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ON THE WEAKLY ARF (S2)-IFICATIONS OF NOETHERIAN RINGS

NAOKI ENDO, SHIRO GOTO, SHIN-ICHIRO IAI, AND NAOYUKI MATSUOKA

Abstract. The weakly Arf (S2)-ification of a commutative Noetherian ring R is con-
sidered to be a birational extension which is good next to the normalization. The weakly
Arf property (WAP for short) of R was introduced in 1971 by J. Lipman with his fa-
mous paper [12], and recently rediscovered by [4], being closely explored with further
developments. The present paper aims at constructing, for a given Noetherian ring R

which satisfies certain mild conditions, the smallest module-finite birational extension
of R which satisfies WAP and the condition (S2) of Serre. We shall call this extension
the weakly Arf (S2)-ification, and develop the basic theory, including some existence
theorems.

1. Introduction

The purpose of this paper is to construct, for a given commutative Noetherian ring R,
the smallest module-finite birational extension of R, satisfying the weakly Arf property
and the condition (S2) of Serre.

In 1971 J. Lipman [12] introduced the notion of Arf ring and developed the basic
theory, extending the results of C. Arf [2], concerning the multiplicity sequences of curve
singularities, to those on one-dimensional Cohen-Macaulay rings. Let R be a Noetherian
semi-local ring and assume that R is a Cohen-Macaulay ring of dimension one, i.e., for
every M ∈ MaxR the local ring RM is Cohen-Macaulay and of dimension one. Then we
say that R is an Arf ring, if the following conditions are satisfied ([12, Definition 2.1]),
where R denotes the integral closure of R in its total ring Q(R) of fractions.

(1) Every integrally closed ideal I in R which contains a non-zerodivisor has a principal

reduction, i.e., In+1 = aIn for some n ≥ 0 and a ∈ I.
(2) Let x, y, z ∈ R such that x is a non-zerodivisor on R. If y

x
, z
x
∈ R, then yz

x
∈ R.

Here, we notice that, provided R is finite as an R-module, among the Arf rings between
R and R, there exists the smallest one, called the Arf closure of R.

In [12] Lipman introduced also the notion of strict closure for arbitrary extensions
of two commutative rings and developed the underlying theory in connection with a
conjecture of O. Zariski. As is stated in [12], Zariski conjectured that the Arf closure
of R should coincide with the strict closure of R in R, provided R is a one-dimensional
Cohen-Macaulay ring, and Zariski himself proved that the Arf closure is contained in the
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strict closure ([12, Proposition 4.5]). Lipman proved the conjecture in the case where R
contains a field ([12, Corollary 4.8]), and in [4, Theorem 4.4] the authors settled Zariski’s
conjecture with full generality, by looking into a slight modification of Arf closures which
they call the weak Arf closures.

The research [4] was originally inspired by [12] and aimed at a higher-dimensional
generalization of the theory of Lipman. In [4] the authors introduced the notion of weakly
Arf ring, and developed the fundamental theory.

Definition 1.1 (Lemma 4.1). Let R be an arbitrary commutative ring and let

W(R) = {a ∈ R | a is a non-zerodivisor of R}.

Then the following three conditions are equivalent.

(1) The ring R satisfies Condition (2) in the above definition of Arf rings.

(2) aR
2
= a (aR) for all a ∈ W(R), where I denotes, for an ideal I of R, the integral

closure of I.

(3)
R

a
∩R is a subring of R for every a ∈ W(R), where

R

a
= a−1R in Q(R).

When this is the case, we say that R is a weakly Arf ring.

Let us call Condition (2) in the definition of Arf rings the weakly Arf property (WAP for
short) of R. Both of strict and weakly Arf closures are defined for arbitrary commutative
rings. This fact leads us to the natural question of when the two closures coincide, and it
is proved by [4, Corollary 7.7] that with certain mild assumptions on R (e.g., R contains
an infinite field), the answer to the question is affirmative, once the weakly Arf closure
satisfies (S2). Nevertheless, as is pointed out by [7, Example 4.3], in general the weakly
Arf closure does not satisfy (S2), even if the strict and weakly Arf closures coincide.

This fact strongly urged us to start the present research. The main purpose is to show,
for a given Noetherian ring R, the existence of the weakly Arf (S2)-ification, i.e., the
smallest module-finite birational extension of R which satisfies both of WAP and (S2).

Before stating the result of this paper, let us give a little more comment about weakly
Arf rings. As is stated in Definition 1.1, a commutative ring R is weakly Arf if and only if

aR
2
= a(aR) for every a ∈ W(R) (see [4, Theorem 2.4] also), while the integral closedness

of R is equivalent to saying that aR = aR for every a ∈ W(R). Namely, the WAP is
originally very close to the integral closedness, which is the reason, for a Noetherian ring
R, why the weakly Arf (S2)-ification is of interest next to the normalization R, and may
have its own significance.

With this observation the conclusion of this paper can be stated as follows.

Theorem 1.2 (Corollary 4.7). Let R be a locally quasi-unmixed Noetherian ring which

satisfies the condition (S1) of Serre. If R is a finitely generated R-module, then R admits

the weakly Arf (S2)-ification.

We are now in a position to explain how this paper is organized. In Section 2 we explain
the basic methods of constructing (S2)-ifications. For a Noetherian ring R which satisfies
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(S1), the ring

R̃ = {f ∈ Q(R) | If ⊆ R for some ideal I with htRI ≥ 2}

is the (S2)-ification of R and has the form R̃ =
R

a
∩
R

b
in Q(R) for some a, b ∈ W(R), once

R̃ is a finitely generated R-module (cf. [1, 3, 8, 9, 10, 11, 16]). This naturally leads us to

the problem of when the (S2)-ifications R̃ of R is a Noetherian ring, or more specifically,

when R̃ is a finitely generated R-module, which we shall answer in Section 3. Section 2 is
devoted to some preliminaries which we will later use in Section 4. We shall summarize
also the basic results on the global canonical modules in Section 3, and applying these
results, we eventually prove Theorem 1.2 in the final section 4.

In what follows, unless otherwise specified, let R denote an arbitrary commutative ring,
and R the integral closure of R in its total ring Q(R) of fractions. For an R-module M ,
let W(M) = {a ∈ R | a is a non-zerodivisor for M}.

2. Construction of (S2)-ifications

In this section, let M be an R-module and set W = W(M). We consider M as an
R-submodule of W−1M the localization of M with respect to W . For each a ∈ W and
an R-submodule L of W−1M , we set

L

a
=

{
x

a

∣∣∣∣ x ∈ L

}
⊆ W−1M

which forms an R-submodule of W−1M containing L, where
x

a
= a−1x for all x ∈ L. We

shall explore, for each a, b ∈ W , the R-submodule of W−1M of the form

M

a
∩
M

b
=
aM :M b

a
.

Recall that, for a1, a2, . . . aℓ ∈ R (ℓ > 0) and an R-module N , the sequence a1, a2, . . . aℓ
is called N-regular, if ai is a non-zerodivisor on N/(a1, a2, . . . ai−1)N for every 1 ≤ i ≤ ℓ.
Here, we do not necessarily assume N/(a1, a2, . . . aℓ)N 6= (0).

We begin with the following, which is essentially given by [9, 10].

Theorem 2.1 (cf. [9, 10]). Let a, b ∈ W . Then the following two conditions are equiva-

lent.

(1) The sequence a, b is

(
M

a
∩
M

b

)
-regular.

(2) The equality
M

a
∩
M

b
=
M

a2
∩
M

b2
holds.

When this is the case, provided M = R, the R-module
R

a
∩
R

b
is a subring of Q(R).

Proof. We first prove the last assertion. Suppose M = R. By (2), we have the equalities

R

a
∩
R

b
=
aR :R b

a
=
a2R :R b

2

a2
.
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This yields a2R :R b
2 = a(aR :R b). Since I = aR :R b is an ideal of R with I2 = aI, the

R-submodule
I

a
= R

[
I

a

]
has a ring structure. Hence

R

a
∩
R

b
is a subring of Q(R).

(2) ⇒ (1) By setting L =
M

a
∩
M

b
, we get

L =
M

a
∩
M

b
⊆
L

a
∩
L

b
⊆
M

a2
∩
M

b2
= L,

whence L =
L

a
∩
L

b
. This shows, because a ∈ W (L) and L =

aL :L b

a
, the sequence a, b is

L-regular.

(1) ⇒ (2) Note that L =
M

a
∩
M

b
⊆
M

a2
∩
M

b2
. Conversely, we take f ∈

M

a2
∩
M

b2
and

write

f =
x

a2
=

y

b2
in W−1M

for some x, y ∈ M . Since M ⊆ L, we have b(bx) = a(ay) ∈ aL. This implies x ∈ aL,

because the sequence a, b is L-regular. Thus
x

a
∈ L. Similarly, because the sequence b, a

is also L-regular, we get
y

b
∈ L. The equality

x

a2
=

y

b2
implies b ·

x

a
= a ·

y

b
∈ aL, so that

x

a
∈ aL :L b = aL. Hence f =

x

a2
∈ L, as desired. �

Example 2.2. Let R = k[x, y] the polynomial ring over a field k. We set m = (x, y)R

and M =

〈(
x
0

)
,

(
y
x

)
,

(
0
y

)〉
⊆

R
⊕
R

(= R2). Then

M

x
∩
M

y
=

m
⊕
m

and
M

xn
∩
M

yn
=

R
⊕
R

for all integers n ≥ 2.

Proof. For each n > 0, note that (xnR2)∩ (ynR2) = xnynR2 because xn, yn is R2-regular.
This shows xnM∩ynM ⊆ xnynR2, and the equality holds for n ≥ 2. Indeed, the equalities

(
xnyn

0

)
= xn

(
yn−1

(
y
x

)
+ xyn−2

(
0
y

))
= yn

(
xn−1

(
x
0

))

imply

(
xnyn

0

)
∈ xnM ∩ ynM . Similarly

(
0

xnyn

)
∈ xnM ∩ ynM . Hence xnM ∩ ynM =

xnynR2, and therefore
M

xn
∩
M

yn
=
xnM ∩ ynM

xnyn
= R2. To prove

M

x
∩
M

y
=

m
⊕
m

, it suffices

to show that

xM ∩ yM =

〈(
x2y
0

)
,

(
xy2

0

)
,

(
0
x2y

)
,

(
0
xy2

)〉
.
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To do this, let f ∈ xM ∩ yM and write

f = x

(
f1

(
x
0

)
+ f2

(
y
x

)
+ f3

(
0
y

))
= y

(
g1

(
x
0

)
+ g2

(
y
x

)
+ g3

(
0
y

))

where fi, gj ∈ R. Then x(f1x+f2y) = y(g1x+g2y) and x(f2x+f3y) = y(g2x+g3y). As x, y
is R-regular, we can choose h1, h2, h3, h4 ∈ R such that f1x+ f2y = yh1, f2x+ f3y = yh2,
g1x + g2y = xh3, g2x + g3y = xh4. Therefore f1 = yh5, f2 = yh6, g2 = xh7, g3 = xh8 for
some h5, h6, h7, h8 ∈ R. Then, because f3 = −xh6 + xh7 + yh8, we get

f = xf1

(
x
0

)
+ xf2

(
y
x

)
+ xf3

(
0
y

)

= x(yh5)

(
x
0

)
+ x(yh6)

(
y
x

)
+ x(−xh6 + xh7 + yh8)

(
0
y

)

= h5

(
x2y
0

)
+ h6

(
xy2

0

)
+ h7

(
0
x2y

)
+ h8

(
0
xy2

)
.

It is straightforward to check the converse. This completes the proof. �

In what follows, we assume M is a torsion-free R-module and set

V = Q(R)⊗R M.

Hence, every f ∈ V has an expression of the form f = m
a
where a ∈ W(R) and m ∈M .

Let Ht≥2(R) denote the set of all ideals of R which have height at least 2. We consider
htRR = ∞ for convention. Hence R ∈ Ht≥2(R). Define

M̃ = {f ∈ V | If ⊆M for some I ∈ Ht≥2(R)} ⊆ V.

Since IJ ∈ Ht≥2(R) for all I, J ∈ Ht≥2(R), M̃ is an R-submodule of V containing the

R-module M . For an R-submodule N of V with M ⊆ N ⊆ V , we then have Ñ is the

R-submodule of V , whence M̃ ⊆ Ñ . When M = R, we identify V with Q(R), so the

R-submodule R̃ is a subring of Q(R). Then M̃ is an R̃-submodule of Q(R).

We now summarize some basic results on the R-module M̃ . A part of them will be also
appeared in the forthcoming paper [6, Section 2]. Because the results play an important
role in our argument, let us include brief proofs for the sake of completeness.

Proposition 2.3. Let a, b ∈ W(R). If htR(a, b) ≥ 2, then the sequence a, b is M̃ -regular.

Proof. Let f ∈ M̃ . Assume that bf = ag for some g ∈ M̃ . We choose I, J ∈ Ht≥2(R)
such that If, Jg ⊆ M . Set ϕ = f

a
= g

b
. Then, since I(aϕ) ⊆ M and J(bϕ) ⊆ M , we get

(Ia+ Jb)ϕ ⊆M . Hence ϕ ∈ M̃ because Ia + Jb ∈ Ht≥2(R). This shows f ∈ aM̃ . �

In the rest of this section, we furthermore assume R is a Noetherian ring.

Proposition 2.4. Let N be an R-submodule of V such that M ⊆ N ⊆ V . Assume that,

for all a, b ∈ W(R) with htR(a, b) ≥ 2, the sequence a, b is N-regular. Then M̃ ⊆ N .
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Proof. Let f ∈ M̃ and write f =
x

a
where x ∈ M and a ∈ W(R). Consider the ideal

I =M :R f . We then have a ∈ I and I ∈ Ht≥2(R). Since

I 6⊆
⋃

p∈MinR R/aR

p ∪
⋃

p∈AssR

p,

we choose b ∈ W(R) ∩ I satisfying htR(a, b) ≥ 2. The sequence a, b is N -regular. As
bf ∈ M ⊆ N , we can write bx = ay for some y ∈ N . Hence x ∈ aN :N b = aN . This
implies f ∈ N . �

Hence we have the following.

Corollary 2.5. The following two conditions are equivalent:

(1) M = M̃ .

(2) For every a, b ∈ W(R) with htR(a, b) ≥ 2, the sequence a, b is M-regular.

In particular, the equality M̃ =
˜̃
M holds.

Let n > 0 be an integer and N a nonzero finitely generated R-module. We say that
N satisfies the condition (Sn) of Serre, if depthRp

Np ≥ min{n, dimRp} for every p ∈
SuppRN . The lemma below follows from the induction on n.

Lemma 2.6. Let n > 0 be an integer and N a nonzero finitely generated R-module. Then

the following conditions are equivalent.

(1) N satisfies (Sn).
(2) Every sequence a1, a2, . . . , an ∈ R satisfying htR(a1, a2, . . . , ai) ≥ i for all 1 ≤ i ≤ n

is N-regular.

If R satisfies (S1), then one can add the following.

(3) Every sequence a1, a2, . . . , an ∈ W(R) satisfying htR(a1, a2, . . . , ai) ≥ i for all

1 ≤ i ≤ n is N-regular.

To sum up this kind of arguments, we get the following.

Theorem 2.7. Suppose that R satisfies (S1) and M̃ is finitely generated as an R-module.

Then M̃ is the smallest R-submodule of V which contains M and satisfies (S2).

Notice that, even if M is a finitely generated R-module, M̃ is not necessarily finitely

generated as an R-module. Theorem 2.7 leads to the problem of when the R-module M̃
is finitely generated as an R-module, which we shall discuss in Section 3.

Example 2.8. Let T = k[[X, Y, Z]] the formal power series ring over a field k. Consider
the rings R = T/(X) ∩ (Y, Z), A = T/(X), and B = T/(Y, Z). We identify Q(R) =

Q(A)×Q(B). Then R̃ = A×Q(B). Hence R̃ is not finitely generated as an R-module.

Proof. Let ϕ ∈ R̃ and write ϕ = (ξ, η) for some ξ ∈ Q(A) and η ∈ Q(B). We then choose
I ∈ Ht≥2(R) such that Iϕ ⊆ R. As R ⊆ R = A×B, we obtain Iξ ⊆ A. We may assume
I 6= R. Choose a system a, b of parameters for R with (a, b) ⊆ I. The sequence a, b forms
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a system of parameters for A. Since (a, b)ξ ⊆ A and the sequence a, b is A-regular, we get

aξ ∈ aA :A b = aA. Hence ξ ∈ A and R̃ ⊆ A×Q(B).
Conversely, let ϕ ∈ A × Q(B) and write ϕ = (ξ, η) with ξ ∈ A and η ∈ Q(B). By

setting x the image of X in B, we have B = k[[x]], whence we can write η = β
xn

for
some n ≥ 0 and β ∈ B. We consider a = Xn+1 + Y , b = Xn+1 + Z and I = (a, b)R.
Notice that htRI = 2, IA = (Y, Z)A, and IB = xn+1B. This implies Iξ = (Y, Z)ξ and
Iη = xn+1B β

xn
= XβB. For every i ∈ I, we see that

iξ = Y F1 + ZF2 in A and iη = XF3 in B

for some F1, F2, F3 ∈ T , where (∗) denotes the image of ∗ in the appropriate rings. Then

iϕ = (iξ, iη) =
(
Y F1 + ZF2 +XF3, Y F1 + ZF2 +XF3

)
.

This yields Iϕ ⊆ R, whence ϕ ∈ R̃. Therefore R̃ = A×Q(B), as desired. �

The smallest module-finite birational extension of R satisfying the condition (S2) of
Serre is called the (S2)-ification of R. We apply Theorem 2.7 to get the following.

Corollary 2.9. Suppose that R satisfies (S1) and R̃ is a finitely generated R-module.

Then R̃ is the (S2)-ification of R.

Let S be a Noetherian ring which is a birational extension of R. Note that, provided
S is a finitely generated R-module, S satisfies (S2) as a ring (i.e., S satisfies (S2) as an

S-module) if and only if it satisfies (S2) as an R-module. Although R̃ is not necessarily

finitely generated as an R-module, the ring R̃ is integral over R, provided R is locally
quasi-unmixed (see [13]).

Proposition 2.10. Suppose that R satisfies (S1) and R̃ is a Noetherian ring which is

integral over R. Assume that M̃ is a finitely generated R̃-module. Then M̃ satisfies (S2)

as an R̃-module. In particular, R̃ satisfies (S2) as a ring.

Proof. Let P ∈ Spec R̃ such that depthR̃P
M̃P < 2. We will show that M̃P is a maximal

Cohen-Macaulay R̃P -module. To do this, we may assume htR̃ P ≥ 1. Set p = P ∩ R.
Suppose htR̃ P ≥ 2. Then htR p ≥ 2, so there exist a, b ∈ p∩W(R) such that htR (a, b) ≥ 2.

By Proposition 2.3, the sequence a, b is M̃ -regular. This contradicts depthR̃P
M̃P < 2.

Therefore htR̃ P = 1, so that htR p = 1. Hence we can choose a ∈ p ∩ W(R). Since

a is M̃-regular, we get depthR̃P
M̃P = 1. Therefore M̃P is a maximal Cohen-Macaulay

R̃P -module. �

In addition, we assume M is finitely generated as an R-module. For a ∈ W(R), we set

Min1
RM/aM = {p ∈ MinRM/aM | htRp = 1}.

Then Min1
RM/aM = MinRM/aM = MinRR/aR, whenever (0) :R M = (0).
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A Noetherian local ring (A,m) is said to be quasi-unmixed, if all the minimal prime

ideals of the m-adic completion Â of A have the same codimension. A Noetherian ring S
is said to be locally quasi-unmixed, if SP is quasi-unmixed for every P ∈ SpecS.

We note the following.

Lemma 2.11. Suppose that R is locally quasi-unmixed and satisfies (S1). Then dimRp
Mp =

dimRp for all p ∈ SuppRM . Consequently, Min1
RM/aM = MinRM/aM , if a ∈ W(R).

Proof. Let p ∈ SuppRM and set dimRp
Mp = n. Choose q ∈ MinRM , so that q ⊆ p

and htR/qp/q = n. We then have q ∈ MinR, because M is torsionfree and R satisfies
(S1). Therefore, htR p = n, because Rp is quasi-unmixed and qRp ∈ MinRp. Thus
dimRp

Mp = dimRp. �

Let a ∈ W(R) and

aM =
⋂

p∈AssRM/aM

Q(p)

be a primary decomposition of aM in M , where Q(p) denotes the p-primary component
of aM in M . We set

U(aM) =

{
M, if Min1

RM/aM = ∅,⋂
p∈Min1RM/aM Q(p), if Min1

RM/aM 6= ∅.

Lemma 2.12. For each a ∈ W(R) with Min1
RM/aM 6= ∅, there exists b ∈ W(R) such

that htR(a, b) ≥ 2 and U(aM) = aM :M b.

Proof. Let a ∈ W(R) such that Min1
RM/aM 6= ∅. We may assume AssRM/aM 6=

Min1
RM/aM . Notice that, for every p ∈ (AssRM/aM) \ (Min1

RM/aM), htRp ≥ 2.
Consider

a =
∏

p∈(AssRM/aM)\(Min1
RM/aM)

p

and choose an integer ℓ > 0 such that U(aM) = aM :M aℓ. We then have htRa ≥ 2 and
a ∩W(R) 6= ∅. Hence

a
ℓ 6⊆

⋃

q∈MinR R/aR

q ∪
⋃

q∈AssR

q.

Now we take an element b ∈ aℓ but b 6∈
⋃

q∈MinR R/aR
q ∪

⋃
q∈AssR q. Then b ∈ W(R),

htR(a, b) ≥ 2, and U(aM) = aM :M b, as desired. �

Theorem 2.13. Let a ∈ W(R). Then U(aM) = aM̃ ∩M .

Proof. Let a ∈ W(R). If Min1
RM/aM = ∅, then

M

a
⊆ M̃ because

htR([(0) :R M ] + aR) ≥ 2 and ([(0) :R M ] + aR)·
M

a
⊆M .
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Hence we have U(aM) =M = aM̃∩M in this case. Thus we may assume Min1
RM/aM 6=

∅. Let m ∈ aM̃ ∩M and write m = af for some f ∈ M̃ . Then there exists an ideal
I ∈ Ht≥2(R) so that If ⊆ M . Hence htR(aM :R m) ≥ 2 by I ⊆ M :R f = aM :R m.
Therefore we have m ∈ aMp ∩M = Q(p) for every p ∈ Min1

RM/aM which shows that
m ∈

⋂
p∈Min1RM/aM Q(p) = U(aM). Next, we prove the converse inclusion. By Lemma

2.12, there exists b ∈ W(R) such that htR(a, b) ≥ 2 and U(aM) = aM :M b. We then

have (a, b) ·
U(aM)

a
⊆ M which implies

U(aM)

a
⊆ M̃ . Therefore U(aM) = aM̃ ∩M , as

claimed. �

We summarize some consequences.

Corollary 2.14. The equality M̃ =
⋃

a∈W(R)

U(aM)

a
holds.

Proof. By Theorem 2.13, we have U(aM) ⊆ aM̃ for all a ∈ W(R). Conversely, let f ∈ M̃

and write f =
x

a
where x ∈ M and a ∈ W(R). Then x = af ∈ aM̃ ∩M = U(aM), and

hence f ∈
U(aM)

a
. �

Corollary 2.15 ([13, Corollary 10.5]). If R is locally quasi-unmixed, then R̃ ⊆ R.

Proof. Since aR = aR ∩R for all a ∈ W(R), we have

R =
⋃

a∈W(R)

aR

a
.

It suffices to show U(aR) ⊆ aR for all a ∈ W(R). Suppose the contrary, i.e., U(aR) 6⊆ aR
for some a ∈ W(R), and seek a contradiction. Indeed, we consider the R-module

N = (U(aR) + aR)/aR

and take p ∈ AssRN . Then p ∈ AssRR/aR. Since R is locally quasi-unmixed, by [14,
Theorem 2.12], we see that htRp = 1. So U(aR)p = aRp, and hence Np = (0). This makes
a contradiction. Therefore U(aR) ⊆ aR for all a ∈ W(R). �

Corollary 2.16. The following three conditions are equivalent.

(1) M̃ is a finitely generated R-module.

(2) U(aM) = aM̃ for some a ∈ W(R).

(3) (M :R M̃) ∩W(R) 6= ∅.

When this is the case, one has M̃ =
U(aM)

a
for some a ∈ W(R).

We now reach the goal of this section.
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Theorem 2.17. Suppose that M̃ is a finitely generated R-module. Then there exist a, b ∈
W(R) such that

M̃ =
M

a
∩
M

b
.

Hence, if R satisfies (S1), then
M

a
∩
M

b
is the smallest R-submodule of V which contains

M and satisfies (S2).

Proof. By Corollary 2.16, we can choose a ∈ W(R) such that M̃ =
U(aM)

a
. Thanks to

Lemma 2.12, there exists b ∈ W(R) such that U(aM) = aM :M b. Hence M̃ =
M

a
∩
M

b
,

and the last assertion follows from Theorem 2.7. �

3. Global canonical modules and module-finiteness of M̃

This section aims at considering the problem of when the R-module M̃ is finitely
generated. To attack this problem, we apply the theory of global canonical module given
by R. Sharp [15].

Let R be a Noetherian ring and assume that R is a homomorphic image of a Gorenstein
ring. We set

R = S/I,

where I is an ideal of a Gorenstein ring S. Let

I =
⋂

P∈AssS R

Q(P )

be a primary decomposition of I in S, where Q(P ) stands for a P -primary component.
For each ideal J of S, we set V(J) = {P ∈ SpecS | J ⊆ P}. Then

V(I) =
n⊔

i=1

Ci

where C1, C2, . . . Cn are the connected components of V(I), i.e., the equivalence classes
of the equivalence relation ∼ on V(I), which is given by, for P, P ′ ∈ V(I), P ∼ P ′ if
and only if there exist an integer ℓ > 0 and a sequence P1, P2, . . . , Pℓ+1 in V(I) such that
P1 = P , Pℓ+1 = P ′, and Pi + Pi+1 6= S for all 1 ≤ i ≤ ℓ. We put

Ii =
⋂

P∈(AssS R)∩Ci

Q(P ).

We then have
⋂n
i=1 Ii = I and Ci = V(Ii) for all 1 ≤ i ≤ n. Since Ii + Ij = S for all

1 ≤ i, j ≤ n with i 6= j, we have an isomorphism

R ∼= S/I1 × · · · × S/In
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of rings. We define

KR =
n⊕

i=1

ExttiS (S/Ii, S)

and call it the global canonical module of R, where ti = htSIi for 1 ≤ i ≤ n. Notice
that KR is a finitely generated R-module, and KR coincides with the ordinary canonical
module provided R is a local ring.

Example 3.1. Let S = k[X, Y ] the polynomial ring over a field k. We consider

Q1 = (X), Q2 = (1 + Y ), Q3 = (1 +XY ), Q4 = (X2, Y ), Q5 = (1 +X +XY, Y 2),

and I =
⋂5
i=1Qi. The ring R = S/I is not Cohen-Macaulay and R ∼= S/I1 × S/I2 as a

ring, where I1 =
⋂4
i=1Qi and I2 = Q5. By setting U1 =

⋂3
i=1Qi which the principal ideal

of S, we have the isomorphisms

Ext1S(S/I1, S)
∼= Ext1S(S/U1, S) ∼= S/U1

of R-modules. Since I2 is generated by the S-regular sequence, we get

Ext2S(S/I2, S)
∼= S/I2

as an R-module. Therefore KR
∼= S/U1 ⊕ S/I2 as an R-module.

We now summarize some basic results of KR.

Proposition 3.2. AssRKR =
⋃n
i=1{PR | P ∈ V(Ii), htSP = htSIi}.

Proof. Let 0 → S → E0 → E1 → · · · → Ej → · · · be the minimal injective resolution of
S. We fix an integer i with 1 ≤ i ≤ n. Since HomS(S/Ii, E

j) = (0) for all integers j < ti,
we get the monomorphism ExttiS (S/Ii, S) →֒ HomS(S/Ii, E

ti). Hence

AssS Ext
ti
S (S/Ii, S) ⊆ V(Ii) ∩ AssS E

ti = {P | P ∈ V(Ii), htSP = ti}.

This shows AssRKR ⊆
⋃n
i=1{PR | P ∈ V(Ii), htSP = ti}. Conversely, let P ∈ V(Ii) such

that htSP = ti. Since

dimSP − dim(S/Ii)P = htSP
(Ii)P = ti,

we then have P ∈ SuppS Ext
ti
S (S/Ii, S), while P ∈ MinS Ext

ti
S (S/Ii, S). Therefore P ∈

AssS Ext
ti
S (S/Ii, S) ⊆ AssRKR, as desired. �

Lemma 3.3. (KR)p ∼= KRp
as an Rp-module for every p ∈ SuppRKR.

Proof. Let p ∈ SuppRKR. Then there exist an integer i and P ∈ V(Ii) such that 1 ≤ i ≤ n
and p = PR. Choose q ∈ AssRKR such that q ⊆ p. We write q = QR for some Q ∈ V(Ii).
Then htSQ = ti. Since Q ⊆ P , we have htSP

(Ii)P = ti. Hence

dimSP − dim(S/Ii)p = dimSP − dimSP/(Ii)P = htSP
(Ii)P = ti

so we obtain the isomorphisms

(KR)p ∼= ExttiS (S/Ii, S)p
∼= ExttiSP

((S/Ii)p, SP ) ∼= K((S/Ii)p)
∼= K(Rp)

of Rp-modules. �
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Let us now state the first main theorem of this section.

Theorem 3.4. Suppose that R is locally quasi-unmixed. Then

AssRKR = MinR.

Hence (KR)p ∼= KRp
as an Rp-module for every p ∈ SpecR.

Proof. Let i be an integer with 1 ≤ i ≤ n. It suffice, by Proposition 3.2, to show that

MinS S/Ii ⊆ {P ∈ V(Ii) | htSP = htSIi}.

Take Q ∈ MinS S/Ii. Let Q
′ ∈ MinS S/Ii such that htSQ

′ = htSIi. We shall show htSQ =
htSIi. Since Q,Q

′ ∈ V(Ii), there exist an integer ℓ > 0 and a sequence Q1, Q2, . . . , Qℓ+1 ∈
V(Ii) such that Q1 = Q, Qℓ+1 = Q′, and Qj + Qj+1 6= S for all 1 ≤ j ≤ ℓ. We may
assume Q1, Q2, . . . , Qℓ+1 ∈ MinS S/Ii. We fix an integer j with 1 ≤ j ≤ ℓ. There exists
P ∈ MaxS such that Qj +Qj+1 ⊆ P , and then P ∈ V(Ii). Since RP

∼= (S/Ii)P and R is
locally quasi-unmixed, we have htS/Qj

P/Qj = htS/Qj+1
P/Qj+1, so that htSQj = htSQj+1

because S is a Cohen-Macaulay ring. Consequently, htSQ = htSQ
′, as wanted. The last

assertion follows from Lemma 3.3. �

Lemma 3.5. The endomorphism ring HomR(KR,KR) is commutative.

Proof. Set T = R \
⋃

q∈AssR KR
q. The ring HomR(KR,KR) is naturally isomorphic to a

subring of the commutative ring T−1R. �

Let ϕ : R → HomR(KR,KR) be the natural homomorphism of rings. We denote by
(0) =

⋂
q∈AssRQ(q) the primary decomposition of (0) in R, and set

U =
⋂

q∈AssR KR

Q(q).

With this notation we have the following.

Lemma 3.6. The equality U = (0) :R KR holds. Hence, one has U = Kerϕ.

Proof. Suppose UKR 6= (0) and take p ∈ AssR UKR. Since p ∈ AssRKR ⊆ MinR, we get
Up = (0) and hence (UKR)p = (0). This is absurd. Therefore UKR = (0), so that U ⊆
(0) :R KR. Suppose U ( (0) :R KR and seek a contradiction. Let p ∈ AssR[(0) :R KR]/U .
Since p ∈ AssRR/U , we get p ∈ AssRKR, so that (KR)p ∼= K(Rp). Since dimRp = 0,
we have (0) :Rp

K(Rp) = (0), whence [(0) :R KR]p = (0). This makes a contradiction.
Therefore (0) :R KR = U , as wanted. �

Hence, if AssR = AssRKR, then the canonical map ϕ : R→ HomR(KR,KR) is injective
and Q(R) = T−1R, where T = R \

⋃
q∈AssR KR

q. Therefore, HomR(KR,KR) is naturally
isomorphic to a birational extension of R.

Example 3.7. Wemaintain the same notation as in Example 3.1. Since KR
∼= S/U1⊕S/I2

as an R-module, we have

HomR(KR,KR) ∼= S/U1 × S/I2
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as a ring, which is a Gorenstein ring. The ideal U = (0) :R KR coincides with the nonzero
ideal (U1 ∩ I2)R of R, so the canonical map ϕ is not injective.

From now on, let us consider the finite generation of the R-module M̃ . We begin with
the following.

Lemma 3.8. Let a, b ∈ W(R). If htR(a, b) ≥ 2, then the sequence a, b is KR-regular.

Proof. As AssRKR ⊆ AssRR, we see that a ∈ W(KR). Suppose b is a zerodivisor on
KR/aKR. Then KR/aKR 6= (0) and there exists p ∈ AssRKR/aKR such that b ∈ p. Since
depthRp

(KR/aKR)p = 0, we have depthRp
KRp

= 1. Therefore dimRp = 1, because KRp
is

the ordinary canonical module of Rp. This contradicts that htR p ≥ 2. Hence the sequence
a, b is KR-regular. �

Let (−)∨ = HomR(−,KR) denote the KR-dual. For a finitely generated R-module M ,
by Proposition 3.2, we have

AssR M∨ = SuppRM ∩ AssRKR =
n⋃

i=1

{PR | P ∈ V(Ii), htSP = htSIi,MP 6= (0)},

so that M∨ is a torsion-free R-module since AssR M
∨ ⊆ AssR. Moreover dimMp =

dimRp for every p ∈ SuppRM
∨.

Lemma 3.9. Suppose that AssR = AssRKR. Let M be a finitely generated torsion-

free R-module. Then M∨∨ is naturally isomorphic to an R-submodule of Q(R) ⊗R M
containing M .

Proof. Let ψ :M →M∨∨ denote the natural homomorphism ofR-modules. Since AssR =
AssRKR, we have dimRq = 0 and (KR)q ∼= K(Rq) for all q ∈ AssR, so that Q(R)⊗R ψ is
an isomorphism of Q(R)-modules. Thus we have a commutative diagram

M
_�

i
��

ψ
// M∨∨

_�

h
��

Q(R)⊗RM
∼

Q(R)⊗Rψ
// Q(R)⊗R M

∨∨

�

of R-modules, where the vertical monomorphisms are canonical (recall that both M and
M∨∨ are torsion-free R-modules). We set ρ = (Q(R) ⊗R ψ)

−1 ◦ h. Then M∨∨ ∼= Im ρ
as an R-module and Im ρ is an R-submodule of Q(R) ⊗R M . Hence M∨∨ is naturally
isomorphic to an R-submodule of Q(R)⊗RM which contains M . �

We are now in a position to state the second main theorem.

Theorem 3.10. Suppose that AssR = AssRKR. LetM be a finitely generated torsion-free

R-module. Then M̃ is a finitely generated R-module. In addition, the equality M̃ =M∨∨

holds in Q(R)⊗RM .
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Proof. Since AssR = AssRKR ⊆ MinRR, we have AssR = MinR, i.e., R satisfies (S1).
Thus AssRM ⊆ MinR. By Lemma 3.9, we consider M∨∨ as an R-submodule of Q(R)⊗R

M which contains M . Set I = M :R M∨∨. Then htRI ≥ 2. In fact, take p ∈ V(I)
and assume htRp ≤ 1. Since Rp is a Cohen-Macaulay ring and Mp is a maximal Cohen-
Macaulay Rp-module, we see thatMp = (M∨∨)p. This is a contradiction. Hence htRI ≥ 2.

As I(M∨∨) ⊆M , we get M∨∨ ⊆ M̃ . So M̃ =M∨∨ by Proposition 2.4. Therefore M̃ is a
finitely generated R-module. �

By combining Theorems 2.17 and 3.10, we have the following.

Corollary 3.11. Suppose that AssR = AssRKR. Then there exist a, b ∈ W(R) such that

R̃ = HomR(KR,KR) =
R

a
∩
R

b
.

Hence, by Corollary 2.9, R̃ = HomR(KR,KR) is the (S2)-ification of R.

We close this section by proving the following.

Corollary 3.12. Let R be a Noetherian ring and assume that R is a homomorphic image

of a Gorenstein ring. Suppose that R is locally quasi-unmixed and satisfies (S1). Let M

be a finitely generated torsion-free R-module. Then M̃ is a finitely generated R-module.

Proof. By Theorem 3.4, we have AssRKR = MinR = AssR. Hence, Theorem 3.10

guarantees that M̃ is finitely generated as an R-module. �

4. Weakly Arf (S2)-ifications

In this section, we consider the question of how the weakly Arf property is inherited
under the (S2)-ifications. Recall that W(R) denotes the set of non-zerodivisors on R.

We begin with the following.

Lemma 4.1. The following three conditions are equivalent.

(1) The ring R satisfies WAP.

(2) aR
2
= a (aR) for all a ∈ W(R).

(3)
R

a
∩R is a subring of R for all a ∈ W(R).

Proof. For each a ∈ W(R), we have

R

a
∩R =

aR ∩ R

a
=
aR

a
which shows (2) ⇔ (3). On the other hand, let a ∈ W(R). Then

bc

a
∈ R if and only if

b

a
·
c

a
∈
R

a
,

where b, c ∈ R. Hence we get (1) ⇔ (3). �

In what follows, we assume R is a Noetherian ring.
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Theorem 4.2. Suppose that R̃ is a finitely generated R-module. If R satisfies WAP, then

so does R̃.

Proof. Assume that R satisfies WAP. Then, for each a ∈ W(R), the module-finite bira-

tional extension aR
a

= R
a
∩ R of R satisfies WAP ([4, Proposition 2.10]). By Theorem

2.17, there exist a, b ∈ W(R) such that R̃ = R
a
∩ R

b
. We then have

R̃ =
R

a
∩
R

b
=
R

a
∩
R

b
∩R =

aR

a
∩
bR

b

where the second equality comes from R̃ ⊆ R. Since WAP is maintained by taking the

intersection ([7, Lemma 4.5]), R̃ satisfies WAP, as desired. �

As a consequence of Theorem 4.2, we readily get the following.

Corollary 4.3. Suppose that R is locally quasi-unmixed and that R is a finitely generated

R-module. If R satisfies WAP, then so does R̃.

Proof. As R is locally quasi-unmixed, we have R̃ ⊆ R. The assertion follows from Theorem
4.2, because R̃ is a module-finite extension of R. �

Even if the normalization R is not finitely generated as an R-module, the ring R̃ could
be finitely generated; see Corollary 3.12. Hence we have the following.

Corollary 4.4. Suppose that R is locally quasi-unmixed and satisfies (S1). Assume that

R is a homomorphic image of a Gorenstein ring. If R satisfies WAP, then so does R̃.

By Lemma 4.1, WAP is equivalent to saying that, for each a ∈ W(R), the reduction
number of aR is at most 1. Remember that R is integrally closed if and only if aR = aR
for every a ∈ W(R). This indicates that WAP is very close to the integral closedness,
which is the reason why the weakly Arf (S2)-ification is of interest next to the integral
closure R, and may have its own significance.

Definition 4.5. The weakly Arf (S2)-ification of R is the smallest module-finite birational

extension of R satisfying both WAP and the condition (S2) of Serre.

The following provides sufficient conditions for the existence of weakly Arf (S2)-ifications.

Corollary 4.6. Suppose that R is a locally quasi-unmixed ring satisfying WAP and (S1).

Then R̃ is the weakly Arf (S2)-ification, if one of the following conditions holds.

(1) R is a finitely generated R-module.

(2) R is a homomorphic image of a Gorenstein ring.

Proof. Use Corollaries 2.9, 4.3, and 4.4. �

Finally, we reach the goal of this paper.

Corollary 4.7. Let R be a locally quasi-unmixed Noetherian ring which satisfies (S1). If
R is a finitely generated R-module, then R admits the weakly Arf (S2)-ification.
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Proof. By [4, Proposition 7.5] we can construct the smallest module-finite birational ex-
tension, denoted by Ra, of R which satisfies WAP. Then Ra is a locally quasi-unmixed

Noetherian ring satisfying (S1). Corollary 4.3 guarantees that R̃a is a module-finite bira-
tional extension of R satisfying WAP and the condition (S2). Let S be a module-finite
birational extension of R which satisfies WAP and (S2). Then, by the minimality of Ra,

we see that Ra ⊆ S. Hence R̃a ⊆ S̃ = S. This completes the proof. �

The notion of strict closedness of rings was introduced by Lipman [12] in connection
with the Arf property. We define

R∗ =
{
α ∈ R | α⊗ 1 = 1⊗ α in R⊗R R

}
.

Then R∗ is a birational extension of R, which is called the strict closure of R in R.
We say that R is strictly closed, if R = R∗ holds. As (R∗)∗ = R∗ in R, R∗ is strictly
closed in R ([12, Section 4, p.672]), so that [−]∗ is a closure operation. The strict closure
behaves well with respect to the standard operations in ring theory, such as localizations,
polynomial extensions, and faithfully flat extensions (see [4, Proposition 4.2, Lemma 4.9],
[12, Proposition 4.3]). It is also proved in [4, Corollary 13.6] that the invariant subrings of
strictly closed rings under a finite group action (except the modular case) are also strictly
closed. The reader may consult with [12, 4, 7] about further properties.

As Lipman predicted in [12] and as the authors of [4, 7] are trying to develop a general
theory, there might have a strong connection between the strict closedness and WAP.
Indeed, an arbitrary commutative ring R is a weakly Arf ring, once it is strictly closed
([12, Proof of Proposition 4.5]), and as for Noetherian rings R with (S2), it is known by
[4, Corollary 4.6] that R is strictly closed if and only if R satisfies WAP and Rp is Arf for
every p ∈ SpecR with htRp = 1. Therefore, provided either R contains an infinite field,
or htRM ≥ 2 for every M ∈ MaxR, R is strictly closed if and only if R satisfies WAP
([4, Corollary 4.6]).

In this direction, we have the following.

Corollary 4.8. Let R be a locally quasi-unmixed Noetherian ring which satisfies (S1).
Suppose that R satisfies WAP and one of the following conditions.

(1) R is a finitely generated R-module.

(2) R is a homomorphic image of a Gorenstein ring.

Then R̃ is strictly closed if one of the following conditions holds.

(i) R contains an infinite field.

(ii) htRM ≥ 2 for every M ∈ MaxR.

Closing this paper, we prove the following.

Proposition 4.9. Let (A,m) be a Noetherian local ring with dimA = 2 possessing the

canonical module KA. Suppose that A is a finitely generated A-module and that all the

minimal prime ideals of A have the same codimension. We choose non-zerodivisors a, b ∈
m on A such that a ∈ A : A, a, b is a system of parameters of A, and aA :A b = aA :A b

2.

Then Ã =
A

a
∩
A

b
holds.
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Proof. Since A is finitely generated as an A-module, we can choose a ∈ W (A)∩(A : A)∩m.

Then Ã = U(aA)
a

where U(aA) denotes the minimal component of a primary decomposition
of aA. Let b ∈ W (A) ∩ m such that a, b is a system of parameters of A. Since A is
Noetherian, we may assume aA :A b = aA :A b2 by taking a large enough powers of b.
Hence aA :A b =

⋃
n>0 aA :A b

n. Since dimA = 2, there exists an m-primary ideal I of A
such that aA = U(aA) ∩ I. Thus, for all integers i ≫ 0, we have bi 6∈ U(aA) and bi ∈ I.
Therefore we obtain U(aA) =

⋃
n>0 aA :A b

n, and hence U(aA) = aA :A b. �

Remark 4.10. Proposition 4.9 also holds for graded setting. More precisely, let A be
a Noetherian positively graded ring with dimA = 2 possessing the graded canonical
module KA. Suppose that A0 is a local ring, A is a finitely generated A-module, and all
the associated prime ideals of A have the same codimension. We choose homogeneous
non-zerodivisors a, b on A such that a ∈ A : A, a, b is a homogeneous system of parameters

of A, and aA :A b = aA :A b
2. Then Ã =

A

a
∩
A

b
holds.

Example 4.11 (see [5, Example 2.6]). Let T = k[X, Y ] be the polynomial ring over a field
k. We consider the subring R = k[X5, XY 4, Y 5] of T . Note that R is a Cohen-Macaulay
ring and

R = k[X5, X4Y,X3Y 2, X2Y 3, XY 4, Y 5]

is a finitely generated R-module. Let Ra denote the weak Arf closure of R (see [4]). By
[5, Example 2.6], we then have

Ra = R[X9Y 6, X8Y 7, X4Y 11] = k[X5, XY 4, Y 5, X9Y 6, X8Y 7, X4Y 11]

so that Ra is not a Cohen-Macaulay ring. Set A = Ra. Since

A = AX4Y + AX3Y 2 + AX2Y 3,

we get Y 10 ∈ A : A. By setting a = Y 10 and b = X5, the pair a, b is a system of parameters
of A. In addition, we have

aA :A b = aA :A b
2 = (Y 10, X3Y 17, X4Y 16)A,

whence

Ã =
A

a
∩
A

b
=
aA :A b

a
=

(Y 10, X3Y 17, X4Y 16)A

Y 10

= A+ AX3Y 7 + AX4Y 6 = A[X3Y 7, X4Y 6].

Therefore, the (S2)-ification R̃a is given by

R̃a = Ra[X3Y 7, X4Y 6] = R[X3Y 7, X4Y 6] = k[X5, XY 4, Y 5, X3Y 7, X4Y 6].

This is the weakly Arf (S2)-ification of R. Since R̃a 6= R, the ring R̃a is not normal.
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