
ar
X

iv
:2

20
5.

08
45

7v
1 

 [
m

at
h.

O
A

] 
 1

7 
M

ay
 2

02
2

A NOTE ON QUANTUM ODOMETERS

SLAWOMIR KLIMEK, MATT MCBRIDE, AND J. WILSON PEOPLES

Abstract. We discuss various aspects of noncommutative geometry of smooth subalgebras
of Bunce-Deddens-Toeplitz Algebras.

1. Introduction

In noncommutative geometry it is often necessary to consider dense ∗-subalgebras of C∗-
algebras, in particular, in connection with cyclic cohomology or with the study of unbounded
derivations on C∗-algebras [5]. Smooth subalgebras of noncommutative spaces are also nat-
urally present in studying spectral triples. If C∗-algebras are thought of as generalizations of
topological spaces, then dense subalgebras may be regarded as specifying additional struc-
tures on the underlying space, like a smooth structure. In analogy with the algebras of
smooth functions on a compact manifold, such a smooth subalgebra should be closed un-
der holomorphic functional calculus of all elements and under smooth-functional calculus of
self-adjoint elements. It should also be complete with respect to a locally convex algebra
topology, see [1].

The purpose of this note is to study smooth subalgebras A∞
S of Bunce-Deddens-Toeplitz

C∗-algebras AS associated to a supernatural number S, objects that capture their smooth
structure. This work is a continuation of, and heavily relies on, our previous papers on the
subject of smooth subalgebras, in particular [7], [8] which investigated smooth structures on
Bunce-Deddens algebras, the algebras of compact operators, and the Toeplitz algebra.

Bunce-Deddens algebras BS [3], [4], are crossed-product C∗-algebras obtained from odome-
ters and Bunce-Deddence-Toeplitz algebras AS are their extensions by compact operators
K:

0 → K → AS → BS → 0.

Due to the topology of odometers [6], which are Cantor sets with a minimal action of a
homeomorphism, the smooth subalgebras are naturally equipped with inductive limit Frechet
(LF) topology.

Using a version of the Toeplitz map [9], we build smooth subalgebras A∞
S from Toeplitz

operators with smooth symbols and from smooth compact operators. Smooth compact
operators, introduced in [11], were studied in details in [8]. Smooth Bunce-Deddens algebras
B∞

S , the symbols of Toeplitz operators, were introduced in [8]. We explicitly construct
appropriate LF structures on A∞

S and prove that those algebras are closed under holomorphic
calculus so that they have the same K-Theory as their corresponding C∗-algebra closures,
and we verify that they are closed under smooth functional calculus of self-adjoint elements.

We also focus on describing continuous derivations [14] on smooth subalgebras A∞
S . In

particular, using results from [7], [8], we classify derivations on A∞
S and show that, up to
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inner derivations with compact range, they are lifts of derivations on B∞
S , the factor algebra

of A∞
S modulo the ideal K∞ of smooth compact operators. Since many derivations on B∞

S

are themselves inner, the factor space of continuous inner derivations on A∞
S modulo inner

derivations turns out to be one-dimensional. Additionally we shortly describe K-Theory and
K-Homology of AS.

The paper is organized as follows. Preliminary section 2 contains our notation and a short
review of relevant results from [9] and [7]. In section 3 we review smooth compact operators
and introduce and study smooth Bunce-Deddens-Toeplitz. Section 4 contains a detailed
discussion of stability of A∞

S under both the holomorphic functional calculus, and the smooth
calculus of self-adjoint elements. In sections 5 we investigate the structure and classifications
of derivations. Finally, section 6 contains remarks on K-Theory and K-Homology.

2. Preliminaries

2.1. Supernatural Numbers. A supernatural number S is defined as the formal product:

S =
∏

p−prime

pεp, εp ∈ {0, 1, · · · ,∞} .

We will assume
∑

εp = ∞ so that S an infinite supernatural number. We define S-adic ring:

Z/SZ =
∏

p−prime

Z/pεpZ.

Here if S = p∞ for a prime p, then Z/SZ is equal to Zp, the ring of p-adic integers.
If the ring Z/SZ is equipped with the Tychonoff topology it forms a compact, Abelian

topological ring with unity, though only the group structure is relevant for this paper. In
addition, if S is an infinite supernatural number then Z/SZ is a Cantor set.

The ring Z/SZ contains a dense copy of Z by the following indentification:

Z ∋ k ↔ {k (mod pεp)} ∈
∏

p−prime

Z/pεpZ. (2.1)

2.2. Hilbert Spaces. We use two concrete Hilbert spaces for this paper: H = ℓ2(Z) and
H+ = ℓ2(Z≥0) Let {El}l∈Z and {E+

k : k ≥ 0} be the canonical bases for H and H+ re-
spectively. We need the following shift operator V : H → H on H and the unilateral shift
operator U : H+ → H+ on H+:

V El = El+1 and UE+
k = E+

k+1.

Notice that V is a unitary while U is an isometry. We have:

[U∗, U ] = P0,

where P0 is the orthogonal projection onto the one-dimensional subspace spanned by E+
0 .

For a continuous function f ∈ C(Z/SZ) we define two operators mf : H → H and
Mf : H+ → H+ via formulas:

mfEl = f(l)El and MfE
+
k = f(k)E+

k .
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In those formulas we considered integers k, l as elements of Z/SZ using identification (2.1).
Since Z is a dense subgroup of Z/SZ we obtain immediately that

‖mf‖ = ‖Mf‖ = sup
l∈Z

|f(l)| = sup
k∈Z≥0

|f(k)| = sup
x∈Z/SZ

|f(x)| = ‖f‖∞.

The algebras of operators generated by the mf ’s or by the Mf ’s are thus isomorphic to
C(Z/SZ) and so they carry all the information about the space Z/SZ, while operators U
and V reflect the odometer dynamics ϕ on Z/SZ given by:

ϕ(x) = x+ 1. (2.2)

The relation between those operators is:

V −1mfV = mf◦ϕ. (2.3)

Similarly we have:

MfU = UMf◦ϕ. (2.4)

There is also another, less obvious relation between U and the Mf ’s, namely:

MfP0 = P0Mf = f(0)P0. (2.5)

2.3. Algebras. Following [9], we define the Bunce-Deddens and Bunce-Deddens-Toeplitz
algebras, BS and AS respectively, to be the following C∗-algebras: BS is generated by the
operators V and mf :

BS = C∗{V,mf : f ∈ C(Z/SZ)}

while AS is generated by the operators U and Mf :

AS = C∗{U,Mf : f ∈ C(Z/SZ)}.

The algebra AS contains the projection P0 and in fact all compact operators K and the quo-
tient AS/K can be naturally identified with BS, see [7]. Let τ be the natural homomorphism
τ : AS → BS.

The algebra BS is isomorphic with the crossed product algebra:

BS
∼= C(Z/SZ)⋊ϕ Z .

and is simple [7]. Consequently it is isomorphic the universal C∗-algebra with generators v
and f , where v is unitary, f ∈ C(Z/SZ), with relations (compare with (2.3)):

v−1fv = f ◦ ϕ.

Interestingly, algebras AS can also be described in terms of generators and relations as
follows.

Proposition 2.1. The universal C∗-algebra A with generators u and f , such that u is an
isometry, f ∈ C(Z/SZ), with relations (compare with (2.3) and (2.5)):

fu = u (f ◦ ϕ) and fp0 = f(0)p0,

where [u∗, u] = p0, is isomorphic with AS.
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Proof. We will show that any irreducible representation of A either factors through BS or is
isomorphic to the defining representation of AS. Since BS

∼= AS/K is a factor algebra, the
defining representation of AS dominates the factor representation and so, by universality, A
is isomorphic to AS.

Consider an irreducible representation of A and let U represents u and Mf represent f .
Notice that P0 := I −UU∗ is the orthogonal projection onto the kernel of U∗. If that kernel
is zero then U is unitary and U , Mf give a representation of BS by universality, since they
satisfy the crossed-product relations.

If the kernel of U∗ is not zero, pick a unit vector E+
0 such that U∗E+

0 = 0. Since U is an
isometry, the set {E+

k }, k = 0, 1, . . . is orthonormal, where E+
k := UkE+

0 . Moreover, we have
by using relations:

MfE
+
0 = MfP0E

+
0 = f(0)E+

0 ,

and similarly:

MfE
+
k = MfU

kE+
0 = UkMf◦ϕkE+

0 = f(k)UkE+
0 = f(k)E+

k .

It follows that vectors {E+
k } span an invariant subspace and so, by irreducibility, {E+

k } is an
orthonormal basis. Since U is the unilateral shift in this basis, we reproduced the defining
representation of AS, finishing the proof. �

2.4. Toeplitz Map. Next we discuss the key relation between the two algebras AS and BS.
Let P≥0 : H → H+ be the following map from H onto H+ given by

P≥0Ek =

{

E+
k if k ≥ 0

0 if k < 0.

We also need another map s : H+ → H given by:

sE+
k = Ek.

Define the map T : B(H) → B(H+), between the spaces of bounded operators on H and
H+, in the following way: given b ∈ B(H) we set

T (b) = P≥0bs.

T is known as a Toeplitz map. It has the following properties [10]:

(1) T (IH) = IH+
.

(2) T (bV n) = T (b)Un and T (V −nb) = (U∗)nT (b) for n ≥ 0 and all b ∈ B(H).
(3) T (bmf) = T (b)Mf and T (mf b) = MfT (b) for all f ∈ C(Z/SZ) and all b ∈ B(H)
(4) T (b∗) = T (b)∗ for all b ∈ B(H).

Consequently, it follows that T is a ∗-preserving map from BS to AS. If τ is the natural
homomorphism from AS to BS then we have

τT (b) = b

for all b ∈ BS. It follows that for any a in AS there is a compact operator c such that we
have a decomposition:

a = T (b) + c, (2.6)

where b = τ(a) ∈ BS. One can verify that if b is an element in BS then T (b) is compact if
and only if b = 0. This implies the uniqueness of the above decomposition (2.6).
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2.5. Fourier Series. There are natural one-parameter groups of automorphisms of BS and
AS respectively. They are given by the formulas:

ρLθ (b) = e2πiθLbe−2πiθL for b ∈ BS and ρKθ (a) = e2πiθKae−2πiθK for a ∈ AS,

where θ ∈ R/Z. Here we using the following diagonal label operators on H and H+ respec-
tively:

LEl = lEl and KE+
k = kE+

k .

We have the following relations:

ρLθ (V ) = e2πiθV and ρLθ (mf ) = mf .

Automorphisms ρKθ satisfy analogous relations and the extra relation on U∗, namely

ρKθ (U
∗) = e−2πiθU∗ .

Define E : BS → C∗{mf : f ∈ C(Z/SZ)} ∼= C(Z/SZ) via

E(b) =

∫ 1

0

ρLθ (b) dθ .

It’s easily checked that E is an expectation on BS. For a b ∈ BS we define the n-th Fourier
coefficient bn by the following:

bn = e(V −nb) =

∫ 1

0

ρθ(V
−nb) dθ =

∫ 1

0

e−2πinθV −nρθ(b) dθ.

From this definition, it’s clear that bn ∈ C∗{Mf : f ∈ C(Z/SZ)} so we can write bn = mfn

for some fn ∈ C(Z/SZ). We define an expectation, E on AS, in a similar fashion:

E : AS → C∗{Mf : f ∈ C(Z/SZ)} ∼= C(Z/SZ) .

For an a ∈ AS, its n-th Fourier coefficient an is also defined similarly and also an = Mfn

for some fn ∈ C(Z/SZ). Additionally, notice that we have the following relation with the
Toeplitz map:

(T (b))n = T (bn) for all n .

3. Smooth Subalgebras

3.1. Smooth Compact Operators. We begin by reviewing properties of smooth compact
operators from [8]. Let K be the algebra of compact operators on H+. The orthonormal
basis {E+

k }k≥0 of H+ determines a system of units {Pks}k,s≥0 in K that satisfy the following
relations:

P ∗
ks = Psk and PksPrt = δsrPkt ,

where δsr = 1 for s = r and is equal to zero otherwise. The set of smooth compact operators
with respect to {E+

k } is the set of operators of the form

c =
∑

k,s≥0

cksPks ,

so that the coefficients {cks}k,s≥0 are rapidly decaying (RD). We denote the set of smooth
compact operators by K∞.
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We now introduce norms on K∞. They are constructed using the following useful deriva-
tion on K∞:

dK(c) = [K, c] .

Clearly dK is linear and satisfies the the Leibniz rule as dK is a commutator. We define
‖ · ‖M,N norms on K∞ by the following formulas:

‖c‖M,N =

M
∑

j=0

(

M
j

)

‖djK(c)(I +K)N‖ ,

with δ0K(c) := c. The following proposition from [8] summarizes the basic properties of ‖·‖M,N

norms.

Proposition 3.1. Let a and b be bounded operators in H, then

(1) a ∈ K∞ if and only if ‖a‖M,N < ∞ for all nonnegative integers M and N .
(2) ‖a‖M+1,N = ‖a‖M,N + ‖dK(a)‖M,N .
(3) ‖a‖M,N ≤ ‖a‖M,N+1.
(4) ‖ab‖M,N ≤ ‖a‖M,0‖b‖M,N ≤ ‖a‖M,N‖b‖M,N .
(5) ‖dK(a)‖M,N ≤ ‖a‖M+1,N .
(6) ‖a∗‖M,N ≤ ‖a‖M+N,N .
(7) K∞ is a complete topological vector space.

This proposition implies that K∞ is a Fréchet ∗-algebra with respect to the norms, ‖·‖M,N .

3.2. Smooth Bunce-Deddens Algebras. Next we review smooth Bunce-Deddens alge-
bras B∞

S from [7]. We need the following terminology. We say a family of locally constant
functions on Z/SZ is Uniformly Locally Constant, ULC, if there exists a divisor l of S such
that for every f in the family we have

f(x+ l) = f(x)

for all x ∈ Z/SZ.
We define the space of smooth elements of the Bunce-Deddens algebra, B∞

S , to be the
space of elements in BS whose Fourier coefficients are ULC and whose norms are RD. Using
Fourier series those conditions can be written as:

B∞
S =

{

b =
∑

n∈Z

V nmfn : {‖fn‖} is RD, there is an l|S, V lbV −l = b

}

.

It’s immediate that B∞
S is indeed a nonempty subset of BS and it was proved in [7] that B∞

S

is a ∗-subalgebra of BS.
Let δL : B∞

S → B∞
S be given by

δL(b) = [L, b]

This derivation is very fundamental below. We have the following simple relations:

δL(v
n) = nV n and δL(mf) = 0.
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This derivative is in particular used to define the following norms on B∞
S that capture the

RD property of the Fourier coefficients of elements of B∞
S . They are defined by:

‖b‖P =
P
∑

j=0

(

P
j

)

‖δjL(b)‖ .

The following proposition from [7] states the basic properties the P -norms.

Proposition 3.2. Let b1 and b2 be in B∞
S , then

(1) ‖b1‖P+1 = ‖b1‖P + ‖δL(b1)‖P with ‖b1‖0 := ‖b1‖.
(2) ‖b1b2‖P ≤ ‖b1‖P‖b2‖P .
(3) ‖δL(b1)‖P ≤ ‖b1‖P+1.

It follows that we have the following useful way to describe elements in B∞
S :

B∞
S = {b ∈ BS : ‖b‖M < ∞ , for every M, there is an l|S, V lbV −l = b} .

3.3. Smooth Bunce-Deddens-Toeplitz Algebras. Finally, following similar considera-
tions for the Toeplitz algebra in [8], we define the smooth Bunce-Deddens-Toeplitz algebra
A∞

S by

A∞
S = {a = T (b) + c : b ∈ B∞

S , c ∈ K∞} ⊆ AS .

Much like with the short exact sequence for AS and BS, these smooth subalgebras have the
following related short exact sequence:

0 −→ K∞ −→ A∞
S −→ B∞

S −→ 0 .

Thus, we can view the topology on A∞
S , as a vector space, in the usual way:

A∞
S

∼= B∞
S ⊕K∞ .

This gives AS its LF topology.
The Toeplitz map T : BS → AS can naturally be restricted to B∞

S and considered as a
map T : B∞

S → A∞
S . In addition, the homomorphism τ can be restricted to A∞

S and we have
a homomorphism τ : A∞

S → B∞
S .

It is easy to verify on generators that we have

dK(T (b)) = T (δL(b)).

As a consequence of continuity of T this formula is true for all b ∈ B∞
S .

It remains to verify that A∞
S is indeed a subalgebra of AS. This follows from the following

two propositions.

Proposition 3.3. Let b be in B∞
S and c be in K∞. Then T (b)c and cT (b) are in K∞.

Proof. Because T (b∗) = T (b)∗, we only need to prove T (b)c is in K∞. Proceeding as in [8]
we prove by induction on M that we have the following estimate:

‖T (b)c‖M,N ≤ ‖b‖M‖c‖M,N . (3.1)

The M = 0 case is immediate from the definition of the norms. The inductive step is:

‖T (b)c‖M+1,N = ‖T (b)c‖M,N + ‖dK(T (b))c+ T (b)dK(c)‖M,N ≤

≤ (‖b‖M + ‖δL(b)‖M) (‖c‖M,N + ‖dK(c)‖M,N) = ‖b‖M+1‖c‖M+1,N .
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Notice also that, again proceeding as in [8], we can obtain the following inequality:

‖cT (b)‖M,N ≤ ‖b‖M+N‖c‖M,N . (3.2)

�

Proposition 3.4. Let b1 and b2 be smooth Bunce-Deddens elements, then the following
expression is a smooth compact element:

T (b1)T (b2)− T (b1b2) .

Proof. We follow [8]. Let b1 and b2 be in B∞
S with the following decompositions:

b1 = b+1 + b−1 =
∑

n≥0

V nmfn +
∑

n<0

mfnV
n and b2 = b+2 + b−2 =

∑

n≥0

V nmgn +
∑

n<0

mgnV
n

where {‖fn‖} and {‖gn‖} are RD sequences and {fn} and {gn} are ULC. Since T is linear
we only need to study the following differences:

T (b+1 )T (b
+
2 )− T (b+1 b

+
2 ), T (b−1 )T (b

−
2 )− T (b−1 b

−
2 )

T (b−1 )T (b
+
2 )− T (b−1 b

+
2 ), T (b+1 )T (b

−
2 )− T (b−1 b

+
2 ) .

First consider the following:

T (b+1 )T (b
+
2 )− T (b+1 b

+
2 ) =

∑

m,n≥0

UnMfnU
mMgm −

∑

m,n≥0

T (V nmfnV
mmgm)

=
∑

m,n≥0

Un+mMfn◦ϕmMgm −
∑

m,n≥0

T
(

V n+mmfn◦ϕmmgm

)

=
∑

m,n≥0

Un+mMfn◦ϕmMgm −
∑

m,n≥0

T
(

V n+m
)

Mfn◦ϕmMgm.

Since T (V n+m) = Un+m, so the above is zero. A similar argument can be made for
T (b−1 )T (b

−
2 )− T (b−1 b

−
2 ). For the next difference we have

T (b−1 )T (b
+
2 )− T (b−1 b

+
2 ) =

∑

m≥0,n<0

Mfn(U
∗)−nUmMgm −

∑

m≥0,n<0

MfnT (V
nV m)Mgm.

However, since T (V n+m) = (U∗)−nUm since n < 0, this difference is also zero. Finally, for
the last difference, we have

C := T (b+1 )T (b
−
2 )− T (b+1 b

−
2 ) = T (b+1 )

∑

m<0

Mgm(U
∗)−m −

∑

m<0

T (b+1 mgmV
m)

=
∑

m<0

(

T (b+1 mgm)(U
∗)−m − T (b+1 mgmV

m)
)

= −
∑

m<0

T (b+1 mgmV
m)P<−m

where we used the following formula for m < 0:

U−m(U∗)−m − I = −P<−m .
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Clearly, C is compact but we still need to prove it’s smooth compact. To this end, we prove
the M,N -norms of C are finite. A straightforward calculation gives:

djK(C) = −
∑

m<0

djK
(

T (b+1 mgmV
m)P<−m

)

= −
∑

m<0

T
(

djK(b
+
1 V

m)
)

P<−m

Next we estimate norms of C using ‖P<−m‖0,N = |m|N to obtain:

‖djK(C)‖0,N ≤
∑

m<0

j
∑

l=0

(

j
l

)

|m|j−l+N‖dlK(b
+
1 )‖‖gm‖

≤
∑

m<0

(1 + |m|)N+j

(

j
∑

l=0

(

j
l

)

‖dlK(b
+
1 )‖

)

‖gm‖

=
∑

m<0

‖b+1 ‖j(1 + |m|)N+j‖gm‖ ≤ const‖b+1 ‖j‖b
−
2 ‖N+j+2 .

Consequently, since b1 and b2 are in B∞
S we get ||C||M,N < ∞. This shows T (b1)T (b2) −

T (b1b2) is smooth compact. A more careful analysis following [8] yields the following estimate:

‖T (b1)T (b2)− T (b1b2)‖M,N ≤ const‖b1‖j‖b2‖N+j+2, . (3.3)

�

4. Stability of Smooth Bunce-Deddens-Toeplitz Algebra

The purpose of this section is to establish stability of A∞
S under both the holomorphic

functional calculus, and the smooth calculus of self-adjoint elements. It is well known that
showing the former automatically implies that the K-Theories of A∞

S and AS coincide [2].

Proposition 4.1. The smooth Bunce-Deddens-Toeplitz algebra A∞
S is closed under the holo-

morphic functional calculus.

Proof. Since A∞
S is a complete locally convex topological vector space, it is enough to check

that if a ∈ A∞
S and invertible in AS, then a−1 ∈ A∞

S . Consequently, the Cauchy integral
representation finishes the proof. To this end, let a ∈ A∞

S and thus a = T (b) + c with
b ∈ B∞

S and c ∈ K∞ and suppose a is invertible in AS. Since τ is a homomorphism, τ(a) = b
is invertible in B∞

S . It is proved in [7] that if b ∈ B∞
S and invertible, then b−1 ∈ B∞

S . Since
K is an ideal of AS and τT is the identity map, it follows that

a−1 = T (b−1) + c′

for some c′ ∈ K. The proof will be complete if we can show that c′ ∈ K∞. Notice that

c′ = a−1 − T (b−1) = a−1(I − aT (b−1) = a−1(I − T (b)T (b−1) + cT (b−1)) .

From Propositions 3.3 and 3.4, we have that both I − T (b)T (b−1) and cT (b−1) are in K∞.
Consequently, there is a c̃ ∈ K∞ such that c′ = a−1c̃. It follows from the properties of norms
on K∞ that

‖c′‖0,N ≤ ‖a−1‖‖c̃‖0,N < ∞ . (4.1)

Computing δK on c we have

δK(c
′) = δK(a

−1)c̃) = −a−1δK(a)a
−1c̃+ a−1δK(c̃) .
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Similarly to the proof of Proposition 3.3, we have, inductively, for any j that

δjK(b) =
∑

i

aibi finite sum,

with ai bounded and bi are smooth compact. Using this and the estimate in equation (4.1),
we see that ‖c′‖M,N is finite for all M and N . Thus c′ ∈ K∞, completing the proof. �

To prove closure under the calculus of self-adjoint elements, the approach used in [7]
works in this setting as well. Hence, we need results regarding the growth of exponentials
of elements of B∞

S and K∞. For K∞, the exact result needed was proved in [7]. We state it
here for convenience.

Proposition 4.2. Suppose that c ∈ K∞ is a self-adjoint smooth compact operator. Then we
have an estimate:

‖eic‖M,0 ≤

M
∏

j=1

(1 + ‖c‖j,0)
2M−j

.

The second result needed is a minor adaptation of Proposition 3.4 in [7].

Proposition 4.3. If b ∈ B∞
S is self-adjoint, then we have an estimate:

‖eib‖M ≤

M
∏

j=1

(1 + ‖b‖j)
2M−j

.

Proof. For M = 0, notice that ‖eib‖0 = 1. We continue by induction, utilizing part (1) of
Proposition 3.2:

‖eib‖M+1 = ‖eib‖M + ‖δL(e
ib)‖M .

Using that

δL(e
ib) = i

∫ 1

0

ei(1−t)bδL(b)e
itb dt ,

we have the following estimate for the inductive step:

‖eib‖M+1 ≤ ‖eib‖M + i

∫ 1

0

‖ei(1−t)b‖M‖δL(b)‖M‖eitb‖M dt ≤

≤

M
∏

j=1

(1 + ‖b‖j)
2M−j

+

[

M
∏

j=1

(1 + ‖b‖j)
2M−j

]2

‖δL(b)‖M .

Since ‖δL(b)‖M ≤ ‖b‖M+1, we have:

‖eib‖M+1 ≤

M
∏

j=1

(1 + ‖b‖j)
2M−j

(1 +

M
∏

j=1

(1 + ‖b‖j)
2M−j

‖b‖M+1) ≤

≤

M
∏

j=1

(1 + ‖b‖j)
2M−j

M
∏

j=1

(1 + ‖b‖j)
2M−j

(1 + ‖b‖M+1) =

M+1
∏

j=1

(1 + ‖b‖j)
2M+1−j

.

This establishes the inductive step and finishes the proof. �
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Theorem 4.4. The smooth Bunce-Deddens-Toeplitz algebra A∞
S is closed under the smooth

functional calculus of self-adjoint elements.

Proof. We need to prove that, given a self-adjoint element a of A∞
S and a smooth function

f(x) defined on an open neighborhood of the spectrum σ(a) of a we have f(a) is in A∞
S .

It is without loss of generality to assume that f(x) is smooth on R and is L-periodic:
f(x + L) = f(x) for some L.. Then f(x) admits a Fourier series representation with rapid
decay coefficients {fn}, and hence

f(a) =
∑

n∈Z

fne
2πina/L

for a self-adjoint a = T (b) + c ∈ A∞
S . Thus, it remains to establish at most polynomial

growth in n of norms ‖e2πina/L‖M,N .
Notice that τ

(

e2πina/L
)

in B∞
S is e2πinb/L, which indeed grows at most polynomially in n,

by Proposition 4.3. Thus, we only need to show that the ‖ · ‖M,N of the difference

e2πin(T (b)+c)/L − T
(

e2πinb/L
)

∈ K∞

are at most polynomially growing in n.
To analyze the above, we use a version of the Duhamel’s formula:

ei(T (b)+c) − T
(

eib
)

=

∫ 1

0

d

dt

(

eit(T (b)+c)T
(

ei(1−t)b
))

dt =

=

∫ 1

0

eit(T (b)+c)c T
(

ei(1−t)b
)

dt+

∫ 1

0

eit(T (b)+c)
[

T (b)T
(

ei(1−t)b
)

− T
(

bei(1−t)b
)]

dt .

Employing Proposition 3.1 we can estimate the norms as follows:

‖ei(T (b)+c) − T
(

eib
)

‖M,N ≤

∫ 1

0

‖eit(T (b)+c)‖M,0‖c T
(

ei(1−t)b
)

‖M,N dt+

+

∫ 1

0

‖eit(T (b)+c)‖M,0‖T (b)T
(

ei(1−t)b
)

− T
(

bei(1−t)b
)

‖M,N dt .

All terms above can now be estimated using (3.2), as well as Propositions 4.2 and 4.3. We
obtain the following bounds:

‖ei(T (b)+c) − T
(

eib
)

‖M,N ≤

M
∏

j=1

(1 + ‖b‖j + ‖c‖j,0)
2M−j

‖c‖M,N

M+N
∏

j=1

(1 + ‖b‖j)
2M+N−j

+

+ const
M
∏

j=1

(1 + ‖b‖j + ‖c‖j,0)
2M−j

‖b‖M

M+N+2
∏

j=1

(1 + ‖b‖j)
2M+N+2−j

.

Clearly those estimates establish the desired at most polynomial growth, finishing the proof.
�

5. Classification of Derivations

We begin with recalling the basic concepts from [9]. Let A be a complete locally compact
topological algebra and let d : A → A be continuous derivation on A. Suppose that there is
a continuous one-parameter family of automorphisms ρθ : A → A of A, θ ∈ R/Z.
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Given n ∈ Z, a continuous derivation d : A → A is said to be a n-covariant derivation if
the relation

ρ−1
θ dρθ(a) = e−2πinθd(a)

holds for all θ. When n = 0 we say the derivation is invariant. In this definition A could
be any of the following algebras: A∞

S , B∞
S , or K∞ and with the appropriate one-parameter

family of automorphisms ρKθ or ρLθ . With this definition, we point out that δL : B∞
S → B∞

S

is an invariant continuous derivation as is dK : A∞
S → A∞

S and dK : K∞ → K∞.
If d is a continuous derivation on A, the n-th Fourier component of d is defined as:

dn(a) =

∫ 1

0

e2πinθρ−1
θ dρθ(a) dθ .

We have the following simple observation [9].

Proposition 5.1. With the above notation the n-th Fourier component dn : A∞
S → A∞

S is a
continuous n-covariant derivation.

To classify continuous derivations on A∞
S we follow the strategy from [9]. We use the

classification of derivations on B∞
S from [7] and show how to lift derivations from BS to

AS. We handle the remaining derivations, those with range in K∞, by using the Fourier
decomposition components. This is the heart of the argument and will be described next.

Let AS ⊆ A∞
S be the subspace of A∞

S consisting of elements a = T (b) + c such that b has
only finitely many non-zero Fourier components and c has only finitely many non-zero matrix
coefficients (in the standard basis). It was observed in [9] that AS is a dense subalgebra of
AS. In turn, we note that it is also a dense subalgebra of A∞

S .

Theorem 5.2. If d : A∞
S → K∞ is a continuous derivation, then there is c ∈ K∞ such that

d(a) = [c, a] for every a ∈ A∞
S . In particular, d is an inner derivation.

Proof. Let d : A∞
S → K∞ be a continuous derivation. Let dn be the nth-Fourier component

of d. From Proposition 5.1, dn are n-covariant derivations and dn : A∞
S → K∞. We only

consider the case n ≥ 0 as n < 0 can be treated similarly. All n-covariant derivations
dn : AS → AS were classified in [9] . Thus, we know there exists a sequence, {βn(k)},
possibly unbounded in k, such that

dn(a) = [Unβn(K), a] (5.1)

for any a ∈ AS. We are requiring here the range of d to belong to K∞, which places
restrictions on {βn(k)}.

Let χ be a character on Z/SZ and since dn(a) ∈ K∞ for any a ∈ A∞
S we have

{

dn(U) = Un+1(βn(K+ I)− βn(K)) := Un+1αn(K) ∈ K∞ for n ≥ 0

dn(Mχ) = Unβn(K)(1− χ(n)) ∈ K∞ for n ≥ 0 .

Since for each n > 0 we can choose χ such that χ(n) 6= 1, and thus we have {αn(k)} and
{βn(k)} are RD in k for every n > 0.

For n = 0, the above equation only implies that {α0(k)} is RD in k. We have the following
difference equation:

αn(k) = βn(k + 1)− βn(k) .
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This equation has a solution of the form

βn(k) = −
∞
∑

r=k

αn(r) . (5.2)

It follows, since {α0(k)} is RD in k, so is {β0(k)}. Thus {βn(k)} is RD for any n and the
formula (5.1) extends by continuity to any a ∈ A∞

S .
We want to establish that {βn(k)} is RD in both n and k. Since dn(U) ∈ K∞ we have

that ‖dn(U)‖M,N are finite for all M and N . So, for any N and j there exists a constant
Cj,N such that

‖djK(dn(U))(I +K)N‖ ≤ Cj,N

On the other hand, consider the following calculation for n ≥ 0:

djK(dn(U)) = djK(U
n+1αn(K)) = (n+ 1)jUn+1αn(K)

since αn(K) is diagonal. Therefore, we have that

(n+ 1)j‖αn(K)(I +K)N‖ ≤ Cj,N .

However,
(n+ 1)j‖αn(K)(I +K)N‖ = (n+ 1)jsup

k

{

(1 + k)N |αn(k)|
}

.

It follows that
(1 + n)j(1 + k)N |αn(k)| ≤ Cj,N

and thus {αn(k)} is RD in both n and k. Consequently, by (5.2), {βn(k)} is RD in both n
and k. Therefore

d(a) =
∑

n∈Z

dn(a) =
∑

n≥0

[Unβn(K), a] +
∑

n<0

[βn(K)(U∗)−n, a]

=

[

∑

n≥0

Unβn(K) +
∑

n<0

βn(K)(U∗)−n, a

]

= [c, a]

where all the sums converge and c ∈ K∞. Thus d is inner, completing the proof. �

To analyze general derivations d : A∞
S → A∞

S we first notice the following.

Proposition 5.3. Let d : A∞
S → A∞

S be a continuous derivation, then d(K∞) ⊆ K∞.

Proof. Since K∞ is generated by the system of units {Pks} and since d is continuous we only
need to verify that d(Pks) is in K∞. Since Pks = PkrPrs, by the Leibniz rule we have that

d(Pks) = Pkrd(Prs) + d(Pkr)Prs .

Since the right-hand side is clearly in K∞, the claim follows. �

It follows from this proposition that any continuous derivation d : A∞
S → A∞

S defines a
continuous derivation on B∞

S , which is isomorphic to the factor algebra A∞
S /K∞. We use

this observation in the proof of the following main result of this section.

Theorem 5.4. Let d : A∞
S → A∞

S be any continuous derivation. Then there exist: a constant
γ, b ∈ B∞

S and c ∈ K∞ such that:

d = γdK + [T (b) + c, ·].
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Proof. Let d : A∞
S → A∞

S be a continuous derivation and define a derivation δ : B∞
S → B∞

S

by

δ(a +K∞) = d(a) +K∞ .

In other words, δ is the class of d in the factor algebra A∞
S /K∞ ∼= B∞

S . The continuity of d
implies the continuity of δ. But all continuous derivations δ : B∞

S → B∞
S were classified in

[7]. Therefore, by that paper, there exists a constant γ such that

δ = γδL + δ̃

where δ̃ is inner. Thus there exists a b ∈ B∞
S such that δ̃ = [b, ·].

Next notice that [T (b), ·] is an inner derivation on A∞
S whose class in B∞

S is precisely [b, ·].

Define a derivation d̃ : A∞
S → A∞

S by

d̃ = d− cdK − [T (b), ·] .

Since the class of dK in is δL, we have that d̃ : A∞
S → K∞ and hence by Theorem 5.2, d̃ = [c, ·]

for some c ∈ K∞. This concludes the proof. �

6. K-Theory and K-Homology

Since K∞, A∞
S , B∞

S are closed under the holomorphic functional calculus, each inclusion
induces an isomorphism in K-Theory. Using this fact, along with the 6-term exact sequence
[12] induced by the short exact sequence of smooth subalgebras, we compute the K-Theory
of A∞

S . We then make use of the Universal Coefficient Theorem [13] to compute the K-
Homology of AS.

6.1. K Theory. Recall the short exact sequence

0 −→ K∞ −→ A∞
S −→ B∞

S −→ 0

of smooth subalgebras. This induces the following 6-term exact sequence in K-Theory:

K0(K
∞) K0(A

∞
S ) K0(B

∞
S )

K1(B
∞
S ) K1(A

∞
S ) K1(K

∞)

K0(τ)

expind

K1(τ)

For details regarding the K-Theory of B∞
S , see [7]. Since the generating unitary V in B∞

S

lifts to the partial isometry U , it follows that

ind([V ]1) = [I − U∗U ]0 − [I − UU∗]0 = −[P00],

which generates K0(K
∞). Hence, the index map is an isomorphism. By exactness, it follows

that K1(τ) is the trivial map. Since K1(K
∞) = 0, by exactness K1(τ) is also injective, and

hence K1(A
∞
S ) = 0. Since exp is trivial, by exactness K0(τ) is surjective. But again, since

ind is an isomorphism, it follows that the map K0(K
∞) → K0(A

∞
S ) is trivial. Hence, K0(τ)

is injective as well. Using the computation done in [7], it follows that we have:

K0(A
∞
S ) ∼= GS where GS = {k/l ∈ Q : k ∈ Z, l|S}.

Let us summarize the results in the following proposition.
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Proposition 6.1. The K-Theory of AS is given by

K0(AS) ∼= GS and K1(AS) ∼= 0.

6.2. K-Homology. The Universal Coefficient Theorem of Rosenberg and Schochet [13]
states that we have two exact sequences:

0 Ext1Z(K1(AS),Z) K0(AS) Hom(K0(AS),Z) 0,

and

0 Ext1Z(K0(AS),Z) K1(AS) Hom(K1(AS),Z) 0,

where in the above, we have used the identification KKi(AS,C) = Ki(AS). From the first
sequence, it is clear that

Ext1Z(K1(AS),Z) ∼= 0.

In [7] it was shown that
Hom(K0(AS),Z) ∼= 0.

Hence, we have K0(AS) = 0. From the second sequence, it is immediate that

K1(AS) ∼= Ext1Z(K0(AS),Z) ∼= K1(BS),

where the last isomorphism is derived in [7]. This group was computed in [7] to be isomorphic
to (Z/SZ)/Z. This reference also contains an explicit description of the precise subgroup
being modded out. In fact, this subgroup turns out to be the natural dense copy of Z ⊆
Z/SZ. We summarize the above computations in the following proposition.

Proposition 6.2. The K-Homology of AS is given by

K0(AS) ∼= 0 and K1(AS) ∼= (Z/SZ)/Z.
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