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WILLIAM BALDERRAMA

Abstract. We describe how power operations descend through homotopy limit spectral
sequences. We apply this to describe how norms appear in the C2-equivariant Adams
spectral sequence, to compute norms on π0 of the equivariant KU-local sphere, and to
compute power operations for the K(1)-local sphere. An appendix contains material on
equivariant Bousfield localizations which may be of independent interest.
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1. Introduction

Let G be a finite group. The best analogue of a commutative ring in the context of
G-equivariant stable homotopy theory is that of a G-E∞ ring, or G-equivariant commutative
ring spectrum in the sense of [HHR16]. If R is a G-E∞ ring, then not only is R equipped
with the usual ring operations of addition and multiplication, but also with multiplicative
norms

NG
KR→ R

for all subgroups K ⊂ G, reflecting a higher form of commutativity present on R. Here, NG
K

is the Hill–Hopkins–Ravenel norm [HHR16]; informally, NG
KR = R⊗G/K , with equivariance

intertwining the action of K on R and the action of G on G/K.
This additional structure is reflected in algebra. If R is a G-E∞ ring, then the collection

π0R = {πK0 R : K ⊂ G} carries the rich algebraic structure of a G-Tambara functor [Tam93]
[Bru07]. This means that, in addition to the linear structure of restrictions, transfers, and
products, one has multiplicative but generally nonadditive norm maps

NG
K : πK0 R→ πG0 R,

interacting with the linear structure in rich ways. More generally, norms exist outside degree
0 as maps

Pα : πKα R→ πGIndG
K
αR
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defined for all subgroups K ⊂ G and virtual orthogonal representations α ∈ RO(K). This rich
algebraic structure has seen extensive study over the past decade, e.g. [Str12, Nak12, Ull13a,
Hil17, BH18, AB18, HM19]. However, despite this wealth of theoretical work, relatively few
specific computations are available, outside certain well-behaved cases. One need not go all
the way to equivariant homotopy theory to see this: ordinary E∞ rings already carry power
operations, but relatively few computations are available, outside the most well behaved
examples of E∞ rings in positive characteristic and certain complex-oriented theories.

Consider the problem of computing just the groups π⋆R. The homotopy theorist’s tools
of choice for such computations are a wide array of spectral sequences, which arise whenever
one has a way of building R out of simpler pieces. In some cases, these simpler pieces may
even be simple enough that one can understand their norms. This leads to the question:
how can we take this information and descend it through the spectral sequence?

Norms in spectral sequences have been considered previously, such as in the context of the
slice spectral sequence in [Ull13b, Section I.5] and [HHR17, Section 4]. Our own interest is
in situations that are orthogonal to this; in short, in spectral sequences where Euler classes
are detected on the 0-line. Moreover, we care not just about norms of G-E∞ spectra, but
also other operations of a similar nature, such as power operations for ordinary E∞ rings
[BMMS86] and power operations in the global equivariant context [Sch18, Sta23].

This paper describes how such operations may be computed in homotopy limit spectral
sequences (HLSSs), such as generalized Adams spectral sequences and homotopy fixed point
spectral sequences. We then give applications which demonstrate how this plays out in
practice. In fact these applications, described below in Subsection 1.1, might be considered
the core of the paper, although it is the tools used which seem more widely applicable. Let
us describe these in the context of equivariant norms as above.

Let R : J→ CommG be a diagram of G-E∞ ring spectra. From the underlying diagram of
G-spectra, one may produce for all K ⊂ G and α ∈ RO(K) an HLSS which we shall index as

KEs+α,t+α
2 = Ht−s(J;πKt+αR)⇒ πKs+α lim

j∈J
R(j).

Here, we have written Hn(J;−) for the nth right derived functor of limj∈J : Fun(J,Ab)→ Ab.
For example, when J = ∆, this is the usual spectral sequence of a cosimplicial object.

Write Zs,tr and Bs,tr for the r-cycles and r-boundaries of this spectral sequence, and write
aGK ∈ πG1−R[G/K]SG for the class represented by the inclusion of fixed points S1 → SR[G/K].

1.0.1. Theorem (Subsection 3.2).
(1) The composite aGKPα is additive. In particular, for t ≥ s ≥ 0 there are induced maps

Qα = (aGK)tPt+α : KEs+α,t+α
2 → GE

s+IndG
K α,t+IndG

K α
2 .

(2) Qα(KZs+α,t+α
r ) ⊂ GZ

s+IndG
K α,t+IndG

K α
r for t ≥ s ≥ 0.

(3) Qα(KBs+α,t+α
r ) ⊂ GB

s+IndG
K α,t+IndG

K α
r for t ≥ s ≥ −1.

(4) For x ∈ KEs+α,t+α
r with s ≥ 0, we have

dr(Qα(x)) =
{
Qα(dr(x)), t ≥ 1;
Qα(dr(x)) + c(dr(x), x), t = s = 0;

where c is related to the addition formula for Pα. For example, when K = e and
G = C2, we have c(dr(x), x) = tr(dr(x) · x) with x the involution applied to x.

(5) If x ∈ Eα,t+α2 is a permanent cycle detecting f ∈ πKα limj∈JR(j), then the permanent
cycle Qα(x) detects Pα(f) modulo classes in higher filtration. ◁
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Informally, Pα is modeled in filtration t by (aGK)tPt+α. This is immediately applicable to
computations, and we give applications below. As usual, the development was the other way
around: we found ourselves with various computations we realized we could carry out, and
questions we could answer, if only we had some theorem along these lines. It was clear from
the start that such a theorem should follow by a consideration of the space-level norm

Pα : MapSpK (Sα, resGK R)→ MapSpG(SIndG
K α, R), (1)

and in fact most of Theorem 1.0.1 does follow quickly from an inspection of Eq. (1), the
main observation being that πtPα = (aGK)tPt+α. The bulk of the work in the proof of
Theorem 1.0.1 stems from the additional care needed to handle what happens on the fringe;
for example, to describe d2(Pα(x)) for x ∈ H0(J;πKα R). Although the applications we give
below do not need this more refined information, we expect it will be useful in future work.

1.1. Applications. Let us now describe applications. We begin with an application to the
C2-equivariant Adams spectral sequence. Let

Acl = π∗(HF2 ⊗HF2), AC2 = πC2
⋆ (HFC2

2 ⊗HFC2
2 )

denote the classical and C2-equivariant dual Steenrod algebras, and write
Extcl = H∗(Acl), ExtC2 = H∗(AC2)

for their cohomology, serving as the E2-pages of the classical and C2-equivariant Adams
spectral sequences [HK01, Section 6] [GHIR20]. Algebraically, the latter is of the form

ExtC2
∼= ExtR⊕ExtNC .

Here, ExtR ⊂ ExtC2 is the cohomology of the R-motivic Steenrod algebra, the inclusion
of which is compatible with Adams differentials, and ExtNC is some other summand. Let
ρ = aC2

e ∈ π−σSC2 denote the Euler class of the sign representation. By [DI17, Theorem
4.1], there is an isomorphism ExtR[ρ−1] ∼= Extcl[ρ±1], with a suitable shift in degrees. In
fact, the proof gives rise to an explicit splitting

ExtC2
∼= Extcl[ρ]⊕ Extρ-torsion

R ⊕ExtNC , (2)
where the copy of Extcl is given as follows. Write
Acl = F2[ξ1, ξ2, . . .], AR = F2[τ, ρ][ξ1, ξ2, . . . , τ0, τ1, . . .]/(τ2

i + τξi+1 + ρ(τ0ξi+1 + τi+1)).
Then the map

P : Acl → AR ⊂ AC2 , P (ξi) = ξi (3)
is a map of Hopf algebroids, and the induced map P : Extcl → ExtC2 picks out the copy of
Extcl in Eq. (2).

The isomorphism ExtR[ρ−1] ∼= Extcl[ρ±1] extends to an isomorphism ExtC2 [ρ−1] ∼=
Extcl[ρ±1], and both of these isomorphisms have a direct geometric interpretation: the first
models real Betti realization, and the second models taking geometric fixed points. On the
other hand, the map P appears at first glance to be purely algebraic: for example, it does
not preserve permanent cycles. It turns out to have the following geometric significance.

1.1.1. Theorem (Section 4). Let x ∈ Extcl be a class in filtration f . If x survives to the
Er-page, then ρfP (x) ∈ ExtC2 survives to the Er-page, and

dr(ρfP (x)) = ρf+r−1P (dr(x)).
Moreover, if x is a permanent cycle detecting α ∈ πnS, then the permanent cycle ρfP (x) ∈
ExtC2 detects the symmetric square Sq(α) ∈ πn(1+σ)SC2 . □
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Theorem 1.1.1 is not surprising, given the general shape of ExtC2 . If x ∈ Extcl detects
α ∈ πnS, then as the geometric fixed points of Sq(α) are α, one finds that Sq(α) is detected
by some preimage of α under the localization ExtC2 → ExtC2 [ρ−1] ∼= Extcl[ρ±1]. If x is in
filtration f , then this indicates that Sq(α) is detected by ρfP (x) plus possible ρ-torsion
error terms. Theorem 1.1.1 says that in fact Sq(α) is detected by ρfP (x) on the nose, and
describes what happens when x is not a permanent cycle. The proof amounts to relating
Eq. (3) to the norms on π⋆(HFC2

2 ⊗HFC2
2 ), and then applying Theorem 1.0.1.

1.1.2. Example. We have ρP (h1) = ρh2, and thus Sq(ηcl) is detected by the same class
detecting ρνC2 , where ηcl is the nonequivariant complex Hopf fibration and νC2 is the C2-
equivariant quaternionic Hopf fibration. As Sq(ηcl) must also lift η2

cl, by consulting the tables
in [DI17] and using the fact that π⋆SC2 agrees with π∗,∗SR in this range, we find that the
only possibility is

Sq(ηcl) = ηclηC2 + ρνC2 .

This was originally computed by Araki–Iriye [AI82, Theorem 10.12], and its computation
via Theorem 1.1.1 can be considered overkill: as soon as one knows πC2

⋆ SC2 in these degrees,
Sq(ηcl) is determined by the fact that it lifts η2

cl and has geometric fixed points ηcl. ◁

1.1.3. Example. Consider ρP (h3) = ρh4. As h3 is a permanent cycle, it follows that ρh4 is
a permanent cycle, as was first shown by Belmont–Isaksen [BI22]. Moreover, ρh4 detects
Sq(σ), a fact closely related to the Mahowald invariant R(σ) = σ2. This was observed in
[BCQ21, Theorem 7.4.7], which was one of the inspirations for Theorem 1.1.1. This example
illustrates that the additional ρ’s in Theorem 1.1.1 are necessary: h4 = P (h3) itself supports
the differential d2(h4) = h0h

2
3, and ρh4 = ρP (h3) is not divisible by ρ on the E3-page. ◁

Our next applications are to power operations in the context of chromatic homotopy
theory, at chromatic height 1. We begin with the following. In recent work, Bonventre–
Guillou–Stapleton have shown that if G is an odd p-group, then there is an isomorphism

π0LKUG
SG ∼= RQ⊗ π0LKUS = RQ[ϵ]/(2ϵ, ϵ2)

of Green functors [BGS22, Theorem 1.1, Proposition 6.7]. Here, LKUG
SG is the localization

of the G-equivariant sphere spectrum with respect to G-equivariant K-theory, and RQ is
the Green functor whose value at K ⊂ G is the rational representation ring of K. They
also verify that KUG-localization preserves G-E∞ structures for G an odd p-group. This
gives π0LKUG

SG the structure of a Tambara functor, but they are only able to determine its
norms in the case where G = Cpn is cyclic [BGS22, Proposition 10.6]. Theorem 1.0.1 allows
us to directly compute norms in contexts like this, and in the end we find the following.

1.1.4. Theorem (Subsection 5.4). Fix an odd p-group G and subgroup K ⊂ G. Let
Q̃[G/K] = Coker(Q → Q[G/K]) be the reduced permutation representation of the G-set
G/K, and define

e(G/K) =
∑
n

(−1)nΛn(Q̃[G/K]) ∈ RQ(G).

Then the norm
NG
K : RQ(K)[ϵ]/(2ϵ, ϵ2)→ RQ(G)[ϵ]/(2ϵ, ϵ2)

arising from the G-E∞ structure of LKUG
SG satisfies

NG
K(ϵ) = e(G/K) · ϵ.

In particular, if K ⊂ G is normal, then NG
K(ϵ) ̸= 0 if and only if G/K is cyclic, in which case

NG
K(ϵ) = Q̃[G/N ] · ϵ where N ⊂ G is the unique subgroup of index p containing K. ◁
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The proof of Theorem 1.1.4 amounts to using Theorem 1.0.1 to show that NG
K(ϵ) is

detected in the KUG-based Adams spectral sequence by e(G/K) · ϵ. In fact this is true for
an arbitrary finite group G and subgroup K ⊂ G, not just for odd p-groups. For this and
other reasons, the correct context for our computation is not G-equivariant homotopy theory
for any particular group G, but rather global equivariant homotopy theory.

Let Glob be the category of global equivariant spectra with respect to the family of finite
groups, and let KU the global spectrum of equivariant K-theory, both as developed by
Schwede in [Sch18]. There are forgetful functors UG : Glob→ SpG satisfying UGKU = KUG;
as far as we are concerned, this can be treated as the definition of KUG. In order to ensure
compatibility between statements made in the global context and statements made in the
context of [BGS22], we prove the following.

1.1.5. Proposition (Proposition A.4.4). Let Globnil be the category of global equivariant
spectra with respect to the family of finite nilpotent groups

(1) Bousfield localization in Globnil with respect to KU is smashing, agrees with KU-
nilpotent completion, and preserves ultracommutative ring spectra;

(2) If G is nilpotent, then Bousfield localization in SpG with respect to KUG is smashing,
agrees with KUG-nilpotent completion, and preserves G-E∞ ring spectra;

(3) In particular, UGLKUS ≃ LKUG
UGSG for G nilpotent. ◁

The proof of Proposition 1.1.5 requires some general theory regarding equivariant Bousfield
localizations. This theory is interesting in its own right, and also applies to other examples
of interest in chromatic equivariant homotopy theory. For this reason, we have separated out
our discussion of equivariant Bousfield localizations into Appendix A, which may be read
independently of the rest of the paper.

Now let us return to considering power operations. Observe that Theorem 1.1.4 is a
genuinely integral result, mixing 2-primary homotopy with odd-primary equivariance. If
instead of working integrally we work K(1)-locally, then equivariant norms amount to
ordinary K(1)-local power operations (see Remark A.4.14). In [Hop14], Hopkins explains
how one may use K(1)-local splittings

LK(1)BΣp+ ≃ SK(1) ⊕ SK(1) (4)
to define the structure of a θ-ring on π0 of an arbitrary K(1)-local E∞ ring spectrum (see
Remark 6.4.4). At p = 2, the θ-ring structure of π0SK(1) = Z2[ϵ]/(2ϵ, ϵ2) has been clarified
only recently by Carmeli–Yuan [CY23, Theorem 5.4.8], who prove that θ(ϵ) = ϵ.

The story should not stop with π0. However, the picture quickly becomes less clear, as
there is no analogue of Eq. (4) for LK(1)(S2n)⊗p

hΣp
when n ̸= 0. One of the original motivations

for this paper was a desire to be able to compute with these more complicated examples,
where power operations cannot be described as some clean algebraic object, such as a θ-ring.
Using a suitable variant of Theorem 1.0.1, we carry out the following computation.

1.1.6. Theorem. Let SK(1) = LKU/(p)S. Then the pth total power operation

P : [Sn, SK(1)]→ [(Sn)⊗p
hΣp

, SK(1)]
is as given in Theorem 6.3.2 for p odd and Theorem 6.4.3 for p even, modulo a certain
indeterminacy at p = 2 when n ≡ 1 (mod 8) and n ̸= 1. ◁

1.2. Organization. This paper is organized as follows. In Section 2, we study the naturality
of the HLSS of a diagram of spectra with respect to its underlying diagram of pointed spaces.
This analysis is well-suited for any homotopy operations obtained from pointed functors
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between stable categories, and in Section 3 we make this explicit in the case of the m-fold
smash power functors Pm : SpG → SpΣm≀G.

Both sections culminate in Subsection 3.2, which puts everything together into a form
suitable for applications, including Theorem 1.0.1 and variants. The reader interested in the
applications may wish to start here.

We then give the promised applications. In Section 4, we prove Theorem 1.1.1; in Section 5,
we prove Theorem 1.1.4; and in Section 6, we carry out the computation of Theorem 1.1.6. In
Appendix A, we give some material on equivariant localizations, including Proposition 1.1.5.

1.3. Acknowledgements. It is a pleasure to thank Charles Rezk, Nick Kuhn, Christian
Carrick, Jeremy Hahn, and Tomer Schlank for enlightening discussions about power op-
erations, character theory, Bousfield localizations, chromatic convergence, and G-spectra.
Moreover, we thank Mike Hill for pointing out an error in our original proof of Theorem 1.1.1.

2. Unstable naturality of the homotopy limit spectral sequence

This section studies the naturality of stable HLSSs with respect to unstable maps. We
begin by recalling the construction of the HLSS in the form most convenient to us in
Subsection 2.1 and Subsection 2.2. In Subsection 2.3, we consider the analogous unstable
construction, and in Subsection 2.4 we compare the two. We state and prove the main
naturality theorem, Theorem 2.5.3, in Subsection 2.5.

In some sense, this material should be known to those who have worked with extended
homotopy spectral sequences in the sense of Bousfield–Kan [BK72, Ch. IX, §4]. The main
naturality theorem holds by construction, and most of our work in this section is to recall
enough of the construction that we may be sure of this. Moreover, we package this unstable
information entirely into the context of ordinary spectral sequences, thereby removing any
need to contend with the extended spectral sequences lurking in the background.

2.1. The spectral sequence of a tower. Let
F (t+ 1) F (t) F (t− 1)

· · · X(t+ 1) X(t) X(t− 1) · · ·
be a tower of spectra, where F (t) = Fib(X(t)→ X(t−1)). Then there is a spectral sequence

Es,t2 = πsF (t)⇒ πs lim
n→∞

X(n), ds,tr : Es,tr → Es−1,t+r−1
r . (5)

Write Zs,tr and Bs,tr for the r-cycles and r-boundaries of this spectral sequence, so that
0 = Bs,t1 ⊂ B

s,t
2 ⊂ · · · ⊂ Z

s,t
2 ⊂ Zs,t1 = πsF (t), Es,tr = Zs,tr−1/B

s,t
r−1.

We will find it convenient to interpret the differentials in this spectral sequence as relations,
just as in [Bou89], so we begin by recalling the construction in this form. Define

Ds,t
r = πsF (t)×πsX(t) Im (πsX(t+ r − 2)→ πsX(t)× πs−1F (t+ r − 1)) , (6)

where πsX(t+ r− 2)→ πs−1F (t+ r− 1) is obtained from the boundary map X(t+ r− 2)→
ΣF (t+ r − 1). Note that

Ds,t
r ⊂ πsF (t)× πs−1F (t+ r − 1) = Zs,t1 × Z

s−1,t+r−1
1 .

Recall the following basic fact about additive relations.
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2.1.1. Lemma. Let M and N be abelian groups and R ⊂M ×N a subgroup. Define
Z = Im(R→M) K = Ker(R→M) B = Im(K → N) C = Coker(B → N).

Then the relation Im(R→ Z × C) gives a well defined function Z → C. □

The spectral sequence of Eq. (5) is now given as follows.

2.1.2. Lemma (Definition). The following hold, where Zs,t1 = πsF (t) = Es,t2 as above.
(1) Zs,tr−1 = Im(Ds,t

r → Zs,t1 );
(2) Bs−1,t+r−1

r−1 = Im(Ker(Ds,t
r → Zs,t1 )→ Zs−1,t+r−1

1 );
(3) ds,tr : Zs,tr−1 → Zs−1,t+r−1

1 /Bs−1,t+r−1
r−1 is the function associated the relation Ds,t

r ;
(4) Zs,tr = Ker(Ds,t

r → Zs−1,t+r−1
1 );

(5) Bs−1,t+r−1
r = Im(Ds,t

r → Zs−1,t+r−1
1 ). □

2.2. The homotopy limit spectral sequence. Given a diagram M : J→ Ab of abelian
groups, let H(J;M) denote the limit of the composite

J Ab SpM H ,
and let

Hn(J;M) = Ω∞−nH(J;M), Hn(J;M) = π−nH(J;M) = π0H
n(J;M).

We may identify Hn(J;−) as the nth right derived functor of limj∈J : Fun(J,Ab) → Ab.
Given a diagram X : J→ Sp, each πtX is a diagram J→ Ab. The HLSS

Es,t2 = Ht−s(J;πtX)⇒ πs lim
j∈J

X(j)

is then the spectral sequence associated to the tower
Σt+1H(J;πt+1X) ΣtH(J;πtX) Σt−1H(J;πt−1X)

· · · limj∈J(X(j)≤t+1) limj∈J(X(j)≤t) limj∈J(X(j)≤t−1) · · ·

.

Note in particular
Ds,t
r ⊂ Ht−s(J;πtX)×Ht+r−s(J;πt+r−1X)

and
Es,tr = 0 for t < s.

2.3. Unstable homotopy limits. The preceding construction is not quite sufficient for our
purposes, as it lacks the naturality properties we require. If X,Y : J→ Sp are two diagrams
of spectra, then a natural transformation X → Y does induce a map of HLSSs in the usual
way; however, we are interested in the more exotic situation where we are given a natural
transformation Ω∞X → Ω∞Y of diagrams of spaces, not necessarily stable. Here, one may
suppose without loss of generality that X and Y are valued in connective spectra.

All of our applications described in Subsection 1.1 are of this form, requiring an space-level
analysis of unstable natural transformations. For example, Theorem 1.0.1 will follow from a
consideration of the natural norm map

Pα : Ω∞SpK(Sα, resGK R)→ Ω∞SpG(SIndG
K α, R)

of Eq. (1), where R is a diagram of G-E∞ rings. This map is pointed, but is essentially never
stable. To access naturality with respect to this sort of map, we need a construction of the
HLSS which depends on only the underlying diagram of spaces.
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Let T be a space. Then T has a Postnikov tower:
· · · → T≤t+1 → T≤t → T≤t−1 → · · · → T≤1 → T≤0 = π0T.

The layers of this tower are determined by suitable k-invariants. If T is simply connected
then these are of the form T≤t−1 → K(πtT, t+ 1), but the situation is more subtle in general:
if T is merely pointed and connected then the target must take into account the natural
action of π1T on πtT , and in the most general case one must instead consider a variant of
K(πtT, t+ 1) which regards “πtT” as a bundle of groups over the fundamental groupoid of
T .

We are in a certain reasonably pleasant middle ground where T need not be connected,
but for all points x ∈ T and t ≥ 1 the natural action of π1(T, x) on πt(T, x) is trivial.
Call such a space simple. Informally, a simple space is a disjoint union of connected
spaces for which the theory of Postnikov towers is at its simplest. For n,m ≥ 1, let
Bmπ0T

ΠnT =
∐
t∈π0T

K(πn(T, t),m). Then we have the following standard fact.

2.3.1. Lemma. If T is a simple space, then there are Cartesian squares
K(πt(T, x), t) T≤t π0T

{pt(x)} T≤t−1 Bt+1
π0T

ΠtT

pt ,

where the right square always exists naturally in T , and the left square exists naturally in T
and the choice of a point x ∈ T≤t, provided such a point exists. □

In other words, Bt+1
π0T

ΠtT , treated as a bundle of abelian groups over the discrete space
π0T , is the correct replacement for K(πtT, t + 1) in the theory of Postnikov towers for
non-connected simple spaces. It is, in particular, natural in T . This bit of maneuvering
would not be necessary if we restricted ourselves to considering only the case where T is
connected. In the context of the main theorem of this section, Theorem 2.5.3, it is needed
only to account for what happens with the path components living at the very fringe of the
spectral sequence.

Now say that T : J→ Gpd∞ is a diagram of simple spaces. Let
H0(J;π0T ) = lim

j∈J
π0T (j).

Observe that as T is simple, if x ∈ H0(J;π0T ) and t ≥ 1, then πt(T, x) is naturally a
J-shaped diagram of abelian groups. Let

Ht+1
π0T

(J; ΠtT ) = lim
j∈J

Bt+1
π0T (j)ΠtT (j) ≃

∐
x∈H0(J;π0T )

Ht+1(J;πt(T, x)).

2.3.2. Lemma. There are Cartesian squares
Ht(J;πt(T, x)) limj∈J(T (j)≤t) H0(J;π0T )

{pt(x)} limj∈J(T (j)≤t−1) Ht+1
π0T

(J; ΠtT )

pt ,

where the right square always exists naturally in T , and the left square exists naturally in T
and the choice of a point x ∈ limj∈J(T (j)≤t), provided such a point exists.

Proof. This follows by taking limits over Lemma 2.3.1. □
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Fix s ≥ 0, t ≥ 0, r ≥ 2 and x ∈ π0 limj∈J(T (j)≤t+r−2), and write the same for the image
of x in π0 limj∈J(T (j)≤n) for n ≤ t+ r − 2. Define

Ds,t
r,x = lim

(
πsp

−1
t (x)→ πs

(
lim
j∈J

(T (j)≤t), x
)
← Is,tr,x

)
, (7)

where

Is,tr,x = Im
(
πs

(
lim
j∈J

(T (j)≤t+r−2), x
)
→ πs

(
lim
j∈J

(T (j)≤t), x
)
× πs

(
Ht+r
π0T

(J; Πt+r−1X), x
))

.

When s = 0, we extend this notation to be defined having fixed just x ∈ π0 limj∈J(T (j)≤t−1).
We will only make use of the simplest case, where T is pointed and either s = t = 0 or x is
the basepoint, but make no such restriction for the moment. Observe that Ds,t

r,x ⊂ Js,tr,x where

Js,tr,x =
{
Ht−s(J;πt(T, x))×Ht+r−s(J;πt+r−1(T, x)), s ≥ 1;
Ht(J;πt(T, x))×

∐
y∈H0(J;π0T ) H

t+r(J;πt+r−1(T, y)), s = 0.
(8)

Let S : J→ Gpd∞ be another diagram of simple spaces, and f : T → S a map of diagrams.
This induces maps

f : lim
j∈J

(T (j)≤t)→ lim
j∈J

(S(j)≤t)

of spaces, and for x ∈ H0(J;π0T ) and t ≥ 1, a map
f : πt(T, x)→ πt(S, f(x))

of diagrams of abelian groups. Combined, these yield
f : Js,tr,x(T )→ Js,tr,f(x)(S).

2.3.3. Lemma. The map f : Js,tr,x(T )→ Js,tr,f(x)(S) satisfies f(Ds,t
r,x(T )) ⊂ Ds,t

r,f(x)(S).

Proof. This is clear from the construction. □

2.4. Comparing the stable and unstable constructions. Let X be a spectrum, and
consider the underlying simple space Ω∞X. For x ∈ π0X, write Ω∞

x X for the path component
of Ω∞X corresponding to x. As Ω∞X is a group, there are equivalences

γx : Ω∞
x X → Ω∞

0 X, γx(a) = a− x

2.4.1. Lemma. The above patch together into an equivalence
Ω∞X ≃ π0X × Ω∞

0 X,

compatible on Postnikov towers with equivalences
Bt+1
π0X

ΠtX ∼= π0X ×K(πtX, t+ 1)
for t ≥ 1. These equivalences are natural with respect to Ω∞X as a group object. □

Now say that X is a diagram of spectra, and consider the underlying diagram Ω∞X of
simple spaces. For s ≥ 0 and r ≥ 2, define

Js,tr =
{
Ht−s(J;πtX)×Ht+r−s(J;πt+r−1X), s ≥ 1
Ht(J;πtX)×H0(J;π0X)×Ht+r(J;πt+r−1X), s = 0.

(9)
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2.4.2. Lemma. Let Ds,t
r,x and Js,tr,x and be defined as in Eq. (7) and Eq. (8) for the diagram

Ω∞X. Then there are isomorphisms
Js,tr,x
∼= Js,tr ,

and

Ds,t
r,x =


Ds,t
r,0 s ≥ 1,

D0,t
r,0 s = 0 and we have a lift of x to π0 limj∈J(X≤t+r−2),
∅ otherwise,

as subsets of Js,tr . These identifications are natural in Ω∞X as a diagram of group objects.

Proof. As X is a diagram of spectra, Ω∞X is a diagram of group objects. The lemma then
follows by applying Lemma 2.4.1 to the constructions of the sets involved. □

There are obvious maps
q : Js,tr → Ht−s(J;πtX)×Ht+r−s(J;πt+r−1) = Zs,t1 × Z

s−1,t+r−1
1 , (10)

given by the identity for s ≥ 1 and the projection q(w, x, y) = (w, y) for s = 0.

2.4.3. Lemma. Recall Ds,t
r ⊂ Ht−s(J;πtX)×Ht+r−s(J;πt+r−1X) and Ds,t

r,0 ⊂ Js,tr,0
∼= Js,tr

from Eq. (6) and Eq. (7). We have
Ds,t
r = Im

(
q : Ds,t

r,0 → Ht−s(J;πtX)×Ht+r−s(J;πt+r−1X)
)

for s ≥ 0. Moreover,

q−1(Ds,t
r ) =


Ds,t
r,0, s ≥ 1;
{(x, 0, y) : (x, y) ∈ D0,t

r }, s = 0, t ≥ 1;
{(x, x, y) : (x, y) ∈ D0,0

r }, s = t = 0.

Proof. Immediate from the definitions. □

The following now relates the stable construction of Lemma 2.1.2 with the above unstable
constructions.

2.4.4. Lemma. The HLSS for X satisfies the following for s ≥ 0.
(1) Zs,tr−1 = Im(Ds,t

r,0 → Ht−s(J;πtX));
(2) Zs,tr = Im(Ds,t

r,0 ×Ht+r(J;πt+r−1X) {0} → Ht(J;πtX));
(3) Bs−1,t+r−1

r−1 = Im({0} ×Ht−s(J;πtX) D
s,t
r,0 → Ht+r−s(J;πt+r−1X));

(4) Bs−1,t+r−1
r = Im(Ds,t

r,0 → Ht+r−s(J;πt+r−1X));
(5) For x ∈ Es,tr and y ∈ Es−1,t+r−1

r , we have dr(x) = y if and only if x and y lift to
elements of Ht−s(J;πtX) and Ht+r−s(J;πt+r−1X) respectively with the property
that
(a) If s ≥ 1, then (x, y) ∈ Ds,t

r,0;
(b) If s = 0 and t ≥ 1, then (x, 0, y) ∈ D0,t

r,0;
(c) If s = t = 0, then (x, x, y) ∈ D0,0

r,0 .

Proof. These follow from Lemma 2.1.2 and Lemma 2.4.3. □
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2.5. Naturality with respect to pointed maps. Let X and Y be spectra, and let
F : Ω∞X → Ω∞Y

be a map of pointed spaces. For n ≥ 0, let
Q : πnX → πnY (11)

be the map induced by πn(−, 0). For x ∈ π0X and n ≥ 1, write
Qx = γQ(x) ◦ πn(−, x) ◦ γ−1

x : πnX ∼= πn(X,x)→ πn(Y,Q(x)) ∼= πnY. (12)
In particular, Q0 = Q.

2.5.1. Lemma. Define
Q− : π0X ×K(πtX, t+ 1)→ π0Y ×K(πtY, t+ 1), Q−(x, y) = (Q(x), Qx(y)).

Then the diagram

Bt+1
π0X

ΠtX π0X ×K(πtX, t+ 1)

Bt+1
π0Y

ΠtY π0Y ×K(πtY, t+ 1)

≃

F Q−

≃

commutes, where the left vertical map is that naturally induced from the map F : Ω∞X →
Ω∞Y of simple spaces.

Proof. This holds by construction. □

Now suppose that X,Y : J→ Sp are diagrams of spectra, and fix a map
F : Ω∞X → Ω∞Y

of diagrams of pointed spaces. As before, write
Q : π0X → π0Y

for the map on path components. Following Lemma 2.3.3 and discussion it succeeds, there
are maps

F : Js,tr,x(Ω∞X)→ Js,tr,Q(x)(Ω
∞Y ),

and these satisfy
F (Ds,t

r,x) ⊂ Ds,t
r,Q(x)

for s ≥ 0. On the other hand, because F is a map of diagrams of pointed simple spaces,
there are maps

Qx : πtX → πtY

of diagrams of groups for x ∈ H0(J;π0X) and t ≥ 1, induced by Eq. (12). We abbreviate Q0
to Q. These induce maps on H∗(J;−).

2.5.2. Lemma. Recall the sets Js,tr from Eq. (9). Define
Q+ : Js,tr (X)→ Js,tr (Y )

for s ≥ 0 by 
Q+(w, y) = (Q(w), Q(y)), s ≥ 1;
Q+(w, x, y) = (Q(w), Q(x), Q(y)), s = 0, t ≥ 1;
Q+(w, x, y) = (Q(w), Q(x), Qx(y)), s = t = 0.

Then Q+ = F , in the sense that the diagram
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Ds,t
r,0(Ω∞X) Ds,t

r,0(Ω∞Y )

Js,tr (X) Js,tr (Y )

F

⊂ ⊂

Q+

commutes, where the top horizontal map is as in Lemma 2.3.3.

Proof. By Lemma 2.3.3, this diagram commutes should we replace the bottom map with
F : Js,tr,0(X)→ Js,tr,0(Y ). By Lemma 2.4.2, Q+ and F have isomorphic domain and codomain,
and we must only check that Q+ = F under this isomorphism. For t ≥ 1, the map F is just
that induced by the pointed map F : Ω∞X → Ω∞Y on homotopy groups at the basepoint,
which is exactly as described by Q+. Now consider s = t = 0. Define
Q− : H0(J;π0X)×Hr+1(J;πrX)→ H0(J;π0Y )×Hr+1(J;πrY ), Q−(x, y) = (Q(x), Qx(y)).
Taking limits over Lemma 2.5.1, we find that the diagram

H0(J;π0X)×Hr+1(J;πrX) H0(J;π0Y )×Hr+1(J;πrY )

limj∈J Ω∞(X≤r−1) limj∈J Ω∞(Y≤r−1)

H0(J;π0X) H0(J;π0Y )

Q−

Q

commutes. By definition, F = Q×Q− as maps J0,0
r (X)→ J0,0

r (Y ), and this is exactly Q+
as described. □

We can now give the main naturality theorem.

2.5.3. Theorem. Given diagrams X,Y : J→ Sp of spectra and map F : Ω∞X → Ω∞Y of
diagrams of pointed spaces, the maps Q and Qx of Eq. (11) and Eq. (12) interact with the
HLSSs for limj∈JX(j) and limj∈J Y (j) as follows.

(1) Q(Zs,tr (X)) ⊂ Zs,tr (Y ) for s ≥ 0;
(2) Q(Bs,tr (X)) ⊂ Bs,tr (Y ) for s ≥ −1;
(3) If x ∈ Z0,0

r (X) then Qx(B−1,r−1
r−1 (X)) ⊂ B−1,r−1

r−1 (Y );
(4) For x ∈ Es,tr (X) with s ≥ 0, we have

dr(Q(x)) =
{
Q(dr(x)), t ≥ 1,
Qx(dr(x)), t = s = 0;

(5) For s ≥ 0, if x ∈ Es,t2 (X) is a permanent cycle detecting f ∈ πs limj∈JX(j), then
the permanent cycle Q(x) ∈ Es,t2 (Y ) detects Q(f) modulo classes in higher filtration.

Proof. (1)–(4) follow from Lemma 2.5.2, which describes the map Ds,t
r,0(Ω∞X)→ Ds,t

r,0(Ω∞Y )
induced by F , and Lemma 2.4.4, which explains how cycles, boundaries, and differentials are
naturally defined in terms of Ds,t

r,0. Let us just illustrate this with a proof of (3).
Let x ∈ Z0,0

r (X) and y ∈ B−1,r−1
r−1 (X). This implies (x, x, y) ∈ D0,0

r,0 (Ω∞X), and thus
(Q(x), Q(x), Qx(y)) ∈ D0,0

r,0 (Ω∞Y ). Taking y = 0 shows Q(x) ∈ Z0,0
r (Y ). As Q(x) ∈ Z0,0

r (Y )
and (Q(x), Q(x), Qx(y)) ∈ D0,0

r (Y ), it follows that Qx(y) ∈ B−1,r−1
r−1 (Y ) as claimed.

(5) holds as Q is compatible with the maps limj∈J Ω∞(X≤t)→ limj∈J Ω∞(Y≤t). □
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3. Looping power operations

If C is a stable category, then for any X,Y ∈ C one may form the mapping spectrum
C(X,Y ). This construction preserves limits in Y , allowing one to form HLSSs for diagrams
in arbitrary stable categories. If N : C→ D is a pointed functor between stable categories,
then for any X,Y ∈ C one obtains a map

Ω∞C(X,Y ) = MapC(X,Y )→ MapD(NX,NY ) = Ω∞D(NX,NY )
of pointed spaces. Theorem 2.5.3 describes how these maps appear in HLSSs, at least
once one understands how they behave on higher homotopy groups. This section describes
explicitly what happens in the main example of interest, eventually leading to Theorem 3.1.1.
In Subsection 3.2, we put everything together, yielding Theorem 1.0.1 and variations thereon.

3.1. Looping power operations. Fix a compact Lie group G, let SpG be the category of
G-spectra, and for m ≥ 0 write

Pm : SpG → SpΣm≀G

for the m-fold smash power functor. These are the functors denoted ∧m in [Boh14]. Note
that the group G will not play a real role in the following. Write ρm for the permutation
representation of Σm on Rm, and observe that

Pm(Sα) ≃ Sρm⊗α

for α ∈ RO(G). Thus, external power operations in this context take the form

Pmα : πGαX → πΣm≀G
ρm⊗αPmX

for X ∈ SpG. Given x ∈ παX and n ≥ 1, write
Pm,(n)
α,x : πGn+αX → πΣm≀G

n+ρm⊗αPmX
for the composite
πn+αX ∼= πn(MapSpG(Sα, X), x)→ πn MapSpΣm≀G(Sρm⊗α,PmX), Pmα (x)) ∼= πΣm≀G

n+ρm⊗αPmX,
the inner map being induced by functoriality of Pm. The goal of this subsection is to describe
the operations Pm,(n)

α,x explicitly. This description is given in Theorem 3.1.1, the proof of
which amounts to a collection of standard observations about the behavior of the functors
Pm, which we now make.

3.1.1. Euler classes. Write ρm for the reduced permutation representation of Σm. This may
be regarded as a representation of Σm ≀G by restriction along the projection Σm ≀G→ Σm.
Write am ∈ πΣm≀G

−ρm
SΣm≀G for the Euler class of ρm, i.e. the class represented by the inclusion

of poles S0 → Sρm , or what is equivalent, the inclusion of fixed points S1 → Sρm .

3.1.2. The addition formula. The functors Pm satisfy

Pm(A⊕B) ≃
⊕

i+j=m
IndΣm≀G

Σi,j ≀G
(
Pi(A) ⊠ Pj(B)

)
,

where Σi,j = Σi×Σj ⊂ Σi+j and Pi(A)⊠Pj(B) is Pi(A)⊗Pj(B) considered with its natural
Σi,j ≀G-action. This allows us to identify the operation

Pm(α,β) : πGαX × πGβ X = [Sα ⊕ Sβ , X]→ [Pm(Sα ⊕ Sβ),PmX]
as

Pm(α,β)(x, y) =
∑

i+j=m
trΣm≀G

Σi,j ≀G(P iα(x) · P jβ(y)).
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Here, the products appearing on the right are external products of signature

πΣi≀G
ρi⊗αPiX ⊗ π

Σj ≀G
ρj⊗βP

jX → π
Σi≀G×Σj ≀G
ρi⊗α+ρj⊗β

(
PiX ⊠ PjX

)
= π

Σi,j ≀G
ρi⊗α+ρj⊗β resΣm≀G

Σi,j ≀G PmX.

3.1.3. Colimit comparison maps. For a space F and object A, write F ·A = colimx∈F A for
the unbased tensor with F . The basepoint of Sn yields a natural retraction

A→ Sn ·A→ A,

and this gives rise to a splitting
Sn ·A ≃ ΣnA⊕A. (13)

Observe that there are natural colimit comparison maps
Sn · Pm(A)→ Pm(Sn ·A).

As Pm is compatible with the monoidal structure, these are determined by their effect when
A = S0, i.e. by the map

Sn ⊕ S0 ≃ Sn · Pm(S0)→ Pm(Sn · S0) ≃
⊕

i+j=m
IndΣm≀G

Σi,j ≀G S
ρi⊗n. (14)

This is the map given by the unreduced suspension spectrum of the diagonal
Sn → (Sn)×m

map of spaces. The splitting of the target in Eq. (14) as a direct sum amounts to the standard
splitting Σ(X1 × · · · ×Xm) ≃ Σ

∨
I⊂{1,...,m}

∧
i∈I Xi, valid for pointed spaces X1, . . . , Xm.

The restriction of Eq. (14) to S0 is just the inclusion into the i = 0 summand. On Sn, one
has maps

Sn → IndΣm≀G
Σi,j ≀G S

ρi⊗n,

which are seen to be adjoint to the inclusion of fixed points ani : Sn → Sρi⊗n.

3.1.4. Looping operations. Abbreviate MapG = MapSpG , and consider the diagram

MapG(Sn+α, X) MapΣm≀G(Pm(Sn · Sα)/PmSα,PmX) MapΣm≀G(ΣnPm(Sα),PmX)

MapG(Sn · Sα, X) MapΣm≀G(Pm(Sn · Sα),PmX) MapΣm≀G(Sn · Pm(Sα),PmX)

MapG(Sα, X) MapΣm≀G(Pm(Sα),PmX) MapΣm≀G(Pm(Sα),PmX)

q p

of spaces. Here, the bottom vertical maps are induced by the basepoint of Sn, and the
columns are fiber sequences. By definition, Pm,(n)

α,x is the induced map
π0q

−1(x)→ π0p
−1(Pmα (x)).

Here, under the splitting of Eq. (13), we may write the inner row as
MapG(Sn+α, X)×MapG(S,X) ≃ MapG(Sn+α ⊕ Sα, X)

→ MapΣm≀G(Pm(Sn+α ⊕ Sα),PmX)
→ MapΣm≀G(Sn+ρm⊗α ⊕ Sρm⊗α,PmX)
≃ MapΣm≀G(Sn+ρm⊗α,PmX)×MapΣm≀G(Sρm⊗α,PmX),

(15)
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and identify
q−1(x) = MapG(Sn+α, X)× {x}, p−1(Pmα (x)) = MapΣm≀G(Sn+ρm⊗α, X)× {Pmα (x)}.

Putting this together for all x, on path components the composite Eq. (15) yields the map

P
m,(n)
α,• : πGn+αX × πGαX → πΣm≀G

n+ρm⊗αPmX × π
Σm≀G
ρm⊗αPmX,

P
m,(n)
α,• (f, x) = (Pm,(n)

α,x (f), Pmα (x)).

3.1.5. Putting everything together.

3.1.1. Theorem. Fix X ∈ SpG, α ∈ RO(G), and x ∈ παX. Then the operation

Pm,(n)
α,x : πGn+αX → πΣm≀G

n+ρm⊗αPmX
is given by

Pm,(n)
α,x (f) =

∑
0<i≤m

trΣm≀G
Σi,m−i≀G

(
ani P

i
n+α(f) · Pm−i

α (x)
)

Proof. The first map in Eq. (15) is described in Subsubsection 3.1.2, and the second map
is described in Subsubsection 3.1.3. Tracing through these descriptions and identifying
P
m,(n)
α,x (f) as the first coordinate of Pm,(n)

α,• (f, x) yields the theorem. □

3.2. Power operations in the HLSS. Let R : J→ SpG be a diagram of G-spectra. For
each α ∈ RO(G), one may take mapping spectra levelwise to obtain a diagram SpG(Sα, R)
of spectra, with limj∈J SpG(Sα, R(j)) ≃ SpG(Sα, limj∈JR(j)). Thus there is an HLSS

Es+α,t+α
2 = Ht−s(J;πGt+αR)⇒ πGs+α lim

j∈J
R(j).

The composite PmR : J→ SpΣm≀G is likewise a diagram of Σm ≀G-spectra for each m, with
its own HLSS E∗,∗

∗,m. For each α ∈ RO(G) and m ≥ 1, there are maps
Pmα : MapSpG(Sα, R)→ MapSpΣm≀G(Sρm⊗α,PmR)

of diagrams of pointed spaces. The extent to which this induces a map E∗,∗
∗ → E∗,∗

∗,m of
spectral sequences is exactly as described in Theorem 2.5.3, once one understands how Pmα
behaves on higher homotopy groups, which is then as described in Theorem 3.1.1. Putting
everything together, we learn the following.

As before, write am for the class induced by the inclusion S1 → Sρm of fixed points, where
ρm is the permutation representation of Σm.

3.2.1. Theorem. With notation as above,
(1) The composite amPmα is additive. In particular, for s ≥ 0 there are maps

Qmα = atmP
m
t+α : Es+α,t+α

2 → Es+ρm⊗α,t+ρm⊗α
2,m .

(2) Qmα (Zs+α,t+α
r ) ⊂ Zs+ρm⊗α,t+ρm⊗α

r,m for s ≥ 0;
(3) Qmα (Bs+α,t+α

r ) ⊂ Bs+ρm⊗α,t+ρm⊗α
r,m for s ≥ −1;

(4) For x ∈ Es+α,t+α
r with s ≥ 0, we have

dr(Qmα (x)) =
{
Qmα (dr(x)), t ≥ 1;
Qmα (dr(x)) +

∑
0<i<m trΣm≀G

Σi,j ≀G
(
Qiα(dr(x)) ·Qm−i

α (x)
)
, s = t = 0.

(5) If x ∈ Eα,t+α2 is a permanent cycle detecting f ∈ πGα limj∈JR(j), then Qmα (x) detects
Pmα (f) ∈ πΣm≀G

ρm⊗α limj∈J PmR(j) modulo classes in higher filtration. □
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We now describe three specializations of Theorem 3.2.1. The first is Theorem 1.0.1. Let G
be a finite group and R a G-E∞ ring. Let K ⊂ G be a subgroup of index m and α ∈ RO(K),
and consider the norm

Pα : πKα R→ πGIndG
K
αR.

This factors as

πKα R πΣm≀K
ρm⊗αPmR πG

resΣm≀K
G

(ρm⊗α)
resΣm≀K

G PmR πGIndG
K
α
NG
KR πGIndG

K
α
R

Pm
α res ∼= NG

K .

Here, the restriction is along a suitable embedding G ⊂ Σm ≀ K, and the final map is
induced by the G-E∞ ring structure on R. The behavior of the first map with respect
to HLSSs is what was described in Theorem 3.2.1. The remaining maps are stable, and
entirely compatible with HLSSs. Thus we may regard Theorem 1.0.1 as a specialization of
Theorem 3.2.1.

For the second, let R be an ordinary E∞ ring. Then for n ∈ Z and m ≥ 1, the mth total
power operation

Pm : πnR = [Sn, R]→ [(Sn)⊗m
hΣm

, R]
is the map induced on path components by the composite

MapSp(Sn, R) MapSpΣm (Sρm⊗n,PmR)

MapSp((Sn)⊗m
hΣm

, R⊗m
hΣm

) MapSp((Sn)⊗m
hΣm

, R)

Pm

colim µ
.

The situation is analogous to the G-E∞ case.
For the third, let R be an ultracommutative ring spectrum in the sense of [Sch18, Definition

5.1.1]. Then R is equipped with strictly Σm-equivariant maps R⊗m → R within the category
of orthogonal spectra. Following [Sch18, Theorem 4.5.25], we may produce from R the
G-spectrum UGR by considering the orthogonal spectrum R as an orthogonal G-spectrum
with trivial G-action. The Σm-equivariant maps R⊗m → R may then be considered as maps
PmUGR→ UΣm≀GR, and this yields norms

Pmα : πGαR→ πΣm≀G
ρm⊗αR

for α ∈ RO(G). The situation is now analogous to the previous examples. See [Sch18,
Chapter 5] [Sta23] for more on power operations in the global equivariant context, as well as
[GM97] for earlier related material.

4. Norms in the C2-equivariant Adams spectral sequence

We now prove Theorem 1.1.1. As HFC2
2 is a C2-E∞ ring, so too is HFC2

2 ⊗HFC2
2 , and

thus there are norms
Acl

∗ = πe∗(HFC2
2 ⊗HFC2

2 )→ πC2
∗(1+σ)(HFC2

2 ⊗HFC2
2 ) = AC2

∗(1+σ). (16)

The main point of the proof is to understand something about these.
We must first recall some of the structure of AC2 ; we mostly follow the treatment in

[GHIR20, Section 2]. Let MC2 = π⋆HFC2
2 and MR = π⋆HFR

2 be the bigraded coefficient
rings of C2-equivariant and R-motivic mod 2 homology respectively. Then

MR = F2[τ, ρ], MC2 = MR ⊕NC, NC = F2{
γ

ρjτk
: j ≥ 0, k ≥ 1},

where these symbols have homological degrees
|τ | = 1− σ, |ρ| = −σ, |γ| = σ − 1.
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Moreover,
AR = MR[ξ1, ξ2, . . . , τ0, τ1, . . .]/(τ2

i + τξi+1 + ρ(τ0ξi+1 + τi+1)), AC2 = MC2 ⊗MR AR.

The right unit for AC2 restricts to define a AR-comodule structure on the summand
NC ⊂ MC2 . Conversely, the AR-comodule structure on NC makes MC2 into a comodule
algebra over AR, and this enables one to endow AC2 = MC2 ⊗MR AR with the structure of
a Hopf algebroid. In particular, this construction extends to show that if I ⊂ MC2 is an
AR-comodule ideal, then the quotient (MC2/I)⊗MR AR still carries the structure of a Hopf
algebroid.

The norms of Eq. (16) are not additive, but they are additive modulo transfers. Using the
C2-equivariant cofiber sequence C2+ → S0 ρ−→ Sσ, one finds that the transfer ideal equals
the annihilator of the Euler class ρ. Explicitly, the transfers on MC2 are given by

tr : F2 →MC2
n(1−σ), tr(1) =

{
0 n ≥ −1,

γ
τ−n−1 n ≤ −2,

as these are the only classes in their respective degrees killed by ρ. If we write Itr for the
transfer ideal in MC2 or AC2 , then

AC2/Itr ∼= (MC2/Itr)⊗MR AR,

and this retains the structure of a Hopf algebroid.

4.0.1. Lemma. The group of primitives in AC2/Itr is zero in degrees of the form |ξn| =
(2n − 1)(1 + σ) for n ≥ 2.

Proof. We may identify the primitives Prim(AC2/Itr) as an Ext group:
Prim(AC2/Itr) ∼= Ext1

AC2/Itr
(MC2/Itr,MC2/Itr) ∼= Ext1

AR(MR,MC2/Itr).

Abbreviate M = MC2/Itr. The groups Ext1
AR(MR,M) may be computed via a Koszul

complex of the form

ΛR[0]⊗MR M ΛR[1]⊗MR M ΛR[2]⊗MR M · · ·δ0 δ1 ,

where ΛR is the R-motivic lambda algebra; see [BCQ21, Remark 2.3.5]. It therefore suffices
to show that Ker(δ1) = 0 in degrees of the form |ξn| for n ≥ 2.

Note that ΛR[1]⊗MR M is generated by elements of the form λrx with r ≥ 0 and x ∈M ,
and that internal algebraic degrees we have

|λr| =
⌊r

2

⌋
+ 1 +

⌈r
2

⌉
σ.

Given an object x with RO(C2)-degree a+ bσ, write v(x) = a− b. Then

v(ξn) = 0, v(τ) = 2, v(ρ) = 1, v(γ) = −2, v(λr) =
{

1 r even,
0 r odd.

Thus if v(λrx) = v(ξn) = 0 then x = 1 and r is odd. The only such elements in Ker(δ1) are
those of the form λ2a−1 for a ≥ 1, and these are not in the degree of ξn for n ≥ 1. □

4.0.2. Proposition. The norm N : Acl
∗ → AC2

∗(1+σ)/Itr is a map of Hopf algebroids, given on
generators by N(ξn) = ξn. In other words, N is compatible with the map P of Eq. (3).
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Proof. The structure maps in the Hopf algebroid AC2 are obtained from various C2-E∞
maps between the spectra (HFC2

2 )⊗k for k ≥ 1. It follows by naturality that norms commute
with these structure maps. As AC2/Itr is a quotient Hopf algebroid of AC2 , the same is true
for N : Acl

∗ → AC2
∗(1+σ)/Itr. As this map is moreover additive, it is a map of Hopf algebroids.

We induct on n to show that N(ξn) = ξn for n ≥ 1.
First consider n = 1. Even before modding out by the transfer ideal, N(ξ1) ∈ AC2

1+σ must
be some class lifting ξ2

1 under the forgetful map AC2
1+σ → Acl

2 . The class ξ1 ∈ AC2
1+σ is the

only possibility.
Next let n ≥ 2 and suppose we have verified N(ξi) = ξi in AC2/Itr for all i < n. As N is

a map of Hopf algebroids, we find

∆(N(ξn)) = N(∆(ξn)) = N(
∑

0≤i≤n

ξ2i

n−i ⊗ ξi)

= N(ξn)⊗ 1 +
∑

0<i<n
N(ξn−i)2i

⊗N(ξi) + 1⊗N(ξn)

= N(ξn)⊗ 1 +
∑

0<i<n
ξ2i

n−i ⊗ ξi + 1⊗N(ξn),

where the last equality is an application of our inductive hypothesis. It follows that the
difference N(ξn)− ξn is primitive, and thus N(ξn) = ξn by Lemma 4.0.1. □

We have now all but given the following.

Proof of Theorem 1.1.1. Consider the HLSS associated to the canonical resolution
SC2 → lim

n∈∆
(HFC2

2 )⊗n+1.

This yields the C2-equivariant Adams spectral sequence upon taking fixed points, and the
classical Adams spectral sequence upon taking underlying spectra. This puts us squarely
in the context of Theorem 1.0.1, which tells us that Sq : π∗S → π∗(1+σ)SC2 is modeled in
filtration f by ρfN , with N the norm for (HFC2

2 )⊗f+1. When f = 0, the norm is simply
given by N(1) = 1. When f ≥ 1, as ρ annihilates the transfer ideal, Proposition 4.0.2 implies
ρN = ρP , and the theorem follows. □

5. Norms on π0 of the equivariant KU-local sphere

We now consider Theorem 1.1.4 and related matters.

5.1. Preliminaries. We begin by recalling some background on equivariant K-theory. Fix
for now a finite group G, and write KUG for the G-equivariant spectrum of G-equivariant
complex K-theory. Equivariant Bott periodicity takes the following form: If V ∈ RU(G) is
a virtual complex G-representation, then there is an invertible Bott class

βV ∈ KU0
G(SV ).

As usual there, are two natural choices of Bott classes, related by complex conjugation. With
notation from [Ati68], we shall take our Bott classes to be defined by βV = λV when V is a
G-representation. In particular, β = βC = 1− L ∈ KU0(S2) = π2KU , where L→ S2 is the
canonical line bundle. It is this choice that is well behaved with respect to power operations
in K-theory (see Lemma 5.1.1).
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If V is a complex G-representation, then the Euler class e(V ) ∈ RU(G) of V , in the sense
of [tD79, Chapter 7], is defined as the image of βV under the map

KU0
G(SV )→ KUG(S0) ∼= RU(G)

given by restriction along the inclusion of poles S0 → SV . We will discuss these further in
Subsection 5.3.

Now let Glob denote the homotopy theory of global equivariant spectra with respect to
the family of finite groups, formalized as in [Sch18], and let KU be the global spectrum of
equivariant complex K-theory constructed in [Sch18, Section 6.4]. This is a refinement of
the G-equivariant spectra KUG, in the sense that there are symmetric monoidal functors
UG : Glob→ SpG and KUG ≃ UGKU. For our purposes, we may take this as the definition
of the G-spectra KUG, to be assured that the G-E∞ structure on KUG is compatible with
the ultracommutative ring structure of KU; it is not obvious whether the G-E∞ structure
on KUG is unique, see for instance [BHI+22].

The ultracommutative ring structure on KU gives rise to maps PmKUG → KUΣm≀G, and
this in turn induces power operations of the following form: if X is a G-space, then X×m is
naturally a Σm ≀G-space, and there are power operations

Pm : KU0
G(X+)→ KU0

Σm≀G(X×m
+ ).

If X is a based G-space, then one may instead consider
Pm : KU0

G(X)→ KU0
Σm≀G(X∧m).

We round out this discussion by noting the following.

5.1.1. Lemma. If V is a virtual complex G-representation, then
Pm(βV ) = βρm⊗V ∈ KU0

Σm≀G(Sρm⊗V ).

Proof. This is essentially classical, so let us just sketch how the pieces fit together. By
multiplicativity, we may reduce to the case where V is a complex G-representation. The proof
of [Sch18, Theorems 6.3.32(iii)] extends to show that if X is a G-space and E ∈ KU0

G(X+) is
the class of a vector bundle, then PmE ∈ KU0

Σm≀G(X×n
+ ) is the class of the external tensor

power E⊠m. Put another way, the power operations arising from the ultracommutative ring
structure on KU agree with the classic power operations constructed by Atiyah in [Ati66].
At this point, with notation from [Ati68], one computes that Pm(βV ) = Pm(λV ) = λ⊗m

V =
λρm⊗V = βρm⊗V . This is where we have used our choice of Bott classes, as for example
P 2(λ∗

C) = −λ∗
ρ2⊗C, still with notation from [Ati68]. □

5.2. The main proposition. In the appendix (Proposition A.4.4) we verify Proposi-
tion 1.1.5. This implies, among other things, that the global ultracommutative ring spectrum
S∧

KU = limn∈∆ KU⊗n+1 refines the G-spectra LKUG
SG, at least for G a finite nilpotent

group. Now define
L = π0S

∧
KU

Then L is a global power functor for the family of finite groups in the sense of [Sch18, Chapter
5]. This means that for each finite group G we are given an abelian group L(G), together
with restrictions along arbitrary homomorphisms, transfers along injective homomorphisms,
external pairings L(G)⊗ L(K)→ L(G×K), and power operations

PmG : L(G)→ L(Σm ≀G),
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all subject to a number of compatibilities. When the group G is clear from context, we
shall write Pm = PmG . The assertion that if G is nilpotent then S∧

KU refines the G-spectrum
LKUG

SG says, among other things, that
L(G) = πG0 LKUG

SG.

Each π0LKUG
SG is a G-Tambara functor, and this is contained in the global power structure

of L. In short, if K ⊂ G is a subgroup of index m, then the norm NG
K : L(K) → L(G)

is recovered by postcomposing PmK : L(K) → L(Σm ≀K) with restriction along a suitable
embedding G→ Σm ≀K. See [Sch18, Remark 5.17] for a more detailed discussion.

We do not know the value of L(G) in general, even as a mere abelian group. When G is
an odd p-group, L(G) ∼= RQ(G)[ϵ]/(ϵ2, 2ϵ) [BGS22, Theorem 1.1, Proposition 6.7]. It is also
not hard to show directly that the same is true for G = C2. It seems plausible that L(G)
might be approachable via an analysis of the KUG-based Adams spectral sequence. We shall
not attempt to carry out any such analysis here, but for the interested reader point out that
the descent from KUG to KOG is fully described in [MNN17, Example 9.19], and it may be
fruitful to start with KOG rather than KUG.

As L is equipped with restrictions along arbitrary homomorphisms, the sequence e →
G→ e shows that, for every group G, the ring L(G) is an augmented L(e)-algebra. We may
identify L(e) explicitly as

L(e) = π0LKUS = Z[ϵ]/(2ϵ, ϵ2).
In particular, the class ϵ resides in L(G) for any group G, and we would like to understand
how power operations behave on ϵ. Observe that

PmG (ϵ) = Pm(reseG(ϵ)) = resΣm

Σm≀G(Pme (ϵ)).
Thus, to determine PmG (ϵ), it suffices to consider the case where G = e, at least once the
underlying global Mackey functor of L is known. Although we have not computed L(Σm),
we can say the following.

Write ρCm for the reduced complex permutation representation of Σm.

5.2.1. Proposition. The class Pm(ϵ) ∈ L(Σm) is detected in the KUΣm-based Adams
spectral sequence by e(ρCm) · ϵ.

Proof. Consider the KU-based Adams spectral sequence. This is the HLSS associated to
the canonical resolution

S∧
KU ≃ lim

n∈∆
KU⊗n+1,

and gives, for every finite group G and α ∈ RO(G), the KUG-based Adams spectral sequence
of signature

GEs+α,t+α
1 = πGt+α(KU⊗t−s+1

G )⇒ πGs+αLKUG
SG,

compatible with all restrictions and transfers.
When G = e, this is the nonequivariant KU -based Adams spectral sequence. The class

ϵ ∈ π0LKUS is detected by some class ϵ̃ ∈ eE0,2
2 in filtration 2. It follows from Theorem 3.2.1

that Pm(ϵ) is detected by Q(ϵ̃) ∈ ΣmE0,2
2 , where Q : eE0,2

2 → ΣmE0,2
2 is induced by

a2
mP

m
2 : πe2KU → πΣm

ρCm
KUΣm

→ πΣm
2 KUΣm

.

By Lemma 5.1.1, we may identify this as

Z{β} → RU(Σm){βρ
C
m} → RU(Σm){β},
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where the first map acts by β 7→ βρ
C
m and the second map acts by βρCm 7→ e(ρCm) · β. More

succinctly, the map Q is given by multiplication with e(ρCm), and the proposition follows. □

5.3. Euler classes. To translate from Proposition 5.2.1 to Theorem 1.1.4, we must recall
some information about Euler classes. Let G be a finite group. Given a complex G-
representation V , the Euler class e(V ) may be identified explicitly as

e(V ) =
∑
n

(−1)nΛn(V ) ∈ RU(G).

This follows from the definition of e(V ) and the construction of the Bott class βV , see for
instance [AT69, IV §1]. In particular, write Cl(G;C) for the ring of class functions on G, and
for V ∈ RU(G) write χ(V,−) ∈ Cl(G;C) for its character. For a complex G-representation
V and g ∈ G, write f(V, g)(t) ∈ C[t] for the characteristic polynomial of the linear map
g : V → V . Then we obtain the following identification of the character of an Euler class.

5.3.1. Lemma. Let V be a complex G-representation. Then χ(e(V ), g) = f(V, g)(1).

Proof. The claim is that the characteristic polynomial of g : V → V evaluated at 1 agrees
with the alternating sum of the traces of g : ΛnV → ΛnV . This is a standard fact from linear
algebra, see for instance [Bou48, §8, no. 11]. □

Given a finite G-set X, let
C̃[X] = Coker(C→ C[X])

be the associated reduced permutation representation, and set
e(X) = e(C̃[X]) ∈ RU(G).

We then have the following.

5.3.2. Proposition.
(1) Given a finite G-set X, we have e(X) ̸= 0 if and only if there exists some g ∈ G such

that the cyclic group ⟨g⟩ acts transitively on X.
(2) Let p be a prime, and suppose that K ⊂ G is a normal subgroup such that G/K

is cyclic of order pn. Let N ⊂ G be the unique subgroup of index p containing K.
Then e(G/K) = pn−1(pC− C[G/N ]).

(3) In particular, in the situation of (2), if p is odd then e(G/K) ≡ C̃[G/N ] (mod 2).

Proof. (1) Given g ∈ G, we may identify

f(C̃[X], g)(t) = f(C[X], g)(t)
1− t .

It follows from Lemma 5.3.1 that χ(C̃[X], g) ̸= 0 if and only if 1 is not a repeated root of
f(C[X], g)(t). The element g acts on C[X] by a permutation matrix, and an elementary
computation shows that this holds if and only if g acts transitively on X. The claim follows
as e(X) ̸= 0 if and only if χ(C̃[X], g) ̸= 0 for some g ∈ G.

(2) Write q : G→ G/K ∼= Cpn . Then e(G/K) = q∗e(Cpn), so we may reduce to the case
where K = e and G = Cpn . An elementary computation, following the ideas in (1), shows
that

χ(e(Cpn), g) =
{
pn if g generates Cpn ;
0 otherwise.
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A second elementary computation shows that pn−1(pC − C[Cpn/Cpn−1 ]) has the same
character, implying that e(Cpn) = pn−1(pC− C[Cpn/Cpn−1 ]) as claimed.

(3) If p is odd, then pn−1(pC−C[G/N ]) ≡ C−C[G/N ] ≡ C̃[G/N ] (mod 2) in RU(G). □

5.4. The proof of Theorem 1.1.4. Note the following immediate corollary of Proposi-
tion 5.2.1 and the interaction between the power operations Pm and the norms NG

K .

5.4.1. Corollary (of Proposition 5.2.1). Let K ⊂ G be a subgroup. Then NG
K(ϵ) ∈ L(G) is

detected in the KUG-based Adams spectral sequence by e(G/K) · ϵ. □

We are now in a position to prove Theorem 1.1.4. Let us again recall the main players.
Fix an odd prime p. In [BGS22, Theorem 1.1, Proposition 6.7], Bonventre–Guillou–Stapleton
prove that if G is a p-group, then there is an isomorphism

π0LKUG
SG ∼= RQ[ϵ]/(2ϵ, ϵ2)

of Green functors, where RQ is the Green functor whose value at a subgroup K ⊂ G is the
rational representation ring RQ(K). In our context, this says that if G is any p-group, then

L(G) ∼= RQ(G)[ϵ]/(2ϵ, ϵ2). (17)
This easily extends to an identification of the restriction of the global Green functor L to
the family of p-groups. We now give the following.

Proof of Theorem 1.1.4. Consider the norm
NG
K : RQ(K)[ϵ]/(2ϵ, ϵ2)→ RQ(G)[ϵ]/(2ϵ, ϵ2).

By Corollary 5.4.1, NG
K(ϵ) is detected in the KUG-based Adams spectral sequence by

e(G/K) · ϵ. As all elements of RQ(G)[ϵ]/(2ϵ, ϵ2) are detected either on the 0-line, as an
element of RQ(G), or on the 2-line, as the product of an element of RQ(G) with ϵ, we may
deduce that NG

K(ϵ) = e(G/K) · ϵ on the nose. The final claims regarding the case where
K ⊂ G is normal follow from Proposition 5.3.2. □

6. Power operations for the K(1)-local sphere

This section carries out the computation promised in Theorem 1.1.6.

6.1. Generalities on power operations. We begin by recalling some basic properties of
power operations, cf. [BMMS86, Chapter VIII]. Fix a prime p, and for a spectrum R define
πs,wb(R) = [Σs−pw(Sw)⊗p

hΣp
, R] = R(p−1)w−s Th(wρp ↓ BΣp) = πs−pw+wρpF (EΣp, i∗R).

These are all different names for the same object; the third term is the R-cohomology of the
Thom spectrum of a multiple of the reduced permutation representation ρp of Σp, and the
fourth term is a piece of the Σp-equivariant spectrum obtained as the Borel construction on
R with trivial action. There are maps

a : πs,wb(R)→ πs−(p−1)w,w−1b(R), i : πsR→ πs,0b(R),
resw : πs,wb(R)→ πsR, trw : πsR→ πs,wb(R),

given by multiplication with the Euler class of ρp, inflation, restriction, and transfer. We
shall write tr = trw and res = resw when w is clear from context, and shall use i to regard
π∗R as a subobject of π∗,0b(R).
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Now suppose that R is a p-local E∞ ring. Then the pair (π∗R, π∗,∗b(R)) is a good device
for understanding power operations on R. The pth total power operation for R takes the
form

P : πnR→ πpn,nb(R),
and the behavior of P may be encoded in structure present on π∗,∗b(R), as we now recall.

First, π∗,∗b(R) is a bigraded ring, and P is multiplicative, i.e. P (xy) = P (x)P (y) for
x ∈ πnR and y ∈ πmR. Second, define

h[w] = trw(1)
(p− 1)! ∈ π0,wR,

and abbreviate h = h[0]. These elements satisfy
a · h[w] = 0.

Let C(x, y) = p−1((x+ y)p − xp − yp). Then for x, y ∈ πnR, we have
P (x+ y) = P (x) + C(x, y) · h[n] + P (y).

In particular, for k ∈ Z we have

P (k) = k − k − kp

p
h. (18)

Third, we note that aP is additive, and if R arises as a limit of E∞ rings then P is modeled
in filtration f of the associated HLSS by afP , as described in Theorem 3.2.1.

6.2. Morava E-theory. Let E be a Morava E-theory with formal group G→ Spf E0. See
[Pet18] for a textbook reference. We wish to describe the general shape of π∗,∗b(E). Let

ω = π2E, R = π0,0b(E) = E0BΣp, L = π2(p−1),2b(E) = E0 Th(C⊗ ρp).
Then R is a commutative E0-algebra and L is an invertible R-module. Writing Ln = L⊗Rn,
we have the following picture:

R L−1

R/(h) π−(p−1),−1E

a2

a

∼=

a .

That the Euler class a annihilates h is standard, and that the resulting map R/(h) →
π−(p−1),−1b(E) is an isomorphism may be found in dual form in [Rez09, Proposition 7.2,
Remark 7.4]. Note in particular that postcomposing the product on R/(h) with a gives a
map

R/(h)⊗R/(h)→ R/(h)→ L−1. (19)

6.2.1. Lemma. There are isomorphisms
π2a(p−1)+2b,2ab(E) = ωb ⊗E0 L

a,

π(2a+1)(p−1)+2b,2a+1b(E) = ωb ⊗E0 L
a ⊗R R/(h),

all other degrees being zero. The ring structure is induced by the canonical isomorphisms
(ωb ⊗E0 L

a) ⊗R (ωb′ ⊗E0 L
a′) ∼= ωb+b

′ ⊗E0 L
a+a′ , applying the Euler class as in Eq. (19)

when needed.

Proof. The Morava E-theory of BΣp is concentrated in even degrees [HKR00, Theo-
rem E]. The lemma then combines the above discussion with the Thom isomorphisms
π(a+2a′)(p−1)+2(b+b′),(a+2a′)b(E) ∼= πa(p−1)+2b,ab(E)⊗R π2a′(p−1)+2b,2a′b(E). □
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6.2.2. Proposition. The Adams operation ψk for k ∈ Z×
p acts on La by multiplication with

(1− 1
p (1− ka(p−1))h).

Proof. First we consider the case a = 0, where L0 = R = E0BΣp. Here we are claiming
that ψk acts trivially on E0BΣp. By Strickland’s theorem [Str98], R/(h) is the E0-algebra
classifying rank p subgroups of G. The Adams operation ψk corresponds to the automorphism
[k] : G→ G defined over Spf E0. This fixes all subgroups of G, and so ψk acts trivially on
R/(h). As the transfer is split K(n)-locally [CM17], it follows that ψk acts trivially on R.

Now consider general a. As ψk acts on ωa by multiplication with ka, it suffices to show
that ψk acts on ωa ⊗ La by multiplication with ka(1− 1

p (1− ka(p−1))h). Observe that this
is exactly the element P (ka) seen in Eq. (18). Choose a generator u ∈ ω, so that we have
P (ua) ∈ ωa ⊗E0 L

a. As P (ua) ·P (u−a) = P (1) = 1, we find that P (ua) gives a trivialization
of the invertible R-module ωa ⊗E0 L

a. As ψk acts trivially on R, it thus suffices to show
that ψk(P (ua)) = P (ka)P (ua). Indeed, as ψk acts on E by E∞ automorphisms, we have

ψk(P (ua)) = P (ψk(ua)) = P (kaua) = P (ka)P (ua)
as needed. □

Now write KUp for the spectrum of p-adic complex K-theory. We consider complex
K-theory to be oriented as described in Subsection 5.1.

6.2.3. Proposition. Let τ−2 ∈ π0,2b(KUp) be the Thom class of ρCp , i.e. the Bott class of
ρCp − pC, and abbreviate d = a2βτ−2 ∈ π0,0b(KUp). Then h = p− d and

π∗,∗b(KUp) ∼= Zp[β±1, τ±2, a]/(ah).
The Adams operation ψk for k ∈ Z×

p acts by ring automorphisms, and is determined by

ψk(β) = kβ, ψk(τ2) = τ2(1 + 1
p (kp−1 − 1)d)

Power operations are determined by general properties and
P (β) = βpτ−2.

Proof. Restriction along Cp ⊂ Σp identifies KU0
pBΣp as the subring of KU0

pBCp fixed
under the action of Aut(Cp). It follows quickly that h is the image of the permutation
representation ρCp under the completion map R(Σp)→ KU0

pBΣp, and that

KU0
pBΣp ∼= Zp[h]/(h2 − ph).

On the other hand, d = a2βτ−2 is the Euler class of ρCp . By Proposition 5.3.2, both d and
p− h have the same image in KU0

pBCp, and thus d = p− h in KU0
pBΣp. It follows that

KU0
pBΣp ∼= Zp[d]/(dh).

The full identification of π∗,∗KUp then follows from the recipe of Lemma 6.2.1, where now we
have fixed trivializations βa(p−1)+bτ−2a ∈ ωb ⊗E0 L

a. The action of the Adams operations
was given in Proposition 6.2.2. The identity P (β) = βpτ−2 was given in Lemma 5.1.1.
In this Borel context, it may also be regarded as a consequence of the fact that the map
MUP → KU classifying our choice of periodic complex orientation is H∞. □
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6.3. Odd primes. Let p be an odd prime and fix a topological generator k ∈ Z×
p . Then

there is a fiber sequence

SK(1) KUp KUp
ψk−1

. (20)
We can use this to easily compute power operations for SK(1). For a spectrum X and class
x ∈ KUnpX, write [x] ∈ Sn+1

K(1)X for the image of x under the boundary map associated to
Eq. (20). We then have

π0SK(1) = Zp, π2n−1SK(1) = Zp/(kn − 1){[βn]},
all other groups being zero. So it suffices to compute P ([βn]) ∈ π(2n−1)p,2n−1b(SK(1)).

6.3.1. Lemma. We have
π(2n−1)p,2n−1b(SK(1)) = Zp/(kn − 1){[aβpnτ−2n]}.

Proof. By Proposition 6.2.3, we have
π∗,2n−1b(KUp) ∼= Zp[β±1]{aβpnτ−2n}, ψk(aβpnτ−2n) = knaβpnτ−2n.

The lemma then follows from Eq. (20). □

6.3.2. Theorem. The pth total power operation
P : π2n−1SK(1) → π(2n−1)p,2n−1b(SK(1))

is additive, and satisfies
P ([βn]) = [aβpnu−n].

Proof. The long exact sequence associated to the fibering of Eq. (20) can be interpreted as
the HFPSS

H∗(Z{ψk};KUp)⇒ π∗KU
hZ{ψk}
p

∼= π∗SK(1).

As P (βn) = βpnτ−2n, it follows from Theorem 3.2.1 that P (k[βn]) is detected in the
HFPSS by k[aβpnτ−2n] for k ∈ Z. As there is nothing in higher filtration, we must have
P (k[βn]) = k[aβpnτ−2n] on the nose. □

6.4. Even primes. Now consider p = 2. There is a fiber sequence

SK(1) KO2 KO2
ψ3−1

, (21)

and we may compute power operations for SK(1) following the same approach as for odd
primes, only by descent from KO2 rather than KUp. We begin by recalling the structure of
the former. Write ηC2 ∈ π1,1b(S) for the C2-equivariant Hopf map. This is characterized by

h = 2 + aηC2 .

Also write ηcl ∈ π1S ⊂ π1,0b(S) for the nonequivariant Hopf map.

6.4.1. Lemma. Write
π∗KO2 = Z2[β±4, 2β2, ηcl]/(2 · ηcl, 2β4 · ηcl, η

3
cl, (2β2)2 − 4β2).

Then
π∗,∗b(KO2) = Z2[β±4, τ±4, a, ηC2 , τ

2h, 2β2, β2τ2h, ηcl]/I,
where I is generated by a number of relations, including ρ · τ−2β2h = ηC2η

2
cl. The Adams

operation ψ3 fixes all torsion classes, and otherwise is determined by the map π∗,∗b(KO2)→
π∗,∗b(KU2), which sends to classes to classes of the same name, only where moreover ηcl 7→ 0
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and ηC2 7→ −aβτ−2. The norms P : πnKO2 → π2n,nb(KO2) are determined by general
properties and

P (β4) = β8τ−8, P (2β2) = (4 + aηC2)β4τ−4, P (ηcl) = ηclηC2 .

Proof. See for instance [Bal21] or [Bal22]; for the former note that our πs,wb(KO2) is its
πs,s−wb(KO) and ηC2 = −η0, and for the latter note πs,wb(KO2) = π(s−w)+wσKOC2 ⊗ Z2
and ηC2 = −ησ. □

One may compute the groups π∗,∗b(SK(1)) from this, using Eq. (21). This computation
was also carried out in [Bal21], but our situation is much simpler: the hard work there was to
pin down the ring structure on π∗,∗b(SK(1)), which we don’t need, and even for the additive
structure we need only the particular groups π2n,nSK(1). Because we need details of the
computation, it is easier to just proceed directly.

Write [x] for classes in SK(1)-cohomology detected in the boundary of Eq. (21). Define

ρn = [β4n] ∈ π8n−1SK(1), ξn = [2β4n+2] ∈ π8n+3SK(1), µn = β4nηcl ∈ π8n+1SK(1),

ρn,n = [τ−4nβ4n] ∈ π8n−1,4nb(SK(1)), µn,n = τ−4nµn ∈ π8n+1,4nb(SK(1)),
These names are chosen to be compatible with [Bal21]; note, however, that πs,w here is
πs,s−w there, and that we write a instead of ω0 below. A choice must be made here: in
writing µn = β4nηcl, we mean that µn is some class detected by β4nηcl ∈ π8n+1KO2, and
there are two such classes, and likewise for µn,n. This choice is relevant to the indeterminacy
in Theorem 6.4.3 and carefully handled in [Bal21], but for our purposes it does not matter
what choice is made.

6.4.2. Lemma. The nonzero homotopy groups of SK(1) are π0SK(1) = Z2{1}⊕Z/(2){ηclρ0},
and otherwise

πiSK(1) =



Z2/(34a − 1){ρn} i = 8n− 7;
Z/(2){ηclρn} i = 8n;
Z/(2){η2

clρn, µn} i = 8n+ 1;
Z/(2){ηclµn} i = 8n+ 2;
Z/(8){ξn} i = 8n+ 3.

Moreover, we have

π2i,ib(SK(1)) =


Z2/(32n − 1){aρn,n} i = 4n− 1;
Z/(2){ηclρn,n, aηclηC2ρn,n} i = 4n;
Z/(2){η2

clηC2ρn,n, µn,nηC2} i = 4n+ 1;
0 i = 4n+ 2;

only with an additional summand of the form Z2{1, aηC2} in π0,0b(SK(1)).

Proof. These follow by a direct computation from Eq. (21), only one must verify that
π8n+1SK(1) ̸= Z/(4) and π8n+2,4n+1SK(1) ≠ Z/(4), for which we cite [Rav84, Theorem 8.15]
and [Bal21, Lemma 3.3.3]. □

6.4.3. Theorem. The symmetric squares
P : πnSK(1) → π2n,nSK(1)
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are additive for n ̸= 0, and satisfy
P (ρn) = aρ2n,2n

P (ηclρn) = aηclηC2ρ2n,2n

P (η2
clρn) = 0
P (µn) ∈ µ2n,2nηC2 + Z/(2){η2

clηC2ρ2n,2n}
P (ηclµn) = 0
P (ξn) = 2aρ2n+1,2n+1.

Moreover,
P (ηcl) = ηclηC2(1 + ηclρ0).

Proof. Both P (ρn) and P (ξn) may be computed along the same lines as the odd-primary
case. Combining Theorem 3.2.1 and Lemma 6.4.1, we find

P (ρn) = P ([β4n]) = [aβ8nτ−8n] = aρ2n,2n

and
P (ξn) = P ([2β4n+2]) = [a(2 + h)β8n+4τ−8n−4] = 2a[β8n+4τ−8n−4] = 2aρ2n+1,2n+1.

That P (µn) ∈ µ2n,2nηC2 + Z/(2){η2
clηC2ρ2n,2n} follows by comparison with KO2. Despite

the indeterminacy, this is sufficient to deduce the remaining the remaining values of P by
multiplicativity. We have been unable to resolve this indeterminacy in general, but can
describe what happens in the case n = 0.

There is a Hurewicz map π∗,∗SC2 → π∗,∗SK(1) from the C2-equivariant stable stems,
compatible with all power operations, sending a C2-equivariant map f : Sa+bσ → S0 to the
induced map (Sa+bσ)hC2 ≃ Σa−b(Sb)⊗2

hΣ2
→ S → SK(1). In π∗,∗SC2 , we have

P (ηcl) = ηclηC2 + aνC2 ,

where νC2 ∈ π3,2SC2 is the C2-equivariant quaternionic Hopf fibration (Example 1.1.2; note
a = ρ). As SK(1) detects the nonequivariant quaternionic Hopf fibration, b(SK(1)) must
detect νC2 . We may compute from Eq. (21) and Lemma 6.4.1 that

π3,2b(SK(1)) = Z/(8){[τ−2β2h]},
and so the only possibility is that νC2 is detected by some odd multiple of [τ−2β2h]. As

a · [τ−2β2h] = [a · τ−2β2h] = [η2
clηC2 ] = η2

clηC2ρ0,

the identity P (ηcl) = ηclηC2(1 + ηclρ0) follows. □

6.4.4. Remark. If R is any K(1)-local E∞ ring, then there is a natural isomorphism
π0,0b(R) = π0R{1, h}

Following [Hop14], if we define θ : π0R→ π0R by declaring −θ(x) to be the coefficient of h
in P (x), then θ makes π0R into a θ-ring. This applies at any prime p, but let us continue
focusing on p = 2. Write ϵ = ηclρ0, so that π0SK(1) = Z2[ϵ]/(2ϵ, ϵ2). As aηC2 ≡ −h (mod 2),
it follows from Theorem 6.4.3 that the action of θ on π0SK(1) satisfies

θ(ϵ) = ϵ.

In fact this already follows from Proposition 5.2.1. This yields an alternate proof of [CY23,
Theorem 5.4.8], using completely different methods. ◁
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Appendix A. Equivariant Bousfield localizations

This appendix, which may be read independently of the rest of the paper, gives some
general material on Bousfield localizatons in equivariant stable homotopy theory. See
especially [Hil19, Car22] for prior work on the topic; our approach differs in that we focus
primarily on the role of nilpotent completion. Insofar as the body of the paper is concerned,
this appendix contains the proof of Proposition 1.1.5 (in Proposition A.4.4).

A.1. Bousfield localizations. We begin by reviewing some of the general theory of Bousfield
localizations. Nothing in this subsection is new, we just collect everything we need in one
place and in the form most convenient for us. In particular, most of this material is either
routine or may be found in some form in [Bou79, HPS97, Mat15, Mat18]. Fix for this
subsection a presentable symmetric monoidal stable ∞-category M with unit denoted S,
together with an object R ∈M.

A.1.1. Definition. Fix X ∈M.
(1) X is R-acyclic if R⊗X ≃ 0;
(2) X is R-local if M(C,X) ≃ 0 for any R-acyclic C;
(3) X → Y is an R-equivalence of R⊗X → R⊗ Y is an equivalence;
(4) The R-localization of X is an R-local object LRX ∈ M equipped with an R-

equivalence X → LRX.
(5) The Bousfield class of R shall be the class ⟨R⟩ = {X ∈M : R⊗X} of R-acyclics. ◁

Observe that R-localization depends only on the Bousfield class of R, and that ⟨R⟩ ⊂ ⟨T ⟩
when there is a natural transformation LR → LT . The functor of R-localization is lax
symmetric monoidal, and in particular there is a natural map X ⊗ LRS → LRX for each
X ∈M.

A.1.2. Definition. R-localization is smashing if X ⊗ LRS ≃ LRX for all X ∈M. ◁

Suppose from now on that R carries a unital product; we shall just say that R is a
ring. Let R = Fib(S → R), let A(R) = {R⊗s} be the R-Adams tower [Bou79, §5], and let
C(R) = {Cof(R⊗s → S)} be the associated tower under S.

A.1.3. Definition.
(1) The R-nilpotent completion of X ∈M is X∧

R = lim(X ⊗ C(R)).
(2) Say that X is R-convergent if the natural map LRX → X∧

R is an equivalence, or
equivalently if the natural map X → X∧

R is an R-equivalence. ◁

A.1.4. Lemma. Let N be another presentably symmetric monoidal stable ∞-category, and
let F : M→ N be a symmetric monoidal, conservative, and limit-preserving functor. Then

(1) F (X∧
R) ≃ F (X)∧

F (R) for X ∈M.
(2) If F (X) is F (R)-convergent, then X is R-convergent, and F (LRX) ≃ LF (R)F (X).
(3) If F (R)-localization is smashing and F (X) is F (R)-convergent for all X ∈M, then

R-localization is smashing.

Proof. (1) As F is limit-preserving, it is exact. As F is symmetric monoidal and exact, F (X⊗
C(R)) ≃ F (X) ⊗ C(F (R)). Thus F (X∧

R) = F (limX ⊗ C(R)) ≃ lim (F (X)⊗ C(F (R))) =
F (X)∧

F (R).
(2) Suppose that F (X) is F (R)-convergent. We must show that R ⊗ X → R ⊗ X∧

R is
an equivalence. As F is conservative, it suffices to show that F (R ⊗X) → F (R ⊗X∧

R) is
an equivalence. As F is symmetric monoidal, and by (1), this map is F (R) ⊗ F (X) →
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F (R) ⊗ F (X)∧
F (R), which is an equivalence as F (X) is F (R)-convergent. Thus X is R-

convergent, and F (LRX) ≃ F (X∧
R) ≃ F (X)∧

F (R) ≃ LF (R)F (X).
(3) Suppose that F (R)-localization is smashing and that F (X) is F (R)-convergent for

all X ∈M. We must show that X ⊗ LRS → LRX is an equivalence. As F is conservative,
it suffices to show that F (X ⊗ LRS) → F (LRX) is an equivalence. As F is symmetric
monoidal, and by (2), this is F (X)⊗ LF (R)F (S)→ LF (R)F (X), which is an equivalence as
F (R)-localization is smashing. □

Write Thick⊗(R) for the thick ⊗-ideal of M generated by R. Following [Mat15, Section
3], let Tow(M) denote the category of towers {Xn} = {· · · → X1 → X0} in M, let Townil(M)
be the category of towers {Xn} for which there exists some r > 0 such that all Xn → Xn−r
are null, and let Towfast(M) be the category of towers {Xn} for which the associated tower
Fib ({limXn} → {Xn}) is in Townil(M), where {limXn} is the constant tower on lim{Xn}.

A.1.5. Definition. Say that R is locally descendable if C(R) ∈ Towfast(M). ◁

Given towers X = {Xn} and Y = {Yn}, write X ∼ Y if {Xn}n≥s ≃ {Yn}n≥s for some
s. Observe that X ∈ Towfast(M) if and only if X ∼ C ⊕ N with C a constant tower and
N ∈ Townil(M), and in this case C ≃ limX.

A.1.6. Proposition. Consider the following conditions:
(1) R is locally descendable, i.e. C(R) ∈ Towfast(M);
(2) LRA(R) ∈ Townil(M);
(3) The map LRS → Cs(R) admits a retraction for some s;
(4) R-localization is smashing and agrees with R-nilpotent completion;
(5) LRS ∈ Thick⊗(R);
(6) For all X ∈ M, the spectral sequence associated to the tower M(S,X ⊗ C(R)) of

spectra collapses at a finite page with a horizontal vanishing line independent of X;
(7) For all F ∈M compact, the spectral sequence associated to the tower M(F,C(R)) of

spectra collapses at a finite page with a horizontal vanishing line independent of F .
Always (1)⇔(2)⇔(3)⇒(4,5,6,7). If R-localization is smashing, then (5)⇔(1,2,3). If M is a
Brown category [HPS97, Definition 4.1.4], then (7)⇔(1,2,3). If all compact objects in M are
dualizable, then (6)⇒(7).

Proof. Abbreviate A = A(R) and C = C(R) for this proof.
(2)⇔(3). As R-localization is exact, there is a fiber sequence of towers LRA→ LRS →

LRC, these localizations taken levelwise. As Cs ∈ Thick⊗(R) for each s, we have LRC ≃ C.
Thus there is a fiber sequence LRA → LRS → C. Now, if LRA ∈ Townil(M), then
LRR

⊗s → LRS is null for some s, and thus LRS → Cs admits a retraction. Conversely,
if LRS → Cs admits a retraction, then LRR

⊗s → LRS is null. Any s-fold composite
LRR

⊗n+s → LRR
⊗n in LRA is obtained by applying LR to R⊗n ⊗ LRR⊗s → R⊗n ⊗ LRS,

and must therefore be null, proving LRA ∈ Townil(M).
(2,3)⇒(1). If LRS → Cs admits a retraction, then C ∼ LRS⊕LRA. As LRA ∈ Townil(M),

it follows that C ∈ Towfast(M).
(1)⇒(4). Suppose that C ∈ Towfast(M). Then C ∼ S∧

R ⊕ K with K ∈ Townil(M). It
follows that if X ∈ M, then X∧

R ≃ lim(X ⊗ C) ≃ X ⊗ S∧
R ⊕ lim(X ⊗ K) ≃ X ⊗ S∧

R, the
last equivalence being as X ⊗K ∈ Townil(M). Applied to X = R, as R∧

R ≃ R, we find that
S → S∧

R is an R-equivalence, so that LRS ≃ S∧
R. Combining these gives X∧

R ≃ X ⊗LRS. In
particular, X ⊗ LRS is R-local, and thus X ⊗ LRS ≃ LRX. Altogether, this proves (4).
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(1,4)⇒(3). Suppose C ∈ Towfast(M). Then C ∼ S∧
R ⊕ F with F ∈ Townil(M). By (4), we

know S∧
R ≃ LRS, and this implies (3).

(3)⇒(5). This holds as Cs ∈ Thick⊗(R) for each s.
(5)⇒(3) assuming R-localization is smashing. One may prove by filtering Thick⊗(R)

(cf. [Bou79, Lemma 3.8] or [Mat18, Construction 2.5]) that if X is R-nilpotent then X ⊗
A ∈ Townil(R). In particular, if LRS ∈ Thick⊗(R) and R-localization is smashing, then
LRA ≃ LRS ⊗A ∈ Townil(R).

(1)⇒(6,7). These follow from the construction of the spectral sequence of a tower, cf.
[Mat15, Proposition 3.12].

(6)⇒(7) assuming that all compact objects in M are dualizable. This holds as M(F,C(R)) ≃
M(S,DF ⊗ C(R)) for F dualizable, where DF is the dual of F .

(7)⇒(1) assuming M is a Brown category. Let K = Fib(S∧
R → C), so that R is locally

descendable if and only if K ∈ Townil(M). By [Mat15, Proposition 3.12], condition (7)
ensures that there exists some r > 0 such that for all F ∈M compact, all r-fold composites
in the tower [F,K] of abelian groups vanish. In other words, there exists some r > 0 such
that all r-fold composites in K are phantom maps. [HPS97, Theorem 4.2.5] proves that
all composites of phantom maps are nullhomotopic. Thus all 2r-fold composites in K are
nullhomotopic, proving that K ∈ Townil(M) and so C ∈ Towfast(M). □

A.1.7. Corollary. Let T ∈M be another ring. Suppose that R ∈ Thick⊗(T ) and ⟨R⟩ ⊂ ⟨T ⟩.
If R is locally descendable then T is locally descendable.

Proof. As R ∈ Thick⊗(T ), we have ⟨T ⟩ ⊂ ⟨R⟩. Thus R and T have the same Bousfield
class. As R is locally descendable, R-localization is smashing. As R and T have the same
Bousfield class, it follows that T -localization is smashing. As T -localization is smashing and
LTS = LRS ∈ Thick⊗(R) ⊂ Thick⊗(T ), it follows that T is locally descendable. □

A.1.8. Proposition. Let N be another presentably symmetric monoidal stable ∞-category,
and let F : M→ N be an exact and symmetric monoidal functor. If R is locally descendable,
then F (R) is locally descendable, and F (LRX) ≃ LF (R)F (X) for any X ∈M.

Proof. Suppose that R is locally descendable, and write C(R) ∼ LRS ⊕ K with K ∈
Townil(M). As F is exact and symmetric monoidal, we have C(F (R)) ≃ F (C(R)) ∼
F (LRS) ⊕ F (K). As K ∈ Townil(M) and F is exact, we have F (K) ∈ Townil(N). Thus
C(F (R)) ∈ Towfast(N), implying that F (R) is locally descendable. Moreover, LF (R)S ≃
limC(F (R)) ≃ lim (F (LRS)⊕ F (K)) ≃ F (LRS). As both R-localization and F (R)-
localization are smashing and F is symmetric monoidal, it follows that F (LRX) ≃ F (X ⊗
LRS) ≃ F (X)⊗ LF (R)S ≃ LF (R)F (X) for any X ∈M. □

A.2. Isotropy separation. Fix a finite group G. This section records some techniques
that allow one to relate a G-spectrum R to its geometric fixed points ΦKR. We expect that
this material is well known to the experts; the reader may observe that the basic approach
appears in the proof of the tom Dieck splitting [tD75], and similar statements appear in
[LMSM86, Chapter 2] and [GM95, Part IV]. Recently, more sophisticated theorems have
appeared which give complete reconstructions of G-spectra from their geometric fixed points
and appropriate gluing data [Gla17, AMR19], though our purposes turn out to be better
served by a more elementary approach.

We begin by fixing some notation. We continue to write SpG for the homotopy theory of
genuine G-spectra. Given a category C, write Fun(BG,C) for the category of objects in C

with G-action. Given a subgroup K ⊂ G and G-spectrum X, write resGK X for the underlying
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K-spectrum of X, and XK and ΦKX for the genuine and geometric K-fixed points of X.
Both XK and ΦKX carry residual actions by the Weyl group WGK = NG(K)/K, the former
via the formula XK = SpG(G/K+, X) and the latter as ΦKX is a localization of XK . In
particular, we may regard ΦK as a functor

ΦK : SpG → Fun(BWGK, Sp).
Recall that a family of subgroups of G is a collection F of subgroups of G closed under

subconjugacy. Given such a family, write OF(G) for the associated full subcategory of the
orbit category of G, consisting of those G-sets G/H with H ∈ F. Associated to any family
F are two G-spaces EF and ẼF, which fit into a cofiber sequence

EF+ → S0 → ẼF,

and are characterized by the fixed points

EFK+ =
{
∗ K /∈ F,

S0 K ∈ F;
ẼFK =

{
S0 K /∈ F,

∗ K ∈ F.

The suspension spectra of these spaces play a central role in equivariant stable homotopy
theory; see especially [MNN17, MNN19] for a modern account, and [tD79, Chapter 7] for a
classical account. We will make use of the following formula for EF, see [MNN19, Appendix
A].

A.2.1. Lemma. There is an equivalence EF ≃ colimG/H∈OF(G) G/H. □

A G-spectrum X is said to be F-nilpotent if the map EF+ ⊗X → X is an equivalence,
and F−1-local if the map X → ẼF ⊗ X is an equivalence. An important special case of
F−1-localization is the following, see for instance [MNN17, Section 6.2].

A.2.2. Lemma. Let P be the family of proper subgroups of G. Then
(ẼP⊗X)G ≃ ΦGX,

and ΦG gives an equivalence from the category of P−1-local G-spectra to the category of
ordinary spectra. □

An inclusion of families F1 ⊂ F2 induces a map EF1+ → EF2+, and so any G-spectrum
X may be filtered by the G-spectra EF+ ⊗X. Our main observations in this subsection
concern the layers of this filtration. Given families F1 ⊂ F2, define

E[F1,F2] = Cof (EF1+ → EF2+) ≃ ẼF1 ⊗ EF2+.

Note that for any G-spectrum X, there is a natural square

X EF2+ ⊗X

ẼF1 ⊗X E[F1,F2]⊗X.

(22)

A.2.3. Lemma. The square Eq. (22) consists of equivalences if and only if ΦHX ≃ 0 for all
H /∈ F2 \ F1. In particular, the homotopy type of E[F1,F2] depends only on F2 \ F1.

Proof. Note that ΦHX ≃ 0 for all H /∈ F2 \ F1 if and only if ΦHX ≃ 0 for all H /∈ F2 and
all H ∈ F1. The condition that ΦHX ≃ 0 for all H ∈ F1 is equivalent to X → ẼF1 ⊗X
being an equivalence, and the condition that ΦHX ≃ 0 for all H /∈ F2 is equivalent to
EF2+ ⊗X → X being an equivalence. This shows that if Eq. (22) consists of equivalences,
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then ΦHX ≃ 0 for all H /∈ F2 \ F1, as well as half of the converse. The other half follows by
applying the same argument to ẼF1 ⊗X and EF2+ ⊗X. □

Given a subgroup K ⊂ G, one says that a pair F1 ⊂ F2 is adjacent at K if F2 \ F1 = (K).
In this case, we write E[K] = E[F1,F2]; the previous lemma ensures that the homotopy type
of E[K] depends only on the conjugacy class of K. Say that a G-spectrum X is concentrated
at K if X ≃ E[K]⊗X.

A.2.4. Proposition. If X is concentrated at K, then
XG ≃ (ΦKX)hWGK .

Moreover, ΦK defines an equivalence from the full subcategory of G-spectra concentrated at
K to Fun(BWGK, Sp).

Proof. First, note that if X is concentrated at K, then resGK X is P−1
K -local, where PK is the

family with respect to K of proper subgroups of K. In particular, Lemma A.2.2 implies that
XK ≃ ΦKX.

Now, let F≤K be the family of subgroups of G subconjugate to K. As X is concentrated
at K, it is F≤K-nilpotent, and thus

XG ≃ (EF≤K ⊗X)G ≃ colim
G/H∈OF≤K

(G)
(G/H ⊗X)G ≃ colim

G/H∈F≤K

XH .

If H ∈ F≤K is not conjugate to K, then the condition that X is concentrated at K implies
that XH ≃ 0. This ensures that, though the inclusion BWGK ≃ BAut(G/K) ⊂ OF≤K

(G)
need not be cofinal as K ⊂ G need not be normal, this inclusion still induces an equivalence

colim
G/H∈F≤K(G)

XH ≃ colim
BWGK

XK ≃ (XK)hWGK ≃ (ΦKX)hWGK .

It remains to verify that ΦK : SpG → Fun(BWGK, Sp) is an equivalence when restricted
to the full subcategory of G-spectra concentrated at K. First we claim that it is fully faithful.
Indeed, let X and Y be G-spectra concentrated at K. Then the same argument as above
shows

SpG(X,Y ) ≃ lim
G/H∈OF≤K

(G)
SpH(resGH X, resGH Y ) ≃ SpK(resGK X, resGK Y )hWGK .

Lemma A.2.2 implies that SpK(resGK X, resGK Y ) ≃ Sp(ΦKX,ΦKY ), and so we have
SpG(X,Y ) ≃ Sp(ΦKX,ΦKY )hWGK .

This is the mapping spectrum in Fun(BWGK, Sp), so that ΦK is fully faithful on G-spectra
concentrated at K as claimed.

Next we claim that it is essentially surjective. As ΦK preserves colimits, it suffices to
show that if T is a WGK-set then Σ∞

+ T ∈ Fun(BWGK, Sp) is in its essential image. To that
end, it suffices to produce a pointed G-space X satisfying XK = T+ and XH = ∗ for H not
conjugate to K, for then Σ∞X ∈ SpG is concentrated at K and satisfies ΦKΣ∞X = Σ∞

+ T .
Indeed, one easily constructs a presheaf on the orbit category O(G) of G satisfying

G/H 7→

{
T+ H conjugate to K,
∗ otherwise,

and with AutO(G)(G/K) ∼= WGK acting on T+ in the prescribed manner. This then gives
rise to the necessary G-space by Elmendorf’s theorem. □
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A.2.5. Lemma. Any G-spectrum X admits a natural finite filtration with

grX ≃
⊕
(K)

E[K]⊗X,

this sum being over the conjugacy classes of subgroups of G.

Proof. Any maximal chain F0 ⊂ F1 ⊂ · · · ⊂ Fn of families of subgroups of G has the property
that each Fi ⊂ Fi+1 is adjacent at some subgroup, and that every conjugacy class appears
as Fi+1 \ Fi for exactly one i, so the associated filtration EF0+ ⊗X → EF1+ ⊗X → · · · →
EFn+ ⊗X has the desired properties. □

A.2.6. Proposition. Any G-spectrum X admits a natural finite filtration with

grXG ≃
⊕
(K)

(ΦKX)hWGK ,

this sum being over the conjugacy classes of subgroups of G.

Proof. Combine Lemma A.2.5 and Proposition A.2.4. □

A.2.7. Corollary. Let F : J→ SpG be a diagram of G-spectra, and f : X → limj∈J F (j) be
a map of G-spectra. For f to be an equivalence, it suffices that f induces an equivalence

(ΦKX)hWHK ≃ lim
j∈J

(
(ΦKF (j))hWHK

)
of ordinary spectra for all subgroups K ⊂ H ⊂ G.

Proof. The map f is an equivalence if and only if it induces an equivalence fH : XH →
limj∈J F (j)H for all subgroups H ⊂ G. By Proposition A.2.6, both source and target admit
a natural finite filtration, with

gr fH :
⊕
(K)

(ΦKX)hWHK →
⊕
(K)

lim
j∈J

(
(ΦKF (j))hWHK

)
,

these sums being over the conjugacy classes of subgroups K ⊂ H. The corollary follows as
fH is an equivalence provided gr fH is an equivalence. □

A.3. Equivariant Bousfield localizations. We are now in a good position to discuss
equivariant Bousfield localization. Fix a ring G-spectrum R. Our main observation is the
following.

A.3.1. Theorem. R is locally descendable if and only if each ΦKR is locally descendable as
an object of Fun(BWGK, Sp). If WGK acts trivially on ΦKR, then this holds if and only if
ΦKR is locally descendable as an ordinary spectrum.

Proof. Proposition A.1.8 implies that if the G-spectrum R is locally descendable, then each
ΦKR ∈ Fun(BWGK, Sp) is locally descendable; and that if WGK acts trivially on ΦKR,
then ΦKR is locally descendable in Fun(BWGK, Sp) if and only if it is locally descendable
in Sp.

Now suppose that each ΦKR ∈ Fun(BWGK, Sp) is locally descendable. By Lemma A.2.5,
C(R) admits a finite filtration with filtration quotients of the form E[K] ⊗ C(R). As
Towfast(SpG) ⊂ Tow(SpG) is a thick subcategory, it suffices to show that E[K] ⊗ C(R) ∈
Towfast(SpG) for all K ⊂ G. Under the embedding of Proposition A.2.4, E[K]⊗C(R) corre-
sponds to the tower C(ΦKR) ∈ Tow(Fun(BWGK, Sp)), so this follows from the assumption
that ΦKR is locally descendable in Fun(BWGK, Sp). □
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We can extend this to the global equivariant context. First, some notation. For our
purposes, a global family shall be a collection F of finite groups closed under products,
subgroups, and quotients. Schwede [Sch18] has shown that to each global family F, there is
a good symmetric monoidal and stable category GlobF of global spectra with respect to F.

Associated to any G ∈ F is a symmetric monoidal functor
UG : GlobF → SpG,

which preserves limits and colimits [Sch18, Theorem 4.5.25]. Moreover, these functors are
jointly conservative as G is taken to range through F, and are compatible with each other in
the sense that resGK UG = UK for K ⊂ G.

Associated to any X ∈ GlobF and G ∈ F are the genuine and geometric fixed points XG

and ΦGX. The genuine fixed points XG are represented by the global suspension spectrum of
the global classifying space BglG, in the sense that XG ≃ GlobF(BglG+, X) [Sch18, Theorem
4.4.3]. In particular, XG carries a natural action by the space Aut(BglG) of automorphisms
of the global classifying space BglG. This in turn is equivalent to the space of automorphisms
of the ordinary classifying space BG, as can be easily seen from the orbispace model for
global spaces [Kö18].

Genuine and geometric fixed points are compatible with the functors UG, in the sense that
(UG)K ≃ XK and ΦKUGX ≃ ΦKX. Following the discussion after [Sch18, Theorem 4.5.25],
if we write L for the left adjoint to UG, then the natural equivalences GlobF(BglK,X) ≃
XK ≃ SpG(G/K+, UGX) ≃ GlobF(L(G/K)+, X) show that L(G/K+) ≃ BglK for K ⊂ G.
It follows that WGK acts on XK through its action on BK ≃ EG×G (G/K).

A.3.2. Theorem. Let F be a global family, and suppose that for all G ∈ F and K ⊂ G, the
spectrum ΦKR is locally descendable as an object of Fun(BWGK, Sp). Then R-localization
is smashing and agrees with R-nilpotent completion, UGR ∈ SpG is locally descendable for
all G ∈ F, and UGLRX ≃ LUGRUGX for all X ∈ GlobF.

Proof. The hypotheses ensure that we may apply Theorem A.3.1 to deduce that UGR ∈ SpG
is locally descendable for all G ∈ F. The remaining assertions follow by applying Lemma A.1.4
to (UG)G∈F : GlobF →

∏
G∈F SpG. □

In general, it seems difficult to determine when a ring R ∈ Fun(BG, Sp) is locally
descendable when G acts nontrivially on R. We will make use of the following simple case.

A.3.3. Lemma. Let G be a finite group and R ∈ Fun(BG, Sp) be a ring. If |G| acts invertibly
on R and the ordinary spectrum RhG is locally descendable, then R is locally descendable.

Proof. As there is a G-equivariant map i : RhG → R of rings, we have ⟨RhG⟩ ⊂ ⟨R⟩. As G acts
invertibly on R, the composite RhG → R→ RhG → RhG, with last map the transfer, is an
equivalence. Thus RhG ∈ Thick⊗(R), and the lemma then follows from Corollary A.1.7. □

We also need the following.

A.3.4. Proposition. Suppose that R is a G-E∞ ring. Then R-nilpotent completion preserves
G-E∞ rings. In particular, if allG-spectra areR-convergent, such as ifR is locally descendable,
then R-localization preserves G-E∞ rings. The same statements hold with G-E∞ ring spectra
replaced by global ultracommutative ring spectra.

Proof. If R is an A∞ ring, then C(R) may be identified as the tower of partial totalizations
of the cosimplicial object [n] 7→ R⊗n+1 [MNN17, Proposition 2.14], and thus R-nilpotent
completion is given by X∧

R = limn∈∆(X ⊗Rn+1). When moreover R and X are G-E∞ rings,
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this is the totalization of a cosimplicial diagram of G-E∞ rings, and is therefore itself a
G-E∞ ring. The same proof applies in the global ultracommutative case. □

So far we have focused on localizations with particularly good finiteness properties.
We also note an orthogonal case. First, a bit more notation. The forgetful functors
U : SpG → Fun(BG, Sp) and U : GlobF → Sp admit right adjoints, which we shall denote
bG and bF respectively. In particular, bGU(X) ≃ F (EG+, X), where EG+ is the classifying
space for the family {e}.

A.3.5. Proposition. Let T be an ordinary ring spectrum.
(1) If T tG = 0, then LbG(T )X ≃ bG(LTUX) for all X ∈ SpG.
(2) If T tG = 0 for all G ∈ F, then LbF(T )X ≃ bF(LTUX) for all X ∈ GlobF.

Proof. The proof is essentially the same in both cases, so we shall just prove the first. The
assumption that T is a ring and T tG = 0 implies that ΦKbG(T ) = 0 for all nontrivial
subgroups K ⊂ G [MNN19, Proposition 2.13]. At this point, we could deduce (1) by
observing that bG(T ) is Bousfield equivalent to G+ ⊗ T and applying [Car22, Proposition
3.21]; however, we shall give the direct proof that also applies in case (2).

First we show that bG(LTUX) is bG(T )-local. Fix C ∈ SpG which is bG(T )-acyclic. As
U(bG(T )⊗ C) ≃ T ⊗ UC, it follows that UC is T -acylic. Thus

SpG(C, bG(LTUX)) ≃ Sp(UC,LTUX)hG ≃ 0,
and this implies that bG(LTUX) is bG(T )-local as claimed.

Next we show that X → bG(LTUX) is a bG(T )-equivalence. To that end, we must show
that the map

bG(T )⊗X → bG(T )⊗ bG(LTUX) (23)
is an equivalence. It suffices to verify this after applying ΦK for all K ⊂ G. If K = e, then
Φe = U and Eq. (23) is the equivalence T ⊗UX → T ⊗LTUX. If K ̸= e, then both sides of
Eq. (23) vanish as ΦK is symmetric monoidal and ΦKbG(T ) = 0 for K ̸= e.

Together these prove that X → bG(LTUX) realizes bG(LTUX) as the bG(T )-localization
of X. □

A.4. Examples. We now give examples, beginning with the proof of Proposition 1.1.5.
Recall that KU denotes the global spectrum of equivariant K-theory [Sch18, Section 6.4],
satisfying UGKU ≃ KUG for all G. We need the following.

A.4.1. Lemma ([tD79, Section 7.7]). For any group G, we have

ΦGKU ≃
{
KU [ 1

n ](ζn) G ∼= Cn;
0 otherwise.

□

Given a subgroup K ⊂ G, define VGK = Im(NGK → Aut(K)); we comment that
|VGK| = [NGK : CGK] where CGK is the centralizer of K in G. Say that G is KU -allowable
if for all cyclic subgroups C ⊂ G, the order of VGC is invertible in Z[ 1

|C| ].

A.4.2. Theorem. KUG ∈ SpG is locally descendable if and only if G is KU -allowable.

Proof. Suppose that G is KU -allowable. By Theorem A.3.1, we must show that ΦKKUG ∈
Fun(BWGK, Sp) is locally descendable for all subgroups K ⊂ G. By Lemma A.4.1, we
need only consider the case where K = C is a cyclic subgroup of order n. Here ΦCKUG =
KU [ 1

n ](ζn) is an Aut(C)-Galois extension of KU [ 1
n ], and the Weyl group WGC acts on
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KU [ 1
n ](ζn) through a natural Aut(BC)-action extending its Aut(C)-action. As Aut(BC)

is 1-truncated and the order of π1 Aut(BC) = C is invertible in KU [ 1
n ](ζn), the Aut(BC)-

action on KU [ 1
n ](ζn) factors through the truncation Aut(BC) → π0 Aut(BC) ∼= Aut(C).

Thus WGC acts on KU [ 1
n ](ζn) through the natural map WGC → VGC, and it suffices to

show that KU [ 1
n ](ζn) ∈ Fun(BVGC, Sp) is locally descendable.

By assumption, the order of VGC is invertible in KU [ 1
n ](ζn), so by Lemma A.3.3 it

suffices to show that the ordinary spectrum KU [ 1
n ](ζn)hVGC is locally descendable. This

assumption moreover implies that π∗(KU [ 1
n ](ζn)hVGC) ∼= (π∗KU [ 1

n ](ζn))VGC ; this is in
particular a free π∗KU [ 1

n ]-module, and thus KU [ 1
n ](ζn)hVGC is a free KU [ 1

n ]-module. Hence
by Corollary A.1.7 it suffices to verify that KU [ 1

n ] is locally descendable. This is the
classical example of a locally descendable spectrum: [Bou79, Corollary 4.7] shows that
KU -localization is smashing and LKUS ∈ Thick⊗(KU), so the same is true for KU [ 1

n ], and
local descendability then follows from Proposition A.1.6.

Now suppose that G is not KU -allowable. We may thus find a cyclic subgroup C ⊂ G of
order n, prime p not dividing n, and cyclic p-subgroup D ⊂ NGC for which the composite
D → NGC → Aut(C) is nonzero. Write ΦCKUG = KU [ 1

n ](ζn). By Proposition A.1.8,
to show that KUG ∈ SpG is not locally descendable it suffices to show that KU [ 1

n ](ζn) ∈
Fun(BD, Sp) is not locally descendable. In the following, abbreviate L = LKU [ 1

n ](ζn).
For a spectrum X write i(X) ∈ Fun(BD, Sp) for the corresponding object with trivial

action. Then i(S) is the unit of Fun(BD, Sp), so by Proposition A.1.6 it suffices to show
that Li(S) /∈ Thick⊗(KU [ 1

n ](ζn)). Observe that we may additively identify KU [ 1
n ](ζn) ≃

Aut(C)+ ⊗ KU [ 1
n ]. As the image of D in Aut(C) is nontrivial, it follows that if X ∈

Thick⊗(KU [ 1
n ](ζn)) then ΦDbD(X) = 0, so it suffices to verify that ΦDbD(Li(S)) ̸= 0.

Observe that KU [ 1
n ](ζn) ∈ Fun(BD, Sp) has the same Bousfield class as i(KU [ 1

n ]).
By Proposition A.1.8, as KU [ 1

n ] is locally descendable, we find Li(S) ≃ Li(KU [ 1
n ])i(S) ≃

i(LKU [ 1
n ]S). As D is a cyclic p-group and p ∤ n, it is easily verified that ΦDbD(i(LKU [ 1

n ]S)) ̸=
0, see for instance [MNN19, Proposition 5.36], and this finishes the proof. □

A good supply of KU -allowable groups is given by the following.
A.4.3. Lemma. Suppose that G is nilpotent. Then G is KU -allowable.
Proof. As G is a finite nilpotent group, we may write G =

∏
pG(p) with G(p) ⊂ G the

Sylow p-subgroup. It follows that if C ⊂ G is any subgroup, then C =
∏
p C(p) with

C(p) = C ∩G(p), and that VGC =
∏
p VG(p)C(p). Thus if a prime p divides the order of VGC,

then VG(p)C(p) ̸= e, implying that C(p) ̸= e and thus that p divides the order of C. As every
prime dividing the order of VGC divides the order of C, we find that the order of VGC is
invertible in Z[ 1

|C| ], and so G is KU -allowable as claimed. □

The following now suffices to prove Proposition 1.1.5.
A.4.4. Proposition. Let F be a family of groups, all of which are KU -allowable.

(1) Bousfield localization in GlobF with respect to KU is smashing, agrees with nilpotent
completion, and preserves ultracommutative ring spectra;

(2) If G is KU -allowable, then KUG ∈ SpG is locally descendable and KUG-localization
preserves G-E∞ ring spectra;

(3) UGLKUX ≃ LKUG
UGX for all G ∈ F and X ∈ GlobF.

Proof. Given Theorem A.4.2, these follow from Theorem A.3.1, Theorem A.3.2, and Propo-
sition A.3.4. □
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At this point, we have provided everything needed in the body of the paper. The remainder
of the appendix is dedicated to giving some additional examples of the theory developed
above. We start by noting that the techniques of Appendix A.2 may be used to give more
quantitative information about equivariant K-theory localizations.

A.4.5. Proposition. Let G be a KU -allowable group and let X be a G-spectrum. Then for
K ⊂ G, we may identify

ΦKLKUG
X ≃

{
LKU [ 1

n ]
(
ΦKX

)
K ∼= Cn,

0 otherwise,
and LKUG

X admits a finite filtration with

gr(LKUG
X)G ≃

⊕
(C) cyclic

L
KU [ 1

|C| ]
(ΦCX)hWGC ,

this sum being over conjugacy classes of cyclic subgroups of G.

Proof. The identification of ΦKLKUG
X follows from Proposition A.1.8 and Lemma A.4.1,

and the filtration from Proposition A.2.6. □

If G is a p-group, then (KUG)(p) is Bousfield equivalent to bG(KUp). This suggests looking
at bG(En)-localization, where En is a height n Morava E-theory, as a higher chromatic
analogue of (KUG)(p)-localization. We start by recalling the smash product theorem [Rav92,
Chapter 7] in its strong form. Say that a Landweber exact spectrum R is of finite height if
there exists some n ≥ 0 such that R∗/(p, v1, . . . , vn) = 0 at all primes p.

A.4.6. Lemma. Let R be a Landweber exact ring spectrum of finite height. Then R is
locally descendable.

Proof. This is clear if R ≃ 0, so we may suppose that R is nonzero. By Proposition A.1.6,
it suffices to show that for all spectra X, the R-based Adams spectral sequence for X
collapses at a finite page with a horizontal vanishing line which is independent of X. As
p-localization is exact, we may identify the R(p)-based Adams spectral sequence for X as
the p-localization of the R-based Adams spectral sequence for X. It therefore suffices to
show that the R(p)-based Adams spectral sequence for X collapses at a finite page with a
horizontal vanishing line which is independent of X, as well as of p for all sufficiently large
primes p.

Fix a prime p, and let m ≤ n be maximal for which R∗/(p, v1, . . . , vm−1) ̸= 0. Applying
the theory of [HS03] to the zigzag R(p) → R(p)⊗E(m)← E(m), we find that the R(p)-based
Adams spectral sequence is isomorphic to the E(m)-based Adams spectral sequence from
the E2 page on.

If p > m+ 1, then the E(m)-based Adams spectral sequence has a horizontal vanishing
line on the E2-page of y-intercept at most m2 + m [HS99a, Theorem 5.1]. This gives a
horizontal vanishing line in the R(p)-based Adams spectral sequence for p > n+ 1 which is
independent of such p.

It now suffices to show that the R(p)-based Adams spectral sequence has some horizontal
vanishing line for each of the finitely many primes p ≤ n+ 1. As above, we may replace the
R(p)-based Adams spectral sequence with the E(m)-based Adams spectral sequence. The
lemma then follows from [HS99b, Proposition 6.5]. □

A.4.7. Lemma. Let G be a finite group. Let R be a G-ring spectrum which admits Thom
isomorphisms for complex representations, and suppose moreover that RG is a Landweber
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exact ring spectrum of finite height. Then the ordinary spectrum ΦGR is Landweber exact
and locally descendable.

Proof. As R admits Thom isomorphisms for complex representations, we may identify ΦGR ≃
RG[e−1] where e is the oriented Euler class of the reduced complex regular representation of
G, see [tD79, Section 7.4] or [MNN19, Section 5]. As localization is exact, it follows that
ΦGR is Landweber exact and finite height, so we may conclude by Lemma A.4.6. □

We now consider the spectra bG(En). We focus on the case where G is an elementary
abelian p-group, as here all Weyl groups act trivially. We expect that the following observa-
tions extend to all abelian p-groups, but proving this would require developing additional
techniques for determining when an object of Fun(BG, Sp) is locally descendable.

A.4.8. Proposition. Let B be an elementary abelian p-group. Then bB(En) is locally
descendable and bB(En)-localization preserves B-E∞ rings.

Proof. By Theorem A.3.1, to show that bB(En) is locally descendable it suffices to show that
the ordinary spectrum ΦAbB(En) is locally descendable for all A ⊂ B. Indeed, bB(En)A =
E
BA+
n is a free En-module, and therefore Lemma A.4.7 applies. That bB(En)-localization

preserves B-E∞ rings now follows from Proposition A.3.4. □

As with equivariant K-theory, it is possible to be more explicit. In the following, we take
the convention that E0 = HQ and En = 0 for n < 0. Given an elementary abelian p-group
A, write rk(A) for the rank of A, i.e. the dimension of A viewed as a vector space over Fp.

A.4.9. Lemma ([Tor02]). Let A be an abelian p-group of rank t. Then ⟨ΦAbA(En)⟩ = ⟨En−t⟩.

Proof. As ΦAbA(En) is p-local and Landweber exact, it is Bousfield equivalent to Ed where
d is maximal for which ΦAbA(En)/(v0, . . . , vd−1) ̸= 0. As ΦAbA(En)/(v0, . . . , vd−1) ≃
ΦAbA(En/(v0, . . . , vd−1)), [MNN19, Proposition 5.28] says that this is nonzero if and only if
t ≤ n− d, i.e. d ≤ n− t, proving the lemma. □

Abbreviate Ln = LEn and Lbn = LbB(En).

A.4.10. Proposition. Let B be an elementary abelian p-group and let X be a B-spectrum.
Then

ΦALbnX ≃ Ln−rk(A)ΦAX,
and LbnX admits a finite filtration with

gr(LbnX)B ≃
⊕
A⊂B

Ln−rk(A)(ΦAX)hB/A,

this sum being over the subgroups of B.

Proof. The identification of ΦALbnX follows from Proposition A.1.8 and Lemma A.4.9, and
the filtration from Proposition A.2.6. □

We end our discussion of the localizations Lbn with the following observation.

A.4.11. Proposition. Let B be an elementary abelian p-group. Then
(SB)(p) ≃ lim

n→∞
LbnSB .
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Proof. By Corollary A.2.7 and Proposition A.4.10, the map (SB)(p) → limn→∞ LbnSB is an
equivalence provided the following condition holds. Let D ⊂ C ⊂ B be subgroups, write
A = WCD = C/D, and suppose that C is of rank t. Then the map

(BA+)(p) → lim
n→∞

Ln−tBA+

is an equivalence. This in turn holds if and only if S(p) ≃ limn→∞ LnS and Σ∞BA ≃
limn→∞ LnΣ∞BA. The first condition is exactly the classical chromatic convergence theorem
[Rav92, Theorem 7.5.7]. The second condition asks that chromatic convergence holds for
Σ∞BA.

Barthel [Bar16] has shown that if X is a spectrum, then limn→∞ LnX ≃ X(p) provided
that X has finite projective BP -dimension. Work of Johnson–Wilson [JW85] shows that if
A is an elementary abelian p-group, then BA has projective BP -dimension equal to rk(A).
Combining these proves the proposition. □

We end with an orthogonal class of examples. Combining Proposition A.3.5 with [GS96,
Theorem 1.1] shows that LbG(K(n))X ≃ bG(LK(n)UX) for any finite group G and G-spectrum
X. Let us just focus on the simplest case, which may be interpreted more conceptually.

A.4.12. Proposition. Let G be a p-group. Then for any X ∈ SpG, we have
LKUG/(p)X ≃ bG(LKU/(p)UX).

Proof. By the p-adic version of Atiyah’s completion theorem [Ati61, Theorem 7.2] [AT69,
III §1, Proposition 1.1], there is an equivalence KUG/(p) ≃ bG(KU/(p)). By [GM95,
Theorem 13.1], (KU/(p))tG = 0 for any finite group G. The proposition then follows from
Proposition A.3.5. □

We deduce the following corollary, which was also independently obtained in [BGS22,
Proposition 6.3] for p odd.

A.4.13. Corollary. If G is a p-group, A is a finite G-spectrum, and k ∈ Z×
p projects to a

topological generator of Z×
p /{±1}, then there is a fiber sequence

LKUG/(p)A (KOG ⊗A)∧
p (KOG ⊗A)∧

p
ψk−1

. (24)

If p is odd, then we may replace KO by KU provided k is a topological generator of Z×
p .

Proof. The assumptions that G is a p-group and A is finite ensure that Eq. (24) is equivalent
to

bG(LKU/(p)UA) bG((KO ⊗A)∧
p ) bG((KO ⊗A)∧

p )bG(ψk−1) ;

in other words, that Eq. (24) is the image of the standard fiber sequence for LKU/(p)UA
under the functor bG. The corollary follows as bG is exact. □

A.4.14. Remark. Let us relate Proposition A.4.12 to the body of the paper. If R is an E∞
ring and G is a finite group, then bG(R) is a G-E∞ ring. If K ⊂ G is a subgroup of index m
and α ∈ RO(K), then the norm

Pα : πKα bG(R)→ πGIndG
K
αbG(R),
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may be identified as the composite
[Th(α ↓ BK), SK(1)]→ [Th(α ↓ BK)⊗m

hΣm
, SK(1)]

∼= [Th((ρm ⊗ α) ↓ B(Σm ≀K)), SK(1)]→ [Th((IndGK α) ↓ BG), SK(1)],
where the first map is an ordinary power operation and the last map is restriction along a
suitable map BG→ B(Σm ≀K).

In particular, take G = Cp, and suppose that R is p-local. As the map
(Sn)⊗p

hCp
→ (Sn)⊗p

hΣp

is p-locally the projection onto a summand, norms for bCp(R) are determined by the pth
symmetric powers for R discussed in Subsection 6.1. In light of Proposition A.4.12, we
may therefore regard our computation in Section 6 as describing norms on LKUCp/(p)SCp

,
although to make this completely explicit would require describing the effect of the projection
(Sn)⊗p

hCp
→ (Sn)⊗p

hΣp
on K(1)-local cohomotopy. ◁
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