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Optimal control for the Paneitz obstacle problem
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Abstract

In this paper, we study a natural optimal control problem associated to the Paneitz obstacle
problem on closed 4-dimensional Riemannian manifolds. We show the existence of an opti-
mal control which is an optimal state and induces also a conformal metric with prescribed
Q-curvature. We show also C°°-regularity of optimal controls and some compactness results
for the optimal controls. In the case of the 4-dimensional standard sphere, we characterize all

optimal controls.
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1 Introduction and statement of the results

One of the most important problem in conformal geometry is the problem of finding confor-
mal metrics with a prescribed curvature quantity. An example of curvature quantity which
has received a lot of attention in the last decades is the Branson’s @Q-curvature. It is a Rie-
mannian scalar invariant introduced by Branson-Oersted[2] (see also Branson[I]) for closed four-

dimensional Riemannian manifolds.

Given (M,g) a four-dimensional closed Riemannian manifold with Ricci tensor Ricy, scalar

curvature Ry, and Laplace-Beltrami operator Ay, the Q-curvature of (M, g) is defined by
1 2 .2
Qg = _E(AQRQ - Rg + 3| Ricy 7). (1)

Under the conformal change of metric g, = e?*g with u a smooth function on M, the Q-

curvature transforms in the following way
Pyu+2Q, = 2Qq, ¢, (2)

where P, is the Paneitz operator introduced by Paneitz[14] and is defined by the following

formula

. 2 .
Pyo = Agcp + divg <(§Rgg — 2chg)Vg<p> ) (3)
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where ¢ is any smooth function on M, div, is the divergence of with respect to g, and
V, denotes the covariant derivative with respect to g. When, one changes conformally ¢ as
before, namely by g, = e**¢g with u a smooth function on M, P, obeys the following simple
transformation law

P, =e *P, (4)

The equation (2)) and the formula (4]) are analogous to classical ones which hold on closed
Riemannian surfaces. Indeed, given a closed Riemannian surface (¥,g) and ¢, = €%%g a

conformal change of g with u a smooth function on X, it is well know that
Ay, = e A, ~Agu+ K, = K,,e*, (5)

where for a background metric g on ¥, Az and Kj are respectively the Laplace-Beltrami
operator and the Gauss curvature of (3, §). In addition to these, we have an analogy with the

classical Gauss-Bonnet formula

/ K,dV, = 27y(%),
¥

where x(X) is the Euler characteristic of ¥ and dVj is the volume form of X with respect to

g. In fact, we have the Chern-Gauss-Bonnet formula

%% 2
[ @+ Bebyav, —awon),

where W, denotes the Weyl tensor of (M,g) and x(M) is the Euler characteristic of M.
Hence, from the pointwise conformal invariance of |W,|2dVj, it follows that [, Q4dV, is also

conformally invariant and will be denoted by &4, namely

Kg 1= /M QqdVy. (6)

When (M, g) = (S*, gss) is the 4-dimensional standard sphere, we have

Kg = Kgy = 8. (7)

Of particular importance in Conformal Geometry is the following Kazdan-Warner type problem.
Given a smooth positive function K defined on a closed 4-dimensional Riemannian manifold
(M, g), under which conditions on K there exists a Riemannian metric conformal to ¢ with
Q-curvature equal to K . Thanks to (2)), the problem is equivalent to finding a smooth solution

of the fourth-order nonlinear partial differential equation
Pyu+2Q, =2Ke*™  in M. (8)

Equation (8]) is usually refereed to as the prescribed @Q-curvatre equation and has been studied
in the framework of Calculus of Variations, Critical Points Theory, Morse Theory and Dynamical
Systems, see [3], [5], [9], [10], [11], [12], [13], and the references therein.

In this paper, we investigate equation (&) in the context of Optimal Control Theory. Precisely,

we study the following optimal control problem for the Paneitz obstacle problem

Finding upn € H%(M) such that I(umin) = min I(u), 9)
uEH%(M)

where

I(u) = (u,u), — kglog </ K64Tg(u)dVg> , u€ Hé(M)
M



with
2
< U U >4= / AgulAgudVy + - / R,V yu - VgvdVy — / 2Ricy(Vgu, V4v)dVy
M 3 Jm M

Ty(u) = arg min (v, v)

g
vEHZ (M), v>u

and
HY(M) == {u € H*(M) : /M QudV, = 0}

with H?2(M) denoting the space of functions on M which are of class L?, together with their

first and second derivatives. Moreover, the symbol

ar min U,V
g ueH%(ML v < >g
denotes the unique solution to the minimization problem

min (v, v)

g’
UEH%(M), v>Uu

see Lemma B.Il We remark that for « smooth,

where (-, ) 2.5y denotes the L? scalar product.

In the subcritical case, namely 0 < k4 < 872, we prove the following result.

Theorem 1.1. Assuming that P, > 0, ker Py ¥ R, and 0 < k4 < 872, then there exists
Umin € C®(M) N HH(M)
such that

I(umin) = min I(v) and Umin = Ty(Umin)-
veHZ (M) g

Moreover, setting
1 1
Ue = Umnin — 1 log/ K ettmin 4 1 logky and g.= 62”09,
M

we have
Qq. = K.

To state our existence result in the critical case, i.e Ky = 872, we first set some notations. We
define Fr : M — R as follows

Ficla) =2 <H(a,a) " %bg(K(a))) L aeM (10)

where H is the regular part of the Green’s function G of Py(-) + 2Q, satisfying the normal-
ization [, Qq(x)G(-,x)dVy(x) = 0, see Section 2 Furthermore, we define

Crit(Fg) :={a € M : a is critical point of F}. (11)
Moreover, for a € M we set
]_—a(x) — 6(H(a,:v)++ilog(K(x))’ reM (12)

and define
Lk(a) = —=F*(a)Ly(F*)(a), (13)



where 1
Lg = —Ag + ERg

is the conformal Laplacian associated to g. We set also
Fi:={aeCrit(Fk): Lx(a)>0}. (14)
With this notation, our existence result in the critical case reads as follows:

Theorem 1.2. Assuming that P, > 0, ker P, ~ R, r, = 872, and Fi = Crit(Fg), then
there exists
Umin € C(M) N HH(M)

such that

I(umin) = min I(v) and  Umin = Ty(Umin)-
veH3 (M) g

Moreover, setting
o = tpin — ~log | Ketumin 4 1 d ge.=e*e
c — Umin 4 g v € 4 Og kg an gc =€ g,

we have
Qq. = K.

Remark 1.3.

o The relation Umin = Ty(Umin) in the above theorems is an additional information with
respect to the existence results based on Calculus of Variations, Critical Points Theory,

Morse Theory, and Dynamical Systems. It provides the inequality
<uminaumin>g S <u,u>g ) v Umin S u < H%(M) (15)

o We remark that the nonlocal character of e*To(®)

e appearing in the definition of J defined by

in the definition of I with respect to

J(u) =< u,u >4 —Kglog (/ Ke“dVg> , u€ H%(M)
M

used in the existence approaches of ([8l) via Calculus of Variations, Critical Points Theory,
Morse Theory, and Dynamical Systems. The trade of the local character to non-local is in
contrast with the traditional approach in the study of Differential Equations, but have the

advantage of providing automatically the variational inequality (I5]).

e The Q-curvature functional J is invariant by translation by constants, while the Q-
optimal control functional I is not. The functional J is weakly lower semicontinuous, but
the functional I is not. This makes it difficult to apply the Direct Methods in Calculus of
Variations to study (@).

o We expect formula ([{Z) to be useful to deal with the case kg = 872 by helping to track

down the loss of coercivity in the Variational Analysis of equation (8.

As a byproduct of our existence argument, we have the following regularity result for solutions

of the optimal control problem ().
Theorem 1.4. Assuming that P, > 0, ker P, ~ R, 0 < k, < 872, and u € Hé(M) s a

minimizer of I on H%(M), then
ue C(M).



An other consequence of our existence argument is the following compactness theorems for the

set of minimizers of I on H, % (M). We start with the subcritical case.

Theorem 1.5. Assuming that P; > 0, ker Py ~ R, and 0 < Ky < 872, then Ym € N there
exists Cp, >0 such that Yu € C°(M)N H%(M) minimizer of I on Hé(M), we have

l[ullex (ary < Crm.

For the critical case, setting
F ={a € Crit(Fx): Lk(a)# 0}, (16)
we have:

Theorem 1.6. Assuming that P, > 0, ker Py ~ R, k, = 872, and F3 = Crit(Fk), then
Vm € N there exists Cy, >0 such that Yu € C>*(M) N Hé(M) minimizer of I on Hé(M),

we have

l[ullemary < Cmm.

We prove also some results in the particular case of the 4-dimensional standard sphere, see
Theorem and Corollary in Section [6l

To prove Theorem [[LTF Theorem [[L6] we first use the variational characterization of the solution
of Paneitz obstacle problem Tj,(u) (see Lemma[B31) to show that the Paneitz obstacle solution
map T, is idempotent, i.e ng =Ty, see Proposition Next, using the idempotent property
of T,, we establish some monotonicity formulas, see Lemma [3.3] Lemma [4.I] and Lemma
Using the later monotonicity formulas, we show that any minimizer of J or any solution of the
optimal control problem (@) is a fixed point of T, see Corollary and Corollary @3l This
allows us to show that the @Q-curvature functional J and the @Q-optimal functional have the
same minimizers on H, % (M), see Proposition . With this at hand, Theorem [[. Tl follows from
the work of Chang-Yang[3] in the subcritical case, while Theorem follows from our work in
the critical case in [12]. Moreover, Theorem [[.4] follows from the regularity result of Uhlenbeck-
Viaclosky[15]. Furthermore, Theorem follows from the compactness result of Malchiodi[§]

and Druet-Robert-[6], while Theorem follows our compactness theorem in [12].

The structure of the paper is as follows. In Section [2, we collect some preliminaries and fix
some notations. In Section Bl we discuss the Paneitz obstacle problem and some monotonicity
formulas involving the @Q-curvature functional J. We also present some consequences of the
latter monotonicity formulas. In Section Ml we establish some monotonicity formulas for the
Q-optimal functional I and their consequences as well. In Section Bl we present the proof
of Theorem [T} Theorem Finally, in Section [6] we discuss the particular case of the 4-

dimensional standard sphere.

2 Notations and Preliminaries

In this brief section, we fix our notations and give some preliminaries. First of all, from now
until the end of the paper, (M,g) and K : M — R, are respectively the given underlying

closed four-dimensional Riemannian manifold and the smooth positive function to prescribe.

We recall the function J used in other approaches to study (8.
J(u) = (u,u), + 4/ QqudVy — Kylog (/ Ke4“dVg> . u€ H*(M). (17)
M M

4



Moreover, we recall the perturbed functional J; (0 <t < 1) which plays also an important role

in the study of minimizers of J.

Ji(u) = (u,u), + 4t/ QqudVy — tkglog </ Ke4“dVg> , ue H*M). (18)
M M
We observe that
J=J.

Moreover, we define

— 1

o= [ Quavy, we )

I{g M

so that
H3(M) ={ue H*(M): (u),=0}.

For a € M, we let G(a,-) be the unique solution of the following system
P,G(a,-) +2Q4(-) = 16720,(-) in M
fM Qq(2)G(a, x)dVy(x) = 0.

It is a well know fact that G(-,-) has a logarithmic singularity. In fact G(-,-) decomposes as

(19)

follows

G(a,z) = log <m> +H(a,z), z#a€ M. (20)

where H(-,-) is the regular par of G(-,-) and x is some smooth cut-off function, see for example
[16].

The decomposition of the Green’s function G and the arguments of the proof of the Moser-
Trudinger’s inequality of Chang-Yang[3] imply the following Moser-Trudinger type inequality.

Proposition 2.1. Assuming that P, > 0, ker P, = R, then there exists C = C(M,g) > 0
such that )

1 v, < C+ — Yu € HE(M).

og/Me y < +8772 (u,u),, Vue Hy(M)

When (M, g) = (S*, gss), we say v is a standard bubble if

P

gs4

v+6=6e" on S (21)
By the result of Chang-Yang [4], v satisfies
e*gsi = ©*(gs1), -

for some ¢ conformal transformation of S*. It is well-known that the standard bubbles are

related to the classical Moser-Trudinger-Onofri inequality. Indeed, we have:
Proposition 2.2. Assuming that (M,g) = (S*, gs1) and K =1, then
J(u) >0, Yue H*(M). (22)

Moreover, equality in (22)) holds if and only if

1 1
v::u—zlog/Me‘m—i-Zlog%

1s a standard bubble.

To end this section, we say w is a ()-normalized standard bubble, if

with v a standard bubble.



3 Obstacle problem for the Paneitz operator

In this section, we study the obstacle problem for the Paneitz operator. Indeed in analogy to
the classical obstacle problem for the Laplacian, given u € Hé(M ), we look for a solution to
the minimization problem

min V,0) . 24
o (24)

We start with the following lemma providing the existence and unicity of solution for the obstacle

problem for the Paneitz operator (24)).
Lemma 3.1. Assuming that Py, > 0 and ker Py ~ R, then Vu € Hé(M), there exists a unique
Ty(u) € HE(M) such that

T Tyw), = min  {v.0), (25)
vEHG , VU

PrROOF. Since P, is self-adjoint, P; > 0 and ker P, ~ R, then < -,- >, defines a scalar
product on H%(M ) inducing a norm equivalent to the standard H?(M)-norm on H%(M )
Hence, as in the classical obstacle problem for the Laplacian, the lemma follows from Direct
Methods in the Calculus of Variations. m

We study now some properties of the obstacle solution map T : H% (M) — Hé(M) We start

with the following algebraic one.

Proposition 3.2. Assuming that P, > 0, ker P, ~ R, then the obstacle solution map T,
HE{(M) — H (M) is idempotent, i.e
2
T, =1,

PrROOF. Let v € H%(M) such that v > T,(u). Then T,(u) > w implies v > u. Thus by

minimality, we obtain
<U, /U>g 2 <Tg(u)a Tg(u)>g :
Hence, since Ty(u) > Ty(u) then by unicity we have

Ty(Ty(w)) = Ty(u),

thereby ending the proof. m

Next, we discuss some monotonicity formulas. We start with the following one.

Lemma 3.3. Assuming that Py >0, ker Py~ R, 0 <t <1 and 0 < Ky < 872, then
Je(u) = J(Ty(u) = (u,u), — (Ty(w)), Ty(u)), 2 0, Vue HH(M).

PROOF. Using the definition of J; (see (I8)), we have

[y, Ketvdv, ) | (26)

Je(u) = Je(Ty(w)) = (u,u), — (Ty(u), Ty(u)), — trg <log [, KeTs@ay,
M g

Hence the result follows from K >0, T,(u) > u, and Lemma 3.1]. m

Lemma B3] imply the following rigidity result.
Corollary 3.4. Assuming that P, > 0, ker Py ~ R, 0 <t <1 and 0 < k4 < 872, then
Vu € Hé(M),

Ji(Ty(u)) < Ji(u) (27)

and
Ji(u) = J(Ty(u)) = u="Ty(u). (28)



PRrROOF. Using lemma [3.3] we have
Ji(u) = Ji(Ty(u)) = (u,u)y — (Ty(u), Ty(u)), = 0. (29)

Thus, 1) follows from @29). If Jy(u) = Ji(Ty(u)), then 29) implies
(u, u)y = (Ty(u), Ty(u)), -
Hence, since u > u, then the unicity part in Lemma [B.1] implies
u = Ty(u),

thereby ending the proof of the corollary. m

Corollary B4l implies that minimizers of J; on H é (M) are fixed points of the obstacle solution

map Ty. Indeed, we have:

Corollary 3.5. Assuming that Py >0, ker Py, ¥R, 0<t<1 and 0< Ky < 872, then
u € Hé(M) is a minimizer of J; = u = Ty(u).

PROOF. u € H%(M) is a minimizer of J; on Hé(M) implies

Ji(u) < Ji(Ty(w)). (30)
Thus combining (7)) and ([B0), we get

J(w) = J(T,(w). (31)
Hence, combining (28)) and (B1IJ), we obtain

u="Ty(u).

Remark 3.6. Under the assumption of Corollary we have Proposition [3.2 and Corollary
imply that we can assume without loss of generality that any minimizing sequence (u;);>1
of J¢ on Hé(M) satisfies

w = Ty(w), VI>1.

4 Optimal control for the Paneitz operator

In this section, we study a natural optimal control problem associated to the obstacle problem

for the Paneitz operator . Indeed, we look for solutions of

min  I(u),
uEH%(M)

where [ is the Q-optimal control functional defined by

I(u) = (u,u), — rglog ( /M Ke4Tg<“>dvg> ., uwe HE(M). (32)

Similarly to the @Q-curvature functional J, for 0 <t <1 we define I; by

Ii(u) := (u,u), — trglog </M K64T9(u)dVg> , UE Hé(M) (33)

We start with the following comparison result.



Lemma 4.1. Assuming that Py >0, ker Py ~R, 0 <t <1 and 0< Ky < 872, then
L<J; on H{HM) and JyoTy=IoT, on HjH(M).
PROOF. By definition of J; and I; (see (I8]) and (33))), we have

K eATo(w) >

Ji(u) — It(u) = trglog (%JW

Thus I(u) < Ji(u) follows from Ty(u) > u and K > 0. Moreover, we have

Jur K64T‘3(u))

ATy () — T(Ty(w)) = trglog ( [ KT
M

Hence, T7 =T, (see Lemma [32)) implies

We have the following monotonicity formula for the @-optimal control functional I;.

Lemma 4.2. Assuming that P, > 0, ker Py ~ R, 0 <t <1 and 0 < kg < 812, then
Vu € H%(M),
Ii(u) = Ii(Ty(u)) = (u,u), — (Ty(u), Ty(u)), = 0.

PROOF. By definition of I; (see (B3]), we have

M K64Tg(u)
i (u) = Iy(Ty(u)) = (u,u), — (Tg(u), Ty(u)), — trglog W :

Using T (u) = Ty(u) and the definition of T, (see Lemma B)), we get

() — T(Ty(w) = {u,u), — (Ty(u), Ty(w)), = 0.
|
Lemma 3.1l and Lemma imply that minimizers of I; are fixed points of T,.
Corollary 4.3. Assuming that Py >0, ker Py =R, 0<t<1 and 0<ky < 872, then

u € H%(M) is a minimizer of Iy = u=Ty(u).
PROOF. u € Hé(M) is a minimizer of I; implies
Ii(w) < L(T,(w).

Thus Lemma gives

Hence, by unicity we have

Remark 4.4. Under the assumptions of Corollary[{.3, we have that Proposition[3.2 and Corol-
lary[{-3 imply that for a minimizing sequence (u;);>1 of I on Hé(M), we can assume without
loss of generality that

w =Ty(w), VI>1.



We have the following proposition showing that I, and J; have the same minimizers on

Proposition 4.5. Assuming that Py >0, ker Py ~R, 0 <t <1 and 0<ry < 872, then
u € Hé(M) is a minimizer of Jy 1is equivalent to u € H%(M) is a minimizer of I.
PROOF. Suppose u € H, 22 (M) is a minimizer of J;. Then Corollary implies
u = Ty(u).

Thus using Lemma [£.1] we have

Ii(u) = Ji(u)

For v e H C??(M ), we have Lemma [ Lemma[£2] and u € H, C??(M ) is a minimizer of J; imply
Ii(v) > Ii(Ty(v)) = Je(Ty(v)) = Je(u) = L(w).

Hence u € H%(M) is a minimizer of I; on H%(M) Similarly, suppose u € Hé(M) is a

minimizer of I;. Then Corollary A3l implies
u = Ty(u).
Thus using again Lemma [4.J] we have
Ii(u) = Je(u).
For v € H% (M), we have Lemma [T, Lemma [3.3] and u € H% (M) is a minimizer of I; imply
Ji(v) = Ji(Ty(v)) = L(Ty(v)) = Ti(u) = Jp(u).

Hence u € H%(M) is a minimizer of J; on Hé(M) ]

5 Proof of Theorem [1.1] -Theorem

In this section, we present the proof of Theorem [[.T]-Theorem As already mentioned in the
introduction, the proofs are based on Proposition and some contributions of Chang-Yang][3],
Druet-Robert[6], Malchiodi[§], the author[12] and Uhlenbeck-Viaclovsky[15] in the the study of

the fourth-order nonlinear partial differential equation (8]).

PROOF of Theorem [L.T]
Since P, >0, ker P, =R, and 0 < k, < 872, then the works of Chang-Yang[3] and Uhlenbeck-
Viaclosvky[I5] imply the existence of ug € C°°(M) such that

J(up) = UEIE%?M) J(u).

Since J is translation invariant, then setting

Umin = UQ — (UO)Qa

we have

Umin € C®(M) N HH(M)

and

J(Umin) = min  J(u).
uEH%(M)

10



Using Proposition [£5], we get

I(Umin) = min  I(u)
uEH%(M)

Thus Corollary 3] implies
Recalling that

we have Kbt
Pjmin +2Q4 = QKQW.
Thus, setting
Ue = Umin — i log /M Kettmin 4 i log £,
we have
Pyue. +2Q4 = 2 etue

Hence, setting

_ 62uc

guc g,

we obtain

Qq., = K.

thereby ending the proof. m

PROOF of Theorem
Let ¢ € (0,1) with ¢, — 0. For [ > 1, we define

Jy=Ji—¢, and Ij:=1_

As in the proof of Theorem [, for [ > 1 the works of Chang-Yang[3] and Uhlenbeck-
Viaclosvky[I5] give the existence of

man

Ui € C*°(M) N HEH(M)

such that

Ti(Upin) = in A, (34)

Thus, using Proposition 5], we get

Iy (tyip) = min Tj(u). (35)
uGHé(M)
Clearly (34]) imply,
1 Ke4u£nzn
Pyl +2Qq(1 — &) = 2y (1 — ) — (36)
fM Ke Uinin
Hence, setting
1 1
ul =l — 1 log /M K e*min 1 log kg, (37)
we obtain
Pyl +2Q,(1 — &) = 2K (1 — &)™ (38)

Thus our bubbling rate formula in [12] and the assumption Fi = Crit(Fg) prevents the

sequence u!. from bubbling. Hence we have

ul, — u, smoothly, as [ — oc. (39)

11



Thus [B]) gives
Pyuc +2Q, = 2Ke*"e. (40)

Recalling ul . € H%(M ), we have (B7) and ([B9) imply

min

l

Uppin — Umin SMoothly. (41)

and 1 1
Ue = Umin — — log/ Kettmin 4 —log k.
1%y 4

Clearly (1)) and (35) imply

I(umin) = min  I(u).
uEH%(M)

Hence Corollary [£.3] and (40) imply
and
Qqg., = K.
| ]
PRroOF of Theorem [I.4]

It follows directly from Proposition [43] the translation invariant property of J and the regu-
larity result of Uhlenbeck-Viaclovsky[I5]. m

PRrROOF of Theorem
Let u € C>®(M) N Hé(M) be a minimizer of I on Hé(M) Then the translation invariance
property of J and Proposition EE5limply u is a minimizer of J on H?(M). Hence u satisfies

Ke4u
Pu+2Q, =2rkg——F—F.
g g ng K elu
Then, setting
1 1
v:u——log/ Ke4“+—10g/~ig, (42)
4 M 4

we get
Pyv+2Q4 = 2K et

Thus, since 0 < r, < 872, then the compactness result of Malchiodi[§] and Druet-Robert[6]
imply Vm € N, there exists C,, > 0 such that

[vllomary < Crme

Hence, u € H%(M) and (42]) give the existence of C,, > 0 such that
[ullemary < Cm,

thereby ending the proof. m

PROOF of Theorem
The proof is a small modification of the one of Theorem For the sake of completeness, we
repeat all the steps. Let u € C°(M) N Hé(M) be a minimizer of I on H%(M) Then as in

the proof of Theorem [[L5, wu is a minimizer of J on H?(M). Hence u satisfies

K e4u

Pgu—i— QQQ = QHQW.
M

19



Then, setting
1 1
v=u— —log/ Ke* + —log Ky,
4 M 4

we get
Py +20Q, = 2K e,

Thus since F9, = Crit(Fk), then our compactness theorem in [12] imply that Vm € N there

[e.9]

exists C’m > 0 such that
[[v]lemary < Cm.

Hence recalling that « € Hé(M ), we have there exists C, > 0 such that

l[ullemary < Chm.

6 Obstacle problem and Moser-Trudinger type inequality

In this section, we discuss some Moser-Trudinger type inequalities related to the Paneitz obstacle

problem. In particular, we specialize to the case of the 4-dimensional standard sphere (S*,gs4).

We have the following obstacle Moser-Trudinger type inequality.

Proposition 6.1. Assuming that Py > 0, ker P; = R, then there exists C = C(M,g) >0 such
that

u 1
log /M AWy, < C + 53 (wu),, Vue HE(M).
Proor. Clearly u < Ty(u) gives
log/ etdv, < log/ e4T9(“)dVg. (43)
M M

Since P; > 0 and ker P, = R, then the classical Moser-Trudinger inequality in Proposition 2.1
implies the existence of C = C(M,g) > 0 such that

1
log / AWy, < ¢ + o3 (To(u), Ty(w), (44)
M s
Using the definition of Ty, we get
(Tg(u), Ty(u) 4 < (u,u), (45)

Hence combining ([A3)-( 1), we get

1
1 o) gy, < — :
og/Me Vg_c+87r2 (u,u),

When (M,g) = (S*,gs4) and K = 1, we have the following sharp obstacle Moser-Trudinger
type inequality.

Theorem 6.2. Assuming that (M,g) = (S* gsa) and K =1, then
I>0 on Hj(M),
i.e

1
log /M AWy, < 53 (Pw,w), Ve HE(M). (46)
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Moreover equality in ([Q) holds if and only if

1 1
v::u—zlog/Me4u+Zlog%

is a standard bubble, see (21)) for its definition.

PROOF. Since (M,g) = (S* gs4) and K = 1, then by the classical Moser-Trudinger-Onofiri
ineqality in Proposition [2.2] we have

J>0 on H*M) (47)
and
: : 1 g Ly Ky
J(u) =0 is equivalent to v :=u— 1 log [ ™+ 1 log 3 isa standard bubble.  (48)
M

Using Lemma [£32] we get
I>10T, on Hj(M). (49)

Thus, using Lemma [£J] and (49]), we have
I>JoT, on H(M). (50)
So, combining (A7) and (B0), we get
I>0 on Hj(M). (51)
Hence, recalling the definition of I (see (82))) and (), we have (BIJ) is equivalent to
log /M MWy, < # (u,u),, Vue H%(M)
Suppose
vi=u— ilog/Me‘m—i—ilog%
is a standard bubble with u € H C??(M ). Then (48)) implies
J(u) =0 (52)
Thus ((52)), Lemma 1] and the first part (namely (5II)) imply
I(u) = 0.

Hence we have the equality case in (@) . Suppose we have the equality case in (6] with
u € H%(M) Then

I(u) = 0. (53)

Thus, using (5I)) and (B3] we get
I(u) = min I(v). (54)
vGHé(M)

Using (B4]) and Corollary [£3] we obtain

u="Ty(u). (55)
So Lemma [A.1], (53)) and (B5) imply

J(u) = 0. (56)

Hence using (%) and (56), we have v:=u— 1log [,,€* + Llog%? is a standard bubble. m

Theorem implies the following corollary stating that -normalized standard bubbles (see
(23]) for their definitions) are fixed points of the obstacle solution map Tj.

14



Corollary 6.3. Assuming that (M,g) = (S* gs1) and w is a Q-normalized standard bubble
(see 23) for its definition), then

Ty(w) = w.

PROOF. Since w is a @-normalized standard bubble, then

w:=1v—(v)g

with v is a standard bubble. Thus, Lemma [T, Theorem [6.2], and the translation invariant
property of J imply

0<I(w) < J(w)=J(w)=0.

Using again Theorem [6.2] we obtain

vEHé(M)
Hence using Corollary 43l we get
g Yy g
w = Ty(w).
|
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