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Abstract: The Metropolis-adjusted Langevin (MALA) algorithm is a sampling algorithm that incor-
porates the gradient of the logarithm of the target density in its proposal distribution. In an earlier joint
work [PST12], the author had extended the seminal work of [RR98] and showed that in stationarity,

MALA applied to an N−dimensional approximation of the target will take O(N
1

3 ) steps to explore its
target measure. It was also shown in [RR98, PST12] that, as a consequence of the diffusion limit, the
MALA algorithm is optimized at an average acceptance probability of 0.574. In [Per16], Pereyra intro-
duced the proximal MALA algorithm where the gradient of the log target density is replaced by the
proximal function (mainly aimed at implementing MALA non-differentiable target densities). In this
paper, we show that for a wide class of twice differentiable target densities, the proximal MALA enjoys
the same optimal scaling as that of MALA in high dimensions and also has an average optimal accep-
tance probability of 0.574. The results of this paper thus give the following practically useful guideline:
for smooth target densities where it is expensive to compute the gradient while implementing MALA,
users may replace the gradient with the corresponding proximal function (that can be often computed
relatively cheaply via convex optimization) without losing any efficiency. We show this for two class
of examples. First, for the product of Gaussians, we identify the optimal scale for proximal MALA
and show that it is identical to MALA; our calculations further suggest that the same result should
hold for a wide class of twice differentiable, log-concave product measures. Next, following the exact
framework used in [PST12], we define a version of the proximal MALA algorithm in a Hilbert space.
We show that for a certain class of twice differentiable, infinite dimensional non-product measures
commonly used in applications, the proximal MALA applied to an N−dimensional approximation of

the target also will take O(N
1

3 ) steps to explore the invariant measure, with an optimal acceptance
probability of 0.574. This confirms some of the empirical observations made in [Per16].

AMS 2000 subject classifications: Primary 60J20 ; secondary 65C05, Markov Chain Monte Carlo,
Metropolis Adjusted Langevin Algorithm, Scaling limit, Diffusion Approximation, Convex Optimiza-
tion, Proximal Operators, Moreau Envelope.

1. Introduction

The Langevin diffusion in R
N

dXt = ∇ log πN (Xt)dt+
√
2 dWt (1.1)

under practically realistic regularity assumptions on the measure πN has πN its invariant measure. The
Langevin algorithm has been one of the workhorses for sampling probability measures; it is widely used in
bayesian statistics [RC04], data assimilation, inverse problems [Stu10] and machine learning e.g., [WT11,
Lam21], among other areas of data science. The time discretization of Xt with step-size δ gives rise to the
(unadjusted) discrete Langevin proposal:

y = x+ δ∇ log πN (x) +
√
2δ ZN , ZN ∼ N(0, IN) . (1.2)

Consider a πN−invariant Metropolis Hastings Markov chain
{

xk,N
}

k≥1
obtained by proposing y from the

current state x according to the kernel q(x, y) given by (1.2) and then accepted with probability

α(x, y) = 1 ∧ πN (y)q(y, x)

πN (x)q(x, y)
. (1.3)

∗Research supported by ONR. Part of this work was done when the author was an Amazon scholar.
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The proposal (1.2) coupled with the accept-reject mechanism above constitutes the Metropolis Adjusted
Langevin Algorithm (MALA) [RC04]. The proposal kernel for the simpler, Random Walk Metropolis (RWM)
algorithm is derived from the following random walk:

y = x+
√
δ ZN , ZN ∼ N(0, IN) . (1.4)

An important question regarding the computational complexity of these Markov chains is how should the
parameter δ vary as a function of the dimension N . A well-known heuristic for choosing δ is the following:
smaller values of δ lead to high acceptance rates but the chain moves very slowly, and therefore may not be
efficient. Larger values of δ lead to larger moves, but are rejected more often because of smaller acceptance
probabilities. The “optimal scale” for the proposal variance thus strikes a balance between making large
moves and still having an O(1) acceptance probability as a function of the dimension N .

To make this heuristic precise, consider the continuous interpolant of the Markov chain Xk,N :

zN(t) =
( t

∆t
− k

)

xk+1,N +
(

k + 1− t

∆t

)

xk,N , for k∆t ≤ t < (k + 1)∆t. (1.5)

We choose the proposal variance to satisfy δ = ℓ∆t, with ∆t = N−γ setting the scale in terms of dimension
and the parameter ℓ a “tuning” parameter which is indepedent of the dimension N . We now discuss how to
choose γ and ℓ.

Suppose that πN is the product of N probability densities π,

πN (x) ∝
N
∏

i=1

π(xi). (1.6)

For this product measure, the seminal papers [RGG97] and [RR98] respectively showed that, in stationarity,
the “optimal” choice for γ that maximizes the expected jumping distance is γ = 1 for the RWM algorithm
and γ = 1

3 for the MALA. Moreover, the projection of zN into any single fixed coordinate direction xi

converges weakly in C([0, T ];R) to z, the scalar diffusion process

dz

dt
= h(ℓ)[log π(z)]′ +

√

2h(ℓ)
dW

dt
. (1.7)

Here h(ℓ) > 0 is a constant determined by the parameter ℓ from the proposal variance. The quantity h(ℓ)
has the interpretation as the “speed-measure” of the limiting diffusion [RR01]. Choosing ℓ to maximize h(ℓ),
thus maximizing the speed of the limiting diffusion, then yields an optimal average acceptance probability
of 0.234 for the Random Walk Metropolis Algorithm and 0.574 for MALA. A remarkable feature of these
results is that the optimal acceptance probabilities for these two algorithms are “universal” – they hold for
a wide range of π.

The above analysis shows that the number of steps required to sample the target measure grows as
O(N) for RWM, but only as O(N

1

3 ) for MALA. This quantifies the efficiency gained by use of MALA over
RWM, and in particular from employing local moves informed by the gradient of the logarithm of the target
density. These theoretical analyses have inspired much further research as they give useful guidelines for
implementation of MALA in high dimensions: in addition to employing an explicit scale in the proposal
variance as predicted by the theory, one should “tune” the proposal variance of the RWM and MALA
algorithms so as to have acceptance probabilities of 0.234 and 0.574 respectively.

1.1. Proximal MALA algorithm

The proximal MALA algorithm was introduced by Pereyra in [Per16]. For a convex function f : RN 7→ R,
λ > 0 and ‖ · ‖ denoting the Euclidean norm, define the proximity operator (also called the λ-Moreau
envelope, [BC11]):

Proxλf (x) = argmin
y∈RN

(

f(y) +
1

2λ
‖y − x‖2

)

.
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The following two extreme limits are well known for proximal functions (see [BC11], Chapter 12):

lim
λ→0

Proxλf (x) = x, lim
λ→∞

f(Proxλf (x)) = inf
y∈RN

f(y).

Let πN be a probability density in R
N and consider it’s λ−Moreau approximation (see Equation (3) of

[Per16]):

πN
λ (x) ∝ sup

u∈RN

π(u) exp
(

− 1

2λ
‖u− x‖2

)

.

If πN (x) ∝ exp(−Ψ(x)) for a convex function Ψ, we have the identity:

πN
λ (x) ∝ exp

{

−Ψ
(

ProxλΨ(x)
)}

exp
{

− 1

2λ
‖ProxλΨ(x)− x‖2

}

.

In addition, if Ψ is differentiable, we also have the identity ([BC11], Equation (12.28)):

1

λ
(x− ProxλΨ(x)) = ∇Ψ(ProxλΨ). (1.8)

Equation (1.8) can be thought of as an implicit gradient. Indeed, (1.8) yields that the deterministic, implicit
update equation

xk+1,N = xk,N − λ∇Ψ(xk+1,N )

can be written as

xk+1,N = ProxλΨ(x
k,N ). (1.9)

Motivated by (1.8) and (1.9), in [Per16], Pereyra introduced the following modification of the discrete
Langevin proposal 1 (1.2):

y =
(

1− δ

λ

)

x+
δ

λ
ProxλΨ(x) +

√
2δ ZN , ZN ∼ N(0, IN ) . (1.10)

The proximal MALA Markov chain then proceeds via the accept-reject mechanism (1.3) using the proposal
given in (1.10).

Pereyra [Per16] chooses δ = λ on grounds of the stability of the resulting algorithm. We also make this
choice. Thus our proximal MALA proposal is given by:

y = ProxδΨ(x) +
√
2δ ZN , ZN ∼ N(0, IN ) . (1.11)

However, it is far from clear how the scaling should change as a joint function of the parameters λ and δ,
especially when Ψ is not differentiable.

One of the main reasons why the proximal MALA was introduced in [Per16] is that the proposal (1.11)
can be applied to targets even when Ψ is not differentiable: e.g., the Laplace density Ψ(x) = |x|. Quoting
Pereyra [Per16]: “finally, similarly to other MH algorithms based on local proposals, proximal-MALA may
be geometrically ergodic yet perform poorly if the proposal variance δ is either too small or very large.
Theoretical and experimental studies of MALA show that for many high-dimensional target densities the
value of δ should be set to achieve an acceptance rate of approximately 40%− 70% (Pillai et al. 2012).”

1For notational consistency, we have set 2δ = δ′ where δ′ is the analogous parameter in Pereyra’s definition; see Equation
(9) of [Per16]
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1.2. Our Contributions

In this paper, we theoretically confirm the empirical observation above made by Pereyra [Per16] for a wide
class of target measures. Even if the target density is differentiable, in many practical applications it may
be very expensive to compute the gradient, whereas it is often cheap to compute the proximal function via
convex optimization. For example in many applied models encountered in data assimilation and Bayesian
inverse problems [Stu10], the target density is of the form:

πN (Θ|Y ) ∝ exp
(

− 1

2σ2
‖Y −G(Θ)‖2 + h(Θ)

)

where G : RN 7→ R is an expensive function to compute (such as the solution of a climate model obtained via
solving a partial differential equation), Θ is a high dimensional parameter we wish to do statistical inference
for, Y is the observed data and exp(h(Θ)) denotes the prior distribution for Θ. In such examples, it is even
more expensive to compute the gradient of G with respect to Θ and is often numerically unstable. Thus
there is a natural need for developing derivative free sampling algorithms that enjoy the same optimality
properties of Langevin algorithms.

In light of the scaling results for MALA mentioned before, it is thus natural to ask whether the proximal
MALA algorithm enjoys similar scaling properties as that of MALA for differentiable target densities. We
prove that this is indeed the case: the proximal MALA enjoys the same optimal scaling as that of MALA
in high dimensions and also has an average optimal acceptance probability of 0.574. The results of our
paper thus give the following practically useful guideline: for smooth target densities where the gradient is
expensive to compute while implementing MALA, users may replace the gradient with the corresponding
proximal function without losing any efficiency; furthermore, users can set the proximal parameter δ to N−1/3

and tune the algorithm to have an acceptance probability of 0.574 just as in MALA. Our paper takes the
first theoretical steps towards harnessing the powerful tools of convex optimization to bear fruit on optimal
scaling of MCMC algorithms. We study the optimal scaling of proximal MALA in two contexts:

1. When the target measure is a product of standard Gaussians, in Theorem 2.1 we show that the
optimal scale and optimal acceptance probability for the proximal MALA algorithm is identical to
that of MALA. While we do not study the case when the target is a general product measure of the
form (1.6), our calculations and heuristics suggest that the same result should hold for a wide class of
product measures (1.6) for which Ψ is convex and smooth.

2. For a class of infinite dimensional non-product measures studied in [PST12], we show that the optimal
scaling of N−1/3 for MALA as worked out in [RR98, PST12] is also optimal for the proximal MALA
algorithm when the log density is convex and differentiable; see Theorem 5.1 for the formal statement
of our main result.

Let us give a high-level explanation of why the proximal MALA enjoys the same scaling as that of MALA
when Ψ is differentiable. When Ψ is smooth, it can be shown under reasonable assumptions on the second
derivative of Ψ that:

|ProxδΨ(x)− x| = O(δ). (1.12)

Consequently, setting λ = δ in the implicit Euler identity (1.8) and using (1.12) yields that

ProxδΨ(x) = x− δ∇Ψ(ProxδΨ(x))

= x− δ∇Ψ(x) + R(x, δ), R(x, δ) = O(δ2). (1.13)

The remainder term R(x, δ) is O(δ2). Comparing this with (1.11), we see that the proximal MALA proposal
can be written as

y = x− δ∇Ψ(x) + R(x, δ) +
√
2δ ZN , ZN ∼ N(0, IN ) (1.14)

= xMALA + R(x, δ)

where xMALA is the MALA proposal. In high dimensions, the drift term in the diffusion limit comes from
O(δ) term; the O(δ2) remainder term R(x, δ) does not contribute to the diffusion limit and vanishes in the
large N limit. Our paper formalizes this observation for a class of infinite dimensional models studied in
[PST12]; refer to Equation (4.7), Lemma 7.8 and the related discussion in Section 4.1.
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1.3. Infinite Dimensional Diffusions

Motivated by applications in data assimilation, inverse problems and Bayesian nonparametrics (see [Stu10]
and [HSV11]), the papers [MPS12] and [PST12] extended the results of product measures [RR98] to certain
infinite dimensional non-product target measures. In both of these papers, the target measure of interest, π,
is on an infinite dimensional real separable Hilbert space H and is absolutely continuous with respect to a
Gaussian measure π0 on H with mean zero and covariance operator C. This framework for the analysis of
MCMC in high dimensions was first studied in the papers [BRSV08, BRS09, BS09]. The Radon-Nikodym
derivative defining the target measure is assumed to have the form

dπ

dπ0
(x) = MΨ exp(−Ψ(x)) (1.15)

for a real-valued functional Ψ : Hs 7→ R defined on a subspace Hs ⊂ H that contains the support of the
reference measure π0; here MΨ is a normalizing constant.

It is proved in [DPZ92, HAVW05, HSV07] that the measure π is invariant for H−valued SDEs (or
stochastic PDEs – SPDEs) with the form

dz

dt
= −h(ℓ)

(

z + C∇Ψ(z)
)

+
√

2 h(ℓ)
dW

dt
, z(0) = z0 (1.16)

where W is a Brownian motion (see [DPZ92]) in H with covariance operator C and any constant h(ℓ) > 0.
In [PST12], the MALA algorithm was studied when applied to a sequence of finite dimensional approxi-

mations of π as in (1.15). The continuous time interpolant of the Markov chain zN given by (1.5) is shown to
converge weakly to z solving (1.16) in C([0, T ];Hs). Furthermore, the scaling of the proposal variance which
achieves this scaling limit is inversely proportional to N1/3 (i.e., corresponds to the exponent γ = −1/3)
and the speed of the limiting diffusion process is maximized at the same universal acceptance probability of
0.574 that was found for product measures [RR98].

1.4. Notation

Throughout the paper we use the following notation in order to compare sequences and to denote conditional
expectations.

• Two sequences {αn} and {βn} satisfy αn . βn if there exists a constant K > 0 satisfying αn ≤ Kβn

for all n ≥ 0. The notations αn ≍ βn means that αn . βn and βn . αn.
• Two sequences of real functions {fn} and {gn} defined on the same set D satisfy fn . gn if there exists
a constant K > 0 satisfying fn(x) ≤ Kgn(x) for all n ≥ 0 and all x ∈ D. The notations fn ≍ gn means
that fn . gn and gn . fn.

• The notation Ex

[

f(x, ξ)
]

denotes expectation with respect to ξ with the variable x fixed.

2. A Simple Example: Product of Gaussians

We start with a simple case, where the target measure is the product of standard Gaussians:

πN (x) ∝
N
∏

i=1

exp(−x2
i /2). (2.1)

The MALA proposal for πN given in (2.1) is:

y = x(1 − δ) +
√
2δ Z, Z ∼ N(0, IN ).

The Metropolis-Hastings acceptance ratio α(x, y) given in (1.3) with

q(x, y) =

N
∏

i=1

exp
(

− 1

4δ

(

yi − xi(1− δ)
)2
)

.
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The usual calculation for finding the optimal scale proceeds as follows. Expanding the term Ln ≡ log
(

πN (y)q(y,x)
πN (x)q(x,y)

)

in δ yields 2:

Ln = −δ3/2√
2

N
∑

i=1

xiZi +
1

2
δ2

N
∑

i=1

(

x2
i − Z2

i

)

+
δ5/2√

2

N
∑

i=1

xiZi −
δ3

4

N
∑

i=1

x2
i +O

(

δ7/2
)

. (2.2)

Since the chain is at stationarity, the first three summands in (2.2) have expectations zero:

E
πN

Ex(xZi) = E
πN

Ex

(

x2
i − Z2

i

)

= E
πN

Ex(xiZi) = 0.

Moreover, the variance of the O(δ3/2) satisfies:

Varx(

N
∑

i=1

xiZi) =

N
∑

i=1

x2
i .

Thus if we set δ = ℓN−1/3, using the fact that 1
N

∑N
i=1 x

2
i → 1 almost surely, we obtain that

Ln =⇒ Zℓ ∼ N(− ℓ3

4
,
ℓ3

2
) (2.3)

and the acceptance probability:

E(1 ∧ eLn) → a(ℓ) ≡ E(1 ∧ eZℓ).

In particular, Ln = O(1) for δ = N−1/3, and thus the optimal scale that makes the size of acceptance
probability equal to O(1) corresponds to δ = N−1/3. The ongoing computation generalizes for quite a large
class of product measures πN far beyond Gaussians, and forms the basis of the diffusion limit obtained in
[RR98]. Finally, to have the optimal acceptance probability of 0.574 that maximizes the speed of the limiting
diffusion, all one needs is that the limiting Gaussian random variable Zℓ satisfy:

−2E(Zℓ) = Var(Zℓ). (2.4)

Indeed, once we have the relation (2.4), the limiting diffusion has the speed measure:

h(ℓ) = ℓ2E(1 ∧ eZℓ) = 2ℓ2Φ(−K

2
ℓ3)

for some constant K that depends on the target measure and Φ is the CDF of the standard Gaussian
distribution. As shown in Theorem 2 of [RR98], the value of ℓ that maximizes h(ℓ) is independent of K since
making the transformation u = K

2 ℓ
3 yields that

max
ℓ

h(ℓ) = 25/3K−2/3 max
u

u2/3Φ(−u)

and the maximizer û of the latter term is independent of K, see Theorem 2 of [RR98]. Thus the optimal
acceptance probability is also independent of K: it is just â = 2Φ(−û).

Next, we perform the same computation for the proximal MALA algorithm. The proximal MALA proposal
for πN given in (2.1) is:

y =
1

(1 + δ)
x+

√
2δ Z, Z ∼ N(0, IN ) (2.5)

with the corresponding q(x, y):

q(x, y) =

N
∏

i=1

exp
(

− 1

4δ

(

yi −
xi

(1 + δ)

)2
)

.

2We used MATHEMATICA for obtaining this expansion; also see [RR98].
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Theorem 2.1. For the proximal MALA proposal given in (2.5), the choice of δ = ℓN−1/3 yields an ac-

ceptance probability of O(1). The limiting acceptance probability a(ℓ) can be expressed as a(ℓ) = E(1 ∧ eZ̃ℓ)
where Z̃ℓ is a Gaussian variable satisfying (2.4).

Proof. As before, expanding Ln ≡ log
(

πN (y)q(y,x)
πN (x)q(x,y)

)

in terms of δ yields:

Ln = − 3√
2
δ3/2

N
∑

i=1

xiZi +
3

2
δ2

N
∑

i=1

(

x2
i − Z2

i

)

+ δ5/2
7√
2

N
∑

i=1

xiZi +
1

4
δ3

N
∑

i=1

(

8z2i − 17x2
i

)

+O
(

δ7/2
)

. (2.6)

Again, using the fact that the chain is at stationarity, we see that the summands of δ3/2, δ2 and δ5/2 in the
expansion (2.6) all have mean zero. Furthermore, for the choice of δ = ℓN−1/3, we have Ln =⇒ Z̃ℓ with
− 9

2 = 2E(Z̃ℓ) = Var(Z̃ℓ) satisfying (2.4), and the proof is finished.

While we do not prove a diffusion limit, the arguments laid out in Section 1.2 can be used to prove a
diffusion limit for any single component of the piecewise interpolant of the proximal Markov chain described
above. Consequently, Theorem 2.1 yields that the optimal acceptance probability for proximal MALA algo-
rithm is also 0.574 in the case where the target measure is the product of Gaussians.

Remark 2.2. While Theorem 2.1 is only worked out for product of Gaussians, the result strongly suggests
that the same optimal scale and acceptance probability should hold for a large class of measures obtained as
products of log-concave target densities. The main reason for this is that the optimal scale and optimal accep-
tance probability results are “universal”; the specifics of target distributions should not matter. In particular,
the Gaussian distribution (as used in Theorem 2.1) plays no special role in optimality of MALA and nor
should play a role here. We focused on this case for clarity of exposition.

3. Infinite Dimensional Target Measure

We keep the framework in this paper very close to that of [PST12] so that the reader can easily compare our
results to that of the MALA algorithm obtained in that paper. Let H be a separable Hilbert space of real
valued functions with scalar product denoted by 〈·, ·〉 and associated norm ‖x‖2 = 〈x, x〉. Consider a Gaussian
probability measure π0 on

(

H, ‖ · ‖
)

with covariance operator C. The general theory of Gaussian measures
[DPZ92] ensures that the operator C is positive and trace class. Let {ϕj , λ

2
j}j≥1 be the eigenfunctions and

eigenvalues of the covariance operator C:

Cϕj = λ2
j ϕj , j ≥ 1.

We assume a normalization under which the family {ϕj}j≥1 forms a complete orthonormal basis in the
Hilbert space H, which we refer to us as the Karhunen-Loève basis. Any function x ∈ H can be represented
in this basis via the expansion

x =
∞
∑

j=1

xj ϕj , xj
def

= 〈x, ϕj〉. (3.1)

Throughout this paper we will often identify the function x with its coordinates {xj}∞j=1 ∈ ℓ2 in this eigen-
basis, moving freely between the two representations. The Karhunen-Loève expansion (see [DPZ92], section
White Noise expansions), refers to the fact that a realization x from the Gaussian measure π0 can be ex-
pressed by allowing the coordinates {xj}j≥1 in (3.1) to be independent random variables distributed as
xj ∼ N(0, λ2

j ). Thus, in the coordinates {xj}j≥1, the Gaussian reference measure π0 has a product structure.

7



For every x ∈ H we have the representation (3.1). Using this expansion, we define Sobolev-like spaces
Hr, r ∈ R, with the inner-products and norms defined by

〈x, y〉r def

=

∞
∑

j=1

j2rxjyj , ‖x‖2r
def

=

∞
∑

j=1

j2r x2
j . (3.2)

Notice that H0 = H and Hr ⊂ H ⊂ H−r for any r > 0. The Hilbert-Schmidt norm ‖ · ‖C associated to the
covariance operator C is defined as

‖x‖2C =
∑

j

λ−2
j x2

j .

For x, y ∈ Hr, the outer product operator in Hr is the operator x⊗Hr y : Hr → Hr defined by (x⊗Hr y)z
def

=
〈y, z〉r x for every z ∈ Hr. For r ∈ R, let Br : H 7→ H denote the operator which is diagonal in the basis

{ϕj}j≥1 with diagonal entries j2r. The operator Br satisfies Br ϕj = j2rϕj so that B
1

2

r ϕj = jrϕj . The
operator Br lets us alternate between the Hilbert space H and the Sobolev spaces Hr via the identities

〈x, y〉r = 〈B
1

2

r x,B
1

2

r y〉. Since ‖B−1/2
r ϕk‖r = ‖ϕk‖ = 1, we deduce that {B−1/2

r ϕk}k≥0 forms an orthonormal
basis for Hr. For a positive, self-adjoint operator D : H 7→ H, we define its trace in Hr by

TrHr(D)
def

=
∞
∑

j=1

〈(B− 1

2

r ϕj), D(B
− 1

2

r ϕj)〉r. (3.3)

Since TrHr(D) does not depend on the orthonormal basis, the operator D is said to be trace class in Hr if

TrHr(D) < ∞ for some, and hence any, orthonormal basis ofHr. Let us define the operator Cr def

= B
1/2
r CB1/2

r .
Notice that TrHr (Cr) =

∑∞
j=1 λ

2
j j

2r. In [PST12] it is shown that under the condition

TrHr(Cr) < ∞, (3.4)

the support of π0 is included in Hr in the sense that π0-almost every function x ∈ H belongs to Hr.
Furthermore, the induced distribution of π0 on Hr is identical to that of a centered Gaussian measure on

Hr with covariance operator Cr. For example, if ξ
D∼ π0, then E

[

〈ξ, u〉r〈ξ, v〉r
]

= 〈u, Crv〉r for any functions
u, v ∈ Hr. Thus in what follows, we alternate between the Gaussian measures N(0, C) on H and N(0, Cr) on
Hr, for those r for which (3.4) holds.

3.1. Change of Measure

Our goal is to sample from a measure π defined through the change of probability formula (1.15). As described
above, the condition TrHr(Cr) < ∞ implies that the measure π0 has full support on Hr, i.e., π0(Hr) = 1.
Consequently, if TrHr (Cr) < ∞, the functional Ψ(·) needs only to be defined on Hr in order for the change of
probability formula (1.15) to be valid. In this section we give assumptions on the decay of the eigenvalues of
the covariance operator C of π0 that ensure the existence of a real number s > 0 such that π0 has full support
on Hs. The functional Ψ(·) is assumed to be defined on Hs and we impose regularity assumptions on Ψ(·)
that ensure that the probability distribution π is not too different from π0, when projected into directions
associated with ϕj for j large. For each x ∈ Hs the derivative ∇Ψ(x) is an element of the dual (Hs)∗ of
Hs comprising linear functionals on Hs. However, we may identify (Hs)∗ with H−s and view ∇Ψ(x) as an
element of H−s for each x ∈ Hs. With this identification, the following identity holds

‖∇Ψ(x)‖L(Hs,R) = ‖∇Ψ(x)‖−s

and the second derivative ∂2Ψ(x) can be identified as an element of L(Hs,H−s). To avoid technicalities
we assume that Ψ(·) is quadratically bounded, with first derivative linearly bounded and second derivative
globally bounded. Weaker assumptions could be dealt with by use of stopping time arguments.
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Assumptions 3.1. The covariance operator C and functional Ψ satisfy the following:

1. Decay of Eigenvalues λ2
j of C: there is an exponent κ > 1

2 such that

λj ≍ j−κ. (3.5)

2. Assumptions on Ψ: The function Ψ is convex. There exist constants Mi ∈ R, i ≤ 4 and s ∈ [0, κ−1/2)
such that for all x ∈ Hs the functional Ψ : Hs → R satisfies

M1 ≤ Ψ(x) ≤ M2

(

1 + ‖x‖2s
)

(3.6)

‖∇Ψ(x)‖−s ≤ M3

(

1 + ‖x‖s
)

(3.7)

‖∂2Ψ(x)‖L(Hs,H−s) ≤ M4. (3.8)

Remark 3.2. The convexity of Ψ is not assumed in [PST12]. It is not required for the MALA algorithm.
In this paper we assume the convexity of Ψ so as to get a unique value for the proximal operator. This
assumption is not strictly necessary for our methods to go through. However, since our key aim is to formalize
the observation made in (1.14), we avoid additional complications.

Remark 3.3. The condition κ > 1
2 ensures that the covariance operator C is trace class in H. In fact,

Equation (3.4) shows that Cr is trace-class in Hr for any r < κ − 1
2 . It follows that π0 has full measure in

Hr for any r ∈ [0, κ− 1/2). In particular π0 has full support on Hs.

Remark 3.4. The functional Ψ(x) = 1
2‖x‖2s satisfies Assumptions 3.1. It is convex, defined on Hs and

its derivative at x ∈ Hs is given by ∇Ψ(x) =
∑

j≥0 j
2sxjϕj ∈ H−s with ‖∇Ψ(x)‖−s = ‖x‖s. The second

derivative ∂2Ψ(x) ∈ L(Hs,H−s) is the linear operator that maps u ∈ Hs to
∑

j≥0 j
2s〈u, ϕj〉ϕj ∈ Hs: its

norm satisfies ‖∂2Ψ(x)‖L(Hs,H−s) = 1 for any x ∈ Hs.

3.2. Finite Dimensional Approximation

We are interested in finite dimensional approximations of the probability distribution π. To this end, we
introduce the vector space spanned by the first N eigenfunctions of the covariance operator,

XN def

= span
{

ϕ1, ϕ2, . . . , ϕN

}

.

Notice that XN ⊂ Hr for any r ∈ [0; +∞). In particular, XN is a subspace of Hs. Next, we define N -
dimensional approximations of the functional Ψ(·) and of the reference measure π0. To this end, we introduce
the orthogonal projection on XN denoted by PN : Hs 7→ XN ⊂ Hs. The functional Ψ(·) is approximated
by the functional ΨN : XN 7→ R defined by

ΨN def

= Ψ ◦ PN . (3.9)

The approximation πN
0 of the reference measure π0 is the Gaussian measure on XN given by the law of the

random variable

πN
0

D∼
N
∑

j=1

λjξjϕj = (CN)
1

2 ξN

where ξj are i.i.d standard Gaussian random variables, ξN =
∑N

j=1 ξjϕj and CN = PN ◦C◦PN . Consequently

we have πN
0 = N(0, CN ). Finally, one can define the approximation πN of π by the change of probability

formula

dπN

dπN
0

(x) = MΨN exp
(

−ΨN (x)
)

(3.10)
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where MΨN is a normalization constant. Notice that the probability distribution πN is supported on XN

and has Lebesgue density3 on XN equal to

πN (x) ∝ exp
(

− 1

2
‖x‖2CN −ΨN(x)

)

. (3.11)

In formula (3.11), the Hilbert-Schmidt norm ‖ · ‖CN on XN is given by the scalar product 〈u, v〉CN =
〈u, (CN )−1v〉 for all u, v ∈ XN . The operator CN is invertible on XN because the eigenvalues of C are
assumed to be strictly positive. The quantity CN∇ log πN (x) is repeatedly used in the text and in particular
appears in the function µN (x) given by

µN (x) = −
(

PNx+ CN∇ΨN (x)
)

(3.12)

which, upto an additive constants, is CN∇ log πN (x). This function is the drift of an ergodic Langevin
diffusion that leaves πN invariants. Similarly, one defines the function µ : Hs → Hs given by

µ(x) = −
(

x+ C∇Ψ(x)
)

(3.13)

which can informally be seen as C∇ logπ(x), upto an additive constant. In Lemmas 4.1 and 4.3 of [PST12],
it is shown that for π0-almost every function x ∈ H, we have limN→∞ µN (x) = µ(x); see Section 7.1 below.
This quantifies the manner in which µN (·) is an approximation of µ(·).

The next lemma gathers various regularity estimates on the functional Ψ(·) and ΨN(·) that are repeatedly
used in the sequel. These are simple consequences of Assumptions 3.1 and proofs can be found in [MPS12]
and [PST12].

Lemma 3.5. (Properties of Ψ) Let the functional Ψ(·) satisfy Assumptions 3.1 and consider the functional
ΨN (·) defined by Equation (3.9). The following estimates hold.

1. The functionals ΨN : Hs → R satisfy the same conditions imposed on Ψ given by Equations (3.6),
(3.7) and (3.8) with constants that can be chosen independent of N .

2. The function C∇Ψ : Hs → Hs is globally Lipschitz on Hs: there exists a constant M5 > 0 such that

‖C∇Ψ(x)− C∇Ψ(y)‖s ≤ M5 ‖x− y‖s ∀x, y ∈ Hs.

Moreover, the functions CN∇ΨN : Hs → Hs also satisfy this estimate with a constant that can be
chosen independent of N .

3. The functional Ψ(·) : Hs → R satisfies a second order Taylor formula4. There exists a constant M6 > 0
such that

Ψ(y)−
(

Ψ(x) + 〈∇Ψ(x), y − x〉
)

≤ M6 ‖x− y‖2s ∀x, y ∈ Hs. (3.14)

Moreover, the functionals ΨN (·) also satisfy the above estimates with a constant that can be chosen
independent of N .

Remark 3.6. The regularity Lemma 3.5 shows in particular that the function µ : Hs → Hs defined by (3.13)
is globally Lipschitz on Hs. Similarly, it follows that CN∇ΨN : Hs → Hs and µN : Hs → Hs given by (3.12)
are globally Lipschitz with Lipschitz constants that can be chosen uniformly in N .

4. The proximal MALA in Hilbert space

In this section, we construct a version of the proximal MALA algorithm of Pereyra [Per16] in the Hilbert
space Hs. The proximal operators are well defined in an infinite dimensional Hilbert space. The reader is

3For ease of notation we do not distinguish between a measure and its density, nor do we distinguish between the represen-
tation of the measure in XN or in coordinates in R

N

4We extend 〈·, ·〉 from an inner-product on H to the dual pairing between H−s and Hs.
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referred to [BC11] for a book length treatment. For the function Ψ : Hs 7→ (−∞,∞] and λ > 0, define the
proximal function

ProxλΨ(x) = argmin
y∈Hs

(

Ψ(y) +
1

2λ
‖x− y‖2s

)

. (4.1)

Since Ψ is convex, Proposition 12.15 of [BC11] yields that Proxλf (x) is convex and differentiable. Moreover
the minimizer in (4.1) is unique due to the convexity of Ψ. We also have the identity ([BC11], Corollary
17.6):

1

λ
(x− ProxλΨ(x)) = ∇Ψ(ProxλΨ). (4.2)

The proximal functions ProxλΨN are defined analogously.

4.1. The Proximal-MALA Algorithm

Recall from (3.11) that our target measure is

πN (x) ∝ exp
(

− 1

2
‖x‖2CN −ΨN(x)

)

.

Our algorithm is motivated by the fact that the probability measure πN defined by Equation (3.10) is
invariant with respect to the Langevin diffusion process

dz

dt
= CN∇ log πN (z) +

√
2
dWN

dt
(4.3)

= CNµN (z) +
√
2
dWN

dt

where WN is a Brownian motion in Hs with covariance operator CN and µN is as defined in (3.12). A natural
analogue to Pereyra’s proximal proposal given in (1.11) is:

y = xProx−MALA

xProx−MALA ≡ (1− δ − CN)x+ CNProxδΨN (x) +
√
2δ (CN )

1

2 ξN where δ = ℓN− 1

3 . (4.4)

The intuition behind the proposal defined in (4.4) is the following. Applying (4.2) with Ψ = ΨN and λ = δ,
we obtain that

ProxδΨN (x) = x− δ∇ΨN (ProxδΨN (x))

≈ x− δ∇ΨN (x) +O(δ2).

Consequently, on XN ,

(1− δ − CN )x+ CNProxδΨN (x) ≈ x− δ(PNx+ CN∇ΨN (x))

= x+ δµN (x). (4.5)

Let

xMALA = x+ δµN (x) +
√
2δ (CN )

1

2 ξN where δ = ℓN− 1

3 (4.6)

denote the usual MALA proposal obtained from the Euler discretization of the infinite dimensional diffusion

(4.3). Notice that (CN )
1

2 ξN
D∼ N(0, CN). The calculation done in (4.5) shows that our proximal MALA

proposal (4.4) closely tags the MALA proposal:

xProx−MALA = xMALA + RN (x, δ) (4.7)
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where the term

RN (x, δ) ≡ δ CN
(

ProxδΨN (x)− x
)

(4.8)

can be thought of as the added “error” induced by the proximal MALA proposal as compared to MALA. As
shown in Lemma 7.2, we have ‖RN(x, δ)‖CN . δ2(1 + ‖x‖s) = O(δ2). As in the product measure case, for
optimal scaling only terms of O(δ3/2) and lower order contribute; thus the contribution from this remainder
term to the scaling drops out in the large N limit. Consequently, the optimal scaling and the diffusion limits
for the proximal MALA algorithm follows from the corresponding results for the MALA algorithm.

For streamlining further calculations, we will write the xProx−MALA proposal from (4.4) as

y = x+ δµN (x) + RN (x, δ) +
√
2δ (CN)

1

2 ξN where δ = ℓN− 1

3 . (4.9)

4.2. Time evolution of the proximal MALA chain

We introduce a related parameter
∆t := ℓ−1δ = N− 1

3

which will be the natural time-step for the limiting diffusion process derived from the proposal above, after
inclusion of an accept-reject mechanism. The scaling of ∆t, and hence δ, with N will ensure that the average
acceptance probability is O(1) as N grows.

Following [PST12], we will study the Markov chain xN = {xk,N}k≥0 resulting from Metropolizing the
proximal proposal (4.9) when it is started at stationarity: the initial position x0,N is distributed as πN and
thus lies in XN . Therefore, the Markov chain evolves in XN ; as a consequence, only the first N components
of an expansion in the eigenbasis of C are nonzero and the algorithm can be implemented in R

N . However
the analysis is cleaner when written in XN ⊂ Hs. The acceptance probability only depends on the first N
coordinates of x and y and has the form

αN (x, ξN ) = 1 ∧ πN (y)TN (y, x)

πN (x)TN (x, y)
= 1 ∧ eQ

N (x,ξN ) (4.10)

where the proposal y is given by Equation (4.9). The function TN(·, ·) is the density of the Langevin proposals
(4.9) and is given by

TN(x, y) ∝ exp
{

− 1

4δ
‖y − x− δµN (x) − RN(x, δ)‖2CN

}

.

The local mean acceptance probability αN (x) is defined by

αN (x) = Ex

[

αN (x, ξN )
]

. (4.11)

It is the expected acceptance probability when the algorithm stands at x ∈ H. The Markov chain xN =
{xk,N}k≥0 can also be expressed as

{

yk,N = xk,N + δµN (xk,N ) + RN (xk,N , δ) +
√
2δ (CN )

1

2 ξk,N

xk+1,N = γk,Nyk,N + (1 − γk,N )xk,N (4.12)

where ξk,N are i.i.d samples distributed as ξN and γk,N = γN (xk,N , ξk,N ) creates a Bernoulli random
sequence with kth success probability αN (xk,N , ξk,N ). We may view the Bernoulli random variable as

γk,N = 1{Uk<αN (xk,N ,ξk,N )} where Uk D∼ Uniform(0, 1) is independent from xk,N and ξk,N .

In summary, the Markov chain that we have described in Hs is, when projected onto XN , equivalent to a
proximal MALA algorithm on R

N for the Lebesgue density (3.11). Recall that the target measure π in (1.15)
is the invariant measure of the SPDE (1.16). Our goal is to obtain an invariance principle for the continuous
interpolant (1.5) of the Markov chain xN = {xk,N}k≥0 started in stationarity, i.e, to show weak convergence
in C([0, T ];Hs) of zN(t) to the solution z(t) of the SPDE (1.16), as the dimension N → ∞.
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5. Main Result

In this section, we present the main result of this paper. Consider the constant α(ℓ) = E
[

1 ∧ eZℓ
]

where

Zℓ
D∼ N(− ℓ3

4 ,
ℓ3

2 ) and define the speed function

h(ℓ) = ℓα(ℓ). (5.1)

The quantity α(ℓ) represents the limiting expected acceptance probability of the MALA algorithm while
h(ℓ) is the asymptotic speed function of the limiting diffusion.

Theorem 5.1. Let the initial condition x0,N of the proximal MALA algorithm be such that x0,N ∼ πN

and let zN(t) be a piecewise linear, continuous interpolant of the proximal MALA algorithm (4.12) with
∆t = N−1/3. Then, for any T > 0, zN(t) converges weakly in C([0, T ],Hs) to the diffusion process z(t) given
by

dz

dt
= −h(ℓ)

(

z + C∇Ψ(z)
)

+
√

2 h(ℓ)
dW

dt
, z(0) = z0 ∼ π (5.2)

with the constant h(ℓ) as given in (5.1). Choosing ℓ so as to maximize the speed function h(ℓ) leads to the
acceptance probability of 0.574 for the proximal MALA algorithm.

Remark 5.2. The fact that choosing ℓ so as to maximize the speed function h(ℓ) leads to the optimal
universal acceptance probability of 0.574 is known since [RR98], and is also shown in [PST12]. Thus to
prove Theorem 5.1, we need only establish the diffusion limit.

5.1. Proof Strategy

The acceptance probability of the proposal (4.9) is equal to αN (x, ξN ) = 1 ∧ eQ
N (x,ξN) and the quantity

αN (x) = Ex[α
N (x, ξN )] given by (4.11) represents the mean acceptance probability when the Markov chain

xN stands at x. Recall the quantity QN in Equation (4.10). This quantity may be expressed as

QN (x, ξN ) = −1

2

(

‖y‖2CN − ‖x‖2CN

)

−
(

ΨN (y)−ΨN (x)
)

− 1

4δ

{

‖x− y − δµN (y)− RN (y, δ)‖2CN − ‖y − x− δµN (x) − RN (x, δ)‖2CN

}

. (5.3)

The main observation (also used in [PST12]) is that QN (x, ξN ) can be approximated by a Gaussian
random variable

QN (x, ξN ) ≈ Zℓ (5.4)

where Zℓ
D∼ N(− ℓ3

4 ,
ℓ3

2 ). These approximations are made rigorous in Lemma 7.5 and Lemma 7.6. Therefore,

the Bernoulli random variable γN(x, ξN ) with success probability 1 ∧ eQ
N (x,ξN ) can be approximated by a

Bernoulli random variable, independent of x, with success probability equal to

α(ℓ) = E
[

1 ∧ eZℓ
]

. (5.5)

Thus, the limiting acceptance probability of the MALA algorithm is as given in Equation (5.5).

Recall that ∆t = N− 1

3 . With this notation we introduce the drift function dN : Hs → Hs given by

dN (x) =
(

h(ℓ)∆t
)−1

E
[

x1,N − x0,N |x0,N = x
]

(5.6)

and the martingale difference array {Γk,N : k ≥ 0} defined by Γk,N = ΓN (xk,N , ξk,N ) with

Γk,N =
(

2h(ℓ)∆t
)− 1

2

(

xk+1,N − xk,N − h(ℓ)∆t dN (xk,N )
)

. (5.7)
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The normalization constant h(ℓ) defined in Equation (5.1) ensures that the drift function dN and the mar-
tingale difference array {Γk,N} are asymptotically independent from the parameter ℓ. The drift-martingale
decomposition of the Markov chain {xk,N}k then reads

xk+1,N − xk,N = h(ℓ)∆tdN (xk,N ) +
√

2h(ℓ)∆t Γk,N . (5.8)

Lemma 7.8 and Lemma 7.9 exploit the Gaussian behaviour of QN (x, ξN ) described in Equation (5.4) in
order to give quantitative versions of the following approximations,

dN (x) ≈ µ(x) and Γk,N ≈ N(0, C) (5.9)

where µ(x) = −
(

x+C∇Ψ(x)
)

. From Equation (5.8) it follows that for large N the evolution of the Markov

chain ressembles the Euler discretization of the limiting diffusion (1.16). The next step consists of proving an
invariance principle for a rescaled version of the martingale difference array {Γk,N}. The continuous process
WN ∈ C([0;T ],Hs) is defined as

WN(t) =
√
∆t

k
∑

j=0

Γj,N +
t− k∆t√

∆t
Γk+1,N for k∆t ≤ t < (k + 1)∆t. (5.10)

The sequence of processes {WN} converges weakly in C([0;T ],Hs) to a Brownian motion W in Hs with
covariance operator equal to Cs. Indeed, Proposition 7.10 proves the stronger result

(x0,N ,WN ) =⇒ (z0,W )

where =⇒ denotes weak convergence in Hs×C([0;T ],Hs) and z0
D∼ π is independent of the limiting Brownian

motion W . Once we have the invariance principle and the converge of the drift and diffusion terms, the
“Master Theorem” in [PST12] (see Proposition 3.1 of [PST12]) gives the required diffusion limit.

6. Proof of the Main Result

In this section, we give the proof of the Theorem 5.1. To this end, we use Proposition 3.1 of [PST12].
According to Proposition 3.1 of [PST12], to show the diffusion limit, we must show the following three
conditions.

1. Convergence of initial conditions: πN converges in distribution to the probability measure π where
π has a finite first moment, that is Eπ [‖x‖s] < ∞.

2. Invariance principle: the sequence (x0,N ,WN) defined by Equation (5.10) converges weakly in Hs×
C([0, T ],Hs) to (z0,W ) where z0

D∼ π and W is a Brownian motion in Hs, independent from z0, with
covariance operator Cs.

3. Convergence of the drift: there exists a globaly Lipschitz function µ : Hs → Hs that satisfies

lim
N→∞

E
πN [

‖dN (x)− µ(x)‖s
]

= 0.

Item (1.) above follows from Lemma 4.3 of [PST12]); also see Section 7.1 below. Item (2.) is proved in
Proposition 7.10. Item (3.) is proved in Lemma 7.8. Thus we have established all three conditions required
by Proposition 3.1 of [PST12] and thus the proof of our main result is finished.

7. Key Estimates

In this section, we prove some key estimates for the proximal operator, and and also collect some key
approximation properties of µN and πN from [PST12]. These properties will be repeatedly used throughout.
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7.1. Approximation properties of µN and πN

• For π0-almost every function x ∈ Hs, the approximation µN (x) ≈ µ(x) holds as N goes to infinity.
Indeed, under Assumption 3.1, the sequences of functions µN : Hs → Hs satisfies (see Lemma 4.1 of
[PST12]),

π0

({

x ∈ Hs : lim
N→∞

‖µN (x)− µ(x)‖s = 0
})

= 1. (7.1)

• Under the Assumptions 3.1 the normalization constants MΨN are uniformly bounded so that for any
measurable functional f : H 7→ R, we have from Lemma 4.3 of [PST12] that

E
πN [|f(x)|

]

. E
π0

[

|f(x)|
]

.

Moreover, the sequence of probability measure πN satisfies πN =⇒ π where =⇒ denotes weak
convergence in Hs.

• Fernique’s theorem [DPZ92] states that for any exponent p ≥ 0 we have Eπ0[‖x‖ps
]

< ∞. We also have
that for any p ≥ 0

sup
N∈N

E
πN [

‖x‖ps
]

< ∞.

7.2. Estimates involving proximal functions and the remainder term

Recall the constant M6 from (3.14).

Lemma 7.1. For any x ∈ Hs and N ∈ N and for all δ < 1
2M6

,

‖ProxδΨN (x) − x‖s . δ(1 + ‖x‖s).

Proof. Set x∗ = ProxδΨN (x). Since x∗ minimizes the map:

y 7→
(

ΨN (y) +
1

2δ
‖y − x‖2s

)

,

from our assumptions in (3.14) and (3.7), it follows that

1

2δ
‖x∗ − x‖2s ≤ ΨN(x) −ΨN(x∗) = |ΨN (x∗)−ΨN (x)|

≤ |〈∇ΨN (x), x∗ − x〉|+M6‖x∗ − x‖2s
≤ M3(1 + ‖x‖s)‖x∗ − x‖s +M6‖x∗ − x‖2s.

Dividing by the term ‖x∗ − x‖s throughout and simplifying yields

‖x∗ − x‖s ≤ δ
M3

(1− 2δM6)
(1 + ‖x‖s) . δ(1 + ‖x‖s)

and the proof is done.

Lemma 7.2. Recall the remainder term RN(x, δ) from (4.8). For any x ∈ Hs, N ∈ N and for all δ < 1
2M6

,

‖RN(x, δ)‖CN . δ2(1 + ‖x‖s), ‖RN(x, δ)‖s . δ2(1 + ‖x‖s).

Proof. Set x∗ = ProxδΨN (x). Then RN (x, δ) = δ CN(x∗ − x). Thus

‖RN(x, δ)‖2CN = 〈RN (x, δ), (CN )−1RN (x, δ)〉
= δ2〈CN (x∗ − x), (x∗ − x)〉
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. δ2‖x∗ − x‖2s . δ4(1 + ‖x‖2s)

where the last inequality follows from Lemma 7.1 showing the first inequality. The second inequality follows
similarly:

‖RN(x, δ)‖2s = δ2‖CN (x∗ − x)‖2s . δ2‖x∗ − x‖2s . δ4(1 + ‖x‖2s)

and the proof is done.

Next lemma shows that the size of the jump y − x is of order
√
∆t.

Lemma 7.3. Consider y given by (4.9). Under Assumptions 3.1, for any p ≥ 1 we have

E
πN

x

[

‖y − x‖ps
]

. (∆t)
p
2 · (1 + ‖x‖ps).

Proof. Under Assumption 3.1 the function µN is globally Lipschitz on Hs, with Lipschitz constant that can
be chosen independent from N . Thus using Lemma 7.2 we obtain that

‖y − x‖s . ∆t(1 + ‖x‖s) + ‖RN(x, δ)‖s +
√
∆t ‖C 1

2 ξN‖s
. ∆t(1 + ‖x‖s) + (∆t)2(1 + ‖x‖s) +

√
∆t ‖C 1

2 ξN‖s
. ∆t(1 + ‖x‖s) +

√
∆t ‖C 1

2 ξN‖s.

We have E
π0
[

‖C 1

2 ξN‖ps
]

≤ E
π0
[

‖ζ‖ps
]

< ∞, where ζ
D∼ N(0, C). Consequently, Eπ0

[

‖C 1

2 ξN‖ps
]

is uniformly

bounded as a function of N , proving the lemma.

Consider y given by (4.9) and recall from (4.7) that

y = xMALA + RN(x, δ).

Lemma 7.4. We have

aN (x, δ) ≡ ‖y‖2CN − ‖xMALA‖2CN

E
πN

aN (x, δ) . δ2

Proof. From (4.7) we have

‖y‖2CN − ‖xMALA‖2CN = aN (x, δ)

aN (x, δ) ≡ 2〈xMALA,R
N(x)〉CN + ‖RN (x, δ)‖2CN . (7.2)

From (4.8), we obtain

|〈xMALA,R
N(x, δ)〉CN | = |〈xMALA, (CN)−1RN (x, δ)〉|

≤ ‖xMALA‖s‖RN(x, δ)‖CN .

From Lemma 7.3 we deduce that

‖xMALA‖s . (1 + δ)(1 + ‖x‖s) +
√
δ‖C 1

2 ξN‖s .

Combining this with Lemma 7.2 yields that

|〈xMALA,R
N (x, δ)〉CN | . δ2(1 + ‖x‖2s)(1 +

√
δ‖C 1

2 ξN‖s) .

Thus

E
πN

(|〈xMALA,R
N (x, δ)〉CN |) . δ2 EπN

(1 + ‖x‖2s)(1 +
√
δ‖C 1

2 ξN‖s) . δ2. (7.3)

Thus from (7.2), (7.3) and Lemma 7.2 we deduce that

E
πN

(aN (x, δ) . δ2

and the proof is finished.
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7.3. Gaussian approximation of QN

Recall the quantity QN defined in Equation (5.3). This section proves that QN has a Gaussian behavior in
the sense that

QN(x, ξN ) = ZN (x, ξN ) + iN (x, ξN ) + eN (x, ξN ) (7.4)

where the quantities ZN and iN are equal to

ZN (x, ξN ) = − ℓ3

4
− ℓ

3

2

√
2
N− 1

2

N
∑

j=1

λ−1
j ξjxj (7.5)

iN (x, ξN ) =
1

2
(ℓ∆t)2

(

‖x‖2CN − ‖(CN )
1

2 ξN‖2CN

)

(7.6)

with iN and eN small. Thus the principal contributions to QN comes from the random variable ZN (x, ξN ).
Notice that, for each fixed x ∈ Hs, the random variable ZN(x, ξN ) is Gaussian. Furthermore, the Karhunen-
Loève expansion of π0 shows that for π0-almost every choice of function x ∈ H the sequence

{

ZN (x, ξN )
}

N≥1

converges in law to the distribution of Zℓ
D∼ N(− ℓ3

4 ,
ℓ3

2 ). The next lemma rigorously bounds the error terms

eN (x, ξN ) and iN(x, ξN ): we show that iN is an error term of order O(N− 1

6 ) and eN (x, ξ) is an error term

of order O(N− 1

3 ). In Lemma 7.6 we then quantify the convergence of ZN(x, ξN ) to Zℓ.

Lemma 7.5. (Gaussian Approximation) Let p ≥ 1 be an integer. Under Assumptions 3.1, QN (x, ξN )
has the expansion given in (7.4) and the error terms iN and eN in the Gaussian approximation (7.4) satisfy

(

E
πN [

|iN (x, ξN )|p
]

)
1

p

= O(N− 1

6 ) and
(

E
πN [

|eN (x, ξN )|p
]

)
1

p

= O(N− 1

3 ). (7.7)

Proof. As in Lemma 4.4 of [PST12], without loss of generality, we suppose p = 2q. The quantity QN is
defined in Equation (5.3) and expanding terms leads to

QN(x, ξN ) = I1 + I2 + I3 + I4

where the quantities I1, I2, I3 and I4 are given by

I1 = −1

2

(

‖y‖2CN − ‖x‖2CN

)

− 1

4ℓ∆t

(

‖x− y(1− ℓ∆t)‖2CN − ‖y − x(1− ℓ∆t)‖2CN

)

I2 = −
(

ΨN (y)−ΨN (x)
)

− 1

2

(

〈x− y(1− ℓ∆t), CN∇ΨN(y)〉CN − 〈y − x(1 − ℓ∆t), CN∇ΨN (x)〉CN

)

I3 = − 1

4ℓ∆t

{

‖ℓ∆t CN∇ΨN(y) + RN (y, δ)‖2CN − ‖ℓ∆t CN∇ΨN (x) + RN (x, δ)‖2CN

}

I4 = − 1

2ℓ∆t

{

〈x− y(1− ℓ∆t),RN (y, δ)〉CN − 〈y − x(1− ℓ∆t),RN (x, δ)〉CN

}

.

The term I1 arises purely from the Gaussian part of the target measure πN and from the Gaussian part
of the proposal. The other terms come from the change of probability involving the functional ΨN . By the
calculation identical to page 2343 of [PST12], we can simplify the the term I1 to be:

I1 = − ℓ∆t

4

(

‖y‖2CN − ‖x‖2CN

)

. (7.8)

The term I1 is shown to be O(1) and constitutes the main contribution to QN . Before analyzing I1 in more

detail, we show that I2, I3 and I4 are O(N− 1

3 ):

(

E
πN

[I2q2 ]
)

1

2q

+
(

E
πN

[I2q3 ]
)

1

2q

+
(

E
πN

[I2q4 ]
)

1

2q

= O(N− 1

3 ). (7.9)
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• By a calculation nearly identical to the one in Lemma 4.4 of [PST12] (the only change being the use
of our Lemma 7.3 instead of their Lemma 4.2) we obtain that

(

E
πN

[I2q2 ]
)

1

2q

= O(N− 1

3 ). (7.10)

• Using the definition of RN (x, δ) from (4.8), we obtain that

E
πN [

I2q3
]

. ∆t2q E
πN

[

|〈∇ΨN (x), CN∇ΨN (x)〉|q + |〈∇ΨN (y), CN∇ΨN (y)〉|q
]

+∆t−2q
E
πN

[

‖RN(x, δ)‖2qCN + ‖RN(y, δ)‖2qCN

]

.

Lemma 3.5 states CN∇ΨN : Hs → Hs is globally Lipschitz, with a Lipschitz constant that can be
chosen uniformly in N . Therefore,

‖CN∇ΨN (z)‖s . 1 + ‖z‖s. (7.11)

Since ‖CN∇ΨN (z)‖2CN = 〈∇ΨN (z), CN∇ΨN (z)〉, the bound (3.7) gives

E
πN [

I2q3
]

. ∆t2q E

[

〈∇ΨN (x), CN∇ΨN (x)〉q + 〈∇ΨN (y), CN∇ΨN (y)〉q
]

. ∆t2q E
πN

[

(1 + ‖x‖s)2q + (1 + ‖y‖s)2q
]

. ∆t2q E
πN

[

1 + ‖x‖2qs + ‖y‖2qs
]

. ∆t2q =
(

N− 1

3

)2q

. (7.12)

Similarly, from Lemma 7.2 and 7.3,

∆t−2q
E
πN

[

‖RN (x, δ)‖2qCN + ‖RN(y, δ)‖2qCN

]

. ∆t6q EπN
[

1 + ‖x‖2qs + ‖y‖2qs
]

. ∆t6q

.
(

N− 1

3

)6q

.
(

N− 1

3

)2q

. (7.13)

Thus from (7.12) and (7.13), we conclude that

(

E
πN

[I2q3 ]
)

1

2q

.
(

N− 1

3

)2q

. (7.14)

• Finally, we tackle the term I4:

E
πN [

I2q4
]

. ∆t−2q
E

[

‖x− y(1− ℓ∆t)‖2qs ‖(CN)−1RN (y, δ)‖2qs

+ ‖y − x(1 − ℓ∆t)‖2qs ‖(CN)−1RN (x, δ)‖2qs
]

.

From Lemma 7.3, we obtain that E
πN

(‖y − x(1 − ℓ∆t)‖4qs ) . (∆t)2q · (1 + ‖x‖4qs ) and E
πN

(‖x −
y(1− ℓ∆t)‖2qs ) . (∆t)2q · (1 + ‖x‖4qs ). Similarly, from Lemma 7.2 we gather that EπN‖RN (x, δ)‖4qCN .
δ8q(1 + ‖x‖4qs ). Putting these two together and using the Cauchy-Schwartz inequality gives,

E
πN [

I2q4
]

. ∆t3q EπN
[

1 + ‖x‖2qs + ‖y‖2qs
]

.
(

N− 1

3

)2q

. (7.15)

Equations (7.10), (7.14) and (7.15) imply the requisite estimate in (7.9).
Next, we tackle the term I1. Recall from from (7.8) that

I1 = − ℓ∆t

4

(

‖y‖2CN − ‖x‖2CN

)

.

From Lemma 7.4 we obtain that

‖y‖2CN = ‖xMALA‖2CN + aN (x, ℓ∆t), E
πN

aN (x, ℓ∆t) . (∆t)2. (7.16)
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Consequently,

I1 = − ℓ∆t

4

(

‖xMALA‖2CN − ‖x‖2CN

)

− ℓ∆t

4
aN (x, ℓ∆t).

From Lemma 4.4 of [PST12], we deduce that

− ℓ∆t

4

(

‖xMALA‖2CN − ‖x‖2CN

)

= ZN(x, ξN ) + iN(x, ξN ) + bN (x, ξN ) (7.17)

with ZN (x, ξN ) and iN(x, ξN ) given by Equation (7.5) and (7.6) and

(

E
πN [

bN(x, ξN )2q
]

)
1

2q

= O(N− 1

3 ).

Lemma 4.4 of [PST12] also shows that

(

E
πN [

iN (x, ξN )2q
]

)
1

2q

= O(N− 1

6 ). (7.18)

The proof of the lemma now follows from (7.9), (7.16) and (7.17).

We recall Lemma 4.5 of [PST12]:

Lemma 7.6. [PST12, Lemma 4.5] (Asymptotic independence) Let p ≥ 1 be a positive integer and
f : R → R be a 1-Lipschitz function. Consider error terms eN⋆ (x, ξ) satisfying

lim
N→∞

E
πN

[eN⋆ (x, ξN )p] = 0.

Define the functions f̄N : R → R and the constant f̄ ∈ R by

f̄N(x) = Ex

[

f
(

ZN(x, ξN ) + eN⋆ (x, ξN )
)

]

and f̄ = E[f(Zℓ)].

Then the function fN is highly concentrated around its mean in the sense that

lim
N→∞

E
πN

[

|f̄N (x)− f̄ |p
]

= 0.

Corollary 7.7. Let p ≥ 1 be a positive. The local mean acceptance probability αN (x) defined in Equation
(4.11) satisfies

lim
N→∞

E
πN [

|αN (x) − α(ℓ)|p
]

= 0.

Proof. The function f(z) = 1 ∧ ez is 1-Lipschitz and α(ℓ) = E[f(Zℓ)]. Also,

αN (x) = Ex

[

f(QN(x, ξN ))
]

= Ex

[

f(ZN (x, ξN ) + eN⋆ (x, ξN )
]

with eN⋆ (x, ξN ) = iN (x, ξN ) + eN (x, ξN ). Lemma 7.5 shows that limN→∞ E
πN

[eN⋆ (x, ξ)p] = 0 and therefore
Lemma 7.6 gives the conclusion.

7.4. Drift approximation

This section proves that the approximate drift function dN : Hs → Hs defined in Equation (5.6) converges
to the drift function µ : Hs → Hs of the limiting diffusion (5.2).

Lemma 7.8. (Drift Approximation) Let Assumptions 3.1 hold. The drift function dN : Hs → Hs

converges to µ in the sense that

lim
N→∞

E
πN

[

‖dN(x) − µ(x)‖2s
]

= 0.
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Proof. Now that we have established the relevant estimates, the proof of this lemma is nearly identical to
that of Lemma 4.7 of [PST12], but also needs to account for the extra error term induced by the proximal
operator. The approximate drift dN is given by Equation (5.6). The definition of the local mean acceptance
probability αN (x) given by Equation (4.11) shows that dN can also be expressed as

dN (x) =
(

αN (x)α(ℓ)−1
)

µN (x) +RN
Prox(x,∆t) +

√
2ℓh(ℓ)−1(∆t)−

1

2 εN(x) (7.19)

where µN (x) = −
(

PNx+ CN∇ΨN (x)
)

; the term εN(x) is defined by

εN (x) = Ex

[

γN(x, ξN ) C 1

2 ξN
]

= Ex

[(

1 ∧ eQ
N (x,ξN )

)

C 1

2 ξN
]

and the term RN
Prox(x,∆t) is the error term induced by the proximal approxiation:

RN
Prox(x,∆t) =

αN (x)

h(ℓ)

Rn(x, ℓ∆)

∆t
.

To prove Lemma 7.8 it suffices to verify that

lim
N→∞

E
πN

[

∥

∥

(

αN (x)α(ℓ)−1
)

µN (x) − µ(x)
∥

∥

2

s

]

= 0 (7.20)

lim
N→∞

E
πN ‖RN

Prox(x,∆t)‖2s = 0 (7.21)

lim
N→∞

(∆t)−1
E
πN

[

‖εN(x)‖2s
]

= 0. (7.22)

• Equation (7.20) follows directly from Lemma 4.7 of [PST12].
• Next, using the fact that |αN (x)| ≤ 1 and Lemma 7.2,

‖RN
Prox(x,∆t)‖2s .

(

αN (x)
)2∥

∥

∥

Rn(x, ℓ∆t)

∆t

∥

∥

∥

2

s

. (∆t)2(1 + ‖x‖2s)

and thus we have

lim
N→∞

E
πN ‖RN

Prox(x,∆t)‖2s = lim
N→∞

N−2/3
E
πN

(1 + ‖x‖2s) = 0

establishing (7.21).
• Let us prove Equation (7.22). If the Bernoulli random variable γN (x, ξN ) were independent from the

noise term (CN )
1

2 ξN , it would follow that εN (x) = 0. In general γN (x, ξN ) is not independent from

(CN)
1

2 ξN so that εN(x) is not equal to zero. Nevertheless, as quantified by Lemma 7.6, the Bernoulli
random variable γN (x, ξN ) is asymptotically independent from the current position x and from the

noise term (CN )
1

2 ξN . Consequently, we can prove in Equation (7.24) that the quantity εN (x) is small.
To this end, we establish that each component 〈ε(x), ϕ̂j〉2s satisfies

E
πN [

〈εN (x), ϕ̂j〉2s
]

. N−1
E
πN

[〈x, ϕ̂j〉2s] +N− 2

3 (jsλj)
2. (7.23)

Summation of Equation (7.23) over j = 1, . . . , N leads to

E
πN

[

‖εN (x)‖2s
]

. N−1
E
πN [

‖x‖2s
]

+N− 2

3 TrHs(Cs) . N− 2

3 , (7.24)

which gives the proof of Equation (7.22). To prove Equation (7.23) for a fixed index j ∈ N, the quantity
QN(x, ξ) is decomposed as a sum of a term independent from ξj and another remaining term of small
magnitude. To this end we introduce

{

QN (x, ξN ) = QN
j (x, ξN ) +QN

j,⊥(x, ξ
N )

QN
j (x, ξN ) = − 1√

2
ℓ

3

2N− 1

2λ−1
j xjξj − 1

2ℓ
2N− 2

3λ2
jξ

2
j + eN (x, ξN ).

(7.25)
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The definitions of ZN (x, ξN ) and iN(x, ξN ) in Equation (7.5) and (7.6) readily show that QN
j,⊥(x, ξ

N )

is independent from ξj . The noise term satisfies C 1

2 ξN =
∑N

j=1(j
sλj)ξjϕ̂j . Since QN

j,⊥(x, ξ
N ) and ξj

are independent and z 7→ 1 ∧ ez is 1-Lipschitz, it follows that

〈εN (x), ϕ̂j〉2s = (jsλj)
2
(

Ex

[(

1 ∧ eQ
N (x,ξN )

)

ξj
]

)2

= (jsλj)
2
(

Ex

[

[
(

1 ∧ eQ
N (x,ξN )

)

−
(

1 ∧ eQ
N
j,⊥(x,ξN )

)

] ξj
]

)2

. (jsλj)
2
Ex

[

|QN (x, ξN ))−QN
j,⊥(x, ξ

N )|2
]

= (jsλj)
2
Ex

[

QN
j (x, ξN )2

]

.

By Lemma 7.5 E
πN [

eN (x, ξN )2
]

. N− 2

3 . Therefore,

(jsλj)
2
E
πN [

QN
j (x, ξN )2

]

. (jsλj)
2
{

N−1λ−2
j E

πN [

x2
jξ

2
j

]

+N− 4

3E
πN [

λ4
jξ

4
j

]

+ E
πN [

eN (x, ξ)2
]

}

. N−1
E
πN [

(jsxj)
2ξ2j

]

+ (jsλj)
2(N− 4

3 +N− 2

3 )

. N−1
E
πN [

〈x, ϕ̂j〉2s
]

+ (jsλj)
2N− 2

3

. N−1
E
πN [

〈x, ϕ̂j〉2s
]

+ (jsλj)
2N− 2

3 ,

which finishes the proof of Equation (7.23).

Thus we have established (7.20), (7.21) and (7.22) and the proof is finished.

7.5. Noise approximation

Recall the definition (5.7) of the martingale difference Γk,N . In this section we estimate the error in the
approximation Γk,N ≈ N(0, Cs). To this end we introduce the covariance operator

DN (x) = Ex

[

Γk,N ⊗Hs Γk,N |xk,N = x
]

.

For any x, u, v ∈ Hs the operator DN (x) satisfies

E

[

〈Γk,N , u〉s〈Γk,N , v〉s |xk,N = x
]

= 〈u,DN (x)v〉s.

The next lemma gives a quantitative version of the approximation DN (x) ≈ Cs.
Lemma 7.9. Let Assumptions 3.1 hold. For any pair of indices i, j ≥ 0 the operator DN (x) : Hs → Hs

satisfies

lim
N→∞

E
πN ∣

∣〈ϕ̂i, D
N (x)ϕ̂j〉s − 〈ϕ̂i, Csϕ̂j〉s

∣

∣ = 0 (7.26)

and, furthermore,

lim
N→∞

E
πN ∣

∣TrHs(DN (x)) − TrHs(Cs)
∣

∣ = 0. (7.27)

Proof. This lemma follows directly from Lemma 4.8 of [PST12], since the only estimate needed for the proof
of Lemma 4.8 of [PST12] is the Gaussian approximation and the estimate for eN (x, ξN ) established in Lemma
7.5. Thus the proof is finished.

7.6. Martingale Invariance Principle

This section proves that the process WN defined in Equation (5.10) converges to a Brownian motion.
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Proposition 7.10. Let Assumptions 3.1 hold. Let z0 ∼ π and WN (t) the process defined in equation (5.10)

and x0,N D∼ πN the starting position of the Markov chain xN . Then

(x0,N ,WN ) =⇒ (z0,W ), (7.28)

where =⇒ denotes weak convergence in Hs × C([0, T ];Hs), and W is a Hs-valued Brownian motion with
covariance operator Cs. Furthermore the limiting Brownian motion W is independent of the initial condition
z0.

Proof. This proof involves verifying three conditions of Proposition 5.1 of [Ber86] and is identical to that of
Proposition 4.10 of [PST12]. The only change required is to use our Lemma 7.9 instead of their Lemma 4.8.
Therefore we omit the details of the rest of the proof.

8. Closing Comments

There are a number of issues that could be followed up in future work that are of great practical interest:

• A straightforward, but tedious extension will be to extend Theorem 2.1 to a general class of product
measures.

• As mentioned in the introduction, we only study the case when the log-target is differentiable. Of
course, the most interesting case is when the log-target is not differentible. In this context, it would
be very worthwhile to understand how the scaling differs from the usual MALA for non-smooth target
distributions.

• We also set λ = δ; it is not clear to us if this is necessary. Are there regimes when λ and δ scaled
differently as a function of the dimension N that are better than λ = δ?

• A similar result should be of interest when proximal functions are used for implementing the Hybrid
Monte Carlo algorithm.
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for the langevin algorithm in high dimensions. The Annals of Applied Probability, 22(6):2320–
2356, 2012.

[RC04] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer Texts in Statistics.
Springer-Verlag, New York, second edition, 2004.

[RGG97] G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling of random
walk Metropolis algorithms. Ann. Appl. Probab., 7(1):110–120, 1997.

[RR98] G. O. Roberts and J. S. Rosenthal. Optimal scaling of discrete approximations to Langevin
diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol., 60(1):255–268, 1998.

[RR01] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-Hastings algorithms.
Statist. Sci., 16(4):351–367, 2001.

[Stu10] A.M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica, 19, 2010.
[WT11] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In

Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer, 2011.

23


	1 Introduction
	1.1 Proximal MALA algorithm
	1.2 Our Contributions
	1.3 Infinite Dimensional Diffusions
	1.4 Notation

	2 A Simple Example: Product of Gaussians
	3 Infinite Dimensional Target Measure
	3.1 Change of Measure
	3.2 Finite Dimensional Approximation

	4 The proximal MALA in Hilbert space
	4.1 The Proximal-MALA Algorithm
	4.2 Time evolution of the proximal MALA chain

	5 Main Result
	5.1 Proof Strategy

	6 Proof of the Main Result
	7 Key Estimates
	7.1 Approximation properties of N and N
	7.2 Estimates involving proximal functions and the remainder term
	7.3 Gaussian approximation of QN
	7.4 Drift approximation
	7.5 Noise approximation
	7.6 Martingale Invariance Principle

	8 Closing Comments
	References

