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Abstract

In this review we define and discuss metastates, mathematical tools with general applicability to thermodynamic

systems which are particularly useful when working with disordered or inhomogeneous short-range systems. In

an infinite such system there may be many competing thermodynamic states, which can lead to the absence of

a straightforward thermodynamic limit of local correlation functions. A metastate is a probability measure on

the infinite-volume thermodynamic states that restores the connection between those states and the Gibbs states

observed in finite volumes. After introducing the basic metastates and discussing their properties, we present

possible scenarios for the spin-glass phase and discuss what the metastate approach reveals about how replica

symmetry breaking would manifest itself in finite-dimensional short-range spin glasses.
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I. INTRODUCTION

The presence of quenched disorder in condensed matter systems creates special challenges for sta-

tistical mechanics, designed primarily to deal with thermal disorder. A proper statistical mechanical

treatment of a system whose Hamiltonian contains quenched random variables requires averaging the

free energy, rather than the partition function, over these variables. This led to the so-called “replica

trick”, first used in the context of spin glasses by Edwards and Anderson [1] (EA). Sherrington and Kirk-

patrick (SK) [2] applied the replica trick to an infinite-range spin glass model, using the “spin freezing”

order parameter proposed in [1], but found the solution to be thermodynamically unstable at low temper-

ature. The solution, found by Giorgio Parisi in 1979 [3], required an exotic and non-intuitive notion of

“replica symmetry breaking” (RSB); it was a stunning result that led (in Phil Anderson’s words [4]) to a

“cornucopia” of applications, to which this volume is dedicated.

A related problem, on which the effectiveness of theoretical statistical mechanics depends, is the ex-

istence of a thermodynamic limit for the state in which a system resides. When encountering the subject

for the first time a student typically learns that for a macroscopic system comprising N ∼ 1024−1025 de-

grees of freedom with short-range interactions, the effects of surfaces on bulk thermodynamic properties

vanishes for large system size, so that a straightforward N → ∞ limit describes the thermodynamics of a

large but finite sample. This approach works well in describing the condensed phase for systems without

quenched disorder (so long as an appropriate order parameter is identified), as well as for some systems

with quenched disorder. But when quenched disorder is present, its success cannot be guaranteed, par-

ticularly if the low-temperature phase consists of many pure states unrelated by any simple symmetry

transformation.

This is not merely a theoretical issue. Consider for example a dilute magnetic alloy such as CuMn,

which for a range of Mn concentrations displays spin glass behavior, and two labs which prepare their

samples under similar conditions. The locations of the magnetic impurity Mn atoms within the Cu lattice

will differ in the two samples, leading to a different distribution of ferromagnetic and antiferromagnetic

couplings; in more formal language, the two samples have different realizations of the spin-spin cou-

plings. It now becomes crucial to understand what effect the difference in coupling realizations will have

on the system thermodynamics: if there is too much dependence then universal behavior would be absent,

i.e., different samples would behave differently.

Fortunately, it can be shown that measurable global properties (i.e., quantities which do not depend

on the configuration of any finite subset of an infinite system) do not in general depend on coupling re-

alization:1 these global quantities include energy/free energy per spin, magnetization per spin, transition

1 An important exception is the spin or edge overlap between two states in a system with RSB; the fact that this global
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temperature, and so on. Thermodynamic states, however, are local: they can be considered as enumer-

ations of all k-spin correlation functions, where k = 1,2,3, . . .. As such they are exquisitely sensitive to

coupling realization, and the usual straightforward approach of taking a simple thermodynamic limit can

break down. As we will see, this is especially important when dealing with systems in which the ordering

at low temperature is described by RSB.

In what follows we will discuss in further detail the breakdown in certain cases of the straightforward

thermodynamic limit (i.e., one not conditioned on the quenched disorder), and present the concept of a

metastate as a statistical-mechanical tool designed to handle this. We will show how metastates are useful

for describing the properties of large finite volumes in the absence of a straightforward thermodynamic

limit, and investigate some of their uses and applications. Given that the volume in which this contribution

appears is dedicated to the many applications of RSB, we will focus our attention on how the metastate

is especially useful when working with systems in which the low-temperature ordering is or may be

described by RSB, such as EA spin glasses.

II. CHAOTIC SIZE DEPENDENCE AND THE THERMODYNAMIC LIMIT

We will be primarily interested in the EA Ising spin glass [1] in zero field. Its (infinite-volume)

Hamiltonian is given by

HJ(σ) =− ∑
{x,y}

Jxyσxσy (1)

where x, y . . .∈ Z
d are sites in the d-dimensional hypercubic lattice Zd , σx =±1 is an Ising spin at site x

and {x,y} denotes an “edge” in the set Ed of nearest-neighbor pairs. The couplings (or bonds) Jxy = Jyx

are independent, identically-distributed continuous random variables chosen from a distribution ν(dJxy),

with random variable Jxy assigned to the edge {x,y}. For simplicity we will assume that ν is supported

on the entire real line, is distributed symmetrically about zero, and has finite variance; e.g., a Gaussian

with mean zero and variance one. We denote by J a particular realization of the couplings.

Theoretically and numerically (not to mention experimentally!) one necessarily works with finite vol-

umes. Let ΛL ⊂Z
d denote a cube of side L centered at the origin, |ΛL| denote its volume, i.e., the number

of spins contained within ΛL, and ∂ΛL its boundary. One then considers HJ,L(σ), the Hamiltonian (1)

restricted to ΛL with a specified boundary condition on ∂ΛL, usually taken to be periodic, which among

other advantages preserves the spin-flip symmetry of the Hamiltonian. The thermodynamics within ΛL

is described by the finite-volume Gibbs distribution ρ(L): for any (well-behaved) function f (σ) of some

quantity is “non-self-averaging” was one of the surprises of RSB. Non-self-averaging in the context of short-range models

is discussed in Sect. IV D 1.
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subset of the spins within ΛL, its expectation at inverse temperature β = 1/T is given by

〈 f (σ)〉ρ(L) = ∑
{σL}

f (σ)e−βHJ,L(σ)/ ∑
{σL}

e−βHJ,L(σ) (2)

where ∑{σL} denotes a sum over all 2|ΛL| spin configurations within ΛL. The usual procedure is to solve

for ρ(L) in some ΛL with L large, followed by taking some infinite sequence of volumes ΛL with L → ∞.

The question then arises, under what conditions do the thermodynamic quantities under investigation

converge in the thermodynamic limit?

The question of convergence (not depending on the choice of sequence of volumes) typically doesn’t

arise in theoretical physics (outside of mathematical physics), because it usually doesn’t present a prob-

lem. In both the EA and SK spin glasses, most global quantities, such as those mentioned in the In-

troduction, can be shown to converge [5–7] (with probability one in the coupling realizations2). But if

we’re interested in studying the thermodynamic states themselves (i.e., as mentioned above, the set of

all finite-spin correlation functions), then a problem may arise at low temperatures, particularly if many

pure states are present.

This was addressed in [8], which considered the EA Hamiltonian (1) in an infinite sequence of volumes

ΛL. The focus there was on “gauge-related” boundary conditions, i.e., boundary conditions related by

a gauge transformation, such as periodic and antiperiodic or any two fixed boundary conditions (for a

definition and detailed discussion of gauge-related boundary conditions, see Sect. IX of [9]). Several

theorems were proved in [8], but both their statements and proofs will be omitted here. For our purposes,

the consequences of the theorems can be summarized as follows.

Consider an infinite sequence of volumes with periodic boundary conditions as described above, and

suppose that there exists only a single pair of globally spin-flip related pure states (at positive temperature)

or ground states (at zero temperature), such as would occur in either the scaling-droplet (SD) [10–13] or

trivial–non-trivial (TNT) [14, 15] pictures. Then any infinite sequence, chosen independently of the

couplings, will converge to a limiting thermodynamic state: namely, a mixed state comprising the two

globally reversed pure/ground states, each with probability 1/2.

Suppose, on the other hand, that the Hamiltonian (1) supports infinitely many incongruent [16] (i.e.,

differing by relative interfaces with dimensionality equal to the space dimension) pure/ground states, as

predicted by the RSB [3, 17–22] or chaotic pairs (CP) [23–25] pictures. Then an infinite sequence of

volumes chosen independently of the couplings will generally not converge to an infinite-volume (pure

or mixed) thermodynamic state, a phenomenon referred to as chaotic size dependence (CSD) [8, 26].

2 Throughout this paper, all conclusions drawn about spin glasses should be understood as occurring with probability one in

the coupling realizations unless otherwise noted.
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Instead, there are infinitely many convergent subsequences of volumes, each of which converges to a

thermodynamic state different from the others. Although compactness of the space of spin configura-

tions ensures [27] that the thermodynamic states of appropriately chosen subsequences of volumes will

converge, in general these subsequences must be chosen dependent on the coupling realization.

Before proceeding, it may be worthwhile to step back and note that nonconvergence of the above

type can occur in any system, if the boundary conditions are not chosen appropriately. Consider for

example a simple uniform Ising ferromagnet in zero field in two or higher dimensions. An infinite

sequence of volumes with periodic or free boundary conditions will of course converge to a mixture of

the positive and negatively magnetized states, each with probability 1/2. But suppose one chose instead

fixed random boundary conditions, where for every volume the spins at the boundary are chosen to be +1

or −1 independently in accordance with a fair coin toss. In that case the sequence will not converge, in the

following sense: consider any fixed volume ΛW , and consider the spin configuration (at zero temperature)

or correlation functions (at positive temperature), within this fixed volume, which we hereafter refer to as

a “window”. Then at low temperature, for a sequence of ΛL’s with fixed random boundary conditions, the

thermodynamic state within the window ΛW will continually flip between the positively and negatively

magnetized states (depending on whether the boundary condition on ∂ΛL has an excess of plus or minus

spins) as L → ∞, never tending toward a limit. In this case there are two subsequences of boundary

conditions leading to separate limits, one being the positively magnetized and the other the negatively

magnetized state.

Of course for the uniform ferromagnet we understand the nature of the broken symmetry and the order

parameter, and how to choose appropriate boundary conditions to arrive at the desired thermodynamic

limit. For the spin glass and similar systems with quenched disorder, however, the situation is far more

complicated: even knowing the order parameter, whether the EA order parameter [1] or the Parisi order

parameter [3, 17–20], or something else, will not solve the problem. We simply don’t know how to choose

coupling-dependent boundary conditions that lead to thermodynamic convergence, and even if we did,

these coupling-dependent boundary conditions would lead to non-measurability and consequently no

clear way of averaging over coupling realizations. Put another way, there is likely no finite procedure

for selecting convergent subsequences, thereby generating thermodynamic states. CSD arising in this

way appears to be a fundamental property of Hamiltonians with quenched randomness, and cannot be

transformed away by any known methods.3

The metastate concept was introduced as a tool for handling these sorts of situations; we turn to its

definition, construction, and properties in the next section.

3 CSD occurs also in the SK model, though in the sense of overlap distributions; see Sect. 5.1 of [26].
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III. METASTATES

A. Analogy to chaotic dynamical systems

The term “chaotic size dependence” provides more than a picturesque description of the nonconver-

gence of correlation functions in a coupling-independent sequence of volumes: there is a deep analogy to

dynamical chaos which provides a clue to resolving the difficulties posed by CSD. Consider the chaotic

orbit of a particle in a dynamical system: its behavior in time t is deterministic but effectively unpre-

dictable, and can be treated as if it were a random sampling from some distribution κ on the particle’s

space of states. One way to construct κ is through a histogram that records the proportion of time the

particle spends in each (coarse-grained) region of states.

Similarly, for systems with quenched disorder such as spin glasses, the behavior of correlation func-

tions as L changes is analogous to the particle’s chaotic behavior in time t. Roughly speaking, the fraction

of ΛL’s in which a given thermodynamic state appears can be shown to converge as L → ∞ [28–30], just

as the κ describing the chaotic behavior of a dynamical system converges as t → ∞. The resulting distri-

bution over thermodynamic states carries information on how often a given state appears within ΛL’s in

the infinite sequence.

Strictly speaking, a thermodynamic state Γ is an infinite-volume quantity; by saying that it “appears”

within a finite volume ΛL, we mean the following. Fix a window ΛW deep inside ΛL, i.e., with W ≪ L;

within this window all correlation functions computed using the finite-volume Gibbs state ρ(L) are the

same as those computed using Γ (with negligibly small deviations going to zero as L → ∞ with W fixed).

B. Constructions of metastates

There are several kinds of metastate which carry different kinds of information; here we focus on the

simplest variety. A metastate depends on the Hamiltonian (which we will hereafter assume to be (1)),

the dimension d, temperature T (which can be zero [31] or nonzero [32]), disorder realization (corre-

sponding here to J), and an infinite sequence of volumes ΛL each with a specified boundary condition.

We will hereafter assume that every ΛL has periodic boundary conditions unless otherwise specified. We

will denote a resulting “periodic boundary condition metastate” by κJ , where dependence on all other

quantities is suppressed but understood.

There are two independent constructions of metastates, one initially constructed for random-field mag-

nets [33] and one initially constructed for spin glasses [28]. It was proved in [29] (see also [30]) that there

exists an infinite sequence of volumes, chosen independently of J, for which the two constructions give

the same metastate, and so either method can be used, depending on which is more convenient to address
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the problem at hand. Both constructions are sufficiently general that they can be used for a wide variety

of applications, including mean-field (MF) Curie-Weiss ferromagnets with random couplings [34, 35],

neural networks [34, 36], and other disordered systems.

The first construction, due to Aizenman and Wehr (AW) [33], uses a canonical ensemble approach

based on varying the couplings outside ΛL. Let ρ(L) denote the finite-volume Gibbs state (or ground

state pair at zero temperature) in ΛL with periodic boundary conditions, and consider for each ΛL the

random pair (JL,ρ
(L)), where JL is the restriction of J to EL, and take the limit (using compactness

[27]) of these finite-dimensional distributions along a J-independent subsequence of L’s. This yields a

probability distribution κ on infinite-volume pairs (J,Γ), where Γ denotes a thermodynamic state, which

is translation-invariant (because of the use of periodic boundary conditions) under simultaneous lattice

translations of J and ρ(L). The metastate is then the conditional distribution κJ of κ given a fixed J;

it is supported on the infinite-volume thermodynamic states arising from (sub)sequence limits of finite-

volume Gibbs states.

The second construction, due to Newman and Stein (NS) [28], is motivated by the chaotic orbits

analogy. Given an infinite sequence of volumes ΛL1
, ΛL2

, . . . with L1 ≪ L2 ≪ . . . such that Lk → ∞

as k → ∞, construct a microcanonical ensemble κN in which each of the finite-volume Gibbs states (or

ground states at zero temperature) ρ(L1),ρ(L2), . . . ,ρ(LN) has weight N−1. The ensemble κN converges

to the metastate κJ as N → ∞ (again, possibly with use of a subsequence) in the sense that, for every

well-behaved function g(·) on thermodynamic states Γ (e.g., a function on finitely many spins),

lim
N→∞

N−1
N

∑
k=1

g(ρ(Lk)) =

∫

g(Γ) dκJ(Γ) . (3)

From (3) we see that
∫

dκJ(Γ) = 1 and κJ can therefore be interpreted as a probability measure on

thermodynamic states: the finite-volume probability of any event depending on a finite set of spins and/or

couplings converges in the infinite-volume limit to the κJ-probability of that event.

C. Large finite volumes and the thermodynamic limit

A metastate reconciles how nonconvergence in the thermodynamic limit can be used to provide infor-

mation on the state of a typical macroscopically large volume. The information contained in κJ includes

the fraction of cube sizes Lk which the system spends in different infinite-volume thermodynamic states

as k → ∞. If there is only a single pair of pure/ground states, as in SD [10–13], then along any deter-

ministic (i.e., not conditioned on J) sequence of volumes the distribution of spin configurations in any

fixed window ΛW generated by the finite-volume Gibbs states will eventually settle down to a fixed state,
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which as discussed above is the restriction of the infinite-volume thermodynamic state to ΛW .

On the other hand, if there are many infinite-volume thermodynamic states, as in RSB [3, 17–22] (see

below), then CSD occurs and the set of correlation functions in ΛW never converges to a limit. Instead,

for any ΛLk
with Lk sufficiently large, the set of all correlation functions in ΛW will be identical to that

of one of the many (pure or mixed) infinite-volume thermodynamic states available for the system to

choose from, and the “chosen” state varies with Lk. Although the correlation function values in ΛW never

settle down, the fraction of volumes ΛLk
in which a particular thermodynamic states appears in ΛW does

converge (along the subsequence) to a limit, and this information is contained within κJ [29, 30].

D. Formal definition and covariance properties of a metastate

As mentioned earlier, there are more complex metastate constructions that contain more information

than the “simplest” metastate discussed above. A particularly useful construct at zero temperature is

a so-called excitation metastate [37–40]), which contains information not only on the probability of

appearance of different ground states but also all possible local excitations above each ground state. We

do not discuss these other metastates here but refer the reader to the references for more details.

For the simple periodic boundary condition metastate, we saw in the previous section two different

but equivalent constructions. By themselves they do not define a metastate, considering that there may

be other constructions that also lead to the same result. To arrive at a formal definition, we would like a

metastate to satisfy certain properties: it must be supported on (infinite-volume) thermodynamic states of

the Hamiltonian at positive temperature or ground states at zero temperature, and it must be a probability

distribution on these thermodynamic states in the sense of (3). We would also like a metastate to satisfy

certain useful covariance properties, to be discussed below.

We begin by formally defining thermodynamic states (i.e., infinite-volume Gibbs states) as probability

measures on spin configurations. Let Σ= {−1,+1}Z
d

be the set of all infinite-volume spin configurations

and let M1(Σ) be the set of (regular Borel) probability measures on Σ. An infinite-volume Gibbs state Γ

for the Hamiltonian HJ (1) is an element of M1(Σ) that (at a given temperature T ) satisfies the Dobrushin-

Lanford-Ruelle (DLR) equations [41] for that Hamiltonian. Essentially, the DLR equations require that

the conditional probability in Γ of the occurrence of an event in any finite subregion ΛL (in particular, of a

given configuration of a finite set of spins S ⊆ ΛL), conditioned on the spins outside ΛL, be equal to that

obtained from the finite-volume Gibbs distribution ρ(L), using the boundary condition on ∂ΛL determined

by the spin configuration outside ΛL. An infinite-volume Gibbs state may be pure or mixed, i.e., a convex

combination of two or more pure states. (A pure state is a Gibbs state that cannot be expressed as a convex

combination of other Gibbs states; see also Sec. IV B.) We denote the set of infinite-volume Gibbs states
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corresponding to the coupling realization J by GJ.

We can now formally define metastates κJ for the EA Hamiltonian (1) on Z
d as follows:

Definition 3.1 A metastate κJ is a measurable mapping

R
E

d

→ M1(Σ)

J 7→ κJ

(4)

with the following properties:

1. Support on Gibbs states. Every state sampled from κJ is a thermodynamic state for the realization

J:

κJ

(

GJ

)

= 1.

2. Coupling Covariance. For B ⊂ Z
d finite, JB ∈ R

E(B) (the set of edges in B), and any measurable

subset A of M1(Σ), we define the operation LJB
: Γ 7→ LJB

Γ by its effect on expectation 〈· · ·〉Γ in

Γ,

〈 f (σ)〉
LJB

Γ =

〈

f (σ)exp
(

−βHJB
(σ)

)〉

Γ
〈

exp
(

−βHJB
(σ)

)〉

Γ

, (5)

which describes the effect of modifying the couplings within a finite subset B of Z
d . We then

require that the metastate be covariant under local modifications of the couplings, i.e.,

κJ+JB
(A) = κJ(L

−1
JB

A)

where L
−1

JB
A =

{

Γ ∈ M1(Σ) : LJB
Γ ∈ A

}

.

We further define a translation-covariant metastate:

Definition 3.2 A translation-covariant metastate is a metastate κJ with the additional property of

1. Translation Covariance. For any translation τ of Zd and any measurable subset A of M1(Σ),

κτJ(A) = κJ(τ
−1A).

These requirements, including translation covariance, are satisfied by both the AW and NS periodic

boundary condition metastate constructions. Translation covariance follows easily in the thermody-

namic limit from the torus-translation-covariance of periodic boundary conditions. For other coupling-

independent boundary conditions, metastates can be obtained in a similar way as for periodic boundary
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conditions, but are not necessarily translation covariant; however, translation covariance can be recov-

ered by taking an average of the translates of the finite-volume Gibbs measures [38, 39]. In practice,

translation covariance is a crucial property without which few conclusions can be drawn.

The importance of coupling covariance, i.e., covariance of a (possibly not translation-covariant) metas-

tate under a local modification of the couplings, is less obvious. We note first that under any finite change

in coupling values, pure states transform to pure states (with some local changes in correlation func-

tions). An important consequence of coupling covariance is that if a metastate is supported on some set

of pure states, then under any finite coupling transformation J → J′ the transformed metastate κJ′ will

be supported on the same set of pure states as κJ (modulo finite changes in certain correlation functions

due to the coupling transformation). Coupling covariance is useful because it helps make explicit the

dependence of the metastate on any finite set of couplings. This is crucial because numerous applica-

tions, particularly taking derivatives with respect to coupings, require taking into account the dependence

of free energies or other thermodynamic quantities on all of the couplings. Moreover, covariance with

respect to changes of couplings ensures that taking derivatives with respect to couplings will not generate

difficult-to-handle boundary terms induced by pure states flowing into or out of a region of integration.

1. Gauge invariance of metastates

Definition 3.1, along with the equivalence of AW and NS metastates obtained along certain deter-

ministic sequences of volumes, leads to another covariance property of such metastates, proved in [25],

namely that they display gauge invariance with respect to boundary conditions. Recall that construct-

ing a metastate requires specification in advance of the boundary conditions on an infinite sequence of

volumes. The theorem of [25] shows that a metastate is unchanged by any gauge transformation along

all or any subset of boundaries ∂ΛL in the sequence. In other words periodic and antiperiodic boundary

condition metastates are identical, as are any metastates constructed with any combination of periodic

and antiperiodic boundary conditions within or between volumes. Similarly, all fixed boundary condi-

tion metastates are equivalent, for any way of determining the fixed boundary conditions, so long as it is

independent of J.

This leads to several powerful conclusions; among them is that our restriction in this contribution to

periodic boundary condition metastates incurs little loss of generality. What is important is that Defini-

tion 3.1 almost certainly requires the use of coupling-independent boundary conditions to generate metas-

tates. The use of coupling-dependent boundary conditions, though potentially useful for some purposes,

would almost certainly result in losing the essential properties of measurability, translation-covariance,

and coupling-covariance.
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Now that metastates have been defined and their basic properties enumerated, we can turn to some

applications. Our main interest in this contribution is how the metastate construct can be used to specify

what RSB can (and cannot) mean in the EA model in finite dimensions. We turn to this question in the

next section.

IV. METASTATES AND PURE STATES

Next we will make some further definitions, and then describe distinct classes of scenarios that are

possible within the metastate framework. The entire discussion in this section is for infinite-volume

systems.

A. Trivial versus non-trivial metastates and the metastate-average state (barycenter)

We begin by defining what we will mean by a “trivial metastate”. We say a metastate is trivial if κJ

consists of a single atom, in other words a point mass or δ -function on a single Gibbs (i.e. DLR) state;

otherwise, it is nontrivial or “dispersed”.

An additional construction based on the metastate will be used. Given a metastate, the Gibbs states

can be averaged using the metastate, to produce the metastate-average state (MAS) or barycenter ρJ(σ)

[24, 26, 28, 33], which is itself a Gibbs state (though a rather special one), and which still depends on the

sample of J. That is, ρJ(σ) = [Γ(σ)]κJ
, where the square bracket [· · · ]κJ

denotes metastate average, in

other words

ρJ(σ) =
∫

Γ(σ)dκJ(Γ). (6)

If the metastate is trivial, then the MAS ρJ = Γ, the Gibbs state on which κJ is concentrated.

B. Pure-state decomposition of a Gibbs state

A convex combination (or mixture) of distinct Gibbs states for the same HJ is again a Gibbs state;

in general, a convex combination could involve an average taken using a probability measure on Gibbs

states. A Gibbs state that cannot be expressed as such a combination of other Gibbs states is called an

extremal or pure (Gibbs) state. Any Gibbs state can be decomposed uniquely into a mixture of pure states

for the same H [41, 42], in the form

Γ(σ) = ∑
α

wΓ(α)Γα(σ), (7)
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where Γα are pure states, and for any given Γ the weights wΓ(α) ≥ 0 sum to 1. [In practice the decom-

position might be continuous and the sum over α would be replaced with an integral using the measure

wΓ(α), but we will usually not show this explicitly.] Pure states can also be characterized in other, more

intrinsic, ways; one of these is that they exhibit clustering of correlations [41, 42]. For example, a simple

consequence of clustering is that if the Gibbs state Γ is pure then

〈σx(τ
−1σ)x〉Γ → 〈σx〉Γ〈(τ

−1σ)x〉Γ (8)

as |x− τ(x)| → ∞ [again, (τ−1σ)x = στ(x) is a translation of σx], and a similar statement holds for any

two local functions A(σ) and B(σ) built from spins near x taking the place of the two σx’s. The pure

states correspond to the “ordered” states, which should be familiar in cases such as the uniform Ising

ferromagnet in zero magnetic field, which at low temperature (for dimension ≥ 2) has (at least) two

ordered states; in one of these, the majority of spins in any finite region in a typical configuration are +1,

while in the other, they are −1.

The Hamiltonian HJ for a classical spin system with quenched disorder may possess a nontrivial

group of global “internal” symmetry operations that act locally on all spins simultaneously, and leave HJ

invariant. For example, the EA Hamiltonian in eq. (1) is invariant under a global spin flip which maps

σx →−σx for all x. If a magnetic field were included, by adding −h∑x σx to HJ , this symmetry would be

lost. From here on we will assume that a metastate is obtained using a boundary condition that respects

the internal symmetry of the Hamiltonian, in which case the metastate constructions preserve any such

symmetries: a Gibbs state drawn from a metastate κJ will be invariant under the full symmetry group

of the Hamiltonian, which in turn implies symmetries (Ward identities) of correlation functions in that

Gibbs state.

In the high-temperature region, there is a unique Gibbs state, which is pure, and the metastate is unique

and trivial. In this case, the pure state is invariant under the symmetry operations. In a low-temperature

phase, it may be that a given pure state is not invariant under the full symmetry group (when the group

is nontrivial), in which case it is said to exhibit spontaneous symmetry breaking [41, 42]. In general, the

pure states can be partitioned into orbits, defined such that the symmetry group acts transitively on each

orbit. Each orbit consists either of a single invariant pure state, or of more than one pure state. As a Gibbs

state drawn from the metastate κJ must be invariant under the symmetry, the pure-state decomposition of

a Gibbs state drawn from κJ must consist of symmetry orbits. We will call a Gibbs state trivial if its pure-

state decomposition consists of a single symmetry orbit, and nontrivial if it consists of more than one.

(While spontaneous symmetry breaking is certainly a nontrivial phenomenon, and is expected to occur

at low temperature in many spin-glass systems with nontrivial symmetry groups, this terminology will
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be useful for our analysis of spin-glass phases.) Thus this definition using symmetry orbits can handle

all cases, including high and low temperature, both discrete and continuous symmetries, and zero and

nonzero magnetic field.

For the MAS, we also define its pure-state decomposition

ρJ(σ) = ∑
Γ

κJ(Γ) ∑
α∈Γ

wα(Γ)Γα(σ) (9)

= ∑
α

µ(α)Γα(σ), (10)

where the weights are µ(α) = ∑Γ κJ(Γ)wΓ(α) = [wΓ(α)]κJ
, and implicitly depend on J. Here again we

have written sums, though some of these may in fact be integrals over a probability measure. The same

distinction between trivial and nontrivial decompositions of a Gibbs state can be applied to this one.

C. Classes of scenarios for spin glasses

The preceding definitions of trivial and nontrivial, both for metastates and for Gibbs states, now lead

to four combinations [22, 24, 28] that provide a broad-brush classification of scenarios for short-range

spin glasses, such as the EA model. To simplify the description, we assume the Gibbs states have the

same character (i.e., either trivial or non-trivial) for almost every Gibbs state drawn from the metastate (it

is unknown whether this must be true, however, the same conclusions would hold if we replaced “almost

surely non-trivial Gibbs states” with “nonzero probability of non-trivial Gibbs states”). As far as is known

to the authors at the time of writing, all four classes remain open as possibilities that may occur in some

model systems, possibly in different dimensions of space, or at different parameter values, for example

different temperatures or magnetic fields. They are:

1) Both the metastate and the Gibbs states are trivial. This is the case in the important SD scenario [10–

13], as assumed either implicitly [10, 11], or (for the Gibbs states) explicitly, following some discussion

[13]. Scenarios in this class still allow for rich physical phenomena at low temperature [13]. It is also the

case that occurs at high temperature.

2) Nontrivial metastate and trivial Gibbs states. NS [23, 24, 28] termed this class chaotic pairs (CPs),

referring to the Ising EA model at zero magnetic field (the pairs being the symmetry orbits), while the

term “chaotic singles” has been used for the same but with a magnetic field [22].

3) Trivial metastate and nontrivial Gibbs states. There is no widely accepted name for this class of

scenarios, but below we will mention its connection with the literature. (NS [23, 24, 28] originally

termed one scenario in this class the standard SK picture, but we discuss this point in the following

subsection.)
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4) Both the metastate and the Gibbs states are nontrivial. This class is the broadest, and its instances have

the richest structure. Below we review arguments that the scenario predicted by RSB [3, 17–22] is in this

class in general. (NS [23, 24, 28] originally referred to a scenario in this class as non-standard SK.)

It follows from this classification that in all classes, except class 1), the MAS is a nontrivial Gibbs state.

Although we mainly discuss positive temperature, it may be useful to say something about T = 0

also. If the probability distribution of the bonds J is continuous without atoms (so not, for example, the

bimodal model, in which Jxy = ±J0 for J0 > 0 constant), as assumed so far and as we will continue to

assume in this paragraph, then at zero temperature a pure state is a ground state (with probability one),

that is a single spin configuration. For classical spins, ground states always form non-trivial symmetry

orbits. Some reflection on the metastate constructions shows that at T = 0 the Gibbs states drawn from

the metastate are trivial with probability one. Hence, at T = 0, only classes 1) and 2) can occur. We may

expect that if 3) or 4) occur at T > 0, then as T → 0, assuming that no other phase transition intervenes,

a scenario in class 3) will reduce to one in 1), and one in 4) to one in 2).

D. Constraints on the scenarios

Next we discuss some rigorous constraints on the behavior of the scenarios within the preceding

classification.

1. Non-self-averaging of overlap distributions

Here we will need to refer to the overlaps of pure states, and to a version [24] of Parisi’s overlap

distribution function P(q) [17] for the EA model. Given two pure states Γα , Γα ′ , we can define the

average overlap qαα ′ in the window ΛW , and take W → ∞:

qαα ′ = lim
W→∞

1

W d ∑
x∈ΛW

〈σx〉α〈σx〉α ′. (11)

When (J,Γ) are drawn from the distribution κ , which is translation invariant, and Γα , Γα ′ are drawn

from the distribution wΓ(α)wΓ(α
′) on pairs of pure states in Γ [and note that κ(J,Γ)wΓ(α)wΓ(α

′) is

translation invariant], then the ergodic theorem (for translations) implies that the W → ∞ limit of the

random variable qαα ′ exists almost surely; the limit is translation invariant. Similarly to Parisi [17], we

then define the probability distribution of overlaps for (J,Γ) by

PJ,Γ(q) = ∑
α,α ′

wΓ(α)wΓ(α
′)δ (q−qαα ′). (12)
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We define PJ(q) = [PJ,Γ(q)]κJ
to be the metastate average of PJ,Γ(q) over Γ; thus if the metastate is

trivial, PJ(q) = PJ,Γ(q). Finally, writing [· · · ]ν for expectation using the distribution ν(J) on J, we define

P(q) = [PJ(q)]ν . For the MAS ρJ , we define PJ,ρ(q) similarly to PJ,Γ, using the pure-state decomposition

of ρJ introduced earlier. Each of these distributions is invariant under translations of (J,Γ). We note that

for the EA model at zero magnetic field, the overlaps for the two members of a non-trivial symmetry

orbit with another fixed pure state have opposite signs, and then PJ,Γ(q) is an even function of q.

A feature of the RSB MF theory obtained for the infinite-range SK model is that, while the thermody-

namic functions such as the free energy per spin self-average (that is, its thermodynamic limit exists for

given disorder, and is almost surely a constant without fluctuations due to the disorder) [5–7], the same

is not true for the distribution of overlaps in a given sample of the SK model [19, 43]. In contrast, for

short-range models such as the EA model, both PJ(q) and PJ,ρ(q) must self average, as a consequence of

translation invariance and the ergodicity of the distribution ν(J) [23]. Consequently, the picture of RSB

in short-range models as belonging to class 3), as seemed to be assumed within the standard interpreta-

tions of that time, was shown to be inconsistent with the behavior that would be expected on the basis

of the RSB MF theory. Given the ergodicity of ν , what was called non-self-averaging (NSA) behavior

is permitted in a short-range model only for PJ,Γ(q) and only if κ is not ergodic, and hence only if κJ is

non-trivial [24, 28]. Further, within the RSB scheme (discussed further below), NSA behavior can arise

only within class 4), with both a non-trivial metastate and non-trivial Gibbs states [22].

2. Cardinality and structure of pure-state decompositions

The results of the preceding subsection can be refined further. Using both coupling covariance and

translation covariance, it was shown in Ref. [44] that if the Gibbs states drawn from the metastate are

nontrivial, then the pure-state decomposition of the MAS must be uncountable, forming a continuum

without any atoms. Hence for scenarios in class 4), such as RSB, if the Gibbs states have a decomposition

into a countable number of symmetry orbits, as suggested by RSB, then the metastate not only must be

non-trivial but also must be a continuous atomless distribution on Gibbs states. Also, in class 3) the

nontrivial Gibbs state must have a decomposition into a continuous atomless distribution on pure states.

On the other hand, for scenarios in class 2), such as CPs, the metastate is permitted to have support on a

countable or even a finite number (> 1) of trivial Gibbs states. We suspect that here too for spin glasses

the metastate must be supported on infinitely many such Gibbs states, but as of now the question remains

open.
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3. Complexity of Gibbs states and metastates

A further refinement invokes the idea of complexity of a pure-state decomposition. In the form sug-

gested by Palmer [45], complexity is the entropy of the set of weights wΓ(α) occurring in the decompo-

sition of a given Γ; crudely, this corresponds to the logarithm of the number of pure states, at least if they

all have approximately the same weight. This notion of entropy is well defined, but less useful if it turns

out to be infinite. In the latter case, Palmer suggested calculating it in finite size, and that it might even

be extensive, increasing proportionally to the volume as the system size increases. But this runs into the

problem that, in finite size, pure states and hence the decomposition are not well defined. Ignoring that

difficulty for a moment, it was recognized that the complexity cannot be extensive [46]. Working with

well-defined pure states in infinite size, the idea for a given Gibbs state of counting the number of pure

states that can be distinguished when examining the spin configuration in a finite window was proposed

[24, 26, 28]. For a (hyper-)cubic window Λ = ΛW of side W , centered say at the origin, it was expected

in a short-range model that the logarithm of the number of distinguishable pure states could not grow

with W faster than W d−1 [24, 26, 28]. For Ising spins with nearest-neighbor interactions, this arises from

counting the number of boundary conditions on the hypercube that could produce different ground states,

and the expectation that the same bound would apply for T > 0.

All these issues can be dealt with in a well-defined way by using some information theory [47]. A pure

state corresponds to a boundary condition, effectively at infinity. The weights and the pure states allow

us to consider the joint distribution wΓ(α)Γα(σ) of pure states α and spin configurations σ (for given

Γ). If we restrict σ to the spin configuration σΛ in the hypercube Λ = ΛW as before, then the mutual

information I(σΛ;α) ≥ 0 between σΛ and α can be defined in terms of the joint distribution of those

random variables, and we now call this ΛW -dependent quantity the complexity KΓ(ΛW ) of the Gibbs state

Γ [48, 49]:

KΓ(ΛW )≡ IΓ(σΛ;α) = ∑
σΛ,α

wΓ(α)Γα(σΛ) ln
wΓ(α)Γα(σΛ)

wΓ(α)Γ(σΛ)
(13)

[recall that Γ(σΛ) = ∑α wΓ(α)Γα(σΛ)]. This definition does not use any notion of distinguishability of

pure states within a window. As W → ∞, KΓ(ΛW ) increases monotonically, and tends to the same value

as for Palmer’s definition of complexity. We can similarly define the complexity KρJ
(ΛW ) of the MAS

ρJ in place of Γ, and also the complexity KκJ
(ΛW ) of the metastate κJ itself: KκJ

(ΛW ) is defined as the

mutual information between the Gibbs (not pure) state Γ and σΛ, using the joint distribution κJ(Γ)Γ(σΛ)

[49]. These three quantities are related (for given J and ΛW ) by

KρJ
(ΛW ) = [KΓ(ΛW )]κJ

+KκJ
(ΛW ). (14)
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For any of these complexities, if it (or its expectation using κJ or κ) diverges as W → ∞, then we can

look for the manner in which it diverges. If the leading behavior is ∼W d−ζ ′
, then d−ζ ′ > 0 indicates an

uncountable number of pure states (or Gibbs states in the case of KκJ
). These definitions help to quantify

the structures in the above classification, and the exponents d −ζ ′ are expected to be universal within a

phase, for example, independent of temperature.

In the nearest-neighbor EA model of Ising spins in eq. (1), a simple argument, similar to counting

boundary conditions, then produces a bound on the κ-expectation of the complexity KΓ(ΛW ) of the Gibbs

states by a constant times the surface area W d−1 [48]. More generally, a bound of the same form can be

obtained for short-range models of classical spins [49], though the argument was valid only for T > 0.

(A corresponding result for long-range models was also obtained.) The same bounds also apply to the

expectations of the other two complexities; thus ζ ′ ≥ 1. Within the usual interpretation of RSB theory,

the expected complexity of a Gibbs state as W → ∞ is limW→∞

[

[KΓ(ΛW )]κJ

]

ν
= ψ(1)−ψ(1−x1) [50],

where ψ is the digamma function and 1− x1 is the weight in the δ -function in P(q) at q(1), interpreted

as 1− x1 =
[

[

∑α wΓ(α)2
]

κJ

]

ν
≤ 1.

E. Correlations in the MAS

Like other states, the MAS can be characterized by its spin correlations, and it will be useful for what

follows to introduce one. Due to the quenched disorder, correlation functions in a spin glass will be

random with zero mean, and the basic quantities are expectations of squared correlations. Thus we define

for Ising spins [22, 48]

CMAS(x,y) =
[

(

〈σxσy〉ρJ
−〈σx〉ρJ

〈σy〉ρJ

)2
]

ν
(15)

=

[

(

[〈σxσy〉Γ]κJ
− [〈σx〉Γ]κJ

[〈σy〉Γ]κJ

)2
]

ν

(16)

using the definition of ρJ . When spin-flip symmetry is present this simplifies, because then 〈σx〉Γ = 0 for

all x. This expression resembles the basic correlation function χ for a spin glass, that is, taking account

of the metastate,

χ(x,y) =

[

[

(〈σxσy〉Γ −〈σx〉Γ〈σy〉Γ)
2
]

κJ

]

ν

, (17)

but CMAS differs in that the square is taken after the metastate averages. If the metastate is trivial, this of

course makes no difference, so CMAS = χ . In the case with spin-flip symmetry, χ(x,y)≥CMAS(x,y). The

translation invariance of κ implies that these correlation functions depend on x−y, not x, y separately.

In a spin glass phase, if the decomposition of Γ contains more than one pure state (due to either

spontaneous symmetry breaking or Γ being nontrivial), then in most scenarios (at T > 0) χ tends to a
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non-zero constant as |x−y| → ∞. For a non-trivial metastate, CMAS(x,y) may decay to values ≤ χ(x,y),

especially in those cases in which the MAS has an uncountable pure-state decomposition. There are

models [51–53] in which CMAS tends to zero and the leading asymptotic behavior is a power law:

CMAS(x−y)∼ |x−y|−(d−ζ ) (18)

(times a non-universal constant in general) as |x−y| → ∞, and ζ is known. In the scenarios of class 3),

ρJ = Γ, and χ =CMAS itself may behave in the fashion described here. In general, when the power law

form holds, we expect d − ζ to be a universal constant within a phase. Heuristic arguments in the EA

model, to be discussed in the following section, further support parts of this picture. The relation ζ = ζ ′

was proposed, based on those models and a fractal picture of ground states [22], but it is not known if it

must always hold.

V. METASTATE INTERPRETATION OF REPLICA SYMMETRY BREAKING

In this Section we explicitly connect RSB and metastate concepts and results. The final arguments

are at a theoretical physics level of rigor that involve the use of RSB MF theory and fluctuations within

replica field theory in short-range models.

We begin with a technical point: even when the magnetic field is nominally zero, the development of

RSB appears to assume that an “ordering field” is present, that is a small magnetic field that is taken to

zero as the system size tends to infinity, but sufficiently slowly that spin-flip symmetry of the EA model

is absent in the states in the limit. It then turns out that the overlaps qαα ′ inferred from the RSB MF

theory are almost surely nonnegative. In the following, we will assume this holds.

A. q(x) function

We can define a function q(x) from first principles, motivated by the interpretation of RSB results

[17, 19, 20, 22]. From P(q) = PJ(q) we first define the cumulative distribution x(q) =
∫ q

0−
P(q′)dq′ of

q as a function on the support of P(q). On the graph of x(q) versus q we now interchange the axes to

produce the graph of a function q(x) for x ∈ (0,1), with the convention that a jump in x(q) becomes

a constant region of q(x), while a constant region of x(q) becomes a jump discontinuity of q(x); q(x)

is a monotonically-increasing function for x ∈ (0,1). [The value assigned to q(x) at a discontinuity in

the open interval (0,1) has no known significance.] We further define q(1) =
[

[∑α wΓ(α)qαα ]κJ

]

ν
=

[

∑α µ(α)〈σx〉
2
α

]

ν
(for any x), where the self-overlap qαα , or equivalently the average over positions of

the time autocorrelation of single spins [1], is the EA order parameter qEA in the pure state Γα . (We have
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recently shown that qEA must be the same for all pure states in the decomposition of a given Γ drawn from

the metastate [54], but whether it is the same for all Γ is not known for short-range systems.) Similarly,

motivated by RSB arguments [22] given below, we define q(0) =
[

∑α,α ′ µ(α)µ(α ′)qαα ′

]

ν
=
[

〈σx〉
2
ρJ

]

ν
.

Then q(x) is now defined on [0,1], and may be discontinuous at x = 0 or 1. For q(1), this can occur if

the measure wΓ(α) is atomless (i.e. continuous) for a set of (J,Γ) of nonzero κ probability; for those Γ,

the probability wΓ(α)2 of drawing a pure state Γα twice from Γ is zero, and so the ν(J)µ(α)-expected

self-overlap q(1) could differ from (in particular, exceed) the supremum of the support of P(q). For q(0),

the pairwise overlaps in pure states in the MAS could differ from those in the pure states in a single Γ,

with nonzero κ probability, and so q(0) could differ from (even lie below) the infimum of the support of

P(q). It is not clear whether q(x) as we have defined it must necessarily be monotonic for all x ∈ [0,1];

in any case, it contains more information than P(q) does.

We remark that, defining q =
∫ 1

0 dxq(x) =
∫ 1+

0− dq′P(q′)q′, q(x) obeys q(1)−q ≥ 0 and q−q(0)≥ 0,

which follow from the definitions (both quantities are sums of variances). If q(1)−q > 0 then the Gibbs

states drawn from the metastate are nontrivial, while if q−q(0) > 0 then the metastate is nontrivial. If

q(x) were monotonic on [0,1], as it is in RSB theory, then both of these would hold whenever q(x) is

not constant on (0,1) [22]. The Cauchy-Schwarz inequality yields qαα ′ ≤ q
1/2
αα q

1/2

α ′α ′ , which would give

monotonicity at x = 1 if qαα were independent of α , so that qαα = qα ′α ′ for all α , α ′.

Next we briefly review the basics of RSB (for more detail, see Refs. [3, 17, 19, 20]). At MF level, the

free energy per spin has to be obtained by maximizing a functional of the symmetric matrix Qab, where

a, b index the “replicas” and run from 1 to n, Qaa = 0 for all a, and the functional must be evaluated in

the limit n → 0 before maximizing. (The maximization rather than the usual minimization is a feature

of replicas, and is due to the n → 0 limit.) Parisi’s hierarchical scheme [3] for breaking the symmetry Sn

of the functional under permutations of the replicas is to first divide n into n/m1 blocks of size m1, and

assign the value q0 to elements in the off-diagonal blocks of Qab. Each diagonal block is then divided

into sub-blocks of size m2 in the same fashion (the same for each one), with the value q1 assigned to its

off-diagonal sub-blocks. This procedure is iterated at most a countably-infinite number of times. Finally,

when n → 0, the block sizes are assumed to obey 0 = n ≤ m1 ≤ m2 ≤ ·· · ≤ 1, giving a countable partition

of [0,1], and maximization of the functional is performed with respect to all possible such partitions. At

n = 0, for a partition, (qr)r can be viewed as a function q(x), where q(x) = qr when mr < x <mr+1 (where

m0 = n = 0), q(0) = q0, and q(1) is defined as qrmax (where rmax is the largest r) for a finite partition, and

as q(1) = limsupr→∞ qr for an infinite one. q(x) is found to be a non-negative monotonically increasing

function of x ∈ [0,1]; in many situations, q(x) is continuous on the open interval (0,1). Its interpretation

for x > 0, similar to that above, has long been standard [17].

q(x) as obtained from RSB is not always continuous at x = 0 or 1, which brings up an important
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point. The Parisi functional essentially consists of multiple integrals over x’s of (products of) q(x), so the

maximization over functions q(x) is unaffected by changes in the value of q(x) on sets of x of measure

zero; hence the values q(0), q(1) do not affect the free energy per spin. Sometimes in a given problem,

distinct stationary points q(x) are found which differ only in the value of q(1) or q(0), and still have the

same MF free energy per spin; we have seen that the values of these are important for the interpretation.

As particular examples, in class 1), SD, q(x) would be constant. In the scenarios of class 2), such as

CPs, which with an ordering field reduce to chaotic singles, pairwise- and self-overlaps of pure states

in the MAS should be different, while P(q) consists of a single δ -function at qEA, and then q(0) 6=

q(x) = q(1) for x > 0. Similarly, scenarios in class 3) can have q(1) 6= q(x) = q(0) for x < 1 (see the

next paragraph). In class 4), there are many possible forms, including q(x) continuous but not constant

on [0,1]. Thus examples in all four classes of scenarios can be characterized by a q(x) function, and

examples even of classes 2) [55] and 3) (see below) can be found at MF level in RSB. However, in the

absence of rigorous results stating that q(x) is monotonic on [0,1], it is not possible to say that if q(x) is

non-constant on (0,1) then both the Gibbs states and the metastate are non-trivial (as is the case in RSB);

apparently P(q) = PJ(q) could be non-trivial (not a single δ -function) due to fluctuations in only one of

them.

In MF spin glass models lacking inversion symmetry (i.e. spin-flip symmetry, in the Ising case), the

form of q(x) in class 3) just described was found to occur in RSB MF theory for a range of temperatures,

and to correspond to a “dynamically-frozen” phase in a dynamical approach [56–59]. It was later argued

that in a short-range spin glass, this phase, which appeared to possess extensive complexity, would be

destroyed by entropic effects [60, 61], so that there would be no transition into it on lowering the temper-

ature (there was still supposed to be another transition at lower temperature, which was termed a “random

first-order transition” [60, 61]). However, it does not seem clear that such effects must completely destroy

such a frozen phase; instead they could leave a similar phase, still in class 3), now having a subextensive

complexity that obeys the bounds discussed above [48, 49].

B. Application of RSB to the AW metastate

Now we turn to the use of RSB to study the AW metastate for the EA model [22]. We consider a

finite system in the hypercube ΛL, with free or periodic boundary conditions. A sub-hypercube ΛR will

be viewed as the “inner” region, while the sites and edges in ΛL −ΛR constitute the “outer” region. We

will consider copies of the system that all experience the same disorder (bonds) in the inner region, but

some of which experience different (independently sampled) disorder in the outer region. An expectation

over the disorder in the outer region corresponds to an AW metastate expectation using κJ, while an
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expectation over disorder in the inner region corresponds to the disorder expectation using ν (when the

limits L→∞ with R fixed, followed by R→∞ are taken after all the expectations). With this we can study

different types of moments of spin correlation functions, with metastate and disorder averages taken at

separate stages; disorder expectations are taken last, after all metastate expectations have been done.

To carry out the expectations using the replica formalism, we introduce l “groups” of nk copies or

replicas of the system for the kth independent sample of disorder in the outer region (k = 1, . . . , l); replica

indices run from 1 to ∑k nk = n, the total number of replicas in all groups; the replica limit nk → 0 for

all k must be taken. The replicated theory has permutation symmetry Sn1
×Sn2

×·· ·Snl
, broken from Sn

because of the different disorder experienced by replicas in different groups in the outer region. However,

locally in the inner region the theory has full Sn symmetry, so the effect is that of a symmetry-breaking

perturbation that is at infinity once the L, R → ∞ limits have been taken.

At MF level, applying the hierarchical ansatz, in the outer region the replicas that experience distinct

disorder should have small mutual overlaps, but otherwise the structure of the order-parameter matrix

Qab (locally in the outer region) within each group will be the same as usual (with nk in place of n). In

the inner region, the local Qab matrix will have the same form as when only one group of replicas is used.

The presence of the additional partition into blocks of sizes nk (which can be taken all equal) which → 0

does not affect the free-energy functional, and the overlaps between replicas in distinct groups will here

be q0, reflecting the explicit breaking of the Sn symmetry by the outer region, with subsequent further

breaking as in the usual scheme.

As a simple example, we first consider the disorder and metastate expectation
[

[

〈σx〉
2
Γ

]

κJ

]

ν
for x

at say the origin. For this, we choose distinct replicas a, b in say the first group, and because of the

distinct stationary points of the MF theory that differ by permutations in Sn1
, we should average over

those choices; we obtain

[

[

〈σx〉
2
Γ

]

κJ

]

ν
= lim

n1→0

1

n1(n1 −1)

n1

∑
a,b=1

Qab (19)

=

∫ 1

0
dxq(x) = q. (20)

On the other hand, if we take the metastate expectation before squaring, we must take two replicas from

distinct groups, and then averaging within each group has no effect; we obtain

[

[〈σx〉Γ]
2
κJ

]

ν
= q0 = q(0), (21)

the result claimed earlier [22].

Similar results are found for more complicated moments. If the metastate and disorder expectations

21



are taken together, the results are the same as in the old RSB forms. But when some algebraic operation

such as a square occurs between the expectations, the results differ. In particular, the so-called non-

self-averaging (NSA) of PJ,Γ(q) was found in RSB by using the former type of expectations; it occurs

whenever q(x) is not constant on (0,1), so NSA occurs in RSB only if both the metastate and the typical

Gibbs states are non-trivial. When the present formalism is applied to moments of metastate averages,

no NSA is found for PJ(q), in complete agreement with the considerations of NS [23, 24, 28]. Thus

within RSB, fluctuations of PJ,Γ(q) are associated with fluctuations of (nontrivial) Γs due to a nontrivial

metastate, not the disorder distribution ν on J [22, 24].

Next we turn to correlation functions. For the correlations in which the metastate and disorder expec-

tations are performed together, for example for χ(x,y), the results take the traditional form; the replicas

used are in the same group. On the other hand, for the MAS correlation CMAS(x,y) one must choose two

replicas from distinct groups. In this case it is known in RSB field theory [62, 63] (though not applied

there to the MAS) that the correlation function in the spin glass phase of the EA model at zero magnetic

field has the asymptotic form

CMAS(x,y)∼ |x−y|−(d−4) (22)

(within a constant factor), so that ζ = 4 [22]. The calculation here, within a statistical field theory at

lowest order without any loop corrections, should be valid for dimensions d > 6. It can be extended to

obtain the distribution PJ,ρ,W (q) of window overlaps, with the overlaps defined as in (11) but with W kept

fixed, for the MAS ρJ . In leading order as W → ∞, again for the EA model in zero magnetic field, the

disorder expectation
[

PJ,ρ,W (q)
]

ν
of this distribution is found to be a Gaussian of variance ∼ W−(d−4)

for d > 6, and further the distribution PJ,ρ,W (q) is found to equal its disorder expectation at leading

order as W → ∞ [22]. Thus in the limit W → ∞, PJ,ρ(q) is found to be a δ -function at q = q(0), and it

self-averages, as expected from Refs. [23, 24, 28].

Some authors carried out a direct numerical study of the AW MAS along these lines, in the three-

dimensional nearest-neighbor EA model at moderate sizes, and found evidence of a non-trivial metastate

[64]. Another study looked at a dynamical analog [52] in a one-dimensional power-law model, and found

quantitative agreement with the exponent that corresponds to ζ = 4 in the short-range case for d > 6 [65];

that work has been extended further [66].

VI. CONCLUSION

In spin glass theory there are outstanding controversies surrounding the nature of the spin glass phase:

is it a single (pair of) ordered state(s), as suggested by the scaling-droplet theory, or are there many

ordered states, as suggested by replica-symmetry breaking (RSB) mean-field theory? The notion of

22



distinct ordered (or “pure”) states, and hence the question itself, is not even well-defined except in an

infinite system; hence some sort of infinite-size limit must be taken. Due to the possible presence of

chaotic size dependence, the limit is not straightforward. The metastate constructions provide a way

out of this problem. A metastate is an additional layer of structure in the theoretical framework: it is a

probability distribution on Gibbs states for given disorder, and each Gibbs state could be a mixture of

many pure states. A metastate contains information about how the states in finite size vary with size

or depend on the disorder far from the origin, asymptotically at large sizes. Within this framework, a

number of significant results that constrain the allowed scenarios for a spin glass have been obtained, and

some of these results were reviewed in this contribution.

RSB theory initially takes the form of a mean-field theory for thermodynamic properties. When

applied to short-range spin glasses, it makes a number of remarkable predictions about the pure states

and their dependence on the sample of disorder. It turns out, at least from a heuristic or physical point

of view, that RSB, when properly interpreted, has so far passed all the consistency tests available from

metastate theory, and at least for some cases makes predictions about the metastate itself.

The ultimate answers to the controversies of short-range spin glasses are still unknown. The nature

of the problem raises severe difficulties for traditional analytical methods of theoretical physics, while

numerical methods are subject to the limitations of finite size. It may be that rigorously-proved theorems

will play a definitive role in resolving the remaining controversies and uncovering the true behavior of

these fascinating systems.
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