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A NOTE ON QUANTUM ODOMETERS
SLAWOMIR KLIMEK, MATT MCBRIDE, AND J. WILSON PEOPLES

ABSTRACT. We discuss various aspects of noncommutative geometry of smooth subalgebras
of Bunce-Deddens-Toeplitz Algebras.

1. INTRODUCTION

In noncommutative geometry it is often necessary to consider dense x-subalgebras of C*-
algebras, in particular, in connection with cyclic cohomology or with the study of unbounded
derivations on C*-algebras [5]. Smooth subalgebras of noncommutative spaces are also nat-
urally present in studying spectral triples. If C*-algebras are thought of as generalizations of
topological spaces, then dense subalgebras may be regarded as specifying additional struc-
tures on the underlying space, like a smooth structure. In analogy with the algebras of
smooth functions on a compact manifold, such a smooth subalgebra should be closed un-
der holomorphic functional calculus of all elements and under smooth-functional calculus of
self-adjoint elements. It should also be complete with respect to a locally convex algebra
topology, see [1].

The purpose of this note is to study smooth subalgebras A% of Bunce-Deddens-Toeplitz
C*-algebras Ag associated to a supernatural number S, objects that capture their smooth
structure. This work is a continuation of, and heavily relies on, our previous papers on the
subject of smooth subalgebras, in particular [7], [8] which investigated smooth structures on
Bunce-Deddens algebras, the algebras of compact operators, and the Toeplitz algebra.

Bunce-Deddens algebras Bg [3], [4], are crossed-product C*-algebras obtained from odome-
ters and Bunce-Deddence-Toeplitz algebras Ag are their extensions by compact operators
K:

O—)’C—)AS—)BS—)O.

Due to the topology of odometers [6], which are Cantor sets with a minimal action of a
homeomorphism, the smooth subalgebras are naturally equipped with inductive limit Frechet
(LF) topology.

Using a version of the Toeplitz map [9], we build smooth subalgebras A from Toeplitz
operators with smooth symbols and from smooth compact operators. Smooth compact
operators, introduced in [I1], were studied in details in [§]. Smooth Bunce-Deddens algebras
BZ, the symbols of Toeplitz operators, were introduced in [§]. We explicitly construct
appropriate LF structures on AZ and prove that those algebras are closed under holomorphic
calculus so that they have the same K-Theory as their corresponding C*-algebra closures,
and we verify that they are closed under smooth functional calculus of self-adjoint elements.

We also focus on describing continuous derivations [14] on smooth subalgebras AY. In
particular, using results from [7], [§], we classify derivations on A and show that, up to

Date: May 18, 2022.


http://arxiv.org/abs/2205.08457v1

2 KLIMEK, MCBRIDE, AND PEOPLES

inner derivations with compact range, they are lifts of derivations on BZ, the factor algebra
of A3 modulo the ideal K* of smooth compact operators. Since many derivations on Bg°
are themselves inner, the factor space of continuous inner derivations on A modulo inner
derivations turns out to be one-dimensional. Additionally we shortly describe K-Theory and
K-Homology of Ag.

The paper is organized as follows. Preliminary section 2 contains our notation and a short
review of relevant results from [9] and [7]. In section 3 we review smooth compact operators
and introduce and study smooth Bunce-Deddens-Toeplitz. Section 4 contains a detailed
discussion of stability of A’ under both the holomorphic functional calculus, and the smooth
calculus of self-adjoint elements. In sections 5 we investigate the structure and classifications
of derivations. Finally, section 6 contains remarks on K-Theory and K-Homology.

2. PRELIMINARIES
2.1. Supernatural Numbers. A supernatural number S is defined as the formal product:
S = H pr, e, €{0,1,---,00}.
p—prime
We will assume ) €, = oo so that S an infinite supernatural number. We define S-adic ring:
z/S2.= || z/p*Z.
p—prime

Here if S = p™ for a prime p, then Z/SZ is equal to Z,, the ring of p-adic integers.

If the ring Z/SZ is equipped with the Tychonoff topology it forms a compact, Abelian
topological ring with unity, though only the group structure is relevant for this paper. In
addition, if S is an infinite supernatural number then Z/SZ is a Cantor set.

The ring Z/SZ contains a dense copy of Z by the following indentification:

Z3k {k(modpr)}te [] z/r~z (2.1)

p—prime

2.2. Hilbert Spaces. We use two concrete Hilbert spaces for this paper: H = (*(Z) and
H, = (*(Z>o) Let {Ejhiez and {E;} : k > 0} be the canonical bases for H and H, re-
spectively. We need the following shift operator V' : H — H on H and the unilateral shift
operator U : Hy — H, on H,:

VE = E;, and UE};F = E,jﬂ.
Notice that V' is a unitary while U is an isometry. We have:
[U*> U] = POa

where Py is the orthogonal projection onto the one-dimensional subspace spanned by Ej .
For a continuous function f € C(Z/SZ) we define two operators my : H — H and
My : Hy — Hy via formulas:

vaEl = f(l)El and MfE]:_ = f(]{?)E]j



A NOTE ON QUANTUM ODOMETERS 3

In those formulas we considered integers k, [ as elements of Z/SZ using identification (2.1I).
Since Z is a dense subgroup of Z/S7Z we obtain immediately that
Iyl = [|My|| = sup [f(D)| = sup |f(k)|= sup |f(z)|=[flc-
lez k€Z>o xz€Z/STZ
The algebras of operators generated by the my’s or by the M;’s are thus isomorphic to

C(Z/SZ) and so they carry all the information about the space Z/SZ, while operators U
and V reflect the odometer dynamics ¢ on Z/SZ given by:

olr) =z +1. (2.2)
The relation between those operators is:
Vimg Vo= myo,. (2.3)
Similarly we have:
MU = UMjo,. (2.4)
There is also another, less obvious relation between U and the M;’s, namely:
M;Py = PyMy = f(0)F. (2.5)

2.3. Algebras. Following [9], we define the Bunce-Deddens and Bunce-Deddens-Toeplitz
algebras, Bg and Ag respectively, to be the following C*-algebras: Bg is generated by the
operators V' and my:

Bs=C*"{V,mys: f e C(Z/SZ)}
while Ag is generated by the operators U and Mj:
As =C{U,M;: f e C(Z/SZ)}.

The algebra Ag contains the projection Py and in fact all compact operators K and the quo-
tient Ag/KC can be naturally identified with Bg, see [7]. Let 7 be the natural homomorphism
T AS — Bs.

The algebra Bg is isomorphic with the crossed product algebra:

Bs = C(Z/SZ) %, .

and is simple [7]. Consequently it is isomorphic the universal C*-algebra with generators v
and f, where v is unitary, f € C(Z/SZ), with relations (compare with (2.3])):

vifo=fog.

Interestingly, algebras Ag can also be described in terms of generators and relations as
follows.

Proposition 2.1. The universal C*-algebra A with generators w and f, such that u is an
isometry, f € C(Z/SZ), with relations (compare with [2.3) and (2.5 ):

fu=u(foyp) and fpo= f(0)po,

where [u*, u] = pg, is isomorphic with Ag.
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Proof. We will show that any irreducible representation of A either factors through By or is
isomorphic to the defining representation of Ag. Since Bg = Ag/K is a factor algebra, the
defining representation of Ag dominates the factor representation and so, by universality, A
is isomorphic to Ag.

Consider an irreducible representation of A and let U represents v and M; represent f.
Notice that Py := [ — UU* is the orthogonal projection onto the kernel of U*. If that kernel
is zero then U is unitary and U, My give a representation of Bg by universality, since they
satisfy the crossed-product relations.

If the kernel of U* is not zero, pick a unit vector Ej such that U*E; = 0. Since U is an
isometry, the set {FE;"}, k =0, 1,... is orthonormal, where E;" := U*E;". Moreover, we have
by using relations:

MyEy = MyREy = f(0)Ey,
and similarly:
MEf = MyUYES = UM o Ef = f(K)UFES = f(k)E;.

It follows that vectors { £ } span an invariant subspace and so, by irreducibility, { ;" } is an
orthonormal basis. Since U is the unilateral shift in this basis, we reproduced the defining
representation of Ag, finishing the proof. O

2.4. Toeplitz Map. Next we discuss the key relation between the two algebras Ag and Bg.
Let Pso: H — H_ be the following map from H onto H, given by

g Ef ifk>0
2070 itk <o.

We also need another map s : H, — H given by:
Define the map T : B(H) — B(H.), between the spaces of bounded operators on H and
H,, in the following way: given b € B(H) we set
T(b) = onbS.

T is known as a Toeplitz map. It has the following properties [10]:

(1) T(In) = In, -

(2) (V™) =T (b)U™ and T'(V—"b) = (U*)"T'(b) for n > 0 and all b € B(H).

(3) T(bmy) =T(b)My and T'(mysb) = MfT'(b) for all f € C(Z/SZ) and all b € B(H)

(4) T(b*) =T(b)* for all b € B(H).
Consequently, it follows that T is a *x-preserving map from Bg to Ag. If 7 is the natural
homomorphism from Ag to Bg then we have

TT'(b) =0

for all b € Bg. It follows that for any a in Ag there is a compact operator ¢ such that we
have a decomposition:

a="T(b)+c, (2.6)
where b = 7(a) € Bg. One can verify that if b is an element in Bg then 7'(b) is compact if
and only if b = 0. This implies the uniqueness of the above decomposition (2.6]).
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2.5. Fourier Series. There are natural one-parameter groups of automorphisms of Bg and
Ag respectively. They are given by the formulas:

pg (b) = ¥ pe? L for h € By and pp(a) = 2™ ae™™ % for a € Ag,
where 6 € R/Z. Here we using the following diagonal label operators on H and H, respec-
tively:
LE, =1E, and KE}! = kE;.
We have the following relations:
pg(V) =™V and pj(my) = my .
Automorphisms ph satisfy analogous relations and the extra relation on U*, namely
pgﬁ(U*) — 6_2’”9U*.
Define E': Bg — C*{m;: f € C(Z/SZ)} = C(Z/SZ) via

E(b) = / dE(b) do

It’s easily checked that F is an expectation on Bg. For a b € Bg we define the n-th Fourier
coefficient b, by the following:

1 1
by = e(V7"b) = / po(V7"b) df = / e 20V =1 5o (b) df.
0 0

From this definition, it’s clear that b, € C*{My : f € C(Z/SZ)} so we can write b, = my,
for some f,, € C(Z/SZ). We define an expectation, F on Ag, in a similar fashion:

E:As— C*{M;: f € C(Z)SZ)} = C(Z/ST) .

For an a € Ag, its n-th Fourier coefficient a,, is also defined similarly and also a,, = Mj,
for some f,, € C(Z/SZ). Additionally, notice that we have the following relation with the
Toeplitz map:

(T'(b))n = T(b,) forall n.

3. SMOOTH SUBALGEBRAS

3.1. Smooth Compact Operators. We begin by reviewing properties of smooth compact
operators from [8]. Let I be the algebra of compact operators on H,. The orthonormal
basis {E; }x>0 of Hy determines a system of units { Py }r >0 in K that satisfy the following
relations:

P]:s = Psk and PksPrt = 537“Pkt )

where d,, = 1 for s = r and is equal to zero otherwise. The set of smooth compact operators
with respect to {E;} is the set of operators of the form

c= E Chs Prs
k,s>0

so that the coefficients {cgs}rs>0 are rapidly decaying (RD). We denote the set of smooth
compact operators by K.
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We now introduce norms on K. They are constructed using the following useful deriva-
tion on K°°:

dg(c) = K, ].

Clearly dg is linear and satisfies the the Leibniz rule as dx is a commutator. We define
| - ||az,n norms on K by the following formulas:

lelles =3 () o + 51,

J=0

with 6% (c) := ¢. The following proposition from [8] summarizes the basic properties of |||/ .5
norms.

Proposition 3.1. Let a and b be bounded operators in H, then

(1) a € K if and only if ||a||ymn < o0 for all nonnegative integers M and N.
(2) [lallarsrn = llallamrn + |dx(a)||arn-

(3) llallarn < llallrrn+1-

(4) [labllarn < llallarollbllary < llallazn]|bllar-

(5) [ldx(a)llarn < llallarsrn-
(6)
7)

la*([an < llallarenv-
K> is a complete topological vector space.

This proposition implies that IO is a Fréchet x-algebra with respect to the norms, ||-||an-

3.2. Smooth Bunce-Deddens Algebras. Next we review smooth Bunce-Deddens alge-
bras B from [7]. We need the following terminology. We say a family of locally constant
functions on Z/SZ is Uniformly Locally Constant, ULC, if there exists a divisor [ of S such
that for every f in the family we have

flz+1) = f(z)

for all x € Z/SZ.

We define the space of smooth elements of the Bunce-Deddens algebra, B, to be the
space of elements in Bg whose Fourier coefficients are ULC and whose norms are RD. Using
Fourier series those conditions can be written as:

BY = {b => V'my, :{[Ifall} is RD, there is an I|S, V!5V~ = b} .

nel

It’s immediate that B is indeed a nonempty subset of Bg and it was proved in [7] that B
is a *-subalgebra of Byg.
Let o1, : B — B be given by

5L(b) = [L> b]

This derivation is very fundamental below. We have the following simple relations:

OL(v") =nV" and &(my) = 0.
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This derivative is in particular used to define the following norms on B that capture the
RD property of the Fourier coefficients of elements of BZ. They are defined by:

=3 (M) 1o

=0
The following proposition from [7] states the basic properties the P-norms.

Proposition 3.2. Let by and by be in B, then

(1) Nlbrllpsr = |b1]lp + |0L(b1) || p with ||by]lo := ||by]]-
(2) ||b1b2|lp < [|b1] || b2]| P
(3) NoL(by)||p < ||br][ Pyt

It follows that we have the following useful way to describe elements in Bg:
BY ={b € By : ||b||as < 00, for every M, there is an [|S, VbV~ = b} .

3.3. Smooth Bunce-Deddens-Toeplitz Algebras. Finally, following similar considera-
tions for the Toeplitz algebra in [8], we define the smooth Bunce-Deddens-Toeplitz algebra
AS by
T={a=T0b)+c:be BT, ce K7} C Ag.
Much like with the short exact sequence for Ag and Bg, these smooth subalgebras have the
following related short exact sequence:
0 —K* — AT — By — 0.
Thus, we can view the topology on A, as a vector space, in the usual way:
AT = BY & K.
This gives Ag its LF topology.

The Toeplitz map 7' : Bg — Ag can naturally be restricted to B and considered as a
map 7" : B — AZ. In addition, the homomorphism 7 can be restricted to AZ” and we have
a homomorphism 7 : AY — BZ.

It is easy to verify on generators that we have

dx(T'(b)) = T(3.(D)).

As a consequence of continuity of 7' this formula is true for all b € BZ°.
It remains to verify that A% is indeed a subalgebra of Ag. This follows from the following
two propositions.

Proposition 3.3. Let b be in B and ¢ be in K. Then T'(b)c and ¢T'(b) are in K.
Proof. Because T'(b*) = T'(b)*, we only need to prove T'(b)c is in K. Proceeding as in [§]

we prove by induction on M that we have the following estimate:
IT®)cllarn < N0llallellary - (3.1)
The M = 0 case is immediate from the definition of the norms. The inductive step is:
[T (b)cllarsrn = [T ®)cllary + llde(T(b))c + T (b)dx(c) |ary <
< ([1bllar + 116L(0)llas) (llellary + ldr ()l ar.n) = [0l arsallellarrrn -
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Notice also that, again proceeding as in [8], we can obtain the following inequality:

1T O) |arny < Nbllarsnllcllar - (3.2)

U

Proposition 3.4. Let by and by be smooth Bunce-Deddens elements, then the following
expression is a smooth compact element:

T(01)T (b2) — T'(b1bo) -
Proof. We follow [§]. Let by and by be in BZ with the following decompositions:

by=bf +by =Y V'my, +> mp V" and by=bf +by; =Y V'mg, + > mg, V"

n>0 n<0 n>0 n<0

where {||f.||} and {||g.||} are RD sequences and {f,} and {g,} are ULC. Since T is linear
we only need to study the following differences:

T(O)T(by) —T(b{by), T(by)T(by) —T(byby)
T(b)T(b3) = T(brb3), TON)T(by) —T(byb3).
First consider the following:

TONT(bF) = T(h7b5) = > UM UM, — > T (V'mf,V™my,)

m,n>0 m,n>0
= Z Un+men0W”M9m — Z T (Vn+mmfn0s0meM)
m,n>0 m,n>0
= Z U""'menocp’RM Z T (Vn-l—m) anogo’”Mgm
m,n>0 m,n>0
Since T(V™t™) = U"™™ so the above is zero. A similar argument can be made for

T(by)T(by) —T(by by ). For the next difference we have
TOD)TF) = TErb) = 3, My (U) UMy, = > M T(V'V")M,,.
m>0,n<0 m>0,n<0

However, since T'(V"™™) = (U*)™"U™ since n < 0, this difference is also zero. Finally, for
the last difference, we have

C =TT (by) = T(bfby) =T(bF) > My, (U™ = T(bfmy, V™)
m<0 m<0
= (T(bfmg,)(U")™™ = T(b{my, V™))
m<0
= - Z T(bii_mgmvm)P<—m
m<0

where we used the following formula for m < 0:

U Uy — [ = —Po_,,.
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Clearly, C'is compact but we still need to prove it’s smooth compact. To this end, we prove
the M, N-norms of C' are finite. A straightforward calculation gives:

d(C) = = d (T(bfmy, V™) Pe_y) = — 3 T (d(b{ V™)) Po_y,

m<0 m<0

Next we estimate norms of C' using ||P<_,,|lo.x = |m|" to obtain:

J .
(O < 337 ({) = (67 g

< S (14 m) (Z 9 Hdﬁg(bf)H) gl

= > Il D) gl < const[bf [51165 142

m<0
Consequently, since by and by are in BZ we get ||C||yn < co. This shows T'(by)T'(by) —
T'(b1be) is smooth compact. A more careful analysis following [§] yields the following estimate:
[T(b1)T (b2) — T'(brbo) || ar,n < const||by [|;]|b2lln+jra, (3.3)
U

4. STABILITY OF SMOOTH BUNCE-DEDDENS-TOEPLITZ ALGEBRA

The purpose of this section is to establish stability of AZ under both the holomorphic
functional calculus, and the smooth calculus of self-adjoint elements. It is well known that
showing the former automatically implies that the K-Theories of A and Ag coincide [2].

Proposition 4.1. The smooth Bunce-Deddens-Toeplitz algebra AT is closed under the holo-
morphic functional calculus.

Proof. Since AZ is a complete locally convex topological vector space, it is enough to check
that if a € AY and invertible in Ag, then a™' € A. Consequently, the Cauchy integral
representation finishes the proof. To this end, let a € AY and thus a = T'(b) + ¢ with
b € BY and ¢ € K™ and suppose a is invertible in Ag. Since 7 is a homomorphism, 7(a) = b
is invertible in BZ. It is proved in [7] that if b € BY and invertible, then b~' € BZ. Since
KC is an ideal of Ag and 77 is the identity map, it follows that
al=TOh "+
for some ¢ € K. The proof will be complete if we can show that ¢ € K. Notice that
d=at-Th " )=a'I—-aT(b")=a I -TOTO")+ ().

From Propositions B3] and 3.4 we have that both I — T'(b)T'(b") and ¢T'(b™') are in K.
Consequently, there is a ¢ € K> such that ¢/ = a~'¢. It follows from the properties of norms
on K= that

1/ lov < lla™[lléllo,n < oo (4.1)
Computing dg on ¢ we have

(5K(C/) = 5K(CL_1)5) = —a‘léK(a)a_lé + CL_léK(é) .
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Similarly to the proof of Proposition [3.3 we have, inductively, for any j that
= Z a;b; finite sum,
with a; bounded and b; are smooth compact. Using this and the estimate in equation (4.1]),
we see that ||| a n is finite for all M and N. Thus ¢ € £, completing the proof. O

To prove closure under the calculus of self-adjoint elements, the approach used in [7]
works in this setting as well. Hence, we need results regarding the growth of exponentials
of elements of BF and K. For K>, the exact result needed was proved in [7]. We state it
here for convenience.

Proposition 4.2. Suppose that ¢ € K is a self-adjoint smooth compact operator. Then we
have an estimate:

M
; M—j
€| aro < H1+||c||]02 .

The second result needed is a minor adaptation of Proposition 3.4 in [7].

Proposition 4.3. If b € BY is self-adjoint, then we have an estimate:

M—
le®llar < H L+ [lbll;)*"

7j=1

Proof. For M = 0, notice that [[e®||p = 1. We continue by induction, utilizing part (1) of
Proposition

le®llar+1 = lle®llar + [16L(e™) 2z

Using that
1
5]L(eib) — Z/ 6i(1_t)b(5L(b)6itb dt,
0

we have the following estimate for the inductive step:

1
le®llare1 < ||6“’HM+Z'/0 e = lar l0n (0)llar €™ la dt <

< [T+ el + [ TT +lo1,)? ] 160.(0) [ a1 -
i=1 j=1

Since [|0L(0)||ar < ||6]|p141, We have:

M M
i M- J M—j
el < H(l + [1bll;)* H (L4 N1Bl1)* " Mbllar+r) <

M M M+1
M—j M—j M+1—j
H (L Qoll)> " TT+10ol)>" 7 (4 [1Bllare) = TT 0+ 1101,)° -

This establishes the inductive step and finishes the proof. O
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Theorem 4.4. The smooth Bunce-Deddens-Toeplitz algebra AY is closed under the smooth
functional calculus of self-adjoint elements.

Proof. We need to prove that, given a self-adjoint element a of A¥ and a smooth function
f(z) defined on an open neighborhood of the spectrum o(a) of a we have f(a) is in AZ.
It is without loss of generality to assume that f(z) is smooth on R and is L-periodic:
f(x 4+ L) = f(x) for some L.. Then f(z) admits a Fourier series representation with rapid

decay coefficients { f,,}, and hence
_ Z fne27rina/L

nezZ

for a self-adjoint a = T'(b) + ¢ € A¥. Thus, it remains to establish at most polynomial
growth in n of norms [|e?™™%/L||y, v.

Notice that 7 (¢***/L) in Bg is ™"/~ which indeed grows at most polynomially in n,
by Proposition 4.3l Thus, we only need to show that the || - ||, n of the difference

627r7ln(T(b)—|—c)/L T (e2m’nb/L) =

are at most polynomially growing in n.

To analyze the above, we use a version of the Duhamel’s formula:

1
. . d , . .
{(T(b)+c) ib) _ wt(T'(b)+c) i(1-1)b —
e T () /0 o (e T (¢0-9%)) dt

_ /1 T (B)+e) o (ei(l—t)b) dt + /1 cit(T(b)+e) [T(b)T (ei(l—t)b) _T (bei(l—t)b)} dt
0 0

Employing Proposition 3.1l we can estimate the norms as follows:

1
[T T () asy < / [T aolle T (e70) Jlar di+

/ Hezt b)+c) HMOHT( ) ( i(1—t) ) T (bei(l—t)b) HM,N dt .

All terms above can now be estimated using (3.2)), as well as Propositions 2] and .31 We
obtain the following bounds:

M M+N
M—j M+N—j
X707 = () fagar < [T+ 00+ ello)*™ e T (1 101,77+
j=1 J=1
M M~4+N+2
M—i M+N+2—j
+const [T (1 + [1oll; + llello)® ™ lollar TT (14 o)l )2
i=1 i=1

Clearly those estimates establish the desired at most polynomial growth, finishing the proof.
O

5. CLASSIFICATION OF DERIVATIONS

We begin with recalling the basic concepts from [9]. Let A be a complete locally compact
topological algebra and let d : A — A be continuous derivation on A. Suppose that there is
a continuous one-parameter family of automorphisms py : A — A of A, 0 € R/Z.
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Given n € Z, a continuous derivation d : A — A is said to be a n-covariant derivation if

the relation
o7 dpo(a) = e~ "d(a)

holds for all . When n = 0 we say the derivation is invariant. In this definition A could
be any of the following algebras: A%, B, or £ and with the appropriate one-parameter
family of automorphisms pi or py. With this definition, we point out that d;, : B® — B
is an invariant continuous derivation as is dg : AY — AY and dg : K> — K.

If d is a continuous derivation on A, the n-th Fourier component of d is defined as:

1
d,(a) :/ ™ -t dp(a) df .
0
We have the following simple observation [9].

Proposition 5.1. With the above notation the n-th Fourier component d,, : A — AY is a
continuous n-covariant derivation.

To classify continuous derivations on A% we follow the strategy from [9]. We use the
classification of derivations on BZ from [7] and show how to lift derivations from Bg to
Ag. We handle the remaining derivations, those with range in K£°, by using the Fourier
decomposition components. This is the heart of the argument and will be described next.

Let As C A2 be the subspace of A consisting of elements a = T'(b) + ¢ such that b has
only finitely many non-zero Fourier components and ¢ has only finitely many non-zero matrix
coefficients (in the standard basis). It was observed in [9] that Ag is a dense subalgebra of
Ags. In turn, we note that it is also a dense subalgebra of A%.

Theorem 5.2. Ifd: AY — K= is a continuous derivation, then there is ¢ € K™ such that
d(a) = [c,a] for every a € AY. In particular, d is an inner derivation.

Proof. Let d : AZ — K> be a continuous derivation. Let d,, be the nth-Fourier component
of d. From Proposition b1 d,, are n-covariant derivations and d,, : A — K. We only
consider the case n > 0 as n < 0 can be treated similarly. All n-covariant derivations
d, : As — Ag were classified in [9] . Thus, we know there exists a sequence, {5,(k)},
possibly unbounded in k, such that

dn(a) = [U"5n(K), a] (5.1)

for any a € Ag. We are requiring here the range of d to belong to K>, which places
restrictions on {f,(k)}.
Let x be a character on Z/SZ and since d,,(a) € K> for any a € AZ we have

do(U) = U (B(K+ 1) — Bo(K)) := U, (K) € K forn >0
dn (M) = U"B,(K)(1 — x(n)) € £ forn > 0.
Since for each n > 0 we can choose x such that y(n) # 1, and thus we have {«,(k)} and
{Bn(k)} are RD in k for every n > 0.

For n = 0, the above equation only implies that {ay(k)} is RD in k. We have the following
difference equation:

an(k) = Bu(k +1) = Bu(k) .
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This equation has a solution of the form
Ba(k) ==Y an(r). (5.2)
r==k

It follows, since {ap(k)} is RD in k, so is {fp(k)}. Thus {5,(k)} is RD for any n and the
formula (5.I)) extends by continuity to any a € AZ.

We want to establish that {£,(k)} is RD in both n and k. Since d,(U) € K> we have
that ||d,,(U)||a v are finite for all M and N. So, for any N and j there exists a constant
C; v such that

ldz (dn (U +K)N|| < Civ
On the other hand, consider the following calculation for n > 0:
di(do(U)) = d (U™ (K)) = (n + 17U o, (K)
since a,(K) is diagonal. Therefore, we have that
(n + 1| (K)(I + K)V|| < Cjv .
However, . '
(n + 1)?||au, (K)(I + K)N|| = (n + 1)sup {1+ k‘)N|an(k‘)|} :
k

It follows that ’

(L +n) (1 + k) an(k)] < Cjn
and thus {a,(k)} is RD in both n and k. Consequently, by (5.2), {£.(k)} is RD in both n
and k. Therefore

d(a) = dy(a) =Y [U"B.(K),a] + Y [B.(K)(U*) ™", al

nel n>0 n<0
= D _U"B.K) + > Bu(K)U*) ™", a| = [c,q]
n>0 n<0
where all the sums converge and ¢ € K*°. Thus d is inner, completing the proof. O

To analyze general derivations d : A — AZ we first notice the following.
Proposition 5.3. Let d: AY — AZ be a continuous derivation, then d(IC>) C K.

Proof. Since K> is generated by the system of units { Py} and since d is continuous we only
need to verify that d(Pys) is in K. Since Py = Py, P,s, by the Leibniz rule we have that

d(Pks> = Pkrd(Prs> + d(Pkr>Prs .
Since the right-hand side is clearly in K>, the claim follows. O

It follows from this proposition that any continuous derivation d : AY — A% defines a
continuous derivation on BZ°, which is isomorphic to the factor algebra AF/K>. We use
this observation in the proof of the following main result of this section.

Theorem 5.4. Letd : AZ — A be any continuous derivation. Then there exist: a constant
v, b€ BE and c € K such that:

d=dg + [T(b) +c,-].
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Proof. Let d : AY — AZ be a continuous derivation and define a derivation ¢ : B — B
by

d(a+K*)=d(a)+ K.
In other words, § is the class of d in the factor algebra AY /K> = BZ. The continuity of d
implies the continuity of §. But all continuous derivations 6 : B3> — B were classified in
[7]. Therefore, by that paper, there exists a constant v such that

5:’}/5L+S

where ¢ is inner. Thus there exists a b € B such that § = [b, -].
Next notice that [T'(b), -] is an inner derivation on Ag whose class in Bg is precisely [b, -].

Define a derivation d : Ay — AY by
d=d—cdg —[T(b),].

Since the class of di in is &, we have that d : AY — K> and hence by Theorem [5.2] d= e, -]
for some ¢ € K. This concludes the proof. O

6. K-THEORY AND K-HOMOLOGY

Since K>, A¥, BY are closed under the holomorphic functional calculus, each inclusion
induces an isomorphism in K-Theory. Using this fact, along with the 6-term exact sequence
[12] induced by the short exact sequence of smooth subalgebras, we compute the K-Theory
of AY. We then make use of the Universal Coefficient Theorem [13] to compute the K-
Homology of Ag.

6.1. K Theory. Recall the short exact sequence
0 — K — Ay — B — 0
of smooth subalgebras. This induces the following 6-term exact sequence in K-Theory:

Ko(K®) —— Ko(AF) 220 Ko(BY)

] Jso

KA(BY) ey K0(AF) < Ki(K¥)

For details regarding the K-Theory of B, see [7]. Since the generating unitary V in BZ
lifts to the partial isometry U, it follows that

ind([V])) = [I —=U*Ulo— [I = UU*]o = —[Poo),

which generates Ky(K>). Hence, the index map is an isomorphism. By exactness, it follows
that K4(7) is the trivial map. Since K;(K*) = 0, by exactness K;(7) is also injective, and
hence K;(A%) = 0. Since exp is trivial, by exactness Ky(7) is surjective. But again, since
ind is an isomorphism, it follows that the map Ky(K>®) — Ky(AY) is trivial. Hence, Koy(7)
is injective as well. Using the computation done in [7], it follows that we have:

Ko(AY) = Gg where Gg={k/le Q:keZ1|S}.

Let us summarize the results in the following proposition.
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Proposition 6.1. The K-Theory of As is given by
Ko(As) = Gs and Kl(As) = 0.

6.2. K-Homology. The Universal Coefficient Theorem of Rosenberg and Schochet [13]
states that we have two exact sequences:

0 —— Exty (K1 (Ag),Z) —— K°(Ag) —— Hom(Ky(As),Z) — 0,
and
0 —— Exty(Ko(Ag),Z) —— K'(As) —— Hom(K,(As),Z) — 0,

where in the above, we have used the identification K K*(Ag,C) = K'(Ag). From the first
sequence, it is clear that
Exty,(K1(Ag),Z) = 0.
In [7] it was shown that
Hom(K((As),Z) = 0.
Hence, we have K(Ag) = 0. From the second sequence, it is immediate that
K*(Ag) = Ext}(Ko(As),Z) = K'(Bs),

where the last isomorphism is derived in [7]. This group was computed in [7] to be isomorphic
to (Z/S7Z)/Z. This reference also contains an explicit description of the precise subgroup
being modded out. In fact, this subgroup turns out to be the natural dense copy of Z C
7,/ SZ. We summarize the above computations in the following proposition.

Proposition 6.2. The K-Homology of As is given by
K°%Ag) =20 and K'(As) = (Z/SZ)]Z.
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