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Abstract

We consider finite two-person normal form games. The following four properties
of their game forms are equivalent: (i) Nash-solvability, (ii) zero-sum-solvability, (iii)
win-lose-solvability, and (iv) tightness. For (ii, iii, iv) this was shown by Edmonds and
Fulkerson in 1970. Then, in 1975, (i) was added to this list and it was also shown that
these results cannot be generalized for n-person case with n > 2.
In 1990, tightness was extended to vector game forms (v-forms) and it was shown that
such v-tightness and zero-sum-solvability are still equivalent, yet, do not imply Nash-
solvability. These results are applicable to several classes of stochastic games with
perfect information.
Here we suggest one more extension of tightness introducing v+-tight vector game forms
(v+-forms). We show that such v

+-tightness and Nash-solvability are equivalent in case
of weakly rectangular game forms and positive cost functions. This result allows us to
reduce the so-called bi-shortest path conjecture to v

+-tightness of v+-forms. However,
both (equivalent) statements remain open.
MSC subject classification 91A05, 91A06, 91A15, 91A18.

1 Nash-solvability of tight game forms

1.1 Game forms and cost functions

We consider finite normal form games of two players, Alice and Bob.
A game form is a mapping g : X × Y → O, where O is a set of possible outcomes, while

X and Y are the sets of strategies of Alice and of Bob, respectively. These three sets are
finite.

Remark 1. In this paper we restrict ourselves and the players by their pure strategies. The
mixed ones are not mentioned.
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Furthermore, let rA : O → R and rB : O → R be rewards or payoffs of the players, that
is, if outcome o ∈ O appears, Alice and Bob get rA(o) and rB(o), respectively. Both players
are maximizers. The triplet (g, rA, rB) is called a finite two-person normal form game, or
just a game, for short.

Remark 2. “Separating” rewards from game forms allows us to make the latter responsible
for the structural properties of games, which hold for arbitrary rewards.

1.2 Nash equilibria and Nash-solvability

A pair of strategies (x, y) ∈ X × Y is called a strategy profile or a situation.

A situation (x, y) is called a Nash equilibrium (NE) if

rA(g(x, y)) ≥ rA(g(x′, y)) for any x′ ∈ X and rB(g(x, y)) ≥ rB(g(x, y′)) for any y′ ∈ Y ;

in other words, if no player can profit by replacing her/his strategy, provided the opponent
keeps his/her strategy unchanged. Another equivalent reformulation is as follows:

(x, y) is a NE if and only if y is a best response for x and x is a best response for y.

This concept was introduced by John Nash in [36, 37].

A game form g is called Nash-solvable (NS) if the corresponding game (g, rA, rB) has a
NE for any rewards rA and rB . In particular, g is called zero-sum-solvable (respectively, win-
lose-solvable) if game (g, rA, rB) has a saddle point for any rA and rB such that rA+rB ≡ 0
(respectively, if rA + rB ≡ 0 and rA, rB take only values ±1). In the zero-sum case we
assume that Alice is a maximizer, while Bob is the minimizer.

Obviously, NS implies zero-sum-solvability, which in its turn implies win-lose-solvability.

1.3 Examples of game forms

Several examples are given in Figure 1, where game forms are represented by tables with
rows, columns, and entries labelled by x ∈ X , y ∈ Y , and o ∈ O. Mapping g is assumed
to be surjective, but not necessarily injective, that is, an outcome o ∈ O may occupy an
arbitrary array in the table of g.

1.4 Basic strategies and simple situations

Sets g(x) = {g(x, y) | y ∈ Y } and g(y) = {g(x, y) | x ∈ X} are called the supports of
strategies x ∈ X and y ∈ Y , respectively.

A strategy is called basic or minimal if its support is not a proper subset of the support
of any other strategy. For example, in g6 the first strategies of Alice and Bob are basic, while
the second are not; in the remaining eight game forms all strategies are basic. Moreover,
any two strategies of a player, Alice or Bob, have distinct supports.

A situation (x, y) is called simple if g(x) ∩ g(y) = {g(x, y)}. For example, all situations
of game forms g1, g2, g8, g9 are simple; in contrast, no situation is simple in g7; in g3 all are
simple, except three on the main diagonal; in g4 all are simple, except the central one; in g6
all are simple, except one with the outcome o2.

Game form g is called rectangular if all its situations are simple, or other words, each
outcome o ∈ O fills a box, that is, g−1(o) = X ′× Y ′ ⊆ X × Y for some subsets X ′ ⊆ X and
Y ′ ⊆ Y . In Figure 1, game forms g1, g2, g8, g9 are rectangular.
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o1 o1
o2 o3

g1

o1 o1 o2 o2
o3 o4 o3 o4

g2

o1 o1 o3
o1 o2 o2
o3 o2 o3

g3

o1 o1 o3
o1 o1 o2
o4 o2 o2

g4

o1 o2 o1 o2
o3 o4 o4 o3
o1 o4 o1 o5
o3 o2 o6 o2

g5

o1 o1
o1 o2

g6

o1 o2
o2 o1

g7

o1 o1 o2
o3 o4 o3

g8

o1 o1 o2
o4 o5 o2
o4 o3 o3

g9

Fig. 1. Nine game forms. Alice and Bob choose rows and columns, respectively.
Forms g1 - g6 are tight, forms g7 - g9 are not; see Section 1.5) for the definitions.

Remark 3. This concept can be generalized to the n-person case. In [16], it was shown that
an n-person game form is the normal form of a positional structure with perfect information
modeled by a tree if and only if this game form is tight and rectangular; see also [15, Remark
2], [17], and [22] for more details.

1.5 Tight game forms

Mappings φ : X → Y and ψ : Y → X are called response strategies of Bob and Alice,
respectively. The motivation for this name is clear: a player chooses his/her strategy as a
function of a known strategy of the opponent. As usual, gr(φ) and gr(ψ) denote the graphs
of mappings φ and ψ in X × Y . Game form g is called tight if

(j) g(gr(φ)) ∩ g(gr(ψ)) 6= ∅ for every pair of mappings φ and ψ.

It is not difficult to verify that in Figure 1 the first six game forms (g1 − g6) are tight,
while the last three (g7 − g9) are not.

In [10, 14, 15, 19, 24, 30] the reader can find several equivalent properties characterizing
tightness. Here we mention some of them.

(jjA) For every φ : X → Y there exists a y ∈ Y such that g(y) ⊆ g(gr(φ)).

(jjB) For every ψ : Y → X there exists a x ∈ X such that g(x) ⊆ g(gr(φ)).

We leave to the careful reader to show that (j) is equivalent to (jjA) and to (jjB) as well.
Properties (jjA) and (jjB) show that playing a game (g;u,w) with a tight game form

g, the players, Bob and Alice, do not need non-trivial response strategies but can restrict
themselves by the constant ones, that is, by Y and X , respectively, at least in case of the
zero-sum games.
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Given a game form g : X×Y → O, introduce on the ground set O two multi-hypergraphs
A = A(g) and B = B(g) whose edges are the supports of strategies of Alice and Bob:

A(g) = {g(x) | x ∈ X} and B(g) = {g(y) | y ∈ Y }.

By construction, the edges of A and B pairwise intersect, that is, g(x)∩ g(y) 6= ∅ for all
x ∈ X and y ∈ Y . Furthermore, g is tight if and only if

(jjj) hypergraphsA(g) and B(g) are dual, that is, satisfy also the following two properties:

(jjjA) for every OA ⊆ O such that OA ∩ g(y) 6= ∅ for all y ∈ Y there exists an x ∈ X such
that g(x) ⊂ OA;

(jjjB) for every OB ⊆ O such that OB ∩ g(x) 6= ∅ for all x ∈ X there exists an y ∈ Y such
that g(y) ⊂ OB.

1.6 Tightness and solvability

Consider the following properties of a game form:

(i) NS, (ii) zero-sum-solvability, (iii) win-lose-solvability, and (iv) tightness.

Implications (i) ⇒ (ii) ⇒ (iii) are immediate from the definitions.
Also (iii) ⇒ (iv) is easily seen. Indeed, if g is not tight then there exist response

strategies φ and ψ such that g(gr(φ)) ∩ g(gr(ψ)) = ∅. Define the zero-sum reward r such
that r(o) = −1 for o ∈ g(gr(φ), r(o) = 1 for o ∈ g(gr(φ), and r(o) = ±1, arbitrarily, for
the remaining outcomes, if any. Set rA = r and rB = −r. Obviously, −1 = minmax <
maxmin = 1 in the obtained win-lose game. Hence, it has no saddle point.

Implication (iv) ⇒ (ii) is implicit in [10] and explicit in [14]. Finally, (iv) ⇒ (i)
appears in [15]; see also [19]. Thus, all four properties (i-iv) are equivalent.

However, for the three-person case tightness is no longer sufficient [15] nor necessary
[15, 19] for NS.

Recently, implication (iv) ⇒ (i) was strengthened and its proof simplified in [30, 31].
Given a tight game game form g : X × Y → O and reward functions rA : O → R and

rB : O → R, game (g, rA, rB) has a simple NE in basic strategies, that is, situation (x, y) is
simple and strategies x, y are basic. Moreover, there exist some special NE (x0, y∗) defined
by a lexicographically safe strategy x0 of Alice, which depends only on her cost function rA,
while Bob’s cost function rB is irrelevant. This concept is a refinement of the classic safe
(max min) strategy. Then, Bob’s NE strategy x∗ maximizes rB over set g(x0), which is the
support of x0. Of course, Alice and Bob can be swapped. Thus, we obtain two sets of NE:
NE-A and NE-B. These two sets coincide in the zero-sum case and in some other cases too;
for example, when game (g, rA, rB) has a unique NE. However, in general, NE-A and NE-B
differ. Furthermore, a pair of lexicographically safe strategies (x0, y0) is not necessarily a
NE. See more details in [30, 31].

These statements are constructive: a polynomial algorithm determining NE-A and NE-B
is suggested. This is trivial when a tight game form g is explicit, but the algorithm works
in a more general case, when g is given by a polynomial oracle O such that the size of g is
exponential in the size of O. In the next subsection we consider an example of such oracle.
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1.7 Deterministic graphical multi-stage game structures

Let Γ = (V,E) be a directed graph (digraph) whose vertices and arcs are interpreted as
positions and moves, respectively. Furthermore, denote by VT the set of terminal positions,
of out-degree zero, and by VA, VB the positions of positive out-degree, controlled by Alice
and Bob, respectively. We assume that V = VA ∪ VB ∪ VT is a partition. A strategy x ∈ X
of Alice (resp., y ∈ Y of Bob) is a mapping that assigns to each position v ∈ VA (resp.,
v ∈ VB) an arbitrary move from this position. An initial position v0 ∈ VA∪VB is fixed. Each
situation (x, y) defines a unique a walk that begins and v0 and then follows the decisions
made by x and y. This walk P (x, y) is called a play. Each play either terminates in VT or is
infinite. In the latter case, it forms a “lasso”: first, an initial path, which may be empty, and
then a directed cycle (dicycle) repeated infinitely (This holds, because we restrict players
by their stationary strategies, that is, a move may depend only on the current position but
not on previous positions and/or moves).

The positional structure defined above can also be represented in normal form. We
introduce a game form g : X × Y → O, where, as before, O denotes a set of outcomes. Yet,
there are several ways to define this set. One is to “merge” all infinite plays (lassos) and
consider them as a single outcome c, thus, setting O = VT ∪{c}. This model was introduced
by Washburn [40] and called deterministic graphical game structure (DGGS).

The following generalization was suggested in [24]. Digraph Γ is called strongly con-
nected if for any v, v′ ∈ V there is a directed path from v to v′ (and, hence, from v′ to v, as
well). By this definition, the union of two strongly connected digraphs is strongly connected
whenever they have a common vertex. A vertex-inclusion-maximal strongly connected in-
duced subgraph of Γ is called its strongly connected component (SCC). In particular, each
terminal position v ∈ VT is an SCC. It is both obvious and well-known that any digraph
Γ = (V,E) admits a unique decomposition into SCCs: Γo = Γ[V o] = (V o, Eo) for o ∈ O,
where O is a set of indices. Furthermore, partition V = ∪o∈OV

o can be constructed in time
linear in the size of Γ, that is, in (|V |+ |E|). It has numerous applications; see [38, 39] for
more details. One more was suggested in [24]. For each o ∈ O, contract the SCC Γo into a
single vertex vo. Then, all edges of Eo (including loops) disappear and we obtain an acyclic
digraph Γ∗ = (O,E∗). The set O can be treated as the set of outcomes. Each situation
(x, y) uniquely defines a play P = P (x, y). This play either comes to a terminal v ∈ VT or
forms a lasso. The cycle of this lasso is contained in an SCC o of Γ. Each terminal is an
SCC as well. In both cases an SCC o ∈ O is assigned to the play P (x, y). Thus, we obtain a
game form g : X × Y → O, which is the normal form of the multi-stage DGGS (MSDGGS)
defined by Γ.

An SCC is called transient if it is not a terminal and contains no dicycles. No play can
result in such SCC; or in other words it does not generate an outcome. For example, O = VT
in an acyclic digraph, while all remaining SCC are transient.

DGGS and MSDGGS can be viewed as polynomial oracles the corresponding game forms
g′ and g, respectively. Note that the size of game forms may be exponential in the size of
these oracles. Note also that g′ is obtained from g by merging some outcomes. Namely,
all outcomes corresponding to the non-terminal SCCs are replaced by a single outcome
c. Obviouslly, merging outcomes respects tightness. Thus, it is enough to verify it for
MSDGGSs, As we know, it is sufficient to prove the win-lose solvability. For DGGS it was
done in [40]; see also [7, Section 3], [1], [8, Section 12]. The result was extended to MSDGGS
in [24]. All proofs were constructive, the corresponding win-lose games were solved in time
polynomial in the size of Γ.
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For reader’s convenience, we briefly sketch here the proof of from [24]. Consider a win-
lose game (g; rA, rB) with game form g = g(O) generated by a MSDGGS oracle O. Let
O = OA ∪ OB denote the partition of O into two sets of outcomes: winning for Alice and
Bob, respectively. We would like to apply the Backward Induction, yet, digraph Γ may
have dicycles. So we modify Backward Induction to make it work in presence of dicycles.
Recall that O is the set of SCCs of Γ and Γ∗ = (O,E∗) is acyclic. Consider an SCC
o = Γ′ = (V ′, E′) in Γ that is not terminal, but each move (v′, v) from a position v′ ∈ V ′

either ends in a terminal v ∈ VT , or stays in Γ′, that is, v′ ∈ V ′. Wlog assume that o ∈ OA,
that is, Alice wins if the play cycles in Γ′. Then Bob wins in a position v′ ∈ V ′ if and only
if he can force the play to come to a terminal v ∈ OB and Alice wins in all other positions
of V ′. Note that for Alice it is not necessary to force the play to come to OA, it is enough
if it cycles in Γ′. Thus, every position of Γ′ can be added either to OA or to OB . Then we
eliminate all edges E′ of Γ′ and repeat until the initial position v0 of Γ is evaluated. This
procedure proves solvability of game form g(O) and solves a win-lose game (g;OA, OB) in
time linear in the size of O = Γ.

More polynomial oracles for (finite two-person) tight game forms can be found in [29, 30].

2 Zero-sum-solvability of tight v-forms

Here we survey results of [20].

2.1 Main concepts and theorem

A vector game form of type v (or v-form) is a mapping gv : X×Y →W , whereW ⊂ R
m

is a finite set of real m-vectors {w = (w1, . . . , wm) | w ∈ W}.
Given an arbitrary real utility m-vector u = (u1, . . . , um), we define a real-valued reward

function r :W → R, where r(w) = (u,w) = u1w1 + . . . umwm for each w ∈W .
In the zero-sum case we assume that rA = r and rB = −r; Alice is the maximizer

and Bob is the minimizer. In general case, we introduce uA : W → R and uB : W → R

separately, set rA(w) = (uA, w) and rB(w) = (uB, w) for all vectors w ∈ W , and assume
that both players are maximizers.

A v-form gv is called tight if

ConvHull{gv(x, φ(x)) | x ∈ X} ∩ ConvHull{gv(ψ(y), y) | y ∈ Y } 6= ∅ ∀ φ : X → Y, ψ : Y → X ;

in (other) words, for an arbitrary pair of response strategies φ : X → Y of Alice and
ψ : Y → X of Bob, convex hulls of the corresponding two sets of vectors from their graphs,
{gv(φ) = {gv(x, φ(x)) | x ∈ X}, {gv(ψ) = {gv(ψ(y), y) | y ∈ Y } ⊆W , intersect in R

m.

A game form g can be viewed as a v-form gv with only unit vectors (one entry 1 and all
others 0). For any two sets of such vectors, their convex hulls are disjoint in R

m if and only
if the sets are disjoint. Thus, definitions of tightness for game forms and for vector game
forms agree, that is, g and gv are tight simultaneously.

The next theorem extends the criterion of zero-sum-solvability of Section 1.

Theorem 1. ([20]) Tightness and zero-sum-solvability of v-forms are equivalent.
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Proof. Suppose that gv is not tight. Then there exist φ and ψ such that
gv(φ) ∩ gv(ψ) = ∅. Two disjoint convex sets in R

m can be separated by a hyperplane;
in other words, there exists a vector u ∈ R

m such that (u, gv(x, φ(x)) < (u, gv(φ(y), y) for
every x ∈ X and y ∈ Y . Then, maxmin < minmax in the zero-sum game (g, u) and, hence,
it has no saddle point. Thus, gv is not zero-sum-solvable.

Conversely, suppose that gv is not zero-sum-solvable, that is, for some u ∈ R
m, the zero-

sum game (g, u) has no saddle point and. Then, maxmin < minmax in this game. Consider
arbitrary best response strategies φ : X → Y and ψ : Y → X of Bob and Alice, respectively.
By definition, these two strategies guarantee maxmin and minmax, respectively. Hence,
gv(φ) ∩ gv(ψ) = ∅. Thus, gv is not tight.

Remark 4. A tight game form g : X×Y → O is injective if and only if |X | = 1 or |Y | = 1.
In contrast, a tight v-form gv may be injective for any sizes of X and Y .

As we know, NS and zero-sum-solvability are equivalent for game forms. In contrast, NS
of a v-form does not follow from its zero-sum-solvability. For example, mean payoff games
are zero-sum-solvabile but not NS [18]; see next subsection for more details.

Verifying tightness of an explicitly given game form g is an important open problem.
A quasi-polynomial algorithm was suggested by Fredman and Khachiyan [12]; see also [28].
“Almost obviously” verifying tightness of an explicitly given v-form is NP-complete. Yet, a
proof is required.

2.2 Mean payoff games

Consider the model of Section 1.7. Add a loop to every terminal position v ∈ VT , if any.
Then, the obtained graph G = (V,E) has no terminal positions.

Set O of outcomes consists of all dicycles (dicycles) of G. To each dicycle C assign an
m-vector of weights w(C) = (we | e ∈ E) such that we = 1/k for e ∈ C and w(e) = 0 for
e 6∈ C. Here m = |E| is the number of directed edges of G and k = k(C) = |C| is the length
of dicycle C. Note that sum of entries of any vector w(C) equals k(1/k) = 1. Note also that
k may take any positive integer value: k = 1 if C is a loop and k = 2 if C is formed by a
pair of oppositely directed edges.

Given a utility vector u = (u(e) | e ∈ E) = (u1, . . . , um), a real-valued reward function
r :W → R is the scalar product r(w) = (u,w) = u1w1 + . . . umwm for each w ∈W .

As before, in the zero-sum case we assume that rA = r, rB = −r; Alice is the maximizer
and Bob is the minimizer. In general case we introduce uA : W → R and uB : W → R

separately, set rA(w) = (uA, w), rB(w) = (uB, w) for all vectors w ∈ W , and assume that
both players are maximizers.

Since VT = ∅, each play P = P (x, y) is infinite; it forms a “lasso” consisting of an
initial path, which may be empty, and a dicycle C = C(x, y) repeated infinitely. Thus, the
effective payoff of a player in situation (x, y) is the average local payoff along C(x, y), that
is, r(C) = (u,w) = |C|−1

∑
e∈C ue, where u is uA or uB for Alice and Bob, respectively.

These definitions justify the name ”mean payoff games”.
Zero-sum-solvability of these games was proven by Moulin [35] for complete bipartite

digraphs, by Ehrenfeucht and Mycielski [11] for any bipartite digraphs, and by Gurvich,
Karzanov, and Khachiyan [27] for arbitrary digraphs.

Thus, by Theorem 1, the corresponding v-forms are tight. However, no direct proof of
tightness is known and it is a challenge to obtain one.
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Furthermore, NS does not hold. An example of NE-free mean payoff game was con-
structed in [18] for the complete bipartite digraph 3× 3. In a way, this example is minimal:
NS holds for the complete bipartite digraphs a× b with a ≤ 2 or b ≤ 2 [21].

Thus, unlike game forms, for v-forms NS and zero-sum-solvability are not equivalent.

2.3 Mean payoff games with positions of chance

Replace partition V = VA ∪ VB by V = VA ∪ VB ∪ VR by allowing positions VR with
random moves, with a given probabilistic distribution on the edges going from each v ∈ VR.
Introduce also a probabilistic distribution over V , where p(v) is the probability that the
game begins in v. In particular, an initial position v0 may be fixed, which means that
p(v0) = 1 and p(v) = 0 for all v ∈ V \ {v0}.

Then, each situation (x, y) determines a Markov’s chain M(x, y) rather than a unique
play P (x, y) in the obtained digraph G = (V,E). In accordance with Markov’s theory, this
chain has a limit probabilistic distribution p : E → R, with p(e) = pe ≥ 0 for all e ∈ E and∑

e∈E pe = 1. Setting we(x, y) = pe(x, y) for all (x, y) and e ∈ E we obtain a v-form.

This model was suggested in [27], where BW-games and BWR-games were introduced.
(Bob and Alice’s positions were called Black (B) and White (W), respectively.) In fact,
BWR-games are computationally equivalent [2, 3] to classic stochastic games with perfect
information and zero stop probability, which were introduced much earlier, in 1957, by
Gillette [13], who proved their zero-sum-solvability. This proof is not simple; it is based on
the famous Hardy and Littlewood Tauberian theorem; its conditions were not accurately
verified in [13] yet; so the proof was completed only in 12 years by Liggett and Lipman [34].

Thus, by theorem 1, v-forms are tight, yet, no direct proof of their tightness is known.

Remark 5. In v-forms considered in this and in the previous subsections, all vectors w ∈W
are non-negative, we ≥ 0 for all e ∈ E. Yet, Theorem 1 holds for arbitrary real vectors.

In addition to mean payoff games, some other zero-sum-solvabile cases are known in
stochastic game theory. An infinite family of effective payoffs, called k-total, was considered
in [4] for any integer k ≥ 0. For example, k = 0 and k = 1 are associated with mean and
total [5] effective payoffs, respectively. For each k, the corresponding v-forms are NS [4] and,
hence, tight, by Theorem 1. Yet, no direct proof of tightness is known.

3 Nash-solvability of tight v
+-forms

3.1 Main concepts

Vector game forms g+v . We modify the concept of v-forms by requiring some extra
properties. A vector game forms of type v+ (or v+-form) is a mapping g+v : X × Y →
{W ∪ {wc}}, where W ⊂ R

m is a finite set of real non-negative and non-zero m-vectors,
{w = (w1, . . . , wm) | w ∈ W} with wi ≥ 0 for all i = 1, . . . ,m and wi > 0 for at least one
i ∈ {1, . . . ,m}; while wc is as a special m-vector all m coordinates of which are +∞.

Weak rectangularity. We will also assume that mapping g+v is weakly rectangular,
that is, (g+v )

−1(w) = X ′ × Y ′, where X ′ ⊆ X and Y ′ ⊆ Y , or in other words, each vector
w ∈W fills a box in X × Y . In contrast, wc fills the rest of X × Y and may be not a box.
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Local and effective costs. Let uA = (uA1 , . . . , u
A
m) and uB = (uB1 , . . . , u

B
m) be strictly

positive cost vectors of Alice and Bob, respectively; uAi > 0 and uBi > 0 for all i = 1, . . .m.
Now we assume that both players are minimizers, rather than maximizers. Respectively,

we replace rewards by costs. Define real-valued cost functions rA :W → R and rB :W → R

as scalar products rA(w) = (uA, w) and rB(w) = (uB, w), respectively, for each w ∈W .
Note that both functions are strictly positive. Furthermore, set rA(wc) = rB(wc) = +∞.
Then, effective costs rA : X×Y → R and rB : X×Y → R for Alice and Bob are defined

as rA(x, y) = rA(g+v (x, y)) and rB(x, y) = rB(g+v (x, y)) for each situation (x, y), including
the case when w(x, y) = wc.

Degenerate and non-degenerate situations, NE, strategies, and game forms.
Given a v+-form g+v ,

• situation (x, y) is called degenerate if g+v (x, y) = wc;

• strategy x of Alice (respectively, y of Bob) is called degenerate if g+v (x, y) = wc for
each y ∈ Y (respectively, for each x ∈ X);

• v+-form g+v itself is called degenerate if g+v (x, y) = wc for each x ∈ X and y ∈ Y .

The following statements are obvious:
Degenerate situation (x, y) is a NE if and only if both strategies x and y are degenerate.
Each situation of a degenerate v+-form is a degenerate NE. This case is trivial.

Possibly best response (PBR) strategies. A response strategy φ : X → Y of Bob
is called a PBR if there exists a cost vector uB such that y = φ(x) is a best response to x
for each Alice’s strategy x.

Without any loss of generality (wlog), we can additionally require uniqueness of the best
response vector w(x) = g+v (x, y(x)) in the support g(x) = {g(x, y) | y ∈ Y } for all x ∈ X .
Indeed, if uniqueness does not hold, it can be achieved by a perturbation of uB, sufficiently
small to respect the best response strategy y = φ(x).

Similarly, we define PBRs ψ : Y → X of Alice.

Tightness A v+-form g+v is called tight if supports of any two PBRs φ and ψ of Alice
and Bob intersect:

{g+v (x, φ(x)) | x ∈ X} ∩ {g+v (ψ(y), y) | y ∈ Y } 6= ∅.

3.2 Main theorem

Tightness and NS are equivalent for v+-forms.

Theorem 2. A v+-form g+v is tight if and only if it is NS.
Moreover, if g+v is tight and Alice or Bob has no degenerate strategy then for any cost

vectors uA and uB the corresponding game (g+v , u
A, uB) has a non-degenerate NE.

Proof As we already mentioned, a degenerate v+-form is tight; furthermore, every its
situation is a degenerate NE. This case is trivial.

Obviously, Alice (respectively, Bob) has a degenerate strategy if and only if

wc ∈ {g+v (x, φ(x)) | x ∈ X} (respectively, wc ∈ {g+v (ψ(y), y) | y ∈ Y }.
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Here φ and ψ are some response strategies of Bob and Alice, respectively.

Suppose that both players have degenerate strategies, Alice x and Bob y. Then, for any
uA and uB we have:

Both sets {g+v (x, φ(x)) | x ∈ X} and {g+v (ψ(y), y) | y ∈ Y } contain wc (in fact, only
wc). Hence, their intersection is not empty. Thus, g+v is tight.

Game (g+v , u
A, uB) has a degenerate NE for any cost vectors uA and uB.

The statement holds in this case too.

For the rest of the proof, assume that Alice and Bob have no degenerate strategies.
Then wc 6∈ {g+v (x, φ(x)) | x ∈ X} ∪ {g+v (ψ(y), y) | y ∈ Y } for any cost vectors uA and uB

and corresponding best response strategies φ and ψ of Bob and Alice, respectively.

Assume that g+v is tight. Then {g+v (x, φ(x)) | x ∈ X} ∩ {g+v (ψ(y), y) | y ∈ Y } 6= ∅ and,
hence, there exists a vector w∗ ∈W ∩ {g+v (x, φ(x)) | x ∈ X} ∩ {g+v (ψ(y), y) | y ∈ Y }.

Recall that vector game form g+v is weakly rectangular. Hence, for any uA and uB, there
exist strategies x and y such that y = φ(x), x = ψ(y), and g+v (x, y) = w∗, where φ and ψ
are best response strategies of Bob and Alice, respectively. In other words, situation (x, y)
is a non-degenerate NE in game (g+v (x, y), u

A, uB).

Conversely, assume that g+v is not tight. Then there exist PBR φ and ψ such that
{g+v (x, φ(x)) | x ∈ X} ∩ {g+v (ψ(y), y) | y ∈ Y } = ∅. Obviously, for the corresponding
uA and uB game (g+v (x, y), u

A, uB) has no NE. Recall that (x, y) is a NE if and only if y is
a best response to x and x is a best response to y.

If a player has no degenerate strategies then delete them from the opponent’s set of
strategies as well. Obviously, this operation respects tightness and, hence, NS too.

3.3 Asumability conditions

Verifying tightness of a v+-form looks very difficult, although no accurate results abut
its complexity is known. In particular, it is not clear how to check that mapping φ : X → Y
is a PBR. However, the following, pretty strong, conditions are necessary. Consider a subset
X∗ ⊆ X and two mappings φ′ : X∗ → Y and φ′′ : X∗ → Y . Assume that all vectors of W
are pairwise distinct and also that 2|X∗| vectors {g+v (x, φ

′(x)), g+v (x, φ
′′(x)) | x ∈ X∗} ⊆W

are pairwise distinct, for all x ∈ X∗.

Proposition 1. If |X∗| ≥ 1 and
∑

x∈X∗ g+v (x, φ
′(x)) >

∑
x∈X∗ g+v (x, φ

′′(x))

then mapping φ′ : X∗ → Y cannot be extended to a PBR φ : X → Y .

If |X∗| ≥ 2 and
∑

x∈X∗ g+v (x, φ
′(x)) =

∑
x∈X∗ g+v (x, φ”(x))

then neither φ′ : X∗ → Y nor φ′′ : X∗ → Y can be extended to a PBR φ : X → Y .

Proof. The first statement is obvious, since Bob’s cost is rB(w) = (uB, w) all entries
are non-negative, and Bob is the minimizer.

For the second statement we should recall that wlog we cab assume uniqueness of the
best response vector w(x) = g+v (x, y(x)) in the support g(x) = {g(x, y) | y ∈ Y } for all
x ∈ X ; see above.
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Furthermore, without any loss of generality (wlog), we can additionally require unique-
ness of the best response vector w(x) = g+v (x, y(x)) in the support g(x) = {g(x, y) | y ∈ Y }
for all x ∈ X . Indeed, if uniqueness does not hold, it can be achieved by a perturbation of
uB, sufficiently small to respect the best response strategy y = φ(x).

Of course, similar necessary conditions hold for Alice’s PBRs as well. One should just
replace x,X , and φ by y, Y , and ψ, respectively.

It is open whether the above asumability conditions only necessary or necessary and
sufficient for a response strategy to be a PBR.

4 Shortest path games and bi-shortest path conjecture

We formulate a conjecture from graph theory [25, 6] that is equivalent to NS of the finite
two-person vector v+-forms, which correspond to the so-called shortest path games with
positive local costs. For the three-person case this conjecture fails [32].

4.1 Definitions and statement of the conjecture

Let G = (V,E) be a finite digraph with two distinct vertices s, t ∈ V . We assume that

(j) every vertex v ∈ V \ {t} has an outgoing edge, while t has not;

(jj) G contains a directed path from s to t;

(jjj) every edge e ∈ E belongs to such a path.

If (j) fails for v we merge v and t; if (jjj) fails for e we delete e from E.

Given a partition V \ {t} = VA ∪ VB with non-empty VA and VB , assign an ordered pair
of positive real numbers (uA(e), uB(e)) to every e ∈ E.

Fix a mapping x that assigns to each v ∈ VA an edge e ∈ E going from v. Delete all other
edges going from v. In the obtained digraph find a directed shortest path (SP) from s to t,
assuming that uB are the lengths (or costs) of the edges e ∈ E. One can use, for example,
Dijkstra’s SP algorithm. Swapping A and B we obtain two sets of directed (s, t)-paths.

We conjecture that these two sets intersect, that is, have an (s, t)-path in common, and
call this bi-shortest path (Bi-SP) conjecture.

Wlog, we can assume that all (s, t)-paths have pairwise different lengths, which can be
achieved by small perturbations of uA and uB. Then, a shortest path is unique.

It may happen that some mappings x or y leave no (s, t)-path. Then, we choose nothing.
Let us slightly modify the procedure choosing in this case some symbolic path c. Then

we obtain a weak version of the Bi-SP conjecture. Indeed, if two sets of (s, t)-paths have
only c in common then the Bi-SP conjecture fails, but the weak Bi-SP one holds.

Wlog, we can restrict ourselves by bipartite graphs with parts (VA, VB). Indeed, if E
contains an edge e = (u,w) such that both u and w are in VA (respectively, in VB) we
subdivide e by a vertex v ∈ VB (respectively, by v ∈ VA) into two edges e′ = (u, v) and e′′ =
(v, w) choosing some lengths uD(e′) > 0 and uD(e′′) > 0 such that uD(e) = uD(e′)+uD(e′′),
where D = A or D = B.
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4.2 Finite n-person shortest path games

Players, positions, moves, and local costs. Given a finite digraph G = (V,E)
satisfying above assumption (j, jj, jjj), let us generalize case of n = 2 players and consider
an arbitrary integer n ≥ 2. Partition vertices into n non-empty subsets {V \t} = V1∪. . .∪Vn
and assign a positive real number ui(e) to every player i ∈ I and edge e ∈ E. Consider
the following interpretation: I = {1, . . . , n} is a set of players, Vi is the set of positions
controlled by player i ∈ I; furthermore, s = v0 and t = vt are respectively the initial and
terminal positions; e ∈ E is a (legal) move, ui(e) is the cost of move e ∈ E for player i ∈ I
called the local cost.

Strategies, plays, and effective costs. A mapping zi that assigns a move (v, v′) to
each position v ∈ Vi is a strategy of player i ∈ I. 1 Each strategy profile (also called a
situation) z = (z1, . . . , zn) ∈ Z1 × . . . × Zn = Z uniquely defines a play p(z), that is, a
walk in G that begins in the initial position s = v0 and goes in accordance with the choice
of z in every position that appears. Obviously, p(z) either terminates in t = vt or cycles;
respectively, it is called a terminal or a cyclic play. Indeed, after play p(z) revisits a position,
this play will repeat its previous moves, thus, making a “lasso”, because all strategies in
situation z are stationary.

The effective cost of play p(z) for player i ∈ I is additive, that is,

ri(p(z)) =
∑

e∈p(z)

ui(e) if p(z) is a terminal play;

ri(p(z)) = +∞ if p(z) is a cyclic play.

In other word, each player i ∈ I pays the local cost ui(e) for every move e ∈ p(z). Since a
cyclic play p(z) never finishes and all local costs are positive, each player pays +∞.

Let |E| = m. The effective cost of a terminal play p = p(z) for player i ∈ I is the
scalar product ri(p) = (ui, wp) of two m-vectors: ui is the player i local cost m-vector
(ui(e) | e ∈ E) and wp is the support m-vector of (s, t)-path p, that is, wp(e) = 1 if e ∈ p
and wp(e) = 0 if e 6∈ p.

All n players are minimizers. Thus, a finite n-person shortest path (SP) game is defined.
We study NS of these games, or more precisely, of the corresponding SP game forms.

Shortest path (vector) game forms. Denote by P = P(s, t) the set of directed
(s, t)-paths of digraph G. The set of outcomes of a shortest path game is P ∪{c} where c is
a special outcome merging all infinite plays (lassos). Mapping g : Z → P ∪ {c}, defined in
the previous subsection, is the SP game form.

Proposition 2. Game form g is weakly rectangular.

Proof. We have two show that each (s, t)-path p ∈ P fills a box:

g−1(p) = Z∗ = Z∗

1 × . . .× Z∗

n ⊆ Z1 × . . .× Zn = Z.

Suppose that g(z′) = g(z′′) = p for two situations z′ = (z′1, . . . , z
′

n) and z
′′ = (z′′1 , . . . , z

′′

n)
in Z. It is enough to show that g(z) = p also for each situation z = (z1, . . . , zn) ∈ Z
such that zi = z′i or zi = z′′i for every player i ∈ I. By assumption, all 2n strategies

1We restrict ourselves and all players to their pure stationary strategies; no mixed or history dependent

ones are considered in this paper.
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z′1, . . . , z
′

n, z
′′

1 , . . . , z
′′

n require to follow p in every position v ∈ p. Then obviously, situation z
has the same property and, hence, g(z) = p as well.

An SP game form g is typically not tight, already in case n = 2.
Replace in g every (s, t)-path p ∈ P by its support m-vector wp = (wp(e) | e ∈ E),

where wp(e) = 1 for e ∈ p and wp(e) = 0 for e 6∈ p. Furthermore, replace outcome c in g by
m-vector wc with m entries equal +∞. Then, game form g will be replaced by a (weakly
rectangular) v+-form g+v , which will be called, an SP v+-form.

Return to case n = 2. The following statement follows immediately from definitions.

Theorem 3. Every two-person finite SP v+-form is tight if and only if bi-shortest path
conjecture holds.

Furthermore, by Theorem 2, tightness and NS are equivalent for v+-forms.
However, it is an open problem whether tightness holds for SP v+-forms and, thus,

bi-shortest path conjecture remains open too.

4.3 NS of n-person SP v
+-forms assigned to symmetric digraphs.

Main result. For n > 2, an n-person SP game (with positive local costs) may have
no NE. In other words, the corresponding n-person v+-forms are neither NS nor tight. An
example was constructed for n = 3 in [32]. However, tightness and NS hold in the following
important special case.

Digraph G = (V,E) is called symmetric if each non-terminal move in it is reversible,
that is, (u,w) ∈ E if and only if (w, u) ∈ E unless u = t or w = t. It was recently shown
that every n-person SP game on a finite symmetric digraph has an NE [6].

Terminal n-person games and costs. A local cost vector u : I × E → R
m is called

terminal if u(i, e) = 0 for each player i ∈ I and move e ∈ E unless e is a terminal move.
Note that these terminal costs are arbitrary real numbers: may be positive, negative, or 0.
An SP game with terminal costs is called terminal.

Remark 6. In this case, it is convenient to replace the unique terminal t = vt by a terminal
set VT ⊆ V assuming that each terminal move leads to a separate terminal. Then, costs can
be defined in terminals rather than for moves.

Each (finite) two-person terminal game has a NE, yet, this result does not hold for n-
person games with n > 2: an NE-free example for n = 4 was given in [33] and then, for
n = 3, in [9]; see Subsection 1.7 for more details. Yet, the problem is open if we assume
that the next condition holds:

(C) Any terminal outcome is better than c for each player i ∈ I.

Moreover, every known example of an NE-free terminal game has the following property:

(C22) There are at least 2 players each of whom has at least 2 terminals worse than c.

Is this true for all NE-free terminal games? Such conjecture was called “Catch 22” in
[26]. Also. in this preprint, the following strengthening of Catch 22 was suggested:

Partition digraph G into strongly connected components (SCCs) and assign an outcome
to each. In particular, every terminal vertex is an SCC, which will be called terminal, while
any other SCC will be called inner. Respectively, the corresponding outcomes will be called
terminal and inner, as well. See [24] and subsection 1.7 for more details.
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Let us merge all inner outcomes into one special outcome c. It is easily seen that such
operation respects NS and tightness. Yet, inverse is not true: these properties may appear
after merging even if they did not hold before.

Condition (C) and (C22) were generalized in [26] as follows:

(C′) Any terminal outcome is better than every inner one for each player i ∈ I.

(C′22) There are at least two players each of which has at least two terminal outcomes
that are worse than an inner one.

In n-person terminal case, NS remains open if n > 2 and a conditions from {(C),(C′),
(C22), (C′22)} is required.

4.4 Two versions of the bi-shortest path conjecture

In the same way we can strengthen the Bi-SP conjecture assuming that there are several
inner outcomes each of which is worse than every terminal outcome for both players, or in
other words, that condition (C′) holds.

Proposition 3. Both versions of the Bi-SP conjecture are equivalent.

Proof. Obviously, the strong one implies the standard one. Let us show that the inverse
implication holds too. Consider two cases.

Suppose that digraph G has no (s, t)-path. Then both versions of the Bi-SP conjecture
holds. The weak one is trivial, while the strong one holds, due to NS result of [24].

Suppose that digraph G has an (s, t)-path and the Bi-SP conjecture holds. Then, the
corresponding v+-form g+v is NS, that is, for any cost functions uA and uB, game (g+v , u

A, uB)
has a NE (x, y) such that gv + (x, y) is a terminal vector. Let us merge all inner outcomes.
Then, (x, y) remains a NE, by condition (C′).

If digraph G is symmetric then there exists a unique inner outcome and, hence, both
version of the Bi-SP conjecture coincide. Moreover, for symmetric digraphs NS holds even
for the n-person SP game forms [6]. In contrast, without assumption of symmetry, already
the weak version fails for n = 3 [32], and for n = 2 both versions of the Bi-SP conjectures
are equivalent and open.

For terminal costs, the strong version is proven for n = 2 in [24], while for n > 2 even
the weak version fails; the counterexamples were given for n = 4 in [33] and for n = 3 in
[9]. Yet, the weak and strong versions are open if we assume (C) and (C′), respectively, and
remain open if we weaken conditions (C) and (C′) requiring instead their Catch 22 versions,
(C22) and (C′22).
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