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ABSTRACT

The projection of sample measurements onto a reconstruction

space represented by a basis on a regular grid is a powerful

and simple approach to estimate a probability density func-

tion. In this paper, we focus on Riesz bases and propose a

projection operator that, in contrast to previous works, guar-

antees the bona fide properties for the estimate, namely, non-

negativity and total probability mass 1. Our bona fide pro-

jection is defined as a convex problem. We propose solution

techniques and evaluate them. Results suggest an improved

performance, specifically in circumstances prone to rippling

effects.

Index Terms— Non-negativity, Riesz bases, generalized

sampling, convex optimization.

1. INTRODUCTION

The estimation of probability density functions (pdf) pervades

most problems in statistics and machine learning. For in-

stance, the Bayes classifier achieves optimal classification,

but requires an estimate of the pdf conditioned to each class.

Similarly, any regression problem can be trivially solved pro-

vided a good estimate of the joint pdf between outcomes and

covariates is available. Practically, pdf estimation remains

one of the most common tools in data science [1–3], with

its basic version (a histogram) being the entry point to any

exploratory data analysis. As a result, the field remains active

despite its long history [4–7].

The mathematical structure of the problem of pdf estima-

tion is very similar to that of image reconstruction for imag-

ing modalities that operate in the limited-photon regime, e.g.,

the construction of a sinogram from positron emission tomog-

raphy measurements. From the observation of the empiri-

cal measure pδ generated by N independent identically dis-

tributed samples xn ∼ X of a continuous random variable X ,

with

pδ =
1

N

N
∑

n=1

δxn
, (1)

one aims to recover the probability density function f : R →
R+, of which we assume f ∈ L2(R).

pδ g • •

Fs = 1
h

q cs
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Fig. 1. Projection onto the space of uniform splines of degree 3 of

the empirical estimate pδ in (1) for h = 0.9 and N = 100 samples of

a standard normal random variable. The projection is implemented

by a generalized sampling system composed of a continuous filter g

and a digital correction filter q. The resulting estimate is not a bona

fide pdf, which is the problem we address in this paper.

In [8], our group proposed a pdf estimator that relies on

the theory of generalized sampling using Riesz bases. How-

ever, in general, the resulting estimates are not bona fide pdfs.

Although they integrate to 1, they are not guaranteed to be

nonnegative (see Fig. 1). Recently, Cui et al. [5, 6] rediscov-

ered the same estimator and studied it in much detail, but did

not provide a technique to generate bona fide estimates. In

this paper, we present a simple technique based on convex

optimization to obtain better estimates that are bona fide pdfs

within the same framework.

2. SAMPLING AND RECONSTRUCTION

A classical problem in signal processing is that of the sam-

pling and reconstruction of continuous-domain signals [9,10].

In short, a function f ∈ L2(R) is observed through a filter

with impulse response g ∈ L2(R) and sampled regularly at

x = kh for k ∈ Z. The problem is then to obtain the best ap-

proximation f̃ ∈ L2(R) from the collected samples ca ∈ ℓ2,
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defined as ca[k] = (g ∗ f)(kh), ∀k ∈ Z.

An option is to find a projection of f onto a synthesis

space

Vs =

{

∑

k∈Z

cs[k]ϕ
s
k : cs ∈ ℓ2

}

⊂ L2(R) , (2)

where the synthesis function ϕs ∈ L2(R) is scaled and

shifted to define ϕs
k(x) ,

√

1/hϕs(x/h − k). For con-

venience, we define the analysis functions ϕa
k mutatis mu-

tandis with respect to ϕa(x) =
√
h g(−hx) and note that

ca[k] = 〈ϕa
k, f〉. For the remainder of this paper, we

assume that
∫

R
ϕa(x)dx =

∫

R
ϕs(x)dx = 1 and that

∑

k∈Z
ϕs(x − k) = 1 (partition of unity). Provided that

{ϕs
k}k∈Z and {ϕa

k}k∈Z are Riesz bases, the coefficients

cs ∈ ℓ2 that yield a consistent reconstruction f̃ ∈ Vs, in

the sense that 〈ϕa
k, f̃〉 = ca[k], can be obtained using a dis-

crete filter [9, 11] such that cs[k] = (q ∗ ca)[k], where q is

the convolutional inverse of the analysis-synthesis correlation

sequence ra,s[k] = 〈ϕa
k, ϕ

s
0〉. This follows directly from the

consistent reconstruction condition because

〈ϕa
k, f̃〉=

∑

k′∈Z

cs[k
′]〈ϕa

k, ϕ
s
k′ 〉 =

∑

k′∈Z

cs[k
′]ra,s[k − k′]

= (ra,s ∗ cs)[k] . (3)

The function f̃ so constructed is a projection of f onto Vs,

because PVs : L2(R) → Vs defined as f 7→ f̃ fulfills that

PVs{f̃} = f̃ . Particularly, if Vs = Va, with Va defined analo-

gously to (2), then f̃ is the minimum L2-norm approximation

of f in Vs (i.e., its orthogonal projection). The polynomial-

reproduction properties of ϕs [12] then characterize the be-

havior of ‖PVs{f} − f‖L2(R) as h gets small, known as the

order of approximation.

3. RIESZ PROJECTIONS FOR PDF ESTIMATION

This approach to signal reconstruction can be extended to the

estimation of pdfs [8]. In particular, if one chooses ϕa, ϕs ∈
C0(R), where C0(R) is the space of continuous functions that

decay at infinity equipped with the uniform norm ‖ · ‖∞, then

〈δx, ϕa〉 = ϕa(x) is well defined. Consequently, the approach

described above can be directly applied on the empirical esti-

mate pδ , as portrayed in Figure 1, to obtain an estimate f̃ of

the pdf. For ϕa = ϕs = β0(x), this results in a traditional

histogram. Here, βm for m ∈ N is the uniform B-spline of

degree m. We illustrate in Figure 2 the measurement pro-

cess 〈pδ, ϕa
k〉 when β0 and β1 are used as ϕa. In the gen-

eral case, Blu and Unser [8] showed that f̃ = PVs {pδ} is an

L2-consistent estimator for f . They also characterized thor-

oughly its expected L2-error averaged over all possible shifts

x
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Fig. 2. Measurement procedure ca[k] = 〈pδ, ϕ
a
k〉 for the cases

ϕa = β0 and ϕa = β1. The coefficient ca[k] is constructed as

an average of the contributions ϕa
k(xn) of all the samples over the

support of ϕa
k.

within h

η̃2 =
1

h

∫ h

0

E







∥

∥

∥

∥

∥

fτ − PVs

{

1

N

N
∑

n=1

δxn+τ

}∥

∥

∥

∥

∥

2

L2(R)







dτ.

(4)

There, fτ (x) , f(x− τ) is used for convenience.

Because ϕs satisfies the partition of unity, we have that
∫∞

−∞
f̃(x)dx = 1. Regretfully, this does not guarantee that f̃

will be a bona fide pdf, and we often encounter f̃(x) < 0 for

some x ∈ R. When ϕa = ϕs = βm for some m ∈ N, the

scheme in Figure 1 yields an orthogonal projection. Nonethe-

less, for degrees m ≥ 1, the resulting estimate may exhibit

negative values due to ripples in the estimate. For example,

this is seen inside the dotted box in Figure 1. To address this

shortcoming of the method, we propose the following projec-

tion operator based on an optimization model.

Definition 1 (Bona Fide Projection). The bona fide projection

onto Vs is the operatorPBF : M(R) → Vs such that pδ 7→ f̃+
with

f̃+ =argmin
f̆∈Vs

{

‖〈pδ, ϕa
k〉 − 〈ϕa

k, f̆〉‖2ℓ2
}

,

such that f̆(x) ≥ 0, ∀x ∈ R, and

∫ ∞

−∞

f̆(x)dx = 1 .

(5)

Here, M(R) is the space of bounded Radon measures. It is

the continuous dual of C0(R) and contains Dirac delta distri-

butions. Because the set of constraints is convex and the cost

function is strictly convex, (5) has a unique solution.



We may express succinctly the set of constraints by defin-

ing the subset of bona fide pdfs in Vs as BF = {f̆ ∈ Vs :

f̆(x) ≥ 0, ∀x ∈ R, and
∫∞

−∞
f̆(x)dx = 1}. Lemma 1 estab-

lishes that (5) indeed does define a projection operator, pre-

cisely onto BF ⊂ Vs.

Lemma 1 (Projection). The operator PBF defined in (5) is a

projection operator onto BF .

Proof: Let f̃+ ∈ BF . Because BF ⊂ Vs

⋂

L1(R)
by construction (‖f̃+‖L1 = 1 for any f̃+ ∈ BF), we have

that BF ⊂ M(R) (see [13]), and thus PBF{f̃+} is well de-

fined. Let c
f̃+
s be the unique coefficients of f̃+ on the basis

{ϕs
k}k∈Z, and cf̆s analogously for f̆ . Then, the cost function

in (5) is ‖ra,s ∗ (c
f̃+
s − cf̆s )‖2ℓ2 . Because ra,s has a convolu-

tional inverse and f̃+ ∈ BF , the unique solution that achieves

cost 0 and fulfills the constraints in (5) is f̆ = f̃+. Therefore,

PBF{f̃+} = f̃+ and PBF is a projection operator onto BF .

Leveraging (3), the optimization problem (5) can be

equivalently stated in terms of the coefficients cs of f̆ as

mincs∈ℓ2

{

‖ca − ra,s ∗ cs‖2ℓ2
}

such that
∑

k∈Z

cs[k]ϕ
s
k(x) ≥ 0, ∀x ∈ R and

∑

k∈Z

cs[k] = 1 .

However, the enforcement of the non-negativity constraint

is generally a hard problem for all but the simplest bases

{ϕs
k}k∈Z. For example, for spline functions of degree m, this

entails as many as m semidefinite constraints in the polyno-

mial coefficients describing each segment [k, k+1] (see [14–

16]). In this paper, we take a general approach that is valid

for any ϕs and relies only on linear constraints and convolu-

tion. It is inexact but can be made arbitrarily close to (5) at the

cost of increased computational complexity. Specifically, for

a given M ∈ N, we impose that f̆(k/M) ≥ 0, ∀k ∈ Z. The

constrained values are readily computed as f̆(k/M) = (c↑Ms ∗
ϕs,M )[k], where i) c↑Ms is a sequence of coefficients upsam-

pled from cs, so that it contains (M − 1) zeros between cs[k]
and cs[k + 1], for every k ∈ Z, and ii) ϕs,M [k] = ϕs(k/M),
which corresponds to a short finite-impulse-response filter be-

cause ϕs is often chosen with a small support. Therefore, the

final optimization problem becomes

mincs∈ℓ2

{

‖ca − (ra,s ∗ cs)‖22
}

such that (c↑Ms ∗ ϕs,M )[q] ≥ 0, ∀q ∈ Z and
∑

k∈Z

cs[k] = 1 .

(6)

Problem (6) has a quadratic-programming structure and can

be solved by a number of standard iterative techniques.

As we shall see in Section 4, and specifically in Fig-

ures 3 and 4, empirical results suggest that the localized non-

negative constraints of (6) lead to estimates that are in BF
and result in smaller approximation errors and a smoother

behavior than the unconstrained solution.
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Fig. 3. Estimates f̃ = PVs{pδ} and f̃+ = PBF{pδ} obtained from

N = 100 samples of a Gaussian mixture, h = 0.9, and ϕa = ϕs =
β3. Evidently, f̃+ is a better estimate of f . Most importantly, it is

also a bona fide pdf.

4. EMPIRICAL RESULTS

We implemented PVs as described in Sections 2 and 3 in

Python 3.9.5, leveraging the NumPy [17] and SciPy [18]

libraries for computations. We implemented an approximated

PBF as described by (6), which was solved with M = 10 us-

ing CVXPY [19]. An open-source repository that contains all

implementations, including those to generate all the figures in

this paper, is available through GitHub1.

A comparison of [8] and the proposed method on 100
samples of an equal mixture of N (3, 1) and N (−3, 1) with

h = 0.9 and ϕa = ϕs = β3 results in the estimates f̃ =
PVs{pδ} and f̃+ = PBF{pδ} shown in Figure 3. There, one

can immediately appreciate that f̃+ fulfills the constraints of

BF , at least within visual tolerance. Furthermore, as high-

lighted by the dotted boxes in the figure, f̃+ is a much bet-

ter estimate overall, exhibiting a much less ripples at the lo-

cations where the true distribution f changes sharply. This

applies even when the resulting ripples in f̃ do not produce

negative values (lower-right box).

A more detailed study of the expected shift-averaged error

incurred by both f̃ and f̃+ is included in Figure 4 and com-

pared to the theoretical predictions of [8] for f̃ . Both methods

are evaluated on 100 samples of a standard normal distribu-

tion N (0, 1) for h ∈ [0.8, 1.6]. To approximate η̃ empirically,

the error is computed by numerical integration over x and is

averaged over 120 realizations. For each realization, the data

and the probability density function are shifted by all multi-

ples of 0.025 between 0 and h, and the results are averaged to

approximate the integral over τ in (4). The results suggest that

f̃+ improves on f̃ by roughly 1 dB for all reasonable values

of h. While this improved error is certainly an advantage, the

1https://github.com/poldap/rpde

https://github.com/poldap/rpde
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Fig. 4. Performance metric η̃ in (4) evaluated for PVs and PBF

applied to N = 100 samples of a standard Gaussian. Seen here as

function of the grid size h and for ϕa = ϕs = β3.

main benefit of PBF is that its output is directly usable for any

application of pdf estimation, because the estimate f̃+ ∈ BF
is a bona fide pdf.
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École polytechnique fédérale de Lausanne (EPFL), Univer-

sity of Geneva (UNIGE), and Geneva University Hospitals

(HUG).

6. REFERENCES

[1] A. J. Izenman, “Recent developments in nonparametric den-

sity estimation,” Journal of the American Statistical Associa-

tion, vol. 86, no. 413, pp. 205–224, 1991.

[2] T. Takada, “Asymptotic and qualitative performance of non-

parametric density estimators: A comparative study,” Econo-

metrics Journal, vol. 11, no. 3, pp. 573–592, 2008.

[3] Z. Wang and D. W. Scott, “Nonparametric density esti-

mation for high-dimensional data—Algorithms and applica-

tions,” WIREs Computational Statistics, vol. 11, no. 4, p.

e1461, 2019.

[4] A. Uppal, S. Singh, and B. Poczos, “Nonparametric density

estimation & convergence rates for GANS under Besov IPM

losses,” in Advances in Neural Information Processing Sys-

tems, H. Wallach et al., Eds., vol. 32. Curran Associates,

Inc., 2019.

[5] Z. Cui, J. L. Kirkby, and D. Nguyen, “Nonparametric density

estimation by B-spline duality,” Econometric Theory, vol. 36,

no. 2, pp. 250–291, 2020.

[6] J. L. Kirkby, A. Leitao, and D. Nguyen, “Nonparametric den-

sity estimation and bandwidth selection with B-spline bases:

A novel Galerkin method,” Computational Statistics & Data

Analysis, vol. 159, p. 107202, 2021.

[7] F. Ferraccioli, E. Arnone, L. Finos, J. O. Ramsay, and L. M.

Sangalli, “Nonparametric density estimation over complicated

domains,” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), vol. 83, no. 2, pp. 346–368, 2021.

[8] T. Blu and M. Unser, “Quantitative L
2 approximation error of

a probability density estimate given by its samples,” in Pro-

ceedings of the Twenty-Ninth IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP’04),
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