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INEXACT PROXIMAL NEWTON METHODS IN HILBERT SPACES∗

BASTIAN PÖTZL† , ANTON SCHIELA† , AND PATRICK JAAP‡

Abstract. We consider Proximal Newton methods with an inexact computation of update steps. To this end,
we introduce two inexactness criteria which characterize sufficient accuracy of these update step and with the aid of
these investigate global convergence and local acceleration of our method. The inexactness criteria are designed to
be adequate for the Hilbert space framework we find ourselves in while traditional inexactness criteria from smooth
Newton or finite dimensional Proximal Newton methods appear to be inefficient in this scenario. The performance
of the method and its gain in effectiveness in contrast to the exact case are showcased considering a simple model
problem in function space.
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1. Introduction. In the present work we extend the idea of Proximal Newton methods in
Hilbert spaces as presented in [14] to admit an inexact computation of update steps by solving the
respective subproblem only up to prescribed accuracy. We consider the composite minimization
problem

min
x∈X

F (x) := f(x) + g(x)(1.1)

on some real Hilbert space (X, 〈·, ·〉X) where f : X → R is assumed to be smooth in some adequate
sense and g : X → R is possibly not. We pay particular attention to the infinite-dimensionality of
the underlying Hilbert spaces and thus develop inexactness criteria for update step computation
that are sufficiently easy to evaluate, help us preserve convergence properties of the exact case as
considered in [14] and reduce the computational effort significantly.

For an overview of the development of Proximal Newton methods themselves consider [14].
Here, we want to focus on the realization of the inexactness aspect and consider corresponding
most recent literature in this introductory section. The use of gradient-like inexactness criteria
which can be seen as the direct generalization of the one for classical smooth Newton methods in
[5] is quite common, cf. [11, 3, 10].

In [11] additional knowledge of bounds on the second-order bilinear forms as well as the Lip-
schitz constant of f ′ is necessary and only local convergence has been investigated in the inexact
case. Globalization of the ensuing method has been achieved in [10] by using a Proximal Gradient
substitute step in case the inexactly computed second order step does not suffice a sufficient de-
crease criterion or the step computation subproblem is ill-formed due to non-convexity which thus
can be overcome as well. In [3] the particular case of L1-regularization for machine learning appli-
cations has been considered and thus the inexactness criterion has further been specified and also
here enhanced with a decrease criterion in the quadratic approximation of the composite objective
function. The latter has then been tightened in order to achieve local acceleration.
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2 B. PÖTZL, A. SCHIELA, AND P. JAAP

Another approach to inexactness criteria is measuring the residual within the step computation
subproblem. In [12], where objective functions consisting of the sum of a thrice continuously
differentiable smooth part and a self-concordant non-smooth part have been considered, the residual
vector within optimality conditions for update computation is supposed to be bounded in norm
with respect to the already computed inexact step. However, the residual can also be measured via
functional descent in the quadratic approximation of the composite objective F , cf. [13, 16]. While
in [13] the second order model decrease bound against its optimal value has not directly been tested
but simply assumed to hold after a finite (and fixed) number of subproblem solver iterations, the
authors in [16] have taken the structure of their randomized coordinate descent subproblem solver
into account and also have given quadratic bounds for the prefactor constant within their model
descent estimate in order to obtain sufficient convergence results.

All of the above works have in common that they depend on the finite dimensional structure
of the underlying Euclidean space. In particular, the efficient computation of proximal gradients,
required for the evaluation of inexactness cirteria, relies on the diagonal structure of the underlying
scalar product 〈·, ·〉X , which is usually not present in (discretized) function spaces, as for example,
Sobolev spaces. Moreover, all current approaches consider fixed search directions which are then
scaled by some step length parameter.

Our contributions beyond their work can be summarized as follows: Most importantly, we
replace the Euclidean space setting with a Hilbert space one in order to rigorously allow function
space applications of our method. In particular, we are interested in the important case where X
is a Sobolev space. Then, a diagonal approximation of 〈·, ·〉X after discretization would lead to
proximal operators that suffer from mesh-dependent condition numbers. For the efficient compu-
tation of proximal steps we thus take advantage of a non-smooth multigrid method. Specifically,
we use a Truncated Non-smooth Newton Multigrid Method (TNNMG), cf. [8] in our numerical
implementation. Consequently, our inexactness criteria need to be constructed in such a way that
their evaluation is efficient in this context. Existing criteria can only be employed efficiently, if
〈·, ·〉X enjoys a diagonal structure.

Additionally, ellipticity of the bilinear forms for forming quadratic approximations of our ob-
jective functional as well as convexity of the non-smooth part g has often crucial been in literature.
We drop these prerequisites and use a less restrictive framework of convexity assumptions for the
composite objective function F . Finally, we do not demand second order differentiability with
Lipschitz-continuous second order derivative of the smooth part f but instead settle for adequate
semi-smoothness assumptions.

Let us now give the precise set of assumptions in which we will discuss the convergence properties
of inexact Proximal Newton methods. As pointed out beforehand, we find ourselves in a real Hilbert
space (X, 〈·, ·〉X) with corresponding norm ‖v‖X =

√

〈v, v〉X and dual space X∗. This choice of X
also provides us with the Riesz-Isomorphism R : X → X∗, defined by Rx = 〈x, ·〉X , which satisfies
∥

∥Rx
∥

∥

X∗
=

∥

∥x
∥

∥

X
for every x ∈ X . Since R is non-trivial in general, we will not identify X and X∗.

The smooth part of our objective functional f : X → R is assumed to be continuously differ-
entiable with Lipschitz-continuous derivative f ′ : X → X∗, i.e., we can find some constant Lf > 0
such that for every x, y ∈ X we obtain the estimate

∥

∥f ′(x) − f ′(y)
∥

∥

X∗
≤ Lf

∥

∥x− y
∥

∥

X
.(1.2)

As mentioned beforehand, we will use the base algorithm from [14] as our point of departure.
This means that we consider a variation of the Proximal Newton method which is globalized by an
additional norm term within the subproblem for step computation. As a consequence, the latter
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reads

∆x(ω) := argmin
δx∈X

λx,ω(δx)(1.3)

where the regularized second order decrease model λx,ω : X → R is given by

λx,ω(δx) := f ′(x)δx +
1

2
Hx(δx, δx) +

ω

2

∥

∥δx
∥

∥

2

X
+g(x+ δx)− g(x) .

The updated iterate then takes the form x+(ω) := x+∆x(ω).
The second order model of the smooth part f from above also has to be endowed with adequate

prerequisites. Notationally identifying the linear operators Hx ∈ L(X,X
∗) with the corresponding

symmetric bilinear forms Hx : X×X → R we write (Hxv)(w) = Hx(v, w) and abbreviate Hx(v)
2 =

Hx(v, v). Uniform boundedness of the Hx along the sequence (xk) of iterates in the form

∥

∥Hxk

∥

∥

L(X,X∗)
≤M for some (uniform) M > 0 .(1.4)

will also be of importance in what follows. Furthermore, along the sequence of iterates (xk) we
assume a (possibly non-uniform) bound of the form

∀ k ∈ N ∃κ1 ∈ R ∀v ∈ X : Hxk
(v)2 := Hxk

(v, v) ≥ κ1
∥

∥v
∥

∥

2

X
(1.5)

which can be interpreted as an ellipticity assumption on Hxk
in case the constant κ1 is positive. In

this case, when considering exact (and smooth) Proximal Newton methods, where Hx is given by
the Hessian of f at some point x ∈ X , (1.5) is equivalent to κ1-strong convexity of f .

While in a sufficiently smooth setting Hx := f ′′(x) is common, for most of the paper we may
choose Hx freely in the above framework. For fast local convergence, however, we will impose a
semi-smoothness assumption, cf. (2.11). Semi-smooth Newton methods in function space have been
discussed, for example, in [18, 19, 9, 17].

As far as the non-smooth part g is concerned, we require lower semi-continuity as well as a
bound of the form

g(sx+ (1− s)y) ≤ sg(x) + (1− s)g(y)−
κ2

2
s(1− s)

∥

∥x− y
∥

∥

2

X
(1.6)

for all x, y ∈ X and all s ∈ [0, 1] for some κ2 ∈ R. For κ2 > 0 this estimate can be interpreted as
κ2-strong convexity of g. In the latter case we can then conclude that g is bounded from below,
its level-sets Lαg are bounded for all α ∈ R and that their diameter shrinks to 0 in the limit of
α→ infx∈X g. Non-positivity of κ2 allows g to be non-convex in a limited way.

The theory behind Proximal Newton methods and the respective convergence properties evolve
around the convexity estimates stated in (1.5) and (1.6). We will assign particular importance to
the interplay of the convexity properties of f and g, i.e., the sum κ1 + κ2 will continue to play
an important role over the course of the present treatise. Apparently, the update step in (1.3) is
well defined for every ω > 0 if κ1 + κ2 > 0. This holds also in the case of κ1 + κ2 ≤ 0 for every
ω > −(κ1+κ2) due to the bounds stated in (1.5), (1.6) and the strong convexity of the norm term.
For this reason, we will assume ω > −(κ1 + κ2) wherever it appears.

The above demands on f , g, Hx and ω constitute the standing assumptions for the further
investigation which we impose for the entirety of the paper.
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Let us now briefly outline the structure of our work: In Section 2 we introduce the notion of
composite gradient mappings and consider some of their basic properties. Afterwards, in Section 3,
we take advantage of the acquired knowledge and introduce the first inexactness criterion in order to
investigate local convergence of our method as well as the influence of both damping and inexactness.
Section 4 then considers the globalization phase of our inexact Proximal Newton method and for this
reason introduces a second inexactness criterion which compares the functional decrease of inexact
updates with steps originating from a simpler subproblem. Thus, we also achieve sufficient global
convergence results. In order to then benefit from local acceleration, we investigate the transition
to local convergence in Section 5. To this end, we need to ensure that close to optimal solutions
also arbitrarily weakly damped update steps yield sufficient decrease. Lastly, we put our method
to the test in Section 6 and display global convergence as well as local acceleration considering a
simple model problem in function space. Concluding remarks can be found in Section 7.

2. Composite Gradient mappings and their Properties. The main goal to keep in
mind is not only to introduce the concept of inexactness to the computation of update steps of the
Proximal Newton method from [14] but also quantify the influence of damping update steps to the
local convergence rate of our algorithm.

2.1. Definition and Representation via Proximal Mappings. For this cause, we take
advantage of the notion of regularized composite gradient mappings GΦ

τ : X → X for some com-
posite functional Φ : X → R in the form Φ(x) := φ(x) + ψ(x) with smooth part φ : X → R and
non-smooth part ψ : X → R. The aforementioned mapping is defined via

GΦ
τ (y) := −τ

[

argmin
δy∈X

φ′(y)δy +
τ

2

∥

∥δy
∥

∥

2

X
+ψ(y + δy)− ψ(y)

]

(2.1)

for y ∈ X and some regularization parameter τ > 0 the assumptions on which we will specify over
the course of the current section. For the derivation of useful estimates for composite gradient
mappings, the so-called scaled dual proximal mapping PHψ : X∗ → X , defined via

PHψ (ℓ) := argmin
z∈X

ψ(z) +
1

2
H(z, z)− ℓ(z)

for arbitrary ℓ ∈ X∗ and some symmetric bilinear form H sufficing (1.5) as well as some real valued
function ψ satisfying (1.6) for constants κ1, κ2 ∈ R with κ1 + κ2 > 0, will come in handy. In what
is to come, we will take advantage of the following two crucial results concerning dual proximal
mappings which have been stated and proven in [14]. The first one is a general estimate for the
image of such operators which generalizes the assertions of the so called second prox theorem, cf.
e.g. [2, Chapter 6.5]. The second one is a Lipschitz-continuity result.

Proposition 2.1 ([14], Proposition 2 and Corollary 1). Let H and ψ satisfy the assumptions
(1.5) and (1.6) with κ1 + κ2 > 0. Then for any ℓ ∈ X∗ the image of the corresponding proximal
mapping u := PHψ (ℓ) satisfies the estimate

[

ℓ−H(u)
]

(ξ − u) ≤ ψ(ξ)− ψ(u)−
κ2

2

∥

∥ξ − u
∥

∥

2

X

for all ξ ∈ X. Additionally, for all ℓ1, ℓ2 ∈ X
∗ the following inequality holds:

∥

∥PHψ (ℓ1)− P
H
ψ (ℓ2)

∥

∥

X
≤

1

κ1 + κ2

∥

∥ℓ1 − ℓ2
∥

∥

X∗
.
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With the aid of scaled proximal mappings, we can express the composite gradient mapping as

GΦ
τ (y) = τ

[

y − PτRψ
(

τRy − φ′(y)
)]

.(2.2)

Let us now justify the designation ofGΦ
τ as a regularized composite gradient mapping. If we consider

the smooth case of ψ = 0, the proximal mapping takes the form PHψ (ℓ) = H−1ℓ. This fact carries
over to the definition of the gradient mapping via

Gφτ (y) = τ
[

y − (τR)−1
(

τRy − φ′(y)
)]

= R−1φ′(y)

which resembles the infinite dimensional counterpart of the gradient ∇φ in Euclidean space. Note
that this consistency result holds for all τ > 0.

Another consideration which expresses the consistency between GFτ and some actual ’smooth’
gradient of F = f + g with respect to our minimization problem (1.1) is the following: Let then
GFτ (x∗) = 0 hold for some x∗ ∈ X and τ ≥ 0. This is equivalent to the fixed point equation
x∗ = PτRg

(

τRx∗ − f ′(x∗)
)

which can then again be transformed to −f ′(x∗) ∈ ∂F g(x∗) in X∗.
Consequently, we recognize that the composite gradient mapping is zero if and only if we evaluate
it at critical points of the underlying minimization problem (1.1).

2.2. Key Properties and Auxiliary Estimates. For now, let us derive some key properties
of the composite gradient mappings which will come in handy as we quantify the influence of both
inexactness and damping to local convergence rates of our algorithm.

Before departing on this endeavor we introduce the modified quadratic model F̂x,ω : X → R of
the composite objective functional F around x ∈ X with regularization parameter ω via

F̂x,ω(y) := F (x) + λx,ω(y − x) = f(x) + f ′(x)(y − x) +
1

2
Hx(y − x)

2 + g(y) +
ω

2

∥

∥y − x
∥

∥

2

X
.(2.3)

The corresponding composite gradient mapping G
F̂x,ω

τ will play an important role. In that regard,
we note that in the framework of the definition of the gradient mapping in (2.1) we thus have

Φ = F̂x,ω = φ̂+ ψ̂ with

φ̂(y) = f(x) + f ′(x)(y − x) +
1

2

(

Hx + ωR
)

(y − x)2 , ψ̂(y) = g(y)(2.4)

and thereby φ̂′(y) = f ′(x) +
(

Hx + ωR
)

(y − x) for any y ∈ X . The following lemma provides us
with helpful estimates for the norm difference of composite gradient mappings both from above and
below.

Lemma 2.2. For every x, y, z ∈ X and the choice τ := ω+ 1
2

(∥

∥Hx

∥

∥

L(X,X∗)
+κ1

)

, the regularized

composite gradient mapping suffices the estimate

τ
(

1−H
)∥

∥y − z
∥

∥

X
≤

∥

∥GF̂x,ω

τ (y)−GF̂x,ω

τ (z)
∥

∥

X
≤ τ

(

1 +H
)∥

∥y − z
∥

∥

X
(2.5)

where we abbreviated H :=

∥

∥Hx

∥

∥

L(X,X∗)
−κ1

2(τ+κ2)
.

Proof. As we insert the characterizations of the respective regularized composite gradient map-
pings as in (2.2), we perceive that we can represent their norm difference via

∥

∥GF̂x,ω

τ (y)−GF̂x,ω

τ (z)
∥

∥

X
= τ

∥

∥(y − z)−
(

Py − Pz
)
∥

∥

X
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with abbreviations Pξ := P
τR
g

(

τRξ −
[

f ′(x) +
(

Hx +ωR
)

(ξ − x)
])

for ξ ∈ {y, z}. This provides us
with the bounds

τ
(
∥

∥y − z
∥

∥

X
−
∥

∥Py − Pz
∥

∥

X

)

≤
∥

∥GF̂x,ω
τ (y)−GF̂x,ω

τ (z)
∥

∥

X
≤ τ

(
∥

∥y − z
∥

∥

X
+
∥

∥Py − Pz
∥

∥

X

)

from above and below for the norm difference of gradient mappings. This shows that for the proof
of (2.5) it suffices to verify

∥

∥Py − Pz
∥

∥

X
≤ H

∥

∥y − z
∥

∥

X
=

∥

∥Hx

∥

∥

L(X,X∗)
−κ1

2(τ + κ2)

∥

∥y − z
∥

∥

X
.(2.6)

The Lipschitz result from Proposition 2.1 allows us to establish the following estimate for the norm
difference of proximal mapping images in relation to their arguments:

∥

∥Py − Pz
∥

∥

X
≤

1

τ + κ2

∥

∥τRy −
(

Hx + ωR
)

(y − x)−
(

τRz −
(

Hx + ωR
)

(z − x)
)∥

∥

X∗

=
1

τ + κ2

∥

∥

(

(τ − ω)R−Hx

)

(y − z)
∥

∥

X∗
≤

∥

∥(τ − ω)R−Hx

∥

∥

L(X,X∗)

τ + κ2

∥

∥y − z
∥

∥

X
.

(2.7)

Let us now pay particular attention to the L(X,X∗)-norm difference in the prefactor above. On
the one hand, for any τ > −κ2, we can estimate it by

∥

∥(τ − ω)R−Hx

∥

∥

L(X,X∗)
≤ |τ − ω|+

∥

∥Hx

∥

∥

L(X,X∗)
.

Nevertheless, with further assumptions on the gradient mapping regularization parameter τ we
can deduce a better bound. To this end, we define λ := τ − ω and choose λopt such that

∥

∥λR −

Hx

∥

∥

L(X,X∗)
is minimal. It is easy to see that the eigenvalues of the self-adjoint operator Hτ

x :=

R−1(λR−Hx) lie in the interval
[

λ−
∥

∥Hx

∥

∥

L(X,X∗)
, λ− κ1

]

.

In order to now minimize the norm of Hτ
x , we recognize that it equals the spectral radius of

Hτ
x and thus want to establish a symmetrical interval where eigenvalues can be located. This yields

the choice λopt :=
1
2

(∥

∥Hx

∥

∥

L(X,X∗)
+κ1

)

. In particular, this implies

τ := ω + λopt = ω +
1

2

(∥

∥Hx

∥

∥

L(X,X∗)
+κ1

)

≥ ω +
|κ1|+ κ1

2
≥ ω + κ1 > −κ2

by our choice of ω and consequently

∥

∥(τ − ω)R−Hx

∥

∥

L(X,X∗)
=

∥

∥Hτ
x

∥

∥

L(X,X)
=

∥

∥Hx

∥

∥

L(X,X∗)
−λopt =

1

2

(
∥

∥Hx

∥

∥

L(X,X∗)
−κ1

)

.

Inserting this into the above estimate (2.7), we obtain (2.6) which completes the proof.

For the next result, we take advantage of the solution property of exactly computed update
steps from (1.3).

Proposition 2.3. Let ∆x(ω) be an exactly computed update step as in (1.3) at some x ∈ X.
Then, for any τ > −κ2 the following identity holds:

GF̂x,ω

τ

(

x+∆x(ω)
)

= 0 .(2.8)
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Proof. We consider the minimization problem within brackets in the definition of the regularized
composite gradient mapping in (2.1). Here, we have to insert the derivative φ′ of the smooth part
of the regularized model F̂x,ω as in (2.4) evaluated at y = x+∆x(ω) which yields

argmin
δx∈X

[

f ′(x) +
(

Hx + ωR
)

∆x(ω)
]

δx+
τ

2

∥

∥δx
∥

∥

2

X
+g

(

x+∆x(ω) + δx
)

− g
(

x+∆x(ω)
)

.(2.9)

By strong convexity of the objective function for τ > −κ2, the above minimization problem has a
unique solution δx̄ ∈ X . By first order optimality conditions, this solution then satisfies the dual
space inclusion

0 ∈ f ′(x) +
(

Hx + ωR
)

∆x(ω) + ∂F g
(

x+∆x(ω) + δx̄
)

+ τRδx̄(2.10)

for the Fréchet-subdifferential ∂F g. Note here that the exactly computed update step ∆x(ω) as a
solution of (1.3) suffices

0 ∈ f ′(x) +
(

Hx + ωR
)

∆x(ω) + ∂F g
(

x+∆x(ω)
)

which directly yields that δx̄ = 0 satisfies (2.10) and is thereby the unique solution of (2.9). This
completes the proof of (2.8).

Let us now consider the difference of gradient mappings of the objective function F and its
modified second order model F̂x,ω at optimal solutions x∗ of problem (1.1).

For the following we require f ′ to be semi-smooth near an optimal solution x∗ of our problem
(1.1) with respect to Hx, i.e., that the following approximation property holds:

∥

∥f ′(x∗)− f
′(x)−Hx(x∗ − x)

∥

∥

X∗
= o

(∥

∥x− x∗
∥

∥

X

)

.(2.11)

Adequate definitions of Hx can be given via a so-called Newton derivative from ∂Nf
′(x), also known

as the generalized differential ∂∗f ′(x) for Lipschitz-continuous operators in finite dimensions, and
for corresponding superposition operators, cf. [19, Chapter 3.2].

Lemma 2.4. Let the semi-smoothness assumption (2.11) hold near an optimal solution x∗ ∈ X.
Then, the regularized composite gradient mapping satisfies the following estimate for each τ > −κ2
and x ∈ X:

∥

∥GFτ (x∗)−G
F̂x,ω
τ (x∗)

∥

∥

X
≤ o

(
∥

∥x∗ − x
∥

∥

X

)

+
τ ω

τ + κ2

∥

∥x∗ − x
∥

∥

X
.

Proof. The proof here follows immediately by the characterization of the regularized composite
gradient mapping as in (2.2) and the semi-smoothness of f ′ according to (2.11). To go into detail,
by Proposition 2.1 we have

∥

∥GFτ (x∗)−G
F̂x,ω
τ (x∗)

∥

∥

X

= τ
∥

∥PτRg
(

τRx∗ − f
′(x∗)

)

− PτRg
(

τRx∗ −
[

f ′(x) +
(

Hx + ωR
)

(x∗ − x)
])∥

∥

X

≤
τ

τ + κ2

∥

∥

(

τRx∗ − f
′(x∗)

)

−
(

τRx∗ −
[

f ′(x) +
(

Hx + ωR
)

(x∗ − x)
]∥

∥

X∗

≤
τ

τ + κ2

∥

∥f ′(x∗)−
(

f ′(x) + (Hx + ωR)(x∗ − x)
)∥

∥

X∗

= o
(∥

∥x∗ − x
∥

∥

X

)

+
τ ω

τ + κ2

∥

∥x∗ − x
∥

∥

X

the last identity of which follows by the aforementioned definition of Hx ∈ ∂Nf
′(x) as a Newton-

derivative together with (2.11).



8 B. PÖTZL, A. SCHIELA, AND P. JAAP

2.3. An Existing Inexactness Criterion. In the literature composite gradient mappings
have been used in order to derive an inexactness criterion for update step computation within
Proximal Newton methods. Based on an approach from the smooth case, cf. e.g. [5], the authors
in [10, 11] took advantage of the composite gradient mapping GFτ to postulate the corresponding
estimate which their inexact update steps have to satisfy. In a similar fashion, transferring the
criterion from the smooth case to our globalization scheme using the damped update steps ∆s(ω)
from (1.3) yields

∥

∥GF̂x,ω

τ

(

x+∆s(ω)
)∥

∥

X
≤ η

∥

∥GFτ (x)
∥

∥

X
(2.12)

for some yet to be specified forcing term η > 0. Here, F̂x,ω denotes the modified quadratic model
from (2.3) above. This requirement can be understood as a relative error criterion for the composite
gradient mapping in norm due to the optimality of exactly computed update steps as formulated
in Proposition 2.3.

While in a finite dimensional Euclidean space setting this gradient mapping can be evaluated
efficiently due to the diagonal structure of the norm term, in an infinite dimensional setting the
computation of this gradient mapping is quite demanding, even as expensive as computing the
actual exact update step ∆x(ω).

Consequently, evaluating (2.12) for every iteration within the subproblem solver becomes very
costly and thereby immediately eclipses the savings we gain from inexactly computing the update
steps. For this reason, we will resort to a different inexactness criterion.

3. First Inexactness Criterion and Local Convergence Properties. As pointed out
beforehand, we do not use an inexactness criterion of the form (2.12) due to its immense compu-
tational effort in function space. Instead, we exploit the advantageous properties of the TNNMG
subproblem solver by resorting to an actual relative error estimate of the form

∥

∥∆x(ω)−∆s(ω)
∥

∥

X
≤ η

∥

∥∆x(ω)
∥

∥

X
(3.1)

where ∆x(ω) denotes the exact solution of the update step computation subproblem (1.3) and
∆s(ω) is the corresponding inexact candidate. The influence of the forcing terms η ≥ 0 on local
convergence rates will be investigated in Theorem 3.2.

Before actually stating the local convergence results, let us remark that the inexactness criterion
(3.1) is trivially satisfied by exactly computed update steps and η is a measure for the margin for
error which we allow in the computation. Additionally, the fact that the inexactly computed update
steps ∆s(ω) are in our case iterates from the convergent TNNMG subproblem solver implies that
sooner or later within the solution process of (1.3) the requirement (3.1) will be satisfied.

Furthermore, let us comment on the efficient evaluation of this relative error estimate. At first
sight, this is not completely obvious since apparently we do not have the exact solution ∆x(ω) of the
update computation subproblem (1.3) at hand. In order to deal with this issue, we take advantage
of the multigrid structure of the iterative subproblem solver which we employ, i.e., the TNNMG
method from [8]. By δj we denote TNNMG-corrections, let therefore ∆si(ω) =

∑i
j=1 δ

j be an
iterate within the inner solver towards the exact solution ∆x(ω) and θ the ’constant’ multigrid
convergence rate for

∥

∥δj
∥

∥

X
≤ θ

∥

∥δj−1
∥

∥

X
. Simple triangle inequalities thus provide us with

∥

∥∆x(ω) −∆si(ω)
∥

∥

X
=

∞
∑

j=i+1

∥

∥δj
∥

∥

X
≤

∥

∥δi
∥

∥

X

∞
∑

j=i+1

θj−i =
θ

1− θ

∥

∥δi
∥

∥

X
.
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Similarly, for the norm of the exact solution we obtain

∥

∥∆x(ω)
∥

∥

X
=

∥

∥

∞
∑

j=1

δj
∥

∥

X
=

∥

∥∆si(ω) +

∞
∑

j=i+1

δj
∥

∥

X
≥

∥

∥∆si(ω)
∥

∥

X
−
∥

∥

∞
∑

j=i+1

δj
∥

∥

X

≥
∥

∥∆si(ω)
∥

∥

X
−

θ

1− θ

∥

∥δi
∥

∥

X
.

Combining both of these estimates implies
∥

∥∆x(ω) −∆si(ω)
∥

∥

X
∥

∥∆x(ω)
∥

∥

X

≤
θ

1−θ

∥

∥δi
∥

∥

X
∥

∥∆si(ω)
∥

∥

X
− θ

1−θ

∥

∥δi
∥

∥

X

!
≤ η(3.2)

as a sufficient and easy to evaluate alternative inexactness criterion for the relative error estimate
(3.1). Numerical experiments, which we also incorporated to Section 6, clearly demonstrate that
the performed triangle inequalities are sharper than one might have expected. Thus, the evaluation
of the alternative criterion from (3.2) comes very close to using the actual relative error for our
computations later on.

Another crucial auxiliary result for all of the present treatise is an equivalence estimate between
exactly computed update steps which have been damped according to different regularization pa-
rameters. It generalizes [14, Lemma 6] insofar that this result is comprised here in the case of
ω = 0.

Lemma 3.1. Let ∆x(ω) and ∆x(ω̃) be exactly computed update steps according to (1.3) with
regularization parameters satisfying ω > −(κ1+κ2) and ω̃ ≥ ω. Then the following norm estimates
hold:

∥

∥∆x(ω)−∆x(ω̃)
∥

∥

X
≤

ω̃ − ω

ω + κ1 + κ2

∥

∥∆x(ω̃)
∥

∥

X
(3.3)

∥

∥∆x(ω̃)
∥

∥

X
≤

∥

∥∆x(ω)
∥

∥

X
≤
ω̃ + κ1 + κ2

ω + κ1 + κ2

∥

∥∆x(ω̃)
∥

∥

X
(3.4)

Proof. The proof follows the exact same lines as the one of Lemma 6 in [14] with the respective
proximal representations of the exact steps used here.

With the relative error inexactness criterion (3.1) as well as the auxiliary results concerning
regularized composite gradient mappings from Section 2 and norm estimates from Lemma 3.1 at
hand, we can now tackle the proof of the following local acceleration result.

Theorem 3.2. Suppose that the semi-smoothness assumption (2.11) together with κ1 + κ2 > 0
holds near an optimal solution x∗ ∈ X of (1.1). Then, the inexact Proximal Newton method with
update steps computed according to (1.3) at xk ∈ X close to x∗ with the inexactness criterion (3.1)
for ηk ≥ 0 exhibits the following local convergence behavior:

a) The sequence of iterates locally converges linearly if ωk and ηk are sufficiently small, i.e.,
if there exists some constant 0 < Θ < 1 and k0 ∈ N such that for all k ≥ k0 the following
estimate holds:

1

ωk + κ1 + κ2

[(

ωk +
∥

∥Hxk

∥

∥

L(X,X∗)
+κ2

)

ηk + ωk
]

< Θ .(3.5)

b) The sequence of iterates locally converges superlinearly in case both ωk and ηk converge to
zero.
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Proof. For the sake of simplicity, we will omit the sequence indices of all quantities here and
denote x = xk, ω = ωk and η = ηk for the current iterate, regularization parameter and forcing
term. For the next iterate, we write x+(ω) = xk+1(ω) and Hx = Hxk

stands for the current second
order bilinear form.

For what follows, we fix τ := ω+ 1
2

(∥

∥Hx

∥

∥

L(X,X∗)
+κ1

)

for the gradient mapping regularization

parameter which allows us to take advantage of the auxiliary estimates deduced in Lemma 2.2.
Under these circumstances, the first part of (2.5) from Lemma 2.2 provides us with

∥

∥x+(ω)− x∗
∥

∥

X
≤

1

τ
(

1−H
)

∥

∥GF̂x,ω

τ (x +∆s(ω))−GF̂x,ω

τ (x∗)
∥

∥

X

≤
1

τ
(

1−H
)

[

∥

∥GF̂x,ω

τ (x+∆s(ω))
∥

∥

X
+
∥

∥GF̂x,ω

τ (x∗)
∥

∥

X

](3.6)

where we abbreviated the constant H :=

∥

∥Hx

∥

∥

L(X,X∗)
−κ1

2(τ+κ2)
. As a next step, we take a look at the first

norm term in brackets in (3.6). We use (2.8) from Proposition 2.3 together with the second part
of (2.5) from Lemma 2.2 for y := x + ∆s(ω) and z := x + ∆x(ω) in order to obtain the following
estimate:

∥

∥GF̂x,ω

τ

(

x+∆s(ω)
)∥

∥

X
=

∥

∥GF̂x,ω

τ

(

x+∆s(ω)
)

−GF̂x,ω

τ

(

x+∆x(ω)
)∥

∥

X

≤ τ
(

1 +H
)∥

∥∆x(ω)−∆s(ω)
∥

∥

X
.

For the ensuing norm difference we take advantage of the relative error estimate inexactness criterion
(3.1) together with the monotonicity of update step norms concerning the damping parameter ω
as in Lemma 3.1. Additionally, the superlinear convergence for full update steps close to optimal
solutions (cf. [14, Theorem 1]) is important here:

∥

∥∆x(ω) −∆s(ω)
∥

∥

X
≤ η

∥

∥∆x(ω)
∥

∥

X
≤ η

∥

∥∆x
∥

∥

X
≤ o

(∥

∥x− x∗
∥

∥

X

)

+ η
∥

∥x− x∗
∥

∥

X
.(3.7)

By the optimality of x∗ together with Lemma 2.4, for the second term in brackets in (3.6) we have

∥

∥GF̂x,ω
τ (x∗)

∥

∥

X
=

∥

∥GF̂x,ω
τ (x∗)−G

F
τ (x∗)

∥

∥

X
≤ o

(
∥

∥x− x∗
∥

∥

X

)

+
ωτ

τ + κ2

∥

∥x− x∗
∥

∥

X
.(3.8)

The estimates (3.7) and (3.8) suffice to quantify the influence of either inexactness or damping on
local convergence rates of our algorithm. Inserting both of them into (3.6) above yields

∥

∥x+(ω)− x∗
∥

∥

X
≤

(1 +H)η + ω
τ+κ2

1−H

∥

∥x− x∗
∥

∥

X
+o

(
∥

∥x− x∗
∥

∥

X

)

.(3.9)

All that remains to do now is simplify the rather complicated prefactor term within the estimate
above. We expand the fraction by 2(τ + κ2) and use that by the definition of τ we have

2(τ + κ2) = 2(ω + κ2) +
∥

∥Hx

∥

∥

L(X,X∗)
+κ1 .

This provides us with

(1 +H)η + ω
τ+κ2

1−H
=

(

2(τ + κ2) +
∥

∥Hx

∥

∥

L(X,X∗)
−κ1

)

η + 2ω

2(τ + κ2)−
∥

∥Hx

∥

∥

L(X,X∗)
+κ1

=

(

ω +
∥

∥Hx

∥

∥

L(X,X∗)
+κ2

)

η + ω

ω + κ1 + κ2
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Inserting this identity to (3.9) now directly yields

∥

∥x+(ω)− x∗
∥

∥

X
≤

1

ω + κ1 + κ2

[(

ω +
∥

∥Hx

∥

∥

L(X,X∗)
+κ2

)

η + ω
]
∥

∥x− x∗
∥

∥

X
+o

(
∥

∥x− x∗
∥

∥

X

)

.(3.10)

Now, both of the asserted cases for local convergence behavior are an immediate consequence of
(3.10).

Remark 3.3. The estimate (3.5) yields a couple of algorithmically relevant insights. First, the
linear convergence factor Θ can only be small, if both ωk and ηk are small. Hence, computing steps
very accurately does only pay off, if ωk is very small. We will see in Section 5 that close to optimal
solutions arbitrarily small regularization parameters ωk ≈ 0 can indeed be used.

Second, if we neglect ωk ≈ 0, then (3.5) simplifies to

∥

∥Hxk

∥

∥

L(X,X∗)
+κ2

κ1 + κ2
ηk ≤ Θ,

where the prefactor on the left hand side can be interpreted as a local condition number of the
problem. Indeed, for κ2 = 0 it coincides with the condition number of Hx relative to ‖ · ‖X . Thus,
to achieve a given rate of local convergence, ηk has to be chosen the tighter the higher the condition
number. This underlines the necessity of an adequate choice of function space X and norm ‖ · ‖X .

Additionally, we were able to extend the local convergence result from [14, Theorem 1] insofar
that we quantified the influence of damping update steps on (local) convergence rates. We are now
also aware of more insightful criteria for linear or superlinear convergence of our method respectively.
This helps us understand the process of local convergence of the (inexact) Proximal Newton method
to an even greater extent.

4. Global Convergence Properties. Now that we have clarified the local convergence prop-
erties of our inexact Proximal Newton method depending on the forcing terms in criterion (2.12),
we want to take into consideration whether the globalization scheme via the additional norm term
in (1.3) still fulfills its purpose and yields some global convergence results.

4.1. Cauchy Decrease Steps and the Subgradient Model. In order to achieve such a
result, we will introduce a second crucial criterion which the inexactly computed update steps
∆sk(ωk) have to satisfy in order to be admissible for our method. It can be viewed as an adopted
strategy from smooth trust region methods where rather cheap so-called Cauchy decrease steps are
used to measure functional value descent for the actual update steps, cf. e.g. [4, Chapter 6].

There are several conceivable ways to define and compute such comparative Cauchy decrease
steps. A canonical choice would be a simple Proximal Gradient step, i.e., the minimizer of the
regularized linear model

λCx,ω̂(δx) := f ′(x)δx +
ω̂

2

∥

∥δx
∥

∥

2

X
+g(x+ δx)− g(x) , δx ∈ X .

As was the problem with evaluating the gradient mapping for our first inexactness criterion, also
this procedure is as expensive as computing the exact Proximal Newton step right away in our
general Hilbert space setting. Thus, the idea arises to find some comparative update step which we
can compute with marginal effort in order to measure its functional value descent and then compare
it to our inexact update step.
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To this end, we define the subgradient model descent of F around x ∈ X with respect to
µ ∈ ∂F g(x) and regularization parameter ω̂ > 0 by

λ
µ
x,ω̂(δx) := f ′(x)δx + µ δx+

ω̂

2

∥

∥δx
∥

∥

2

X
, δx ∈ X ,(4.1)

and we refer to the respective minimizer

∆xµ(ω̂) := argmin
δx∈X

λ
µ
x,ω̂(δx)(4.2)

as the corresponding subgradient step. Before introducing the second inexactness criterion which
makes use of the above model and step, we will establish an analytical connection between (4.1)
and our initially defined regularized second order decrease model λx,ω from (2.3). To this end,
we remember that the regularization parameter ω ≥ 0 is generally chosen such that the modified
non-smooth part

g̃ : X → R , g̃(x) := g(x) +
1

2

(

Hx + ωR
)

(x)2

is convex and thus the subproblem (1.3) allows for a unique solution. Consequently, the character-
ization of the convex subdifferential ∂g̃(x) yields that for any µ̃ = µ + (Hx + ωR)x ∈ ∂g̃(x) with
µ ∈ ∂F g(x) we have that

g̃(x+ δx) ≥ g̃(x) + µ̃ δx and thus g(x+ δx)− g(x) +
1

2
Hx(δx)

2 +
ω

2

∥

∥δx
∥

∥

2

X
≥ µ δx

holds for any δx ∈ X and µ ∈ ∂F g(x). We immediately obtain that

λ
µ
x,ω̂(δx) = f ′(x)δx +

ω̂

2

∥

∥δx
∥

∥

2

X
+µδx

≤ f ′(x)δx +
1

2
Hx(δx)

2 +
ω̂ + ω

2

∥

∥δx
∥

∥

2

X
+g(x+ δx) − g(x) = λx,ω̂+ω(δx)

(4.3)

is true for any δx ∈ X . In particular, this estimate apparently also holds for the respective minima
of the decrease models of the composite objective function. For that reason, from (4.3) we obtain

λ
µ
x,ω̂

(

∆xµ(ω̂)
)

≤ λx,ω̂+ω
(

∆x(ω̂ + ω)
)

≤ −
1

2

(

ω̂ + ω + κ1 + κ2
)
∥

∥∆x(ω̂ + ω)
∥

∥

2

X
(4.4)

for any ω̂ > 0 where the last estimate constitutes a result from the exact case in [14, Eq.(19)]
and will give us norm-like descent in the objective functional later on. Obviously, we now want to
link this norm-like decrease within the subgradient model to the regularized second order decrease
model λx,ω

(

∆s(ω)
)

for our inexactly computed update step ∆s(ω) and lastly to the direct descent
within the objective functional F .

4.2. Second Inexactness Criterion and Efficient Evaluation. We will establish the first
one of these connections via the actual second inexactness criterion which will thus also be checked
within our algorithm and implementation. For this purpose, it is sufficient if an inexactly computed
update step ∆s(ω) satisfies the estimate

λx,ω
(

∆s(ω)
)

≤ λµx,ω̃
(

∆xµ(ω̃)
)

for some ω̃ < ω̃max(4.5)
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where the upper bound ω̃max > 0 is an algorithmic parameter yet to be specified. This inequality
now constitutes our formal second inexactness criterion which we will also refer to as the subgradient
inexactness criterion.

Let us shortly elaborate on the efficient evaluation of this estimate and from there derive the
actual implementation of the criterion: The solution property of ∆xµ(ω̃) provides us with first order
conditions for the corresponding minimization problem in the form of

0 = f ′(x) + µ+ ω̂R∆xµ(ω̃)

and thus ∆xµ(ω̃) = −(ω̃R)−1
(

f ′(x)+µ
)

. For a given value of λx,ω
(

∆s(ω)
)

, i.e., descent within the
regularized second order model with an inexactly computed update step, we can thus theoretically
determine ω̃ such that (4.5) is satisfied with equality. This can be seen as follows:

λx,ω
(

∆s(ω)
) !
= λ

µ
x,ω̃

(

∆xµ(ω̃)
)

=
(

f ′(x) + µ
)

∆xµ(ω̃) +
ω̃

2

∥

∥∆xµ(ω̃)
∥

∥

2

X

=
(

f ′(x) + µ
)[

− (ω̃R)−1
(

f ′(x) + µ
)]

+
ω̃

2

∥

∥−(ω̃R)−1
(

f ′(x) + µ
)∥

∥

2

X

= −
1

2ω̃

∥

∥f ′(x) + µ
∥

∥

2

X∗

(4.6)

which provides us with the theoretical value

ω̃ = −

∥

∥f ′(x) + µ
∥

∥

2

X∗

2λx,ω
(

∆s(ω)
)

!
< ω̃max(4.7)

for the regularization parameter within the subgradient minimization problem (4.2). This quantity

should remain bounded since otherwise the convergence of
∥

∥∆x(ω̃ + ω + 1)
∥

∥

2

X
to zero later will

not provide us with global convergence results. Thus, as also pointed out in (4.7), we establish a
sufficient estimate for our subgradient inexactness criterion (4.5) by demanding boundedness of ω̃
from above by ω̃max. Note here that - as can be seen in (4.6) - the value for λµx,ω̃

(

∆xµ(ω̃)
)

increases
as ω̃ does. Since globalization mechanisms in general should only provide worst case estimates and
not slow down the convergence of our algorithm, we want the subgradient inexactness criterion to
only interfere with update step computation on rare occasions and thus choose ω̃max very large.

The dual norm occurring in the numerator of (4.7) is computed as follows: we compute the
minimizer of the linear subgradient model ∆xµ(1) ∈ X from (4.2) and afterwards evaluate the
linear functional f ′(x) + µ ∈ X∗ there. Here, the Fréchet-subdifferential element µ ∈ ∂F g(x) is
chosen such that the norm

∥

∥f ′(x) + µ
∥

∥

X∗
is as small as possible. Obviously, this depends on the

specific minimization problem at hand but due to the non-smooth nature of g it is often possible
to exploit the set-valued subdifferential for this purpose.

Let us add some remarks concerning satisfiability of the subgradient inexactness criterion:
As mentioned above, the freedom of choice of µ within ∂F g(x) opens up possibilities to decrease
the value of

∥

∥f ′(x) + µ
∥

∥

X∗
right away. Additionally, considering the exact case for update step

computation is very insightful in order to see that the criterion will be fulfilled by late iterations of
the inner solver. For now, we interpret

∥

∥f ′(x)+µ
∥

∥

X∗
≈ dist

(

∂FF (x), 0
)

, i.e., we assume µ ∈ ∂F g(x)
to be chosen (nearly) optimally for our purpose of finding solutions of (1.1).

Proposition 4.1. Assume that there exists some constant C > 0 such that
∥

∥f ′(x) + µ
∥

∥

X∗
≤ Cdist

(

∂FF (x), 0
)
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holds at some x ∈ X for µ ∈ ∂F g(x). Then, the subgradient inexactness criterion (4.5) is eventually
satisfied by iterates ∆s(ω) of convergent solvers for the subproblem (1.3) in case

ω̃max >
C2

(

ω + Lf +
∥

∥Hx

∥

∥

L(X,X∗)

)2

ω + κ1 + κ2
(4.8)

holds for the upper bound ω̃max from (4.5).

Proof. According to global convergence arguments in [14, Theorem 2] together with the assumed
existence of C > 0 above, we can estimate

∥

∥f ′(x) + µ
∥

∥

X∗
≤ Cdist

(

∂FF (x), 0
)

≤ C
(

Lf +
∥

∥Hx

∥

∥

L(X,X∗)
+ω

)∥

∥∆x(ω)
∥

∥

X

for the exactly computed update step ∆x(ω). Additionally, from [14, Eq.(19)] we infer that

λx,ω(∆x(ω)) ≤ −
1

2

(

ω + κ1 + κ2
)∥

∥∆x(ω)
∥

∥

2

X
⇔ −2λx,ω(∆x(ω)) ≥

(

ω + κ1 + κ2
)∥

∥∆x(ω)
∥

∥

2

X

is true in this scenario and we consequently obtain

ω̃ = −

∥

∥f ′(x) + µ
∥

∥

2

X∗

2λx,ω
(

∆x(ω)
) ≤

C2
(

ω + Lf +
∥

∥Hx

∥

∥

L(X,X∗)

)2

ω + κ1 + κ2
<∞ .(4.9)

Here, the convergence of the subproblem solver in the form that the respective objective value
λx,ω

(

∆s(ω)
)

tends to λx,ω
(

∆x(ω)
)

from above comes into play. Thus, we can summarize

ω̃ = −

∥

∥f ′(x) + µ
∥

∥

2

X∗

2λx,ω
(

∆s(ω)
) →

>
−

∥

∥f ′(x) + µ
∥

∥

2

X∗

2λs,ω
(

∆x(ω)
) ≤

C2
(

ω + Lf +
∥

∥Hx

∥

∥

L(X,X∗)

)2

ω + κ1 + κ2

for the theoretical value ω̃ from (4.7). If now in particular the assumed estimate for the upper
bound ω̃max holds, the assertion directly follows.

Remark 4.2. The bound in (4.8) in particular remains finite in both limits ω → 0 and x → x̄

for any stationary point x̄ ∈ X of problem (1.1) near which κ1 + κ2 > 0 holds.

The algorithmic strategy behind the subgradient inexactness criterion can now be summarized
as follows: For the present iterate of the outer loop x ∈ X , we solve the linearized problem (4.2) for
the computation of the dual norm

∥

∥f ′(x) + µ
∥

∥

X∗
and initiate the inner loop in order to determine

the next inexact update step. At every iterate ∆s(ω) of the inner solver for subproblem (1.3) we
compute the corresponding subgradient regularization parameter ω̃ from (4.7) and check ω̃ < ω̃max.
As a consequence of Proposition 4.1, either ω̃max is chosen large enough and we will eventually
achieve ω̃ < ω̃max for some inexact step or we will compute an exact update step ∆x(ω) which
on its own provides us with global convergence of the sequence of iterates as presented in [14,
Section 4].

4.3. Summary of Inexactness Criteria. With both of our inexactness criteria at hand, let
us shortly reflect on their computational effort and compare it to possible alternatives: For the
relative error criterion (3.1) in its form (3.2) only the evaluation of the fraction and its comparison
to the forcing term is necessary since all occurring norms are already present within the subprob-
lem solver. The subgradient inexactness criterion as described before requires the solution of the
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quadratic minimization problem (4.2) once per outer iteration of our method together with the
evaluation of the quadratic model λx,ω

(

∆s(ω)
)

at each inner iteration which is a cheap operation.
For comparative algorithms from literature, cf. [10, 3, 11], the gradient-like inexactness criterion

(2.12) has to be assessed at every inner iteration together with one comparison of the second
order decrease model value with its base value for δx = 0. As mentioned before, the former
operation is very costly for non-diagonal function space norms, particularly in comparison to solving
a linearized problem once per outer iteration. This emphasizes both the necessity and the benefit
of our adjustments to existing inexactness criteria. The summarized procedure can be retraced in
the scheme of Algorithm 4.1.

4.4. Sufficient Decrease Criterion and Global Convergence. For global convergence in
the case of inexactly computed update steps with the criteria introduced above we still have to
carry out some more deliberations. The last missing ingredient in our recipe for norm-like descent
within the composite objective functional is given by a sufficient decrease criterion which we have
also used in the exact scenario in [14, Eq.(18)]. We say that an (inexactly computed) update step
∆s(ω) is admissible for sufficient decrease if for some prescribed γ ∈]0, 1[ the estimate

F
(

x+∆s(ω)
)

− F (x) ≤ γλx,ω
(

∆s(ω)
)

(4.10)

holds. Now, before justifying that (4.10) holds for sufficiently large values of the regularization
parameter ω, let us combine estimates (4.10), (4.5), the monotonicity of λµx,ω̃

(

∆xµ(ω̃)
)

with respect
to ω̃ as well as (4.4) from above and thus recognize that we obtain

F
(

x+∆s(ω)
)

− F (x) ≤ γλx,ω
(

∆s(ω)
)

= γλ
µ
x,ω̃

(

∆xµ(ω̃)
)

≤ γλµx,ω̃+1

(

∆xµ(ω̃ + 1)
)

≤ −
(ω̃ + ω + 1 + κ1 + κ2)γ

2

∥

∥∆x(ω̃ + ω + 1)
∥

∥

2

X

≤ −
γ

2

∥

∥∆x(ω̃max + ω + 1)
∥

∥

2

X
.

(4.11)

Note that we additionally used ω̃ ≥ 0 and ω + κ1 + κ2 ≥ 0 as well as ω̃ < ω̃max together with the
equivalence result from Lemma 3.1.

The following lemma ensures the satisfiability of the sufficient decrease criterion (4.10) as soon
as ω is large enough.

Lemma 4.3. Let ω denote the regularization parameter ensuring the unique solvability of the
update step subproblem (1.3). If ω is sufficiently increased to some ω+ > ω, the sufficient decrease
criterion (4.10) is fulfilled by inexactly computed update steps ∆s(ω+) which additionally satisfy the
inexactness criteria (3.1) and (4.5).

Proof. The first inexactness criterion (3.1) provides us with the norm estimate

∥

∥∆s(ω+)
∥

∥

X
≤

∥

∥∆s(ω+)−∆x(ω+)
∥

∥

X
+
∥

∥∆x(ω+)
∥

∥

X
≤ (1 + η)

∥

∥∆x(ω+)
∥

∥

X
(4.12)

such that similar to (4.11) we obtain

λx,ω+

(

∆s(ω+)
)

≤ −
1

2

∥

∥∆x(ω̃max + ω + 1)
∥

∥

2

X
≤ −

1

2

∥

∥∆x(ω+)
∥

∥

2

X
≤ −

1

2(1 + η)2

∥

∥∆s(ω+)
∥

∥

2

X

eventually for ω+ > ω̃max + ω + 1 by the equivalence result in Lemma 3.1.
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Consequently, we can assume that for sufficiently large ω+, an estimate of the form

λx,ω+

(

∆s(ω+)
)

≤ −c
∥

∥∆s(ω+)
∥

∥

2

X

holds also for the inexactly computed update steps and some constant c > 0. From here, we can
employ the same proof as for [14, Lemma 3] and conclude the assertion.

Remark 4.4. The above result together with the assumption (1.5) and (1.6) on our objective
functional also imply that the regularization parameter ω remains bounded over the course of the
minimization process.

Let us now deduce the ensuing global convergence results for the inexact Proximal Newton method
as presented in the scheme of Algorithm 4.1.

Algorithm 4.1 Inexact second order semi-smooth Proximal Newton Algorithm

Require: Starting point x0 ∈ X , sufficient decrease parameter γ ∈]0, 1[, initial values ω0 and η0,
ε > 0 for stopping criterion
Initialization: k = 0
while (1 + ωk)

∥

∥∆sk(ωk)
∥

∥

X
≥ ε do

Choose µ ∈ ∂F g(xk) and compute norm term for ω̃ as in (4.7) via the linearized minimization
problem (4.2)
Compute a trial step ∆sk(ωk) according to (1.3) which suffices the inexactness criteria (3.2)
and (4.7)
while Sufficient decrease criterion (4.10) is not satisfied do

Increase ωk appropriately
Recompute ∆sk(ωk) as above

end while

Update current iterate to xk+1 ← xk +∆sk(ωk)
Decrease ωk to some ωk+1 < ωk for next iteration
Decrease ηk to some ηk+1 < ηk for next iteration
Update k ← k + 1

end while

return x

For this reason, we will first prove that the right-hand side of (4.11), i.e., the norm of exactly
computed comparative steps ∆x(ω̃max + ω + 1), converges to zero along the sequence of iterates
generated by inexact updates. Here, it will come in handy to define ωc := ω̃max + ω + 1 for the
regularization parameter of the comparative exact update steps. Note that this quantity is bounded
both from above and below.

Lemma 4.5. Let (xk) ⊂ X be the sequence generated by the inexact Proximal Newton method
globalized via (1.3) starting at any x0 ∈ domg. Additionally, suppose that the subgradient in-
exactness criterion (4.5) and the sufficient decrease criterion (4.10) are satisfied. Then either
F (xk)→ −∞ or

∥

∥∆xk(ω
c)
∥

∥

X
→ 0 for k →∞.

Proof. By (4.11) the sequence F (xk) is monotonically decreasing. Thus, either F (xk) → −∞
or F (xk)→ F for some F ∈ R and thereby in particular F (xk)− F (xk+1)→ 0. As a consequence
of (4.11), then also

∥

∥∆xk(ω
c)
∥

∥

X
→ 0 holds.



INEXACT PROXIMAL NEWTON METHODS IN HILBERT SPACES 17

Note that the above result does not comprise the convergence of the sequence of iterates itself which
is desirable in the context. In the exact case of update step computation it was possible to take
advantage of first order optimality conditions of the exactly solved subproblem for the actual update
steps and from there achieve a proper global convergence result at least in the strongly convex case,
cf. [14, Theorem 3]. Due to the presence of inexactness in update step computation this strategy
has to be slightly adjusted in the current scenario, i.e., applied to the comparative update steps
∆x(ωc). To this end, for some k ∈ N and iterate xk ∈ X we introduce the so-called corresponding
comparative iterate

yk := xk +∆xk(ω
c) = P

Hxk
+ωc

R

g

(

(Hxk
+ ωcR)xk − f

′(xk)
)

.(4.13)

Note here that the comparative iterate uses a theoretical exact update but origins at the iterate xk
which belongs to our inexact method. Also, for every k ∈ N the identity yk − xk = ∆xk(ω

c) holds
by definition of yk.

With this definition at hand, we are in the position to discuss at least subsequential convergence
of our algorithm to a stationary point. In the following, we will assume throughout that the sequence
of objective values

(

F (xk)
)

is bounded from below. We start with the case of convergence in norm:

Theorem 4.6. Assume that the subgradient inexactness criterion (4.5) and the sufficient de-
crease criterion (4.10) are fulfilled. Then, all accumulation points x̄ (in norm) of the sequence of
iterates (xk) generated by the inexact Proximal Newton method globalized via (1.3) are stationary
points of problem (1.1). In particular, the comparative sequence (yk) defined via (4.13) satisfies

dist
(

∂FF (yk), 0
)

→ 0 and
∥

∥xk − yk
∥

∥

X
→ 0 ,

i.e., also yk → x̄ for k →∞.

Proof. By (xk) we denote the subsequence of iterates converging to the accumulation point
x̄. As mentioned beforehand, for the corresponding comparative sequence (yk) we have yk − xk =
∆xk(ω

c) and consequently also yk → x̄ holds by
∥

∥∆xk(ω
c)
∥

∥

X
→ 0 due to Lemma 4.5. The proximal

representation of yk in (4.13) is equivalent to the minimization problem

yk = argmin
y∈X

g(y) +
1

2

(

Hxk
+ ωcR

)

(y)2 −
(

(Hxk
+ ωcR)xk − f

′(xk)
)

y

which yields the first order optimality conditions given by the dual space inclusion

0 ∈ ∂F g(yk) + f ′(xk) +
(

Hxk
+ ωcR

)

(yk − xk) .

This, on the other hand, is equivalent to

(

Hxk
+ ωcR

)

(xk − yk) + f ′(yk)− f
′(xk) ∈ ∂F g(yk) + f ′(yk) = ∂FF (yk)(4.14)

the remainder term on the left-hand side of which we can estimate via

∥

∥

(

Hxk
+ ωcR

)

(xk − yk) + f ′(yk)− f
′(xk)

∥

∥

X∗
≤

(

M + ωc + Lf
)∥

∥xk − yk
∥

∥

X

=
(

M + ωc + Lf
)∥

∥∆xck(ω
c)
∥

∥

X
→ 0

for k → ∞ where M denotes the uniform bound on the second order bilinear form norms from
assumption (1.4).
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In order to now achieve the optimality assertion of the accumulation point x̄, we have to
slightly adjust (4.14) for the use of the convex subdifferential and its direct characterization. To
this end, we consider a bilinear form Q : X × X → R such that the function g̃ : X → R defined
via g̃(x) := g(x) + 1

2Q(x)2, x ∈ X , is convex. As above, Q := Hxk
+ ωkR is a reasonable choice.

Inserting a Q(yk)-term into (4.14) thus yields

ωcR(xk − yk) + f ′(yk)− f
′(xk) ∈ ∂g̃(yk) + {f

′(yk)−Q(yk)}

for the convex subdifferential of g̃. The left-hand side now as before converges to zero in X∗ and
consequently, we know that for every k ∈ N there exists some ρ̃k ∈ ∂g̃(yk) such that we can define
ρ̃ := limk→∞ ρ̃k = −f ′(x̄) +Qx̄ by the convergence of also yk to x̄. The lower semi-continuity of g̃
together with the definition of the convex subdifferential ∂g̃ directly yields

g̃(u)− g̃(x̄) = g̃(u)− g(x̄)−
1

2
Q(x̄)2 ≥ g̃(u)− lim inf

k→∞
g(yk)− lim

k→∞

1

2
Q(yk)

2

= lim inf
k→∞

g̃(u)− g̃(yk) ≥ lim inf
k→∞

ρ̃k(u − yk) = lim
k→∞

ρ̃k(u− yk) = ρ̃(u − x̄)

for any u ∈ X which proves the inclusion ρ̃ ∈ ∂g̃(x̄). The evaluation of the latter limit expression
can easily be retraced by splitting

ρ̃k(u− yk) = ρ̃k(u − x̄) + (ρ̃k − ρ̃)(x̄ − yk) + ρ̃(x̄− yk) .(4.15)

In particular, we recognize ρ̃ ∈ ∂g̃(x̄) as −f ′(x̄)+Qx̄ ∈ ∂g̃(x̄) and equivalently −f ′(x̄) ∈ ∂F g(x̄) for
the Frechét-subdifferential ∂F . This implies 0 ∈ ∂FF (x̄), i.e., the stationarity of our accumulation
point x̄.

We remember from the exact case in [14] that we can indeed interpret
∥

∥∆xk(ωk)
∥

∥

X
≤ ε for some

small ε > 0 as a condition for the optimality of the current iterate up to some prescribed accuracy.
Estimate (4.12) from above thus yields that also the norm of the inexactly computed update steps
can be used as an optimality measure for the current iterate within our method. However, small
step norms

∥

∥∆sk(ωk)
∥

∥

X
can also occur due to very large values of the damping parameter ωk as

a consequence of which the algorithm would stop even though the sequence of iterates is not even
close to an optimal solution of the problem. In order to rule out this inconvenient case, we consider
the scaled version (1 + ωk)

∥

∥∆sk(ωk)
∥

∥

X
as the stopping criterion in the later implementations of

our algorithm.
Let us now proceed to generalizing the convergence result from Theorem 4.6: While bounded

sequences in finite dimensional spaces always have convergent subsequences, we can only expect
weak subsequential convergence in general Hilbert spaces in this case. As one consequence, existence
of minimizers of non-convex functions on Hilbert spaces can usually only be established in the
presence of some compactness. On this count, we note that in (4.15) even weak convergence of
xk ⇀ x̄ would be sufficient. Unfortunately, in the latter case we cannot evaluate f ′(xk) → f ′(x̄).
In order to extend our proof to this situation, we require some more structure for both of the
parts of our composite objective functional. The proof is completely analogous to the one of [14,
Theorem 3].

Theorem 4.7. Let f be of the form f(x) = f̂(x) + f̌(Kx) where K is a compact operator.

Additionally, assume that g + f̂ is convex and weakly lower semi-continuous in a neighborhood of
stationary points of (1.1). Then weak convergence of the sequence of iterates xk ⇀ x̄ suffices for x̄
to be a stationary point of (1.1).
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If F is strictly convex and radially unbounded, the whole sequence (xk) converges weakly to the
unique minimizer x∗ of F . If F is κ-strongly convex, with κ > 0, then xk → x∗ in norm.

5. Transition to Local Convergence. In order to now benefit from the local acceleration
result in Theorem 3.2, we have to manage the transition from the globalization phase above to the
local convergence phase described beforehand. To this end, we have to make sure that (at least
close to optimal solutions of (1.1)) arbitrarily small regularization parameters ω ≥ 0 yield update
steps that give us sufficient decrease in F according to the criterion formulated in (4.10). This
endeavor has also been part of the investigation of the exact case in [14, Section 6] but as for all
aspects of our convergence analysis has to be slightly adapted here.

As a starting point, a rather technical auxiliary result is required. It sets the limit behavior of
inexact update steps in relation with the distance of consecutive iterates to the minimizer of (1.1).

Lemma 5.1. Let x and x+(ω) = x+∆s(ω) be two consecutive iterates with update step ∆s(ω)
sufficing (3.1) for some 0 ≤ η < 1. Furthermore, consider an optimal solution x∗ of (1.1). Then
the following estimates eventually hold for κ1 + κ2 > 0:

∥

∥x+(ω)− x∗
∥

∥

X
≤ (3 + η)

∥

∥x− x∗
∥

∥

X
,

∥

∥x− x∗
∥

∥

X
≤

2

1− η

(

1 +
ω

κ1 + κ2

)∥

∥∆s(ω)
∥

∥

X
.

Proof. Our proof here mainly exploits the local superlinear convergence of exactly computed
and undamped update steps ∆x from [14, Theorem 1] and then uses the respective estimates in
order to introduce the influences of both damping and inexactness. For the first asserted estimate,
we take a look at

∥

∥x+(ω)− x∗
∥

∥

X
≤

∥

∥x− x∗
∥

∥

X
+
∥

∥∆s(ω)
∥

∥

X
≤

∥

∥x− x∗
∥

∥

X
+(1 + η)

∥

∥∆x
∥

∥

X

≤ 2
∥

∥x− x∗
∥

∥

X
+(1 + η)

∥

∥x+∆x− x∗
∥

∥

X

where the second step involved (4.12) together with
∥

∥∆x(ω)
∥

∥

X
≤

∥

∥∆x
∥

∥

X
as proven in Lemma 3.1.

From here, we use the superlinear convergence of exact updates in the form of the existence of some
function ψ : [0,∞[→ [0,∞[ with ψ(t)→ 0 for t→ 0 such that

∥

∥x+∆x− x∗
∥

∥

X
= ψ

(
∥

∥x− x∗
∥

∥

X

)
∥

∥x− x∗
∥

∥

X

holds in the limit of x→ x∗. Thus, we obtain

∥

∥x+(ω)− x∗
∥

∥

X
≤

[

2 + (1 + η)ψ
(
∥

∥x− x∗
∥

∥

X

)]
∥

∥x− x∗
∥

∥

X
≤ (3 + η)

∥

∥x− x∗
∥

∥

X

since eventually we can assume the ψ-term to be smaller than one. This completes the proof of the
first asserted estimate.

For the second one we take advantage of

∥

∥∆x
∥

∥

X
≤

(

1 +
ω

κ1 + κ2

)∥

∥∆x(ω)
∥

∥

X

from Lemma 3.1 together with again the superlinear convergence as above and find that

∥

∥x− x∗
∥

∥

X
≤

∥

∥x+∆x− x∗
∥

∥

X
+
∥

∥∆x
∥

∥

X
≤ ψ

(∥

∥x− x∗
∥

∥

X

)∥

∥x− x∗
∥

∥

X
+
(

1 +
ω

κ1 + κ2

)∥

∥∆x(ω)
∥

∥

X



20 B. PÖTZL, A. SCHIELA, AND P. JAAP

holds. Since the ψ-term eventually will be smaller than 1
2 , from here we infer

∥

∥x− x∗
∥

∥

X
≤

1 + ω
κ1+κ2

1− ψ
(∥

∥x− x∗
∥

∥

X

)

∥

∥∆x(ω)
∥

∥

X
≤ 2

(

1 +
ω

κ1 + κ2

)∥

∥∆x(ω)
∥

∥

X
.

The inexactness of update step computation now enters the above estimate using the inequality
∥

∥∆x(ω)
∥

∥

X
≤ 1

1−η

∥

∥∆s(ω)
∥

∥

X
which can easily be retraced via

(1 − η)
∥

∥∆x(ω)
∥

∥

X
≤

∥

∥∆x(ω)
∥

∥

X
−
∥

∥∆x(ω)−∆s(ω)
∥

∥

X

≤
∥

∥∆x(ω)−
(

∆x(ω) −∆s(ω)
)
∥

∥

X
=

∥

∥∆s(ω)
∥

∥

X

with the inexactness criterion (3.1). This completes the proof of the lemma.

Remark 5.2. In particular, these eventual norm estimates have implications on the limit behav-
ior of the respective terms. If we now have ξ = o

(∥

∥x+(ω)−x∗
∥

∥

X

)

for some ξ ∈ X , ξ = o
(∥

∥x−x∗
∥

∥

X

)

immediately holds and from there we obtain ξ = o
(∥

∥∆s(ω)
∥

∥

X

)

in the same way.

In what follows, it will be important several times that the second order bilinear forms Hx

satisfy a bound of the form

(

Hx+(ω) −Hx

)(

x+(ω)− x∗
)2

= o
(∥

∥x− x∗
∥

∥

2

X

)

for x→ x∗ .(5.1)

It is easy to see that the bound holds if either we have uniform boundedness of the second order
bilinear forms together with superlinear convergence of the iterates or if we have continuity of
the mapping x 7→ Hx together with mere convergence of the iterates to x∗. Note here that the
same assumption has been made in the exact case in [14] for the admissibility of undamped and
arbitrarily weakly damped update steps. In our scenario, we conclude that according to Theorem 3.2
it is sufficient that both the regularization parameters ωk ≥ 0 and the forcing terms ηk ≥ 0 converge
to zero as we approach the optimal solution x∗ ∈ X of (1.1) together with assumption (1.4) from
the introductory section. We will later on establish this convergence of (ωk) and (ηk) in the specific
implementation of our algorithm.

With the auxiliary estimates from Lemma 5.1 and Lemma 3.1 together with the thoroughly
discussed additional assumption from (5.1) at hand, we can now turn our attention to the actual
admissibility of arbitrarily small update steps close to optimal solutions of (1.1).

For that matter, we furthermore suppose f to be second order semi-smooth at optimal solutions
x∗ of (1.1) with respect to the mapping H : X → L(X,X∗), x 7→ Hx, which expresses itself via the
estimate

f(x∗ + ξ) = f(x∗) + f ′(x∗)ξ +
1

2
Hx∗+ξ(ξ, ξ) + o

(∥

∥ξ
∥

∥

2

X

)

for
∥

∥ξ
∥

∥

X
→ 0 .(5.2)

This notion generalizes second order differentiability in our setting but its definition slightly differs
from semi-smoothness of f ′ as qualified in (2.11). For further elaborations on this concept of
differentiability, consider [14, Section 5].

Proposition 5.3. Suppose that the additional assumptions (5.1) and (5.2) hold. Furthermore,
assume that the update steps ∆s(ω) computed as inexact solutions of (1.3) at x ∈ X for some ω ≥ 0
satisfy the inexactness criteria (3.1) for η ≥ 0 and (4.5). Then, ∆s(ω) is admissible for sufficient
decrease according to (4.10) for any γ < 1 if x is sufficiently close to an optimal solution x∗ ∈ X
of (1.1) where κ1 + κ2 > 0 holds.
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Proof. We take a look back at the proof of [14, Proposition 8] and employ the same telescoping
strategy in order to obtain

f(x+(ω))− f(x)− f
′(x)∆s(ω)−

1

2
Hx(∆s(ω))

2

=

[

f(x+(ω))− f(x∗)− f
′(x∗)(x+(ω)− x∗)−

1

2
Hx+(ω)(x+(ω)− x∗)

2

]

−

[

f(x)− f(x∗)− f
′(x∗)(x− x∗)−

1

2
Hx(x− x∗)

2

]

−
[

(f ′(x)− f ′(x∗))∆s(ω) −Hx(x − x∗,∆s(ω))
]

+
1

2
(Hx+(ω) −Hx)(x+(ω)− x∗)

2

where again we can use the second order semi-smoothness of f according to (5.2) for the first two
terms as well as the semi-smoothness of f ′ as in (2.11) for the third one. This implies

f(x+(ω))− f(x)− f
′(x)∆s(ω) −

1

2
Hx(∆s(ω))

2 = o(‖x+(ω)− x∗‖
2) + o(‖x− x∗‖

2
X)

+ o(‖x− x∗‖X)‖∆s(ω)‖X + ρ(x, ω)

where we denoted ρ(x, ω) := 1
2 (Hx+(ω) −Hx)(x+(ω) − x∗)

2. Due to the limit behavior of inexact
update step norms investigated over the course of Lemma 5.1 this yields

f(x+∆s(ω))− f(x)− f ′(x)∆s(ω) −
1

2
Hx

(

∆s(ω)
)2

= ρ(x, ω) + o
(∥

∥∆s(ω)
∥

∥

2

X

)

.(5.3)

As the next step towards the admissibility result, we define the prefactor function

γ(x, ω) :=
F
(

x+∆s(ω)
)

− F (x)

λx,ω
(

∆s(ω)
)

which should be larger than some γ̃ ∈]0, 1[ for ∆s(ω) to yield sufficient decrease according to (4.10).
Thus, it suffices to show the convergence of γ(x, ω) to anything greater equal than one for any ω ≥ 0
in the limit of x→ x∗. The identity (5.3) from above now provides us with

F
(

x+∆s(ω)
)

− F (x) = λx,ω(∆s(ω))−
ω

2
‖∆s(ω)‖2X + ρ(x, ω) + o

(

‖∆s(ω)‖2X
)

which we insert into the prefactor function from above and estimate

γ(x, ω) = 1 +
−ω2 ‖∆s(ω)‖

2
X + ρ(x, ω) + o(‖∆s(ω)‖2X)

λx,ω
(

∆s(ω)
)

= 1 +
ω
2 ‖∆s(ω)‖

2
X + o(‖∆s(ω)‖2X)− ρ(x, ω)

|λx,ω
(

∆s(ω)
)

|

(5.4)

since from the computation strategy for ∆s(ω) we in particular have

λx,ω
(

∆s(ω)
)

≤ λµx,ω̃
(

∆xµ(ω̃)
)

≤ −
1

2

∥

∥∆x(ωc)
∥

∥

2

X
≤ 0(5.5)
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following the later steps of (4.11). For the absolute value of the second order decrease model we
can use (5.5) together with Lemma 3.1 and (4.12) to obtain

|λx,ω
(

∆s(ω)
)

| ≥ |λµx,ω̃
(

∆xµ(ω̃)
)

| ≥
1

2

∥

∥∆x(ωc)
∥

∥

2

X
≥

1

2

( ω + κ1 + κ2

ωc + κ1 + κ2

)2∥
∥∆x(ω)

∥

∥

2

X

≥
1

2

( ω + κ1 + κ2

(1 + η)(ωc + κ1 + κ2)

)2∥
∥∆s(ω)

∥

∥

2

X
=: C

∥

∥∆s(ω)
∥

∥

2

X

(5.6)

where C = C(ω, ωc, κ1 + κ2, η) > 0 denotes the constant from above. In particular, note that C
remains bounded in the limit of ω → 0 and is also well-defined in the limit case of ω = 0 close to
optimal solutions with κ1 + κ2 > 0.

We may assume that the numerator of the latter expression in (5.4) is non-positive, otherwise
the desired inequality for γ(x, ω) is trivially fulfilled. Thus, we take advantage of (5.6) in order to
decrease the positive denominator to achieve

γ(x, ω) ≥ 1 +
ω

2C
− ε−

ρ(x, ω)

C
∥

∥∆s(ω)
∥

∥

2

X

where for any ε > 0 there exists a neighborhood of the optimal solution x∗ such that the above
estimate holds.

Now, the assumption (5.1) for the ρ-term immediately implies the eventual admissibility of
∆s(ω) for sufficient decrease according to (4.10).

6. Numerical Results. Let us now showcase the functionality of our inexact Proximal New-
ton method and also compare its performance to the case of exact computation of update steps.
To this end, we consider the following function space problem on Ω := [0, 1]3 ⊂ R

3: Find a vector
field u ∈ H1

0 (Ω,R
3) that minimizes the composite objective functional F defined via

F (u) := f(u) +

∫

Ω

c
∥

∥u
∥

∥

1
dω(6.1)

for some parameter c > 0 as a weight for the L1-norm term where the smooth part f : H1
0 (Ω,R

3)→
R is given by

f(u) :=

∫

Ω

1

2

∥

∥∇u
∥

∥

2

F
+αmax

(
∥

∥∇u
∥

∥

F
−1, 0

)2
+ β

u31u
2
2u3

1 + u21 + u22 + u23
+ ρ · u dω

with parameters α, β ∈ R as well as a force field ρ : Ω→ R
3. The norm

∥

∥·
∥

∥

F
denotes the Frobenius

norm of the respective Jacobian matrices ∇u.
We have to note here that f technically does not satisfy the assumptions made on the smooth

part of the composite objective functional specified above in the case α 6= 0 due to the lack of semi-
smoothness of the corresponding squared max-term. The use of the derivative∇u instead of function
values u creates a norm-gap which cannot be, as usual, compensated by Sobolev-embeddings and
hinders the proof of semi-smoothness of the respective superposition operator. However, we think
that slightly going beyond the framework of theoretical results for numerical investigations can be
instructive.

In what follows we will choose the force-field ρ to be constant on Ω and to this end introduce
the so-called load factor ρ̃ > 0 which then determines ρ = ρ̃(1, 1, 1)T . Now that we have fully
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prescribed the composite objective functional F , we recognize that its non-smooth part g is given
by the integrated L1-norm term with constant prefactor c > 0. Let us also emphasize here that
the underlying Hilbert space is given by X = H1

0 (Ω,R
3) which also determines the norm choice for

regularization of the subproblem.
Now, we will explain the specifics of our implementation of the method: To compute inexact

update steps via the second order model problem (1.3) used a so-called Truncated Non-smooth
Newton Multigrid Method (TNNMG): In short, this method can be described as a mixture of exact,
non-smooth Gauß-Seidel steps for each block component and global truncated inexact Newton steps
enhanced with a line-search procedure. Analytical proofs for convergence for convex and coercitive
problems as well as convergence properties have been established, cf. [8], and functionality for
demanding applications has been investigated, cf. [7] and [15]. Additionally, this subproblem
solver is provided with stopping criteria in the form of our inexactness criteria (3.2) and (4.7)
with corresponding parameters ηk ∈ [0, 1] for each iteration and global ω̃max > 0. The required
derivatives were computed by automatic differentiation, using adol-C, cf. [20].

Another topic of interest concerning the implementation of our algorithm is the choice of the
aforementioned parameters ω, η and ω̃max governing the convergence behavior of our method. While
- as discussed in its introduction in (4.7) - ω̃max can be chosen constant and is supposed to be very
large, this is not the case for the regularization parameters ω and the forcing terms η. Adaptive
choices for these quantities are subject to our current research and yield promising results but in
the present treatise we want to focus on the aspect of and criteria for inexactness itself. Thus, we
decided to take a rather heuristic approach of doubling ω in the case that the update step was not
accepted and multiply it by

(

1
2

)n·n
(where n denotes the number of successful consecutive updates)

in the remaining case. Once ω drops below some threshold value, we set it to zero in order to locally
use undamped update steps.

Similarly, we multiply the forcing term η by 0.6 for accepted updates and leave it as it is in
case the increment was rejected by the sufficient decrease criterion. This rather simple strategy
for the choice of parameters ensures the convergence of both η and ω to zero along the sequence
of iterates and thus also from a theoretical standpoint enables superlinear convergence as formu-
lated in Theorem 3.2. In addition to the correction norm stopping criterion for the outer loop in
Algorithm 4.1, we introduced a threshold value for the descent according to the modified quadratic
model λx,ω

(

∆s(ω)
)

, i.e., the computation stops once we achieve (1 + ω)
∣

∣λx,ω
(

∆s(ω)
)
∣

∣ < 10−13 for
an admissible step ∆s(ω).

Let us now consider the actual tests we performed in order to demonstrate the performance of
our algorithm: Firstly, we will demonstrate the consistency between results of the inexact method
and the exact version the functionality of which has been thoroughly investigated in [14]. After-
wards, we exhibit the gains in effectivity by enhancing the exact algorithm with the inexactness
criteria introduced above. Lastly, we analyze the implementation of the latter criteria and try to
get a grasp on how they affect the process of solving the subproblem for update step computation.

All in all, we use (6.1) with fixed parameters c = 80, β = 40, ρ̃ = −100 and let α ≥ 0
vary. Increasing α magnifies the influence of the squared max-term in (6.1) and thus makes the
corresponding minimization problem harder to solve.

For the first one of the above concerns, we consider Figures 1a and 1b which display plots for
either the H1-norms of (accepted) update steps or the energies (, i.e., objective values,) at the
corresponding updated iterates for values of α from 40 to 160 in steps of 40.

As the plots illustrate, the difference in quality of the update steps for exact and inexact
computations is marginal to non-existent. This can also be retraced in Table 1 where we list the
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Figure 1: Graphs of correction norms and corresponding objective values for c = 80, β = 40,
ρ̃ = −100 and α ∈ {40, 80, 120, 160} for the Proximal Newton method with five uniform grid
refinements.

number of accepted iterations and such which did not yield sufficient decrease according to (4.10)
for γ = 1

2 .

α 0 20 40 60 80 100 120 140 160 180 200

Exact

Accepted 15 8 12 15 15 12 19 23 19 22 21

Declined 11 5 10 17 19 13 23 68 25 33 30

Inexact

Accepted 15 9 12 14 15 14 19 20 19 20 21

Declined 7 4 10 18 21 44 23 29 25 31 30

Table 1: Number of accepted and declined iterations for different prefactor values α for fixed
parameters β = 40, c = 80 and ρ̃ = −100 in the exact and inexact case.

Let us now consider the number of subproblem solver iterations we saved by allows inexact
computations. Figure 2 displays the number of TNNMG-iterations necessary for the computation
of each accepted update step. Also here, the results leave no room for interpretation and substantiate
the effectivity of the inexact method. To further reinforce these findings, we give the number of
total TNNMG-iterations for the scenarios from Table 1 in Table 2. Note here that these numbers
include the subproblem steps for the computation of both accepted and declined updates ∆s(ω).
We can see that we at least spare two thirds of the steps within the subproblem solver and as α
increases even only need a quarter of them in comparison to the exact method.

As mentioned beforehand, we also want to take a look at how the inexactness criteria affect
the solving process of the step computation subproblems. To this end, we consider two aspects
each of which covers one of our criteria based on an exemplary Proximal Newton steps: On the
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Figure 2: Comparison of the number of TNNMG-iterations for c = 80, β = 40, ρ̃ = −100 and
α ∈ {40, 80, 120, 160} for the exact and inexact case.

α 0 20 40 60 80 100 120 140 160 180 200

Exact 227 143 269 434 488 405 695 943 784 983 954

Inexact 66 40 70 108 143 182 160 211 169 202 220

Table 2: Comparison of the number of total TNNMG-iterations N for the exact and the inexact
case in the scenario of Table 1.

one hand, in order to investigate the relative error criterion (3.1), we computed every Proximal
Newton step twice. Within the first computation, we neglected inexactness criteria which allowed
us to then compute the actual relative error Erel of the TNNMG iterates in the second and actually
inexact computation process. This makes it possible to compare the relative error to the estimate
Eest which we use for easier evaluation, cf. (3.2). As can be seen in the plots in Figure 3, both
quantities stay within the same order of magnitude and eventually drop below the bound η from
the inexactness criterion. This implies that the estimate which implicitely uses the convergence
rate of our multigrid subproblem solver constitutes and adequate and easy-to-evaluate alternative
to the actual relative error. Note that the estimated error Eest is not assigned within the first two
TNNMG iterations since we have to take more of these into consideration in order to obtain a valid
estimate for multigrid convergence rates θ in (3.2).

On the other hand, we also considered the subgradient inexactness criterion (4.5). As mentioned
beforehand, we introduced this criterion for globalization purposes with the intention that it would
not interfere with the minimization process, especially in the local acceleration phase close to
optimal solutions. In fact, we have noticed that throughout our tests the determining quantity
for further solving the subproblem was the relative error estimate and not that ω̃ from (4.7) was
too large. For example, over the TNNMG-iterations of the Proximal Newton step considered in
Figure 3 we had nearly constant ω̃ ≈ 1.5, clearly remaining below our choice of ω̃max := 108.
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Figure 3: Comparison of the relative error Erel and its estimate Eest together with the forcing term
bound η in Proximal Newton step k = 17 for α = 160.

7. Conclusion. We have extended the globally convergent and locally accelerated Proximal
Newton method in Hilbert spaces from [14] to inexact computation of update steps. Additionally,
we have improved local convergence proofs by considering regularized gradient mappings and have
thereby disclosed the influence of damping and inexactness to local convergence rates. We have
found inexactness criteria that suit the general infinite-dimensional Hilbert space setting of the
present treatise and can be evaluated cheaply within every iteration of the subproblem solver. Using
these inexactness criteria, we have also been able to carry over all convergence results, local as well
as global, from the exact case. The application of our method to actual function space problems
is enabled by using an efficient solver for the step computation subproblem, the Truncated Non-
smooth Newton Multigrid Method. We have displayed functionality and efficiency of our algorithm
by considering a simple model problem in function space.

Room for improvement is definitely present in the choice of both regularization parameters ω
and forcing terms η. The former can be addressed by different approaches like estimates for residual
terms of the quadratic model established in subproblem (1.3), cf. [21], or adapted strategies for
controlling time step sizes in computing solutions of ordinary differential equations. For the forcing
terms on the other hand, adaptive choices have already been studied for inexact Newton methods
e.g. in [1, 6]. While these can be carried over to our non-smooth scenario, it also appears to be
promising to tie the choice of regularization parameters and forcing terms together due to their
similar convergence behavior. This idea both reduces the computational effort and better reflects
the problem structure at hand.
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