, then it would be expected that, for any given λ ∈ [0.05, 0.95], the

relative external strength of this distribution function of Γ when evaluated after the data

have been observed would be regarded as being similar to the relative external strength

that would be assigned by the selector to the distribution function BY (y) in the abstract

scenario under discussion. Taking into account that, after the data x have been observed,

there is a one-to-one mapping between every possible value of Γ and every possible value

of the mean µ, it can therefore be argued that, when assessed after the data have been
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observed, the similarities in the set {S(A,R(λ)) : A ∈ Cµ|x[λ]} as defined earlier should

all be regarded, for any given λ ∈ [0.05, 0.95], as being equal or close to the highest

possible similarity that can exist between two events.

This conclusion could hardly be more different to the conclusion that was reached

earlier when the relative external strength of the same distribution function C(µ |x) was

assessed under the assumption that the only type of reasoning process that may be used

to evaluate the similarities in the set {S(A,R(λ)) : A ∈ Cµ|x[λ]} is Bayesian rather than

fiducial reasoning.

To give a little more clarity, let us bring this section to an end by taking a look at how

the conclusions that have just been presented would be reflected in a natural application

of Definition 12 given in Section 3.3 to the example of interest. In applying Definition 12,

it will be assumed that the variable X and the distribution function FX(x) that appear in

this definition are the mean µ and the distribution function C(µ |x), respectively. Also,

we will assume that the two different methods of reasoning M0 and M1 that are referred

to in Definition 12 are fiducial reasoning and Bayesian reasoning, respectively. Finally,

let the minimum similarity SC and the maximum similarity SC be defined as follows:

SC = min
A∈ Cµ|x[λ]

S(A,R(λ)) and SC = max
A∈ Cµ|x[λ]

S(A,R(λ))

Under these assumptions, it would be expected that, on the basis of all the observations

made in the preceding discussion, the following condition:

max
M ∈MA

SC > max
M ∈MB

SC

would be regarded as being satisfied for any given λ ∈ [0.05, 0.95] in the case where

the set MA contains only fiducial reasoning and the set MB contains only Bayesian

reasoning. Therefore, it would be expected that fiducial reasoning would be formally

regarded, according to Definition 12, as being better than Bayesian reasoning in justifying

the adequacy of the distribution function C(µ |x) as a representation of what is known

about the mean µ after the data have been observed. This conclusion is, of course,

consistent with the overall conclusions that were reached earlier in this section.
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4. Some closing remarks

This paper set out to show that the concept of probability is best understood by dividing

this concept into two different types of probability, namely physical probability and

analogical probability. Physical probabilities, as were defined in Section 2, are arguably in

some sense ‘objective’ and possess all the standard properties of the concept of probability,

but probabilities of this type are inadequate for carrying out all the tasks that we would

usually expect could be performed by using some general notion of probability, e.g.

probabilistic inference about hypotheses on the basis of observed data. To carry out

tasks of this latter type we may use analogical probabilities, as were defined in Section 3,

which are undeniably subjective probabilities, and which do not necessarily have all the

standard mathematical properties possessed by physical probabilities.

However, although analogical probabilities generally should be considered as being

subjective probabilities, this does not mean that an analogical probability of any given

hypothesis being true always needs to be treated as being a given individual’s personal

assessment of the probability concerned. This point relates to what was discussed in

the Introduction regarding the distinction between personal subjective probabilities and

communal subjective probabilities. For example, the prior probability a given individual

assigns to the event of a fixed unknown parameter of interest lying in a given interval

would usually be appropriately classed as being a personal subjective probability. On the

other hand, if we assume the method of fiducial inference outlined in Section 3.6 has been

applied to the example discussed in this earlier section in order to obtain a post-data

probability that the normal mean µ lies in a given interval, then this probability arguably

should be classed as being a communal subjective probability. This is because this post-

data / fiducial probability would be based on expressing a lack of pre-data knowledge

about µ in a way that is arguably universal or that, at the very least, would be acceptable

to many people.

Taking into account this observation and the discussion that was presented in Sec-

tion 3.6, it should be clear that we may often be able to calculate analogical probabilities

for scientific hypotheses being true that are close to being ‘objective’ probabilities, which

gives us a clear response to those who criticise the general use of subjective probabilities

in science.
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