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On a conjecture that strengthens the k-factor case of
Kundu’s k-factor Theorem
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Abstract

In 1974, Kundu showed that for even n if π = (d1, . . . , dn) is a non-increasing degree
sequence such that Dk(π) = (d1 − k, . . . , dn − k) is graphic, then some realization of π
has a k-factor. In 1978, Brualdi and then Busch et al. in 2012, conjectured that not
only is there a k-factor, but there is k-factor that can be partitioned into k edge-disjoint
1-factors. Busch et al. showed that if k ≤ 3, d1 ≤ n

2 + 1, or dn ≥ n
2 + k − 2, then the

conjecture holds. Later, Seacrest extended this to k ≤ 5. We explore this conjecture
by first developing new tools that generalize edge-exchanges. With these new tools, we
can drop the assumption Dk(π) is graphic and show that if dd1−dn+k ≥ d1− dn+ k− 1,
then π has a realization with k edge-disjoint 1-factors. From this we show that if
dn ≥ d1+k−1

2 or Dk(π) is graphic and d1 ≤ max{n/2 + dn − k, (n + dn)/2}, then the
conjecture holds. With a different approach we show the conjecture holds when Dk(π)
is graphic and dmin{n

2
,m(π)−1} >

⌈

n+3k−8
2

⌉

wherem(π) = max{i : di ≥ i−1}. For r ≤ 2,
Busch et al. and later Seacrest for r ≤ 4 showed that if Dk(π) is graphic, then there is
a realization with a k-factor whose edges can be partitioned into a (k − r)-factor and
r edge-disjoint 1-factors. We improve this for any r ≤ max

{

min{k, 4}, k+3
3

}

. As a
result, we can show that if Dk(π) is graphic, then there is a realization with at least
2
⌊

k
3

⌋

edge-disjoint 1-factors.

1 Introduction

For an undirected graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E, we let
(degG(v1), . . . , degG(vn)) denote a degree sequence of G. We say a sequence π = (d1, . . . , dn)
is graphic if it is the degree sequence of some graph, and call that graph a realization of π.
We let R(π) be the set of realizations of π, and we let π(G) be a degree sequence of a graph
G and shorten R(π(G)) to R(G). We say a degree sequence (d1, . . . , dn) is non-increasing
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if d1 ≥ . . . ≥ dn and positive if di ≥ 1 for all i. In this paper we will assume all degree
sequences are non-increasing and only consider graphs and realizations that have no loops
or multi-edges.

In 1974, Kundu [15], followed by Chen [8] in 1988 with a short proof, gave necessary
and sufficient conditions for a degree sequence to have a realization with a spanning near
regular subgraph. We call a spanning k-regular subgraph a k-factor. Since this paper is only
concerned with k-factors we present the regular case in Theorem 1.

Theorem 1 (Regular case of Kundu’s k-factor Theorem [15]). Some realization of a degree
sequence (d1, . . . , dn) has a k-factor if and only if (d1 − k, . . . , dn − k) is graphic.

For a sequence π = (d1, . . . , dn), we let Dk(π) denote the sequence (d1 − k, . . . , dn − k)
and π = (n− 1− dn, . . . , n− 1− d1). Busch, Ferrara, Hartke, Jacobson, Kaul, and West [7]
showed that if both π and Dk(π) are graphic, then for r ≤ min{3, k}, there is a realization
of π with a k-factor that has r edge-disjoint 1-factors. Later, Seacrest [24] improved this
to r ≤ min{4, k}. This naturally leads one to wonder how large can r be? Brualdi [6] and
Busch et al. [7], independently, conjectured that r = k.

Conjecture 1 ([6] and later in [7]). Some realization of a degree sequence (d1, . . . , dn) with
even n has k edge-disjoint 1-factors if and only if (d1 − k, . . . , dn − k) is graphic.

Conjecture 1 does not hold for every even order k-regular graph since for some natural
number t, the 2t-regular graph that is the disjoint union of two complete graphs each with
2t + 1 vertices does not have a 1-factor. However, finding 1-factors in k-regular graphs is
well studied [21, 22, 23], and we make use of some of those results here.

For k ≥ 2⌈n
4
⌉ − 1, the well known 1-factorization conjecture (See [9] by Chetwynd and

Hilton) implies that every k-regular graph can be partitioned into k edge-disjoint 1-factors.
The same 2t-regular graph we mentioned before shows the lower bound on k is best possible.
In a fantastic paper Csaba et al. proved the 1-factorization conjecture for n sufficiently large.

Theorem 2 ([10]). There exists an n0 ∈ N such that the following holds. Let n, k ∈ N be
such that n ≥ n0 is even and k ≥ 2⌈n

4
⌉ − 1. Then every k-regular graph G on n vertices can

be decomposed into k edge-disjoint 1-factors.

A positive resolution of the the 1-factorization conjecture would prove Conjecture 1 for
large k, and thanks to Csaba et al. we know Conjecture 1 is true for large k and n sufficiently
large.

One may think increasing the edge-connectivity of k-regular graphs would produce many
edge-disjoint 1-factors. The classic example of this idea is by Berge [4] and expanded on in
[5, 14, 20, 25].

Theorem 3 ([4]). All even ordered (k− 1)-edge-connected k-regular graphs have a 1-factor.

For large k, we made use of Theorem 3 in [26] to find a realization with a k-factor that
has many edge-disjoint 1-factors. However, this approach maybe limited since Mattiolo [18]
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Kt

It+2

Figure 1: Kt+1 ∗ It+2

presented k-regular k-edge-connected graphs that cannot be partitioned into a 2-factor and
k − 2 1-factors.

Along with requiring the connectivity of a graph G and it’s complement G, Ando et al.
[1] showed that bounding the difference of the maximum degree and minimum degree of G
would yield a 1-factor in either G or G. Ignoring the connectivity requirement we are able to
show that bounding the difference d1 − dn for a non-increasing degree sequence (d1 . . . , dn)
can tell us if there is a realization with many edge-disjoint 1-factors.

Theorem 4. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even n.
For a positive integer k ≤ dn, if

dd1−dn+k ≥ d1 − dn + k − 1, (1)

then there is some G ∈ R(π) that has k edge-disjoint 1-factors.

Note that, unlike Conjecture 1, in Theorem 4 we did not require Dk(π) to be graphic.
For k = 1 and t ≥ 1, Theorem 4 is best possible since the split graph (See Figure 1)
joining every vertex of a complete graph Kt+1 with every vertex of an independent set
It+2 has a non-increasing degree sequence (d1, . . . , dn) such that d1 = 2t + 1, dn = t, and
d1 − dn = t+1 > dd1−dn+1 = t yet does not have a 1-factor. However, for k > 1 we think we
can do better. Our motivation for this comes from Corollary 5.

Corollary 5. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even n.
For k ≤ dn, if

dd1−dn+1 ≥ d1 − dn + k − 1, (2)

then there is some realization of π that has a k-factor.

Proof. Assume (2) is true. The Corollary follows directly from Theorem 4 when k = 1. Let
t be the largest integer such that Dt(π) = (q1, . . . , qn), where qi = di− t, is graphic. Kundu’s
k-factor theorem implies that Dt+1(π) is not graphic, and therefore, no realization of Dt(π)
has a 1-factor. This implies qq1−qn+1 < q1 − qn. Since q1 − qn = d1 − dn, we have along with
(2) that

dd1−dn+1 − t = qq1−qn+1 < q1 − qn = d1 − dn ≤ dd1−dn+1 − (k − 1).

Which can only be true if t ≥ k.
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Observe that if Conjecture 1 is true, then Corollary 5 implies there is a realization with k
edge-disjoint 1-factors. This naturally motivates Conjecture 2 as a interesting step towards
answering Conjecture 1.

Conjecture 2. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even
n. For a positive integer k ≤ dn, if

dd1−dn+1 ≥ d1 − dn + k − 1, (3)

then there is some G ∈ R(π) that has k edge-disjoint 1-factors.

If we first insist Dk(π) is graphic, then we can use Theorem 4 to prove Theorem 6.

Theorem 6. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even n
such that Dk(π) is graphic. If

dn+1−(d1−dn+k) ≤ n− (d1 − dn), (4)

then π has a realization with k edge-disjoint 1-factors. ‘

Proof. Let qi = di−k. We focus on Dk(π) and consider its complement Dk(π) = (q1, . . . , qn)
where qi = n− 1− qn+1−i. We have by (4) that

qn+1−(q1−qn+k) = dn+1−(d1−dn+k) − k ≤ n− (d1 − dn)− k = n− 1− (q1 − qn + k − 1).

From this we can show

q1 − qn + k − 1 = q1 − qn + k − 1 ≤ n− 1− qn+1−(q1−qn+k) = qq1−qn+k = qq1−qn+k.

Therefore, by Theorem 4, Dk(π) has a realization with k edge-disjoint 1-factors. Thus, those
k edge-disjoint 1-factors can be added to a realization of Dk(π) to create a realization of π
with k edge-disjoint 1-factors.

Note that if Conjecture 2 holds, then (4) can be improved to dn−(d1−dn) ≤ n− (d1 − dn).
For a non-increasing degree sequence π, the modified Durfee number is defined as m(π) =

max{i : di ≥ i−1}. The modified Durfee number has appeared in the literature many times
before and we will make use of it here.

Theorem 7. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even n
such that Dk(π) is graphic. If dmin{n

2
,m(π)−1} >

⌈

n+3k−8
2

⌉

or
⌈

n+5−k
2

⌉

> dmax{n
2
+1,n+2−m(Dk(π))}

,

then π has a realization with k edge-disjoint 1-factors.

We used a different strategy in the proof of Theorem 7 than we used in the proof of
Theorem 4 and we suspect that the argument can bear more fruit. Currently, if Theorem 4
does not hold, then m(π) ≤

⌈

n+3k−8
2

⌉

+ 1 or n
2
+ 1 ≤ m(π) ≤ n

2
+ 6 when k = 6. We would

not be surprised if the proof could be modified to improve the bounds on m(π) or answer
the conjecture for k = 6.
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In [7] the authors showed that ifDk(π) is graphic and dn ≥ n
2
+k−2 or d1 ≤

n+2
2
, then some

realization of π has k edge-disjoint 1-factors. We have improved these bounds considerably.
Theorem 4 shows that if dn ≥ d1+k−1

2
, then Dk(π) is graphic and some realization of π has k

edge-disjoint 1-factors. If we first assume Dk(π) is graphic, then we can show

d1 ≤ max

{

n

2
+ dn − k,

n + dn
2

}

is sufficient. Theorem 6 shows that d1 ≤ n+dn
2

is enough, and the other inequality follows
from Theorem 4 after an application of Lemma 1.

Lemma 1 (Proved by Li in [16], but we use the form given by Barrus in [2]).

m(π) +m(π) =

{

n + 1, if dm(π) = m(π)− 1

n, otherwise.

To see this, we first observe that Theorem 4 says that if m(π) ≥ d1 − dn + k, then
Conjecture 1 holds. Let Dk(π) = (q1, . . . , qn) where qi = n− 1− dn+1−i + k and assume by
contradiction that m(π) ≤ d1−dn+k−1 and m(Dk(π)) ≤ q1− qn+k−1 = d1−dn+k−1.
Since m(π) ≤ m(Dk(π)) ≤ m(π) + k we have

n ≤ m(π) +m(π) ≤ m(π) +m(Dk(π)) ≤ 2(d1 − dn + k − 1).

This implies the contradiction

d1 ≥
m(π) +m(Dk(π))

2
+ dn − k + 1 ≥

n

2
+ dn − k + 1.

Thus, either m(π) ≥ d1 − dn + k − 1 or m(Dk(π)) ≥ q1 − qn + k − 1. Applying Theorem 4
to either π or Dk(π) we can find a realization of π with k edge-disjoint 1-factors. Note that
we actually proved the stronger bound

d1 ≤
m(π) +m(Dk(π))

2
+ dn − k + 1,

and if Conjecture 2 is true then we can modify this argument to show Conjecture 1 holds

for d1 − dn ≤ m(π)+m(Dk(π))
2

− 1.
When dn ≥ n

2
+ 2, Hartke and Seacrest [13] showed there is a realization with f(dn, n)

edge-disjoint 1-factors where

f(dn, n) =

⌊

dn − 2 +
√

n(2dn − n− 4)

4

⌋

.

Our lower bound on dn improves their bound when dn−f(dn, n) ≥ d1−dn. Which is true for
the vast majority of possible d1 for any given n and dn. To see this, we can use the rough lower
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bound dn > 2f(dn, n) and dn ≥ n/2+2 to show any d1 ≤ 3n/4+3 ≤ 3dn/2 < 2dn−f(dn, n)
will do.

We now turn to the weaker question of how many edge-disjoint 1-factors a k-factor in
some realization can have.

In [26] we expanded on a result of Edmonds [12] that gave necessary and sufficient
conditions for when a degree sequence has a maximally edge-connected realization. One of
the things we showed is that if G is a simple graph with minimum degree two and has a
1-factor F , then there is a realization of R(G) that is maximally edge-connected with the
subgraph G−E(F ). This result can be used to require the realization given by Conjecture 1
to be maximally edge-connected when dn ≥ 2. In the same paper we proved a more general
result that along with Theorem 3 we used to prove a partial result of Conjecture 1.

Theorem 8 ([26]). Let π = (d1, . . . , dn) be a non-increasing degree sequence with even n
such that Dk(π) is graphic. If k ≥ d1

2
+ r − 1 or k ≥ n − 1 − dn + 2(r − 1), then π has a

realization with a k-factor that has r edge-disjoint 1-factors.

If k ≥ d1
2
+ r − 1, then since dn ≥ k ≥ d1+2r−2

2
, Theorem 4 is stronger than Theorem 8

when k ≤ 2r−1 and Theorem 2 would be stronger for large k and n. Interestingly, Theorem 3
is traditionally proved with a structure we rely on in this paper. So it maybe possible to
directly use the techniques in this paper to prove or even improve Theorem 8.

Seacrest [24] showed that for r ≤ min{4, k} there is a k-factor with r edge-disjoint 1-
factors. We are able to show there is a k-factor with at least

⌊

k+3
3

⌋

edge-disjoint 1-factors.

Theorem 9. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even n.
For a positive integers k ≤ dn, if Dk(π) is graphic and

r ≤ max

{

min{k, 4},
k + 3

3

}

,

then there is some G ∈ R(π) that has a k-factor with r edge-disjoint 1-factors.

If some realization of (n− 1 − d1, . . . , n− 1 − dn) has a k′-factor then we can make use
of Petersen’s 2-factor theorem [19] to improve Theorem 9. Recall that Petersen showed that
any 2r-regular graph can be partitioned into r 2-factors.

Theorem 10. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even
n. For non-negative integers r ≤ k ≤ dn and k′ ≤ n− 1− d1 such that k′ is even and r ≡ k
mod 2, if Dk(π) and π′ = (d1 + k′, . . . , dn + k′) are graphic and

r ≤ max

{

min{k, 4},
k + k′ + 3

3

}

,

then there is some G ∈ R(π) that has a k-factor with r edge-disjoint 1-factors.

Proof. Note that Dk+k′(π
′) = Dk(π). Since π′ and Dk+k′(π

′) are graphic and non-increasing
we have by Theorem 9 that π′ has a realization G with a (k + k′)-factor F with an r-factor

6



F0 made up of r edge-disjoint 1-factors. Since k+k′−r is even we can use Petersen’s 2-factor
theorem to split F −E(F0) in to k+k′−r

2
2-factors. We may then select k−r

2
of those 2-factors

and add them to G−E(F ) +E(F0) to construct a realization of π with a k-factor that has
r edge-disjoint 1-factors.

We can weaken our requirements even more by asking how many edge-disjoint 1-factors
can a realization of a graphic sequence π have if Dk(π) is graphic?

Seacrest [24] showed that if Dk(π) is graphic, then there is a realization of π with
⌊

k
2

⌋

+2
edge-disjoint 1-factors. Seacrest did this by first finding a realization with a k-factor that
has r edge-disjoint 1-factors for some r ≡ k mod 2. In particular, Seacrest used r = 3 when
k is odd and r = 4 when k is even. Seacrest then took the remaining part of the k-factor
and applied Petersen’s 2-factor theorem to split it into edge-disjoint 2-factors. Seacrest then
visited each 2-factor and performed multi-switches, which are defined similarly to the edge-
exchanges given in Section 3 of this paper, to construct at least one additional 1-factor while
leaving existing 1-factors and 2-factors intact. This process results in a realization with k+r

2

edge-disjoint 1-factors and possibly no k-factor. By Theorem 9 there is an r ≥
⌊

k
3

⌋

such that
k − r is even. This implies that if Dk(π) is graphic, then there is a realization of π with at
least

k + r

2
≥

k +
⌊

k
3

⌋

2
≥ 2

⌊

k

3

⌋

edge-disjoint 1-factors.
We have shown that Dk(π) being graphic results in a realization of π with many edge-

disjoint 1-factors. Thus, it was reasonable to pose Conjecture 1. We suspect answering the
conjecture for the k = 6 case will either lead to a counter example or yield some new tools
for larger k. As it is, the conjecture has allowed us to study a generalization of the classic
edge-exchange, defined in Section 3, that we used heavily in our work. The idea has been
explored before by Seacrest in [24]. However, our presentation is different and our results
seem to be new and maybe of independent interest outside of this conjecture.

In Section 2 we present terminology and the Gallai-Edmonds Structure Theorem. In
Section 3 we present a generalization of the classic edge-exchange and prove lemmas that we
use extensively in our proofs. The proofs of our main results can be found in the rest of the
sections.

2 Terminology and Definitions

For notation and definitions not defined here in this paper we refer the reader to [11]. We
let Kn denote the complete graph on n vertices. We will denote G as the complement of a
graph G. We say a graph is trivial if it has a single vertex. For a graph G = (V,E) and
disjoint subsets X and Y of V we let eG(X, Y ) be the number of edges with one end in X
and the other in Y . For a matching M , if u ∈ V (M), then we let uM denote that unique
neighbor of u in M . Moreover if U ⊆ V (M) we let UM = {uM‖∀u ∈ U}.

Let G be a graph. We let o(G) be the number of odd components in G. For S ⊆ V (G)
we let defG(S) = o(G − S) − |S|, and let def(G) = maxS⊆V (G) defG(S). The Berge-Tutte
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x0 x1 x2 x3

Figure 2: Edge-exchanges with length 2 and length 4, respectively.

Formula [3] says that if G has n vertices, then the maximum size of a matching in G is
1
2
(n − def(G)). If every subgraph obtained by deleting one vertex from G has a 1-factor,

then we say G is factor-critical. If a matching in G covers all but one vertex, then we say
the matching is near-perfect.

In a graph G, the Gallai-Edmonds Decomposition of G is a partition of V (G) into three
sets A, C, and D such that D = V (G)− B where B is the set of vertices that are in every
maximum matching of G and B = A ∪ C where A is the set of vertices of B with at least
one neighbor in D. The Gallai-Edmonds Structure Theorem (See [27] for a short proof and
history.) is an important tool for our work and we present it below before beginning our
proofs.

Theorem 11 (Gallai-Edmonds Structure Theorem). Let A,C,D be the sets in the Gallai-
Edmonds Decomposition of a graph G. Let G1, . . . , Gk be the components of G[D]. If M is
a maximum matching in G, then the following properties hold.

(I) M covers C and matches A into distinct components of G[D].

(II) Each Gi is factor-critical, and M restricts to a near-perfect matching on Gi.

(III) If ∅ 6= S ⊆ A, then NG(S) has a vertex in at least |S|+ 1 of G1, . . . , Gk.

(IV) def(A) = def(G) = k − |A|.

3 Edge-Exchanges

The standard operation for passing from one realization G of a degree sequence π to another
realization consists of exchanging two edges vx0 and x1u from G with two edges x0u and vx1

from G. This operation, see the left side of Figure 2, is commonly called an edge-exchange
or a 2-switch. However, we will need a more general form of edge-exchanges and we present
it from the perspective of an edge coloring of Kn.

Consider an edge coloring of Kn with natural numbers {1, . . . , t}. We let H1, . . . , Ht

denote the subgraphs of Kn where Hj is formed by all edges colored j. We say the colors of
edges vx0 an x0u can be exchanged if there exists a natural number l and a list of 2l distinct
edges

(vx0, x0u, vx1, x1u, . . . , vxl−1, xl−1u)

8



such that xiu and vxi+1 have the same color for all i modulo l. Indeed if we exchange the
colors of vxi and xiu for all i modulo l, then we would create another edge coloring of Kn

with color classes H ′
1, . . . , H

′
t such that H ′

j ∈ R(Hj). The right hand side of Figure 2 shows,
as an example, the exchange (vx0, x0u, vx1, x1u, vx2, x2u, vx3, x3u). We often just say two
edges can be exchanged when it is clear we mean exchanging their colors. If xju and vx0 are
not the same color for j ≤ l−1, then we call the list a near exchange with length l. For a near
exchange or exchange L = (vx0, x0u, vx1, x1u, . . . , vxl−1, xl−1u) we let X (L) = {x0, . . . , xl−1}.

The rest of this section focuses on exchanging edges where the first edge is inH1. However,
in later sections we will want to consider exchanges that start with an edge of H2 so it is
important to point out that all the results in this section still hold when every occurrence of
H1 or H2 are swapped with each other.

Let L be a vx0 and x0u exchange. If for any Hi there is at most one xj ∈ X (L) such that
vxj ∈ E(Hi), then we call L simplified.

Lemma 2. Let H1, . . . , Ht be the subgraphs formed by coloring every edge of Kn with some
integer in {1, . . . , t} such that Hj is a spanning regular graph for j ≥ 3. For edges vx0 ∈
E(H1) and x0u /∈ E(H1), if L is an exchange for vx0 and x0u, then there exists a simplified
vx0 and x0u exchange L′ with X (L′) ⊆ X (L).

Proof. Let L = (vx0, x0u, vx1, x1u, . . . , vxl−1, xl−1u) be the shortest counter example. Thus,
there is a xj and a xt in X (L) with j < t such that both vxj and vxt are in E(Hi) for some
i. We have a contradiction since we can create the shorter exchange

L′ = (vx0, x0u, . . . , vxj−1, xj−1u, vxt, xtu, . . . , vxl−1, xl−1u)

with X (L′) ⊆ X (L).

Lemma 3. Let H1, . . . , Ht be the subgraphs formed by coloring every edge of Kn with some
integer in {1, . . . , t} such that Hj is a spanning regular graph for j ≥ 3. For edges vx0 ∈
E(H1) and x0u /∈ E(H1), if vx0 and x0u cannot be exchanged, then a longest near edge-
exchange using vx0 and x0u ends with an edge of H2.

Proof. Let L = (vx0, x0u, vx1, x1u, . . . , vxl−1, xl−1u) be a longest near edge-exchange. If
there is some xju ∈ E(H1), then (vx0, x0u, . . . , vxj, xju) would be an edge-exchange since
vx0 ∈ E(H1). Suppose xl−1u ∈ E(Hj) for some j ≥ 3. Since Hj is regular and u and v are
incident to the same number of edges of Hj in {vx0, x0u, . . . , vxl−1, xl−1u} there must be an
xl ∈ NHj

(v) − X (L). However, (vx0, x0u, . . . , vxl−1, xl−1u, vxl, xlu) would be a longer near
edge-exchange contradicting our choice of l.

Lemma 4. Let H1, . . . , Ht be the subgraphs formed by coloring every edge of Kn with some
integer in {1, . . . , t} such that Hj is a spanning regular graph for j ≥ 3. For edges vx0 ∈
E(H1) and x0u /∈ E(H1), if there is a y ∈ NH2(v) ∩ NH1(u) or a y ∈ NH2(v)− NH2(u) and
a y′ ∈ NH1(u)−NH1(v) such that yu and vy′ have the same color, then vx0 and x0u can be
exchanged.
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Proof. Suppose vx0 and x0u cannot be exchanged. Let (vx0, x0u, . . . , vxl−1, xl−1u) be a
longest near exchange. By Lemma 3 xl−1u ∈ E(H2), and thus, there is a smallest j such
that xju ∈ E(H2). However, we have a contradiction since

(vx0, x0u, . . . , vxj, xju, vy, yu)

is an exchange when y ∈ NH2(v) ∩NH1(u) and otherwise,

(vx0, x0u, . . . , vxj , xju, vy, yu, vy
′, y′u)

is an exchange.

Lemma 5. Let H1, . . . , Ht be the subgraphs formed by coloring every edge of Kn with some
integer in {1, . . . , t} such that Hj is a spanning regular graph for j ≥ 3. For vertices u and

v, let X = {x
(1)
0 , . . . , x

(|X|)
0 } where X ⊆ NH1(v)−NH1(u). If

degH1(u) ≥ degH1(v)− |NH2(u) ∩NH1(v)|+ |X ∩NH2(u)|, (5)

then there exists a set L = {L(1), . . . , L(|X|)} such that L(j) ∈ L is a vx
(j)
0 and x

(j)
0 u exchange

and
X (L(j)) ∩ X (L(i)) = ∅

for j 6= i.

Proof. Trivially, X ((vx
(j)
0 , x

(j)
0 u)) = {x

(j)
0 }. Thus, there exists a set {L(1), . . . , L(|X|)} and an

1 ≤ f ≤ |X|, where

L(j) = (vx
(j)
0 , x

(j)
0 u, vx

(j)
1 , x

(j)
1 u, . . . , vx

(j)

l(j)−1
, x

(j)

l(j)−1
u)

is an exchange for j < f and a near exchange for j ≥ f with

X (L(j)) ∩ X (L(i)) = ∅

for all i 6= j, such that
|X|
∑

i=1

|X (L(i))| (6)

is maximized.
Let Y =

⋃|X|
i=1X (L(i)). Suppose there exists an s ≥ f such that x

(s)

l(s)
u ∈ E(Hi) for

some i ≥ 3. Since x
(j)
t u and vx

(j)
t+1 are the same color for all j and t we know that for each

L(j) u is incident with at least as many edges of Hi than v. Since Hi is regular and u is
incident with one more edge of Hi than v in L(s) there must be an xl ∈ NHi

(v)−Y . However,

(vx
(s)
0 , x

(s)
0 u, . . . , vx

(s)
l−1, x

(s)
l−1u, vx

(s)
l , x

(s)
l u) would be a longer near edge-exchange contradicting

the maximality of (6). Thus, every xj

l(j)−1
u ∈ E(H2).

We can rewrite (5) so that

degH2(v) ≥ degH2(u)−|NH2(u)∩NH1(v)|+ |X∩NH2(u)| = |NH2(u)−NH1(v)|+ |X∩NH2(u)|.
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Since Y ∩NH2(u) ∩NH1(v) = X ∩NH2(u) we have that

Y ∩NH2(u) ⊆ NH2(u)− (NH1(v)−X).

Furthermore, we have

|X (L(j)) ∩NH2(u)| = |X (L(j)) ∩NH2(v)|

for j < f and
|X (L(j)) ∩NH2(u)| = |X (L(j)) ∩NH2(v)|+ 1

for j ≥ f . Therefore, there is an xl ∈ NH2(v)− Y since

degH2(v) ≥ |NH2(u)−NH1(v)|+ |X ∩NH2(u)| ≥ |Y ∩NH2(u)| > |Y ∩NH2(v)|.

However, we have a contradiction to (6) since

(vx0, x0u, . . . , vxl−1, xl−1u, vxl, xlu)

would be a longer near exchange than L(f).

Lemma 6. Let H1, . . . , Ht be the subgraphs formed by coloring every edge of Kn with some
integer in {1, . . . , t} such that Hj is a spanning regular graph for j ≥ 3. For vertices u

and v, let X = {x(1)
0 , . . . , x

(|X|)
0 } where X ⊆ NH1(v) − NH1(u) such that |X ∩ NH2(u)| ≤

|NH2(v)−NH2(u)|. If

|X −NH2(u)|+ |NH2(v)−NH2(u)| > |NH2(u)−NH1(v)−NH2(v)|,

then there exists a x
(j)
0 ∈ X such that vx

(j)
0 and x

(j)
0 u can be colored exchange.

Proof. Trivially, X ((vx
(j)
0 , x

(j)
0 u)) = {x

(j)
0 }. Thus, there exists a set {L(1), . . . , L(|X|)}, where

L(j) = (vx
(j)
0 , x

(j)
0 u, vx

(j)
1 , x

(j)
1 u, . . . , vx

(j)

l(j)−1
, x

(j)

l(j)−1
u)

is a near exchange for 1 ≤ j ≤ |X| with

X (L(j)) ∩ X (L(i)) = ∅

for all i 6= j, such that
|X|
∑

i=1

|X (L(i))| (7)

is maximized.
Let Y =

⋃|X|
i=1X (L(i)). Suppose there exists an s such that x

(s)

l(s)
u ∈ E(Hi) for some

i ≥ 3. Since x
(j)
t u and vx

(j)
t+1 are the same color for all j and t we know that for each

L(j) u is incident with at least as many edges of Hi than v. Since Hi is regular and u is
incident with one more edge of Hi than v in L(s) there must be an xl ∈ NHi

(v)−Y . However,

11



(vx
(s)
0 , x

(s)
0 u, . . . , vx

(s)
l−1, x

(s)
l−1u, vx

(s)
l , x

(s)
l u) would be a longer near edge-exchange contradicting

the maximality of (6). Thus, every xj

l(j)−1
u ∈ E(H2).

If there is an xl ∈ NH2(v)−NH2(u) not in Y , then

(vx
(1)
0 , x

(1)
0 u, vx

(1)
1 , x

(1)
1 u, . . . , vx

(1)

l(1)−1
, x

(1)

l(1)−1
u, vxl, xlv)

is a longer near exchange that contradicts (7). Thus, NH2(v)−NH2(u) ⊆ Y .

Given a z ∈ (X−NH2(u))∪(NH2(v)−NH2(u)) there is an L(s) and a j such that x
(s)
j = z.

Thus, there is a smallest f ≥ 1 such that x
(s)
j+f ∈ NH2(u). By the minimality of f we know

that x
(s)
j+f /∈ NH2(v). If x

(s)
j+f ∈ NH1(v), then

(vx
(s)
0 , x

(s)
0 u, vx

(s)
1 , x

(s)
1 u, . . . , vx

(s)
j+f−1)

would be an exchange. This implies that x
(s)
j+f−1 ∈ NH2(u)−NH1(v)−NH2(v). We may further

note that x
(s)
j+i /∈ (X −NH2(u)) ∪ (NH2(v)−NH2(u)) for any 1 ≤ i ≤ f since vx

(s)
j+i ∈ NH1(v)

or x
(s)
j+i ∈ NH2(v) which implies x

(s)
j+i−1 ∈ NH2(u). Thus, we have the contradiction

|(X −NH2(u)) ∪ (NH2(v)−NH2(u))| ≤ |NH2(u)−NH1(v)−NH2(v)|.

4 Proof of Theorem 4

Proof. We will assume every G ∈ R(π) has vertex set V = {v1, . . . , vn} such that degG(vi) =
di. Let r ≤ k be the largest integer such that there is a realization of π with r edge-disjoint
1-factors. By contradiction we assume r ≤ k − 1. Let G be the set of tuples of the form
(G,F, t) where G ∈ R(π), F is an r-factor of G whose edges can be partitioned into r
1-factors, and vt /∈ V (M) for some maximum matching M of G−E(F ).

(C1) We choose a (G,F, t) ∈ G such that def(G− E(F )) is minimized, and

(C2) subject to (C1), we minimize t.

Let M1, . . . ,Mr be a partition of E(F ) into r edge-disjoint 1-factors. Furthermore, we
let M be a maximum matching of G− E(F ) that misses vt. Let Q = {v1, . . . , vt−1}.

Let H1 = G− E(F ) and H2 = G, and note that H1, H2, H3, . . . , Hr+2 where Hi = Mi−2

for i ≥ 3 represent a coloring of the edges of Kn. Thus, any edge-exchange involving any Hi

corresponds to a (G′, F ′, t′) ∈ G.
Let A,C,D be a Gallai-Edmonds Decomposition of H1. We know that D is not empty

since our assumption is that H1 does not have a matching. We let D′ ⊆ D be the largest
set such that for every u ∈ D′ there is a matching Mu in H1 that misses both u and vt such
that E(Mu − V (D′)) = E(M − V (D′)). We know D′ is not empty since M misses vt and
some other vertex. Let A′ ⊆ A be all vertices in A adjacent in H1 to a vertex in D′.

Claim 4.1. NH1(u) ⊆ A′ ⊆ Q for all u ∈ D′.

12



Proof. Suppose there is a v ∈ NH1(u) not in Q. Consider a maximum matching Mu of H1

that misses both u and vt. By Lemma 4 we may exchange vtu and uv to find a (G′, F ′, t′) ∈ G.
However, we have a contradiction since Mu + {vtu} is a maximum matching in G′ −F ′ that
violates (C1).

Claim 4.2. wM ∈ D′ for every w ∈ A′

Proof. Suppose there is a w ∈ A′ such that wM ∈ D − D′. By definition of D′, for any
u ∈ NH1(w)∩D

′ there is aMu that misses u and vt such that E(Mu−V (D′)) = E(M−V (D′)).
However, since M ′ = Mu − {wwM} + {wu} is a maximum matching that misses vt with
E(M ′ − V (D′ ∪ {wM})) = E(M − V (D′ ∪ {wM})) we have that D′ ∪ {wM} is a larger set
than D′.

Claim 4.1 implies every component of H1[D
′] is a single vertex. By Claim 4.2 and (III)

we have that |D′| > |A′|. Therefore,

eH1(D
′, A′) ≥ |D′|(dn − r) > |A′|(dn − r)

and by the pigeon hole principle there is some vertex s ∈ A′ adjacent in H1 to at least
dn − r + 1 vertices in D′.

Claim 4.3. Q is complete in G to A′ ∪NH1(vt).

Proof. Suppose there is a w ∈ Q and v ∈ A′ ∪ NH1(vt) that are not adjacent in G, and let
u ∈ NH1(v) ∩ D′. By definition of D there is a maximum matching Mu of H1 that misses
u. By (II) u and wMu

are in separate components of H1[D], and therefore, uwMu
/∈ E(H1).

By Lemma 4 and Lemma 2 there exists a simplified wMu
w and uwMu

exchange that when
exchanged creates another (G′, F ′, t′) ∈ G with the matching Mu − {wMu

w} + {wMu
u} of

G′ − E(F ′) that violates (C2).

Since s ∈ A′ ⊆ Q we have by Claim 4.3 that s is adjacent in G to every vertex in
Q− {s} ∪NH1(vt). Thus,

|Q− {s}| ≤ degG(s)− |NH1(s)−Q| − |NF (s)−Q|

≤ d1 − |NH1(s) ∩ (D′ − {vt})| − |NH1(s) ∩ {vt}| − |NF (s)−Q|

≤ d1 − (dn − r + 1)− |NH1(s) ∩ {vt}| − |NF (s)−Q|

= d1 − dn + r − 1− |NH1(s) ∩ {vt}| − |NF (s)−Q|.

Since s ∈ Q we have that |Q| ≤ d1 − dn + r− |NH1(s)∩ {vt}| − |NF (s)−Q|. However, since
|Q| = t− 1 we have by (1) that

dt = d|Q|+1 ≥ dd1−dn+r+1 ≥ dd1−dn+k ≥ d1 − dn + k − 1 ≥ d1 − dn + r.

Suppose NH1(s) ∩ D′ ⊆ NH2(vt). Let X = {x} for some x ∈ NH1(s) ∩ D′. We let Mx

be a maximum matching in H1 that misses both x and vt. Since degH1(vt) ≥ d1 − dn and
|NH2(vt) ∩NH1(s)| ≥ dn − r + 1, and |X ∩NH2(vt)| = 1 we have that

degH1(s)−|NH2(vt)∩NH1(s)|+ |X∩NH2(vt)| ≤ d1−r−(dn−r+1)+1 = d1−dn ≤ degH1(vt).
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Therefore, by Lemma 5 and Lemma 2 there exist a simplified vtx and xs exchange that
when exchanged creates another (G′, F ′, t′) ∈ G such that Mx is a matching of G′ − E(F ′).
However, this violates (C2) since Mx + {vtx} is a larger matching of G′ − E(F ′). Thus,
NH1(s) ∩D′ ∩NF (vt) 6= ∅.

Let X = NH1(s) ∩ D′ ∩ NF (vt), and observe X = X − NH2(vt) and NF (s) ∩ NH2(vt) =
NH2(vt) − NH1(s) − NH2(s). If |X| + |NH2(s) − NH2(vt)| > |NF (s) ∩ NH2(vt)|, then by
Lemma 6 and Lemma 2 for some x ∈ X there exists a simplified vtx and xs exchange
that when exchanged creates another (G′, F ′, t′) ∈ G. Note that since the exchange was
simplified M − {sx} is a matching of G′ − E(F ′). If x /∈ V (M), then M + {vtx} is a
matching of G′ − E(F ′) that contradicts (C1). If x ∈ V (M), then since xM ∈ Q we have
that M − {xxM} + {vtx} is a matching of G′ − E(F ′) that violates (C2). Thus, we are left
with the case

|NF (s) ∩NH2(vt)| ≥ |X|+ |NH2(s)−NH2(vt)| ≥ |X|+ |NH2(s) ∩NF (vt)|. (8)

From (8) we have

|NF (s)−NH1(vt)| = |NF (s) ∩NF (vt)|+ |NF (s) ∩NH2(vt)|

≥ |NF (s) ∩NF (vt)|+ |X|+ |NH2(s) ∩NF (vt)|

≥ |NF (s)| − |NH1(s) ∩NF (vt)|+ |X|

= r − |NH1(s) ∩NF (vt)|+ |X| (9)

Observe

|NH1(s)−NH1(vt)| = |NH1(s) ∩NF (vt)|+ |NH1(s) ∩NH2(vt)|, (10)

and
|NH1(s) ∩NH2(vt)|+ |X| ≥ |(NH1(s) ∩D′)−NH1(vt)| ≥ dn − r + 1. (11)

From (10) and (11) we have

|NH1(s)−NH1(vt)| ≥ |NH1(s) ∩NF (vt)|+ dn − r + 1− |X|. (12)

Thus, combining (9) and (12) we have

|NH1(s)−NH1(vt)|+ |NF (s)−NH1(vt)| ≥ dn + 1. (13)

Since degH1(vt) ≥ d1 − dn and Claim 4.1 says that NH1(vt) ⊆ NG(s) we can use (13) to
show our final contradiction

d1 ≥ degG(s) ≥ degH1(vt) + |NH1(s)−NH1(vt)|+ |NF (s)−NH1(vt)|

≥ d1 − dn + dn + 1 = d1 + 1.
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5 Proof of Theorem 7

Proof. We assume every G ∈ R(π) has vertex set V = {v1, . . . , vn} such that degG(vi) = di.
Suppose

⌈

n+5−k
2

⌉

> dn
2
+1. Since Dk(π) is graphic Kundu’s k-factor Theorem says π has a

realization with a k-factor. Moreover, by Theorem 9 and Petersen’s 2-factor theorem π has
a realization with a k-factor whose edges can be partitioned into 1-factors and 2-factors. We
let r be the largest natural number such that k + r is even and there is a G ∈ R(π) with a
k-factor F whose edges can be partitioned into graphs F1, . . . , F k+r

2
such that Fi is a 1-factor

when i ≤ r or a 2-factor when i > r. By contradiction we assume r ≤ k − 2. Note that for
i > r every Fi must have at least two odd cycles as components. Otherwise, we could split
Fi into two 1-factors contradicting our choice of r.

We let (H,H1, H2, H3, . . . , Hq) correspond to an edge coloring of Kn with the natural
numbers {1, . . . , q} such that H = Kn−E(H2) and Hi is the subgraph induced by the edges
colored i. We let G be the set of such tuples where H1 ∈ R(G − E(F )), H2 ∈ R(G), and
Hi ∈ R(Fi−2) for all 3 ≤ i ≤ q. We further consider the subset G ′ ⊆ G to be all tuples such
that the number of cycles in Hq is minimized.

For the rest of this proof we will assume all color exchanges are simplified.

Claim 5.1. For (H,H1, . . . , Hq) ∈ G ′, let A = a0 . . . a|A|−1a0 and B = b0 . . . b|B|−1b0 be
distinct cycles of Hq. For some ai and bj if L = {aix0, x0bj , . . . , aixl−1, xl−1bj} is a color
exchange, then X (L) ∩ (V (A) ∪ V (B)) = ∅.

Proof. Suppose the claim is false and there is an edge aixs of A and an edge xs+1bj of B.
After, performing the exchange we denote the resulting tuple as (H ′, H ′

1, . . . , H
′
q). Since L

is simplified aixs and xs+1bj are the only edges of Hq exchanged. Without loss of generality
we assume xs = ai′ and xs+1 = bj′ with i′ = i + 1 mod |A| and j′ = j + 1 mod |B|. With
this we can see ai′ . . . a|A|−1a0 . . . aibj′ . . . b|B|−1b0 . . . bjai′ is a cycle in H ′

q that combines the
vertices of A and B and leaves all other cycles alone. However, this implies the contradiction
that H ′

q has fewer cycles than Hq.

We choose an arbitrary (H,H1, . . . , Hq) ∈ G ′. We let f be the largest index such that
vfv

−
f is an edge of Hq with degH(vf) ≥ degH(v

−
f ) and denote the cycle containing it by

A. Since Hq does not have a 1-factor there is an odd cycle C that is distinct from A.
Furthermore, we know there is vt ∈ V (C) with neighbors v−t and v+t along C in Hq such that
degG(vt) ≤ degG(v

+
t ). We choose a vt such that t is minimized, and by our choice of vf we

know that t < f . There is an odd cycle D in Hq that is not C. Like vt in C, D has vertices
vs, v

+
s , and v−s such that degHq

(v−s ) ≤ degHq
(vs) ≤ degHq

(v+s ). By our choice of vf we know
that either f = s or f < s.

By the minimally of our choice of f we know that {vf+1, . . . , vn} is an independent set in
Hq. Thus, eHq

({v1, . . . , vf}, {vf+1, . . . , vn}) ≥ 2(n−f). Note that vs, v
+(s), vt, and v+(t) are

adjacent inHq to vertices in {v1, . . . , vf}. We therefore, have eHq
({v1, . . . , vf}, {vf+1, . . . , vn}) ≤

2f − |{vs, v
+(s), vt, v

+(t)}| = 2(f − 2). Combining these two bounds and solving for f we
have that f ≥ n

2
+ 1.

Claim 5.2. {vfv
+
t , vfvt, v

−
f v

+
t , v

−
f vt} ⊆

⋃

3≤i<q E(Hi).
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Proof. Note that degH(v
−
f ) ≤ degH(vf) ≤ degH(vt) ≤ degH(v

+
t ). If vfvt is an edge of H1,

then we have a contradiction to Claim 5.1 since v+t vt and vtvf can be exchanged. If vfvt is an
edge of H2, then we have a contradiction to Claim 5.1 since v−f vf and vfvt can be exchanged.

Similar arguments prove the claim for vfv
+
t , v

−
f v

+
t , and v−f vt.

Claim 5.3. NH1(vt) ⊆ NH(vf) ∩ {v1, . . . , vf}.

Proof. Let vi ∈ NH1(vt). Suppose vi ∈ V (A). If i > t, then by Lemma 5 we have a
contradiction to Claim 5.1 since v+t vt and vtvi can be exchanged. Thus, f > t > i. If vi ∈
NH2(vf), then we can exchange the edges vtvf and vfvi to create a tuple (H ′

1, . . . , H
′
q) ∈ G ′

such that Hq = H ′
q. However, we have a contradiction to Claim 5.1 since v−f vf and vfvt

can be exchanged with respect to this new tuple. Thus, vi ⊆ NH(vf ) ∩ {v1, . . . , vf} when
vi ∈ V (A).

Suppose vi /∈ V (A). If i > f , then we can exchange the edges vfvt and vtvi to create a
tuple (H ′

1, . . . , H
′
q) ∈ G ′ such that Hq = H ′

q. However, we have a contradiction to Claim 5.1
since v+t vt and vtvf can be exchanged with respect to this new tuple. Thus, we are left with
the case i < f and vi ∈ NH2(vf ). Here we have a contradiction to Claim 5.1 since v−f vf and
vfvi can be exchanged. Thus, vi ⊆ NH(vf ) ∩ {v1, . . . , vf} when vi /∈ V (A).

Since both vt and vf are not in NH1(vt) we have by Claim 5.3 that |NH1(vt)| ≤ f − 2.
For vi ∈ {vf−1, . . . , fn}, this implies

qn+1−i = n− 1− di + k ≥ n− 1− |NH1(vt)| ≥ n+ 1− f.

Thus, m(Dk(π)) ≥ n+ 2− f and therefore, f ≥ max{n
2
+ 1, n+ 2−m(Dk(π))}.

We now turn to finding a lower bound for df .

Claim 5.4. If vivj ∈ E(Hq) such that vi ∈ NH2(vt), then vj ∈ NH(vf) ∩ {v1, . . . , vf}.

Proof. Suppose vj /∈ NH(vf) ∩ {v1, . . . , vf}. We first assume vi /∈ V (C). By Claim 5.1 vjvi
and vivt cannot be exchanged. Therefore, by Lemma 5 j < t. If vj ∈ NH2(vf ), then we can
exchange the edges vtvf and vfvj to create a tuple (H ′

1, . . . , H
′
q) ∈ G ′ such that Hq = H ′

q.
However, we have a contradiction to Claim 5.1 since v−f vf and vfvt can be exchanged with
respect to this new tuple. Thus, vj ∈ NH(vf ) ∩ {v1, . . . , vf}.

We are left with the case vj ∈ V (C). If i < f , then we can exchange the edges vfvt and
vtvi to create a tuple (H

′
1, . . . , H

′
q) ∈ G ′ such thatHq = H ′

q. However, we have a contradiction
to Claim 5.1 since v−f vf and vfvt can be exchanged with respect to this new tuple. Thus,
i > f and therefore, j < f by the minimally of f . By Claim 5.1 we know that vivj and vjvf
cannot be exchanged. Thus, by Lemma 5 vj ∈ NH(vf). Thus, vj ∈ NH(vf )∩{v1, . . . , vf}.

We let W = NH(vf ) ∩ {v1, . . . , vf}. By Claim 5.3 we know that NH1(vt) ⊆ W , and we
know that vt is adjacent in H − E(H1) to vf , v

−
f , and v+t . Thus,

df = |NH(vf)| ≥ |NH1(vt) ∪ {v−f , v
+
t , vt}| ≥ dt − k + 3.
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From Claim 5.4 we know that if vi ∈ NH2(vt), then NHq
(vi) ⊆ W . Thus,

eHq
(NH2(vt),W ) ≥ 2|NH2(vt)| = 2(n− 1− dt).

On the other hand, v+t and v+s are in W and each of them are adjacent in Hq to at least one
vertex not in NH2(vt), and vt is adjacent in Hq to two vertices not in NH2(vt). Thus,

eHq
(NH2(vt),W ) ≤ 2|W | − 4.

Combining we have

2|W | − 4 ≥ eHq
(NH2(vt),W ) ≥ 2(n− 1− dt).

Solving for |W | we have
|W | ≥ n+ 1− dt.

Since v−f /∈ W we have that |W | ≤ df − 1. Therefore,

max{n+ 2− dt, dt − k + 3} ≤ df .

Letting n+ 2− dt = dt − k + 3 we have that max{n+ 2− dt, dt − k + 3} is minimized when
2dt − (n− 1) = k. Thus,

⌈

n+ 5− k

2

⌉

≤ df .

Using the lower bound on f we have the contradiction
⌈

n + 5− k

2

⌉

≤ df ≤ dmax{n
2
+1,n+2−m(Dk(π))}

.

We let l = max{n
2
+ 1, n+ 2−m(π)} and suppose

⌈

n+ 5− k

2

⌉

≤ ql.

We have that ql = n−1−dn+1−l+k ≥

⌈

n+5−k
2

⌉

. Solving for dn+1−1 and realizing n+1− l =

min{n
2
, m(π)− 1} we have the contradiction

dmin{n
2
,m(π)−1} ≤ n+ k − 1−

⌈

n+ 5− k

2

⌉

=

⌈

n + 3k − 8

2

⌉

.

Thus,

ql <

⌈

n+ 5− k

2

⌉

and by the first part of this theorem some realization of Dk(π) has k-edge-disjoint 1-factors.
Thus, some realization of π has k edge-disjoint 1-factors.
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6 Proof of theorem 9

Proof. Let G be the set of tuples of the form (G,F, r, F0) where G ∈ R(π), F is a k-factor
of G, F0 is a spanning (k − r)-factor of F , and E(F − E(F0)) can be partitioned into r
edge-disjoint 1-factors.

(C1) We choose a (G,F, r, F0) ∈ G such that r is maximized, and

(C2) subject to (C1), we minimize def(F0).

Let k′ = k− r, and by contradiction we assume r ≤
⌈

k′

2

⌉

. Let M1, . . . ,Mr be a partition
of E(F − E(F0)) into r edge-disjoint 1-factors.

Let H1 = G − E(F ), H2 = G, H3 = F0, and note that H1, H2, H3, . . . , Hr+2 where
Hi = Mi−3 for i ≥ 4 represent a coloring of the edges of Kn. Thus, any exchange involving
any Hi in Kn corresponds to some (G′, F ′, r′, F ′

0) ∈ G.
Let A,C,D be a Gallai-Edmonds Decomposition of F0. Since F0 does not have a 1-factor

we know that D is not empty. Let D = {D1, . . . , D|D|} be the components of F0[D].
In [17] Lovász showed every non-trivial factor critical graph has an odd cycle. Since (II)

says every non-trivial component in D is factor critical we know each one also has an odd
cycle. We let Li ⊆ V (Di) be the largest such set where for every u ∈ Li there is an odd cycle
in Di with distinct edges uu+ and uu− such that degG(u

+) ≥ degG(u) ≥ degG(u
−). We let

li be the largest number of edge disjoint odd cycles in Di, and note that |Li| ≥ li.

Claim 6.1. Suppose u ∈ V (Dj) and x ∈ V (Di) such that there exists a maximum matching
M of F0 that misses both u and x. If uy ∈ E(Hf) for some y ∈ NDi

(x), then xv /∈ E(Hf)
for all v ∈ NDj

(u).

Proof. If there does exists such a v ∈ NDj
(u), then we may exchange the edges uv and xy

with the edges xv and uy of Hf to find a (G′, F ′, r, F ′
0) ∈ G such that M + {ux} is a larger

matching in F ′
0 that contradicts (C2).

For u ∈ V (Di) we let W+
i [u] be all v ∈ NF0[u] ∩ V (Di) such that degG(u) ≤ degG(v).

Similarly, we let W−
i [u] be all v ∈ NF0[u] ∩ V (Di) such that degG(v) ≤ degG(u).

Claim 6.2. Suppose v2 ∈ V (Dj) and u1 ∈ V (Di) such that there exists a maximum matching
M of F0 that misses both v2 and u1. If degG(v1) ≥ degG(v2) ≥ degG(u1) ≥ degG(u2) for
v1 ∈ W+

j [v2] and u2 ∈ W−
i [u1], then none of {u1v1, u1v2, u2v1, u2v2} are edges of H1 or H2.

Proof. By contradiction suppose there is a vs ∈ {v1, v2} and a ut ∈ {u1, u2} such that
vsut ∈ E(H1) ∪ E(H2). Since D1 and Di are factor critical and M restricts to a near
perfect matching on Di and Dj we can find a maximum matching M ′ of F0 that misses
both vs and ut. If vsut ∈ E(H1), then since degG(v1) ≥ degG(v2) ≥ degG(u1) ≥ degG(u2)
and by Lemma 5 and Lemma 2 there exists a simplified v1v2 and vsut edge-exchange that
when exchanged creates another (G′, F ′, r, F ′

0) ∈ G with a larger matching M ′ + {vsut} that
contradicts (C2). If vsut ∈ E(H2), then since degG(v1) ≥ degG(v2) ≥ degG(u1) ≥ degG(u2)
and by Lemma 5 and Lemma 2 there exists a simplified u1u2 and vsut edge-exchange that
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when exchanged creates another (G′, F ′, r, F ′
0) ∈ G with a larger matching M ′ + {vsut} that

contradicts (C2).

Claim 6.3. Suppose u ∈ Li and v ∈ Lj such that there exists a maximum matching M of
F0 that misses both u and v. If degG(u) ≥ degG(v), then every vertex in W−

j [v] is adjacent
in F −E(F0) to every vertex in W+

1 [u].

Proof. The claim follows from Claim 6.2 since degG(u
+) ≥ degG(u) ≥ degG(v) ≥ degG(v

−)
for every u+ ∈ W+

1 [u] and v− ∈ W−
j [v].

Claim 6.4. Suppose u ∈ Li and v ∈ Lj such that there exists a maximum matching M of F0

that misses both u and v. If degG(u) ≥ degG(v), then for any u+ ∈ W+
i [u] and v− ∈ W−

j [v]
with {u, v} 6= {v−, u+} the edges uv− and vu+ are in distinct Hs for s ≥ 3.

Proof. This follows from Claim 6.1 and Claim 6.2.

If there exists a z1 ∈
⋃

Di∈D
Li such that eF0(z1, A) ≤

⌊

k′

2

⌋

, then we choose such a z1 so
that degG(z1) is maximized. Otherwise, we choose a z1 ∈ D such that eF0(z1, A) is minimized.
Without loss of generality we may assume z1 ∈ V (D1). We may also assume D2 ∈ D is a
component with eF0(D2, A) minimized such that there is a maximum matching Mv of F0

that misses both z1 and some vertex in v ∈ V (D2). If D2 is not trivial, then we choose a
z2 ∈ L2. Otherwise, we let z2 be the only vertex in D2. Since Mv restricts to a near-perfect
matching on D2 we can use the fact that D2 is factor critical to find a maximum matching
M of F0 that misses z1 and z2.

We let D′ ⊆ D be the largest set such that for every u ∈ D′ there is a maximum matching
Mu of F0 such that E(Mu)− E(D′) = E(M) − E(D′). Note that z2 ∈ D′, and since every
component in D is factor critical and M restricts to a near matching on each of them we
may conclude that for Dj ∈ D, if V (Dj) ∩ D′ 6= ∅, then V (Dj) ⊆ D′. We may assume
without loss of generality that D′ = {D2, . . . , D|D′|} are the set of components of F0[D

′]
and eF0(D2, A) ≤ . . . ≤ eF0(D|D′|+1, A). Let S = NF0(D

′) ∩ A. Suppose wM /∈ D′ for some
w ∈ S. Let v ∈ NF0(w) ∩ D′. By the definition of D′ there is a maximum matching Mv

of F0 that misses both z1 and v such that wwM ∈ E(Mv). This is a contradiction since
E(Mv − {wwM}+ {wv})− E(D′ ∪ {wM}) = E(M)−E(D′ ∪ {wM}).

Let t be the largest integer such that eF0(Dt+1, S) < k′. Since |D′| ≥ |S| + 1 by (III)
we may conclude that eF0(D2, S) < k′, and therefore, t ≥ 1. Otherwise, we have the
contradiction

k′|S| ≥

|D′|+1
∑

i=2

eF0(Di, S) ≥ k′|D′| ≥ k′(|S|+ 1).

Furthermore, since F0 is k′-regular every such component in D′ must be non-trivial. Thus,
both D1 and D2 have odd cycles, and therefore, by our choice of z1 and z2 we know that
z1 ∈ L1 and z2 ∈ L2.

We pause here to recognize that applying Claim 6.2 and Claim 6.4 with z1 and z2 we
may conclude that r ≥ 4. This proves this theorem and Conjecture 1 for k ≤ 5.
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For the rest of the proof we will need a z−1 ∈ W−
1 [z1] such that degG(z

−
1 ) ≤ degG(z

′) for
every z′ ∈ W−

1 [z1].

Claim 6.5. If eF0(z1, A) ≤
⌊

k′

2

⌋

and there exists a Dj ∈ D′ with a v ∈ Lj such that
degG(v) ≤ degG(z1), then for every v+ ∈ W+

j [v] at least one of v+z1 or v+z−1 is an edge of
F −E(F0).

Proof. Suppose there is a v+ ∈ W+
j [v] not adjacent in F −E(F0) to z−1 nor z1. If degG(z

−
1 ) ≥

degG(v), then degG(v
−) ≤ degG(v) ≤ degG(z

−
1 ) ≤ degG(z

′) ≤ degG(z1) for every z′ ∈ W−
1 [z1]

and v− ∈ W−
j [v]. Thus, by Claim 6.2 and Claim 6.3 v must be adjacent in F−E(F0) to every

vertex in W−
1 [z1] and W+

1 [z1]. However, this implies r ≥
⌈

k′

2

⌉

+ 1. If degG(v
+) < degG(z1),

then degG(z
+
1 ) ≥ degG(z1) ≥ degG(v

+) ≥ degG(v) for every z+1 ∈ W+
1 [z1]. Thus, by Claim 6.2

z1 is adjacent in F−E(F0) to v
+. We are left with the case degG(v

+) ≥ degG(z1) ≥ degG(v) ≥
degG(z

−
1 ). Let M

′ be a matching of F0 that misses both z−1 and v+. If z−1 v
+ ∈ E(H1), then

by Lemma 4 and Lemma 2 there exists a simplified vv+ and v+z−1 edge-exchange that when
exchanged creates another (G′, F ′, r, F ′

0) ∈ G with a larger matching M ′+ {v+z−1 } of F ′
0 that

contradicts (C2). If z−1 v
+ ∈ E(H2), then by Lemma 4 and Lemma 2 there exists a simplified

z1z
−
1 and v+z−1 edge-exchange that when exchanged creates another (G′, F ′, r, F ′

0) ∈ G with
a larger matching M ′ + {v+z−1 } of F ′

0 that contradicts (C2).

We observe that

k′|S| ≥

|S|+2
∑

i=2

eF0(Di, S) ≥ k′(|S|+ 1− t) +
t+1
∑

i=2

eF0(Di, S).

Thus,
t+1
∑

i=2

eF0(Di, S) ≤ k′(t− 1). (14)

In the case t = 1 we have that eF0(D2, S) = 0. Thus, eF0(z1, A) ≤
⌊

k′

2

⌋

and degG(z2) ≤
degG(z1) by our choice of z1. By Claim 6.3 z1 is adjacent in F − E(F0) to every vertex in
W−

2 [z2] and z2 is adjacent in F − E(F0) to every vertex in W+
1 [z1]. By Claim 6.4 all those

edges are in distinct 1-factors. Thus,

|W+
1 (z1)|+ |W−

2 [z2]| ≤ |NF−E(F0)(z1) ∩ V (D2)|+ |W+
1 (z1)| ≤ r ≤

⌈

k′

2

⌉

.

Since |W+
1 (z1)| ≥ 1 we have that

|NF−E(F0)[z1] ∩ V (D2)| ≤

⌈

k′

2

⌉

− 1. (15)
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Since eF0(z2, S) = 0 we have by Claim 6.4 and Claim 6.5 that NF0 [z2] ⊆ NF−E(F0)(z1) ∪
NF−E(F0)(z

−
1 ). By Claim 6.5 and (15) we have the contradiction

r ≥ |NF−E(F0)(z
−
1 ) ∩ V (D2)|

≥ |NF0[z2]| − |NF−E(F0)(z1) ∩NF0[z2]|

≥ k′ + 1−

(⌈

k′

2

⌉

− 1

)

=

⌊

k′

2

⌋

+ 2 =

⌈

k′

2

⌉

+ 1.

Thus, we may assume t ≥ 2.
For any Di ∈ D′ we let Ji be a set of li edges that can be removed from Di such that

the resulting graph is bipartite. Let Xi and Yi be an independent vertex sets that partition
Di − E(Ji). We may assume |Xi| ≥ |Yi| + 1 since Di has an odd number of vertices. Since
each edge of Ji is an odd cycle we know that no edge of Ji is incident with both Xi and Yi.
Let wi = |V (Ji) ∩Xi| and w′

i = |V (Ji) ∩ Yi|. Thus,

k′|Yi|−2w′
i−eF0(Yi, S) ≥ eF0(Xi, Yi) ≥ k′|Xi|−2wi−eF0(Xi, S) ≥ k′(|Yi|+1)−2wi−eF0(Xi, S).

Since li = wi + w′
i we have after some rearranging and reduction that

0 ≥ k′ + 2(2w′
i − li) + eF0(Yi, S)− eF0(Xi, S) ≥ k′ − 2li − eF0(Xi, S).

Thus, we have

0 ≥
t+1
∑

i=2

(k′ − 2li − eF0(Xi, S)) = k′t− 2
t+1
∑

i=2

li −
t+1
∑

i=2

eF0(Xi, S). (16)

Letting l ≤ min{l2, . . . , lt+1} we can further bound and rearrange (16) so that

t+1
∑

i=2

eF0(Xi, S) ≥ tk′ − 2tl. (17)

We may now use (17) to bound (14) from below.

k′(t− 1) ≥
t+1
∑

i=2

eF0(Di, S) ≥
t+1
∑

i=2

eF0(Xi, S) ≥ k′t− 2tl.

Therefore, l ≥
⌈

k′

2t

⌉

.
We let D′′ ⊆ {D2, . . . , Dt+1} be the largest set such for any Di ∈ D′′ no vertex in V (Di)

is incident with l edge-disjoint odd cycles. This implies |Li| ≥ 2 for every such component.
Furthermore, since eF0(Di, S) ≤ k′−1 for every Di ∈ D′′ there must be a vertex in Li that is
adjacent in F0 to at most k′−1

2
vertices in S and therefore, at least k′−

⌊

k′−1
2

⌋

=
⌈

k′+1
2

⌉

vertices
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inDi. We let t′ = |D′′|. Suppose t′ = 0. By the definition of Li for every Di ∈ {D2, . . . , Dt+1}
any vi ∈ Li has |W

−
i [vi]| ≥ l + 1. Therefore, by Claim 6.4 z1 is adjacent in F − F0 to l + 1

vertices in every component in {D2, . . . , Dt+1}. However, this implies the contradiction

r ≥ t(l + 1) ≥ t

(⌈

k′

2t

⌉

+ 1

)

≥

⌈

k′

2

⌉

+ t.

Therefore, t′ ≥ 1, and by our choice of z1 we have eF0(z1, A) ≤
⌊

k′

2

⌋

. Therefore, for every

Di ∈ D′′ we may identify a vi ∈ Li that is adjacent in F0 to at least
⌈

k′+1
2

⌉

vertices in Di.
By Claim 6.4 and Claim 6.5 NF0[vi] ⊆ NF−E(F0)(z1) ∪NF−E(F0)(z

−
1 ) for every vi. Thus,

eF−E(F0)(z1, NF0[vi]) + eF−E(F0)(z1, NF0[vi]) ≥ |NF0[vi]| ≥

⌈

k′ + 1

2

⌉

+ 1.

We now have

eF−E(F0)(z1, D
′) ≥

t
∑

j=2

eF−E(F0)(z1, V (Dj) ≥ (l + 1)(t− t′) +
∑

Di∈D′′

eF−E(F0)(z1, NF0[vi])

and

eF−E(F0)(z
−
1 , D

′) ≥
t

∑

j=2

eF−E(F0)(z
−
1 , V (Dj)) ≥ l(t′−t′′)+

∑

Di∈D′′

(⌈

k′ + 1

2

⌉

+ 1− eF−E(F0)(z1, NF0[vi])

)

.

Combining the two equations we have

2r ≥ eF−E(F0)(z1, D
′) + eF−E(F0)(z

−
1 , D

′)

≥ 2(t− t′)l + (t− t′) + t′
(⌈

k′ + 1

2

⌉

+ 1

)

≥ 2(t− t′)

⌈

k′

2t

⌉

+ t− t′ + t′
(⌈

k′ + 1

2

⌉

+ 1

)

. (18)

If t′ ≥ 2, then (18) implies the contradiction r ≥
⌈

k′+1
2

⌉

+1. If t′ = 1, then since t ≥ 2 we

have that 2(t− t′) ≥ t, and therefore, 2(t− t′)
⌈

k′

2t′

⌉

≥ t
⌈

k′

2t

⌉

≥
⌈

k′

2

⌉

. Using this last inequality
in (18) we have our final contradiction

2r ≥ 2

(⌈

k′

2

⌉

+ 1

)

.
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A Excluding Edges

For a graph F , with vertex set V , we let R(π, F ) ⊆ R(π) be the set of all realizations whose
set of edges include E(F ). We have R(π) = R(π, ∅), and we write R(G,F ) for R(π(G), F ).

With a similar proof technique as Theorem 4 we can fix a graph F and ask when there
is a G ∈ R(π, F ) such that G− F has a 1-factor.

Theorem 12. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence, and let F
be a subgraph of some realization of π. For r = ∆(F ), If

dd1−dn+2r+1 ≥ d1 − dn + 2r, (19)

then there exist a G ∈ R(π, F ) such that def(G−E(F )) ≤ 1.
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Corollary 13. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even
n. If

dd1−dn+2r+1 ≥ d1 − dn + 2r,

then there is some realization of π that has r + 1 edge-disjoint 1-factors. Moreover, one of
those 1-factors can be chosen to be any 1-factor of any realization of π.

Proof. Since
dd1−dn+2i+1 ≥ dd1−dn+2r+1 ≥ d1 − dn + 2r ≥ d1 − dn + 2i

for every i ≤ r the Corollary follows by induction using Theorem 12 and starting with any
chosen 1-factor for i = 0.

With essentially the same proof technique as Theorem 6 we have the following.

Corollary 14. Let π = (d1, . . . , dn) be a non-increasing positive degree sequence with even
n such that Dr+1(π) is graphic. If

dn+1−(d1−dn+2r+1) ≤ n− (d1 − dn + r),

then π has a realization that has r+1 edge-disjoint 1-factors. Moreover, one of those 1-factors
can be chosen to be any 1-factor of any realization of π.

A.1 Proof of Theorem 12

Proof. We first carefully chose a realization of R(π, F ).

(C1) We choose a G ∈ R(π, F ) such that def(G− E(F )) is minimized, and

(C2) subject to (C1), we choose a maximum matching M of G− E(F ) that maximizes

∑

x/∈V (M)

degG(x).

Let H = G−E(F ), and by contradiction we assume def(H) ≥ 2. From (19) we have dn ≥
2r, and thus, n ≥ d1+1 ≥ d1−dn+2r+1. Let A,C,D be a Gallai-Edmonds Decomposition of
H with H1, . . . , Hk being the components of H [D]. Let Z = {z1, . . . , zdef(H)} be the vertices
in D not in M such that deg(z1) ≥ . . . ≥ deg(zdef(H)). By (II) we may assume without loss
of generality that zi ∈ V (Hi) for i ≤ def(H).

Let D′ ⊆ D denote the largest set of vertices such for any u ∈ D′ there exists some
maximum matching, denoted by Mu, that avoids both u and z1. Since M avoids both z1
and z2 we have z2 ∈ D′. Let u ∈ V (Hi) ∩ D′ and v ∈ V (Hi). Since Hi is factor-critical
there is a near-perfect matching M ′ of Hi that avoids v. Since Mu restricts to a near-perfect
matching of Hi we can construct the maximum matching Mu − E(Mu[Hi]) + E(M ′) of H
to show that v ∈ D′. Thus, D′ is the vertex union of a set S of components of D. We let
A′ = NH(D

′) ∩ A.

25



We now show eH(Hi, A) ≥ dn − r for all Hi ∈ S. We choose an arbitrary Hi ∈ S, and
let Ti ⊆ V (Hi) denote the set of vertices adjacent in H to the fewest vertices in A. For
t ≥ 1, if each vertex in Ti is adjacent in H to t vertices in A, then for any u ∈ Ti we have
|V (Hi)| ≥ degG(u)− r − t+ 1 ≥ dn − r − t+ 1, and therefore,

eH(V (Hi), A) ≥ t|V (Hi)| ≥ t(dn − r − t + 1) ≥ dn − r.

We now consider the case eH(Ti, A) = 0. If some u ∈ V (Hi) is not adjacent to some
v ∈ NH(z1), then z1 must be adjacent in F to every vertex in NHi

(u). Otherwise, we can
use some x ∈ NHi

(u) not adjacent to z1 to exchange the edges ux and z1v with the non-
edges uv and z1x to create a realization and matching Mx + {z1x} that violates (C1). Let
u ∈ Ti. If u is adjacent in F to z1, then then u can not be adjacent in F to some vertex
v ∈ NH(z1) since |NH(z1)| ≥ deg(z1) − r ≥ r. However, this is a contradiction since z1
would be adjacent in F to at least r + 1 vertices in NHi

[u]. Thus, every vertex in NHi
(u)

is adjacent to every vertex in NH(z1). If u is also adjacent to every vertex in NH(z1), then
since |NHi

[u]| ≥ dn − r + 1 ≥ r + 1 every vertex in NH(z1) would be adjacent in H to at
least one vertex in NHi

[u]. Thus, eH(V (Hi), A) ≥ |NH(z1)| ≥ dn − r. If u is not adjacent to
some v ∈ NH(Z1), then every vertex in NHi

(u) is adjacent to every vertex in NH [z1]. Since
|NH [z1]| ≥ dn − r + 1 ≥ r + 1 every vertex in NHi

(u) is adjacent in H to some vertex in
A ∩NH(z1). Thus, eH(V (Hi), NH(z1) ∩ A) ≥ |NHi

(u)| ≥ dn − r.
For u ∈ D′, if there is a w ∈ NH(u) ∩ A′ and wMu

/∈ D′, then we have a contradiction
since Mu −{wwMu

}+ {wu} would be a matching that misses z1 and wMu
. Thus, no such w

exists and A′
M ⊂ D′. Therefore, |S| ≥ |A′

M |+ |{H2}| > |A′| since H2 ∈ S.
Since

eH(D
′, A′) ≥

∑

Hi∈S

eH(Hi, A
′) ≥ |S|(dn − r) > |A′|(dn − r)

we have by the pigeon hole principle that some vertex s ∈ A′ is adjacent to at least dn−r+1
vertices in D′.

Suppose deg(z1) < dd1−dn+2r+1, and let Q be the set of vertices in G with degree at least
dd1−dn+2r+1. For every vertex in D we know there is a matching that avoids it. Therefore,
D∩Q = ∅ by (C2). Thus, s is adjacent to at most d1− (dn− r+1) = d1−dn+ r−1 vertices
in Q. Since |Q| ≥ d1 − dn + 2r + 1 and with the possibility s ∈ Q we may conclude that s
must not be adjacent to at least

|Q− {s} −NG(s)| ≥ d1 − dn + 2r + 1− 1− (d1 − dn + r − 1) = r + 1

vertices in Q. Let P = Q − NG(s), and choose some x ∈ NH(s) ∩ D′. By definition of A
we have that PMx

⊆ D ∪ C, and therefore, by the definition of D and C we know that x
is not adjacent in H to vertices in PMx

. Since |PMx
| = |P | ≥ dn − r + 1 ≥ r + 1 there

must be a w ∈ P such that wMx
is not adjacent to x. However, we may exchange the

edges xs and wwMx
for the non-edges sw and xwMx

to create a realization and matching
Mx − {wwMx

}+ {xwMx
} that violates (C2). Thus, deg(z1) ≥ dd1−dn+2r+1.

Since dn − r + 1 ≥ r + 1 we have that z1 is not adjacent in G to some x ∈ NH(s) ∩D′.
If s is not adjacent to some v ∈ NH(z1), then we may exchange the edges xs and z1v with
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the non-edges sv and xz1 to create a realization and matching Mx + {xz1} that violates
(C1). Thus, s must be adjacent in G to every vertex in NH(z1). However, this implies the
contradiction

degG(s) > dn − r + deg(z1)− r ≥ dn − r + dd1−dn+2r+1 − r ≥ d1.
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