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INVARIANT HYPERPLANE SECTIONS OF VECTOR

FIELDS ON THE PRODUCT OF SPHERES

JOJI BENNY AND SOUMEN SARKAR

Abstract. Let Sp,q be the hypersurface in R
n, where n = p + q + 1,

defined by the following:

Sp,q :=







(x1, . . . , xn) ∈ R
n
∣

∣

(

p+1
∑

i=1

x
2
i − a

2

)2

+

n
∑

j=p+2

x
2
j = 1







where a > 1. We show that Sp,q is homeomorphic to the product Sp
×Sq.

We classify all degree one and two polynomial vector fields on Sp,q. We
consider the polynomial vector field X = (R1, ..., Rp+1, Rp+2, ..., Rn) in
R

p+q+1 which keeps Sp,q invariant. Then we study the number of certain
invariant algebraic subsets of Sp,q for the vector field X if either p > 1
or q > 1.

1. Introduction

Let R1, . . . , Rn be polynomials in R[x1, . . . , xn]. Then the following sys-
tem of differential equations

dxi
dt

= Ri(x1, . . . , xn)(1.1)

for i = 1, . . . , n is called a polynomial differential system in R
n. The differ-

ential operator

X =

n
∑

i=1

Ri
∂

∂xi
(1.2)

is called the vector field associated with the system (1.1). The degree of the
polynomial vector field in (1.2) is defined to be max{deg(Ri)|i = 1, . . . , n}.

When n = 2 in (1.1), this differential system has been studied since 1900
possibly because of the second part of the Hilbert sixteenth problem (see [6]
and some references therein).

An invariant algebraic set for (1.2) is a subset A ⊂ R
n such that A is the

zero set of some f(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] and Xf = Kf for some
K ∈ R[x1, x2, . . . , xn]. Here the polynomial K is called the cofactor of f .
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In the case of the torus S1×S1, the maximum number of invariant merid-

ians and parallels are studied in [10] and [13]. Bounds on the number of
invariant hyperplanes and co-dimension one spheres for polynomial vector
fields in R

n are obtained in [9] and [2] respectively. In relation to the second
part of Hilbert’s sixteenth problem, the maximum number of algebraic limit

cycles of a polynomial vector field in R
2 as a function of its degree has been

studied in [11], [12], and [16]. The maximum number of straight lines that
are invariant for a vector field in the real plane as a function of its degree
has been studied in [1] and [15].

Inspired by the above works, we introduce an algebraic representation of
Sp × Sq for any positive integers p, q and study the number of invariant
algebraic sets of a vector field on Sp×Sq. We are primarily interested in the
algebraic sets obtained by the intersection of Sp×Sq with hyperplanes. We
classify all degree one and two polynomial vector fields on Sp,q. We obtain
an upper bound of the number of possible invariant algebraic sets that are
intersections of Sp × Sq with hyperplanes. Therefore, many other types of
invariant hypersurfaces in Sp × Sq remain to be explored.

The paper is organized as follows. In Section 2, we recall the definition
of the extactic algebraic polynomial associated to a vector subspace of the
ring of polynomials and the given vector field. We also state some basic
properties of the extactic polynomials.

In Section 3, we show that Sp,q with the subspace topology is homeomor-
phic to Sp × Sq. Then we classify all degree one and two polynomial vector
fields on Sp,q.

In Section 4, we definemeridians and parallels on Sp,q analogously to their
definitions given in [10] for S1 × S1. We prove that meridians and parallels
are connected if p > 1 and q > 1. We give an upper bound for the number
of invariant meridians and parallels in Theorem 4.3. We compute an upper
bound for the number of invariant meridians of degree one vector fields on
Sp,q. The bound for the degree one vector fields on Sp,q is attained. We
demonstrate that the bounds in Theorem 4.3 are close to being tight for the
cases p = 2, 3 and deg(X ) ≥ 4.

In Section 5, we show that the maximum number of invariant meridians

on S1,q(∼= S1 × Sq) is 2(m− 1) where m is the degree of X on S1,q and that
this bound can be reached. We also discuss invariant parallels on S1,q and
derive a bound on the number of invariant parallels. We show that there
exists a vector field on S1,q with rational first integral.

In Section 6, we show that the maximum number of invariant parallels for
X on Sp,1 := Sp × S1 is 2(m − 2) where m = degX . We also demonstrate
that this bound can be attained. We also make a remark on an upper bound
for the number of invariant meridians for X on Sp,1 and exhibit a vector field
on Sp,1 with rational first integral.
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2. Invariant Algebraic Sets and Extactic polynomials

In this section, we recall the concept of invariant algebraic sets and ex-
tactic polynomials for polynomial vector fields on R

n following [10]. Then
we discuss some basic properties of extactic polynomials.

Let S be a hypersurface in R
n defined by the zeroes of a non constant

polynomial h ∈ R[x1, x2, . . . , xn]. We say that a vector field X of the form
(1.2) is defined on S if (R1, R2, . . . , Rn) · ∇h = 0 for all points on the hy-
persurface S. This is equivalent to saying that Xh = Kh for some poly-
nomial K ∈ R[x1, x2, . . . , xn]. Because h(a1, a2, ..., an) = 0 for all points
(a1, a2, ..., an) on the hypersurface S. The hypersurface S is called a regular
hypersurface if ∇h 6= 0 for all points on S. This hypersurface is called ir-
reducible if h is irreducible. The degree of an irreducible hypersurface S is
defined to be the degree of h.

In order to study invariant algebraic sets on an algebraic hypersurface
S ⊂ R

n, one may use the idea of extactic algebraic polynomial. We briefly
recall this concept following [9]. Let W be a k-dimensional vector subspace
of R[x1, x2, x3, . . . , xn] with basis {v1, . . . , vk}. Then the extactic algebraic
polynomial of the vector field X associated to W is given by

EW (X ) = det











v1 v2 · · · vk
X (v1) X (v2) · · · X (vk)

...
...

. . .
...

X k−1(v1) X k−1(v2) · · · X k−1(vk)











,

where X j(vi) = X j−1(X (vi)) for i ≥ 2. We note that the definition of
the extactic algebraic set is independent of the choice of basis of W , see
Section 2 of [10]. In this paper we will work with W mostly of the form
{x1, x2, . . . , xn} or {1, x1, x2, . . . , xn}.

We recall the definition of the algebraic multiplicity of an irreducible al-
gebraic set given by an irreducible polynomial f = 0 from [14].

Definition 2.1. The hypersurface given by f = 0 with f ∈ W has algebraic
multiplicity, or simply, multiplicity m for X if EW (X ) 6= 0 and (f)m divides

EW (X ) and for m′ > m, (f)m
′

is not a factor of EW (X ). It has no defined
algebraic multiplicity if EW (X ) = 0.

We note that, in this paper, we are interested in hypersurfaces with fi-
nite multiplicity which is accounted when we count the number of invariant
algebraic hypersurfaces.

We shall use the following proposition whose proof can be found in [9,
Proposition 1].

Proposition 2.2. Let X be a polynomial vector field on R
n and W a

finite dimensional vector sub-space of R[x1, x2, . . . , xn] with dim(W ) > 1. If
{f = 0} is an invariant algebraic set for the vector field X and f ∈ W, then
f is a factor of EW (X ).
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We recall that a function g is called a first integral of the system (1.2) if
X g = 0. If g is a rational function then g is called a rational first integral.
If the differential system (1.1) has a first integral, then the system possesses
infinitely many invariant algebraic sets. A proof of this fact can be found
on page 102 of [7]. We quote the following result from [8].

Proposition 2.3. Let S be a regular algebraic hypersurface of degree
d in R

n+1. The polynomial vector field X on S of degree m > 0 ad-
mits

(

n+m
n+1

)

−
(

n+m−d
n+1

)

+ n invariant algebraic hypersurfaces irreducible in

C[x1, x2, · · · , xn+1] if and only if X has a rational first integral.

3. Degree one and degree two vector fields on Sp × Sq

In this section, we show that Sp × Sq is homeomorphic to the zero set of
a polynomial. Then we characterize degree one and degree two polynomial
vector fields on it. For the remainder of the paper, we fix n = p+ q + 1.

3.1. Sp × Sq as a hypersurface and its meridians and parallels. We
consider the following hypersurface in R

p+q+1 defined by the polynomial
identity

(x21 + x22 + · · ·+ x2p+1 − a2)2 + x2p+2 + x2p+3 + · · · + x2n = 1,(3.1)

where a > 1 . We denote this hypersurface by Sp,q. We show that Sp,q is
homeomorphic to the product Sp × Sq of two spheres. Then we determine
when the vector field X in (1.2) is defined on Sp,q.

Let 0 ≤ c ≤ 1 and x2p+2 + x2p+3 + · · ·+ x2n = c. Then

x21 + x22 + · · · + x2p+1 = ±
√
1− c+ a2.

Let

U1 :=
{

(x1,...,xp+1,xp+2,...,xn)∈Rn
∣

∣

∑p+1

i=1
x2
i=a2+

√
1−c,

∑n
j=p+2

x2
j=c, 0≤c≤1

}

and

U2 :=
{

(x1,...,xp+1,xp+2,...,xn)∈Rn
∣

∣

∑p+1

i=1
x2
i=a2−

√
1−c,

∑n
j=p+2

x2
j=c, 0≤c≤1

}

.

Observe that U1 and U2 are homeomorphic to Sp ×Dq. They are identified
along their boundary Sp × Sq−1 via the identity map, where

Sp × Sq−1 =







(x1, . . . , xp+1, xp+2, . . . , xn) ∈ R
n
∣

∣

p+1
∑

i=1

x2i = a2,

n
∑

j=p+2

x2j = 1







.

Thus

Sp,q = U1

⋃

Sp×Sq−1

U2 = Sp ×Dq
⋃

Sp×Sq−1

Sp ×Dq ∼= Sp × Sq.

Note that the product Sp × Sq−1 in the above equation is a subset of
R
n, whereas the representation of Sp × Sq−1 as in (3.1) says Sp × Sq−1 is a

subset of Rn−1. These two representations of Sp × Sq−1 are different in two
different ambient spaces.
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Writing out the condition for X to be invariant on the hypersurface Sp,q,
we get the following.

4

(

p+1
∑

i=1

x2i − a2

)(

p+1
∑

i=1

xiRi

)

+ 2





n
∑

j=p+2

xjRj



 = K



(

p+1
∑

i=1

x2i − a2)2 +
n
∑

j=p+2

x2j − 1



 ,

(3.2)

for some K ∈ R[x1, . . . , xn]. One defines the degree vector of the vector field
X to be m := (m1,m2, . . . ,mn) where mi = deg(Ri) for i = 1, 2, . . . , n.

Definition 3.1. (1) The intersection of Sp,q and the hyperplane

{∑p+1
i=1 aixi = 0} where ai ∈ R, for i = 1, . . . , p + 1 is called a

‘meridian’ on Sp,q.
(2) The intersection of Sp,q and the hyperplane {∑n

j=p+2 ajxj − c = 0}
for some c ∈ (0, 1) where aj ∈ R, for j = p + 2, . . . , n is called a
‘parallel’ on Sp,q.

We say that a meridian on Sp,q is invariant by the flow of the polynomial

vector field X on Sp,q if X (
∑p+1

i aixi) = K(
∑p+1

i aixi) where ai ∈ R for
i = 1, . . . , p + 1 and for some K ∈ R[x1, . . . , xp+1, xp+2, . . . , xn].

Similarly, one can define an invariant parallel on Sp,q. We note that
these definitions generalize the definitions of the invariant meridians and
the invariant parallels on S1 × S1 of [10].

3.2. Degree one vector fields on Sp × Sq. Let

Ri =
n
∑

j=1

cijxj + ci0,(3.3)

where cij ∈ R for all j and i = 1, . . . , n.

Proposition 3.2. Let X =
∑

iRi
∂
∂xi

be a degree one vector field defined

on Sp,q where Ris are given by (3.3). Then the matrix (cij)p+1×p+1 is skew
symmetric and ci0 = 0 for all i ∈ {1, . . . , n}.
Proof. For this case, we see that K in (3.2) is a constant since the degree of
the expression on the left is four and the expression in brackets on the right
already has degree four.

In fact, K vanishes since there is a constant term on the right of (3.2),
but all terms on the left have degree at least one. So for linear vector fields,
(3.2) becomes

4

(

p+1
∑

i=1

x2i − a2

)(

p+1
∑

i=1

xiRi

)

+ 2





n
∑

j=p+2

xjRj



 = 0.(3.4)

Observe that in the expression for Ri, i = 1, . . . , p + 1, there can be no
xks for k > p+ 1. Since if there was, then (3.4) will have terms of the form
4x2ixjxk, k > p + 1 which cannot be canceled out. Hence this will violate
(3.4). Similarly, Rj cannot have any terms with xis, where 1 ≤ i ≤ p + 1
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(for j = p+ 2, . . . , n). By similar reasoning we get that ci0 = dj0 = 0 for all
i and j.

Substituting Ri from (3.3) in (3.4) and collecting coefficients of xi0 for a
fixed i0, we have

4(

p+1
∑

i=1

x2i − a2){Ri0 +

p+1
∑

s=1

csi0xs} = 0.(3.5)

Since Ri0 =
∑p+1

j=1 ci0jxj , then (3.5) becomes

4

(

p+1
∑

i=1

x2i − a2

)







p+1
∑

j=1

ci0jxj +

p+1
∑

s=1

csi0xs







= 0.

Re-indexing and gathering coefficients of xj , we get

(ci0j + cji0) = 0,

since there is a dense open subset of Sp,q with
∑p+1

i=1 x
2
i 6= a2. From this, we

see that the real matrix determined by {cij} is skew-symmetric. �

Remark 3.3. We see that every first degree vector field defined on Sp,q has
a first integral by (3.4).

3.3. Degree two vector fields on Sp×Sq. Assume that X =
∑

Ri
∂
∂xi

is
a degree two vector field. Then we have

Ri =
∑

j≤k

βijkxjxk +
∑

j

βijxj + βi0,(3.6)

where βijk, βij , βi0 belong to R for i, j, k ∈ {1, 2, . . . , n} with j ≤ k. Since
this vector field X satisfies (3.2), the polynomial K has to be linear, say
K = α1x1+α2x2+ · · ·+αnxn+α0 for some α0, . . . , αn ∈ R. We get α0 = 0,
as there is no constant term on the left of (3.2).

Since Ris in (3.6) satisfy (3.2), equating the degree five terms and can-

celling
∑p+1

i=1 x2i we have

4



x1
∑

j≤k

β1jkxjxk + x2
∑

j≤k

β2jkxjxk + · · · + xp+1

∑

j≤k

βp+1jkxjxk



 =

(α1x1 + α2x2 + · · ·+ αnxn)(x
2
1 + x22 + · · ·+ x2p+1).

(3.7)

Observe that in (3.7) there are no terms of the form xixjxk for i, j, k pairwise
distinct on the right hand side, therefore such terms must sum to zero on
the left hand side. This gives

4(βijk + βjik + βkij) = 0,

when i, j, k ∈ {1, . . . , p+ 1}. If one of i, j, k is in {p+ 2, . . . , n}, say k, then

4(βijk + βjik) = 0.
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For the remaining terms, we have,

4βiii = αi and 4(βijj + βjij) = αi

for i, j ∈ {1, . . . , p+ 1}, and assuming without loss of generality that i < j.
We also have 4(βiik) = αk, for i ∈ {1, . . . , p+ 1} and k ∈ {p+ 2, . . . , n}.

Observe that there cannot be terms of the form xixjxk with any two of
i, j, k belonging to {p+ 2, . . . , n}.

Notice that there are no degree four terms on the right hand side, this
implies

4(x21 + · · ·+ x2p+1)(x1
∑

j

β1jxj + · · ·+ xp+1

∑

j

βp+1xj) = 0.

This gives

βij + βji = 0(3.8)

for i, j ∈ {1, . . . , p+ 1}.
Next, equating degree three terms gives

4(x21 + · · · + x2p+1)(x1β10 + · · ·+ xp+1βp+10)−

4a2



x1
∑

j≤k

β1jkxjxk + x2
∑

j≤k

β2jkxjxk + · · ·+ xp+1

∑

j≤k

βp+1jkxjxk



+

2xp+2

∑

j≤k

βp+2jkxjxk + · · ·+ 2xn
∑

j≤k

βnjkxjxk =

(α1x1 + · · ·+ αnxn)
(

−2a2(x21 + · · ·+ x2p+1) + x2p+2 + · · ·+ x2n
)

.

We can rewrite this as, using (3.7),

4(x21 + · · ·+ x2p+1)(x1β10 + · · ·+ xp+1βp+10)+

2xp+2

∑

j≤k

βp+2jkxjxk + · · ·+ 2xn
∑

j≤k

βnjkxjxk =

(α1x1 + · · ·+ αnxn)
(

−a2(x21 + · · ·+ x2p+1) + x2p+2 + · · ·+ x2n
)

.

In this equation, we see that

2βkii = −a2αk,

for k ∈ {p+ 2, . . . , n} and i ∈ {1, . . . , p+ 1}. Now we have

4βi0 = −a2αi(3.9)

for i ∈ {1, . . . , p + 1}. If i, j, k are distinct and all belong to {p + 2, . . . , n},
then

βijk + βjik + βkij = 0.

If one of i, j, k, say j, belongs to {1, . . . , p + 1}, then
βijk + βkji = 0.

In the remaining cases, we have
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2(βijj + βjij) = αi, and 2βiii = αi.(3.10)

Now equating degree two terms,

− 4a2



x1
∑

j

βij + · · · + xp+1

∑

j

βp+1jxj



+

2xp+2

∑

j

βp+2jxj + · · ·+ 2xn
∑

j

βnjxj = 0.

Then using (3.8), the above equation becomes

2xp+2

∑

j

βp+2jxj + · · ·+ 2xn
∑

j

βnjxj = 0.

This implies that βkl + βlk = 0 when k, l ∈ {p+ 2, . . . , n}.
Finally, equating degree one terms, we have

− 4a2(x1β10 + · · ·+ xp+1βp+10) + 2xp+2βp+20 + · · ·+ 2xnβn0 =

(a4 − 1)(α1x1 + · · ·+ αnxn).

This gives

βi0 =
(1− a4)

4a2
αi, and βj0 =

(a4 − 1)

2
αj ,

when i ∈ {q, . . . , p+ 1} and j ∈ {p+2, . . . , n}. We see that this is a contra-
diction to (3.9), hence

αi = 0(3.11)

for i ∈ {1, . . . , p+ 1}.
Summarizing these computations, we obtain the following characteriza-

tion.

Proposition 3.4. Let X =
∑

Ri
∂
∂xi

be a degree two vector field on Sp,q

where Ris are given by (3.6). Let i, j, k ∈ {1, . . . , p + 1} and l,m, n ∈
{p + 2, . . . , n}, all of them pairwise distinct. Then the co factor in (3.2) is
given by

K = (αp+2xp+2 + · · ·+ αnxn),

this means α1 = α2 = · · · = αp+1 = 0.
Also, the coefficients of degree two terms of Ris satisfy

βijk + βjik + βkij = 0, and βlmn + βmln + βnlm = 0,

βijl + βjil = 0, and βljm + βmjl = 0,

4(βijj + βjij) = αi, and 2(βlmm + βmlm) = αl,

4βiii = αi, 2βlii = −a2αl, and 2βlll = αl.
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For the coefficients of degree one terms of Ris, we have

βij + βji = 0, and βlm + βml = 0.

Moreover, the constant terms of Ris satisfy

βi0 = 0, and βl0 =
(a4 − 1)

2
αl.

4. Invariant hyperplanes on Sp × Sq

In this section, we are interested in the number of invariant algebraic
sets determined by the intersections of Sp,q and hypersurfaces determined
by polynomials of degree one. We compute an upper bound for the number
of invariant meridians and parallels on Sp,q. We prove a result to compute
the number of invariant meridians of a degree one vector field on Sp,q. We
show that a degree 2 vector field on Sp,q can have at most p many invariant
meridians. Then we discuss some vector fields with the number of invariant
meridians close to an upper bound. Let X = (R1, . . . , Rn) be a polynomial
vector field and deg(Ri) = mi. Without loss of generality, we may assume
that m1 ≥ m2 ≥ · · · ≥ mp+1 and that mp+2 ≥ mp+3 ≥ · · · ≥ mn.

Proposition 4.1. Let Sn+1 be the standard unit (n+1)-sphere in R
n+2 and

H a hyperplane passing through the origin. Then Sn+1∩H is homeomorphic
to Sn.

Proposition 4.2. On Sp,q, with p, q ≥ 2, the meridians and parallels are
path connected.

Proof. Let
∑p+1

i=1 aixi = 0 be the hyperplaneH, which determines a meridian
and

n
∑

j=p+2

x2j = α ∈ [0, 1].

Then (3.1) gives the following pair of spheres

p+1
∑

i=1

x2i = a2 ±
√
1− α

unless α = 1. By Proposition 4.1, the intersection of any of these spheres
with the hyperplane H is a (p − 1) dimensional sphere for each α ∈ [0, 1).
Thus, by a similar argument as in the proof that Sp,q is homeomorphic to
Sp×Sq, one can show that Sp,q∩H is homeomorphic to Sp−1×Sq. Therefore
it is path connected since p, q > 1.

For the case of parallels, let
∑n

j=p+2 bjxj = c be the hyperplane H2 and

p+1
∑

i=1

x2i − a2 = β ∈ [−1, 1].
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Then (3.1) can be written as

n
∑

j=p+2

x2j = 1− β2 ∈ [0, 1].

By Proposition 4.1, the intersection of this sphere and H2 − c is a q − 1
dimensional sphere unless β = ±1. If β = ±1, then this intersection is a
point. Therefore, the intersection Sp,q ∩H2 is homeomorphic to Sp × Sq−1

if β 6= ±1 since smooth homotopies preserve transversality, see Section 6 in
[4, Chapter 1]. This is path connected since p, q > 1. �

Theorem 4.3. Suppose that the polynomial vector field X on R
n has finitely

many invariant algebraic hypersurfaces. If p, q ≥ 2, then

(1) the number of invariant meridians of X in Sp,q is at most

(

p

2

)

(m1 − 1) +

p+1
∑

i=2

mi + 1,

(2) the number of invariant parallels of X in Sp,q is at most

(

q

2

)

(mp+2 − 1) +

q−1
∑

j=1

mp+j+1.

Proof. For (1). An invariant meridian of X is given by the intersection of a

hyperplane of the form g :=
∑p+1

i=1 aixi = 0 with Sp,q. By Proposition 2.2, if

this hyperplane is invariant for the vector field X , then
∑p+1

i=1 aixi is a factor
of the extactic polynomial

E{x1,x2,...,xp+1}(X ) = det















x1 x2 · · · xp+1

R1 R2 · · · Rp+1

X (R1) X (R2) · · · X (Rp+1)
...

...
. . .

...
X p−1(R1) X p−1(R2) · · · X p−1(Rp+1)















.

Since we have chosen degrees of R1, . . . , Rp+1 in decreasing order, we see
that the term

X p−1(Rp+1) · X p−2(Rp) · · · X (R3) ·R2 · x1(4.1)

has the least degree in the polynomial E{x1,x2,··· ,xp+1}(X ). Now the degree

of X i−1(Ri+1) is (i− 1)(m1 − 1) +mi+1 for 1 ≤ i ≤ p. Therefore,

deg(X p−1(Rp+1) · X p−2(Rp) · · · X (R3) ·R2 ·x1) =
(

p

2

)

(m1− 1)+

p+1
∑

i=2

mi+1.

The number of invariant meridians cannot exceed the degree of the polyno-
mial in (4.1) since meridians are determined by linear homogeneous polyno-
mials in {x1, . . . , xp+1}. This proves (1).
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For (2). In this case, the vector space W for EW (X ) is generated by
{xp+2, . . . , xn, 1}. Then the result follows using the same argument as in
the first case. �

4.1. Invariant Meridians for degree one vector fields on Sp × Sq.
In this subsection, we give a tight upper bound on the number of invariant
meridians for degree one vector fields on Sp,q. For these vector fields, X =
∑

iRi
∂
∂xi

where deg(Ri) ≤ 1 and at least one of them has degree one. Let

X be invariant on
∑p+1

i=1 aixi = 0. So,

p+1
∑

i=1

aiRi = K ′(
p+1
∑

i=1

aixi),(4.2)

for some K ′ ∈ R[x1, . . . , xp+1, xp+2, . . . , xn]. We get that K ′ of (4.2) is a
constant since the left hand side has degree one and the term in the brackets
on the right has degree one.

Further substituting for Ri from (3.3) in (4.2), we get

p+1
∑

i=1

ai

p+1
∑

j=1

cijxj = K ′
(

p+1
∑

s=1

asxs

)

.

This can be written as
p+1
∑

i=1

p+1
∑

j=1

aicijxj = K ′
(

p+1
∑

s=1

asxs

)

.

Reindexing and equating coefficients of xj, we have

p+1
∑

i=1

aicij = K ′aj .(4.3)

Thus, (a1, . . . , ap+1) is an eigenvector for the real matrix A := (cij)1≤i,j≤p+1

with the eigenvalue K ′. Since the matrix (cij) is skew symmetric by Propo-
sition 3.2, 0 is the only possible real eigenvalue (see Exercise 7.(g) in Section
6.6 of [3]). As a consequence, we get the following which helps to compute
the number of invariant meridians of a degree one vector field on Sp,q.

Theorem 4.4. A degree one vector field defined on Sp,q can have at most as

many invariant meridians as there are linearly independent real eigenvectors

of the matrix A = (cij)1≤i,j≤p+1 formed by the coefficients of the polynomials

in the vector field X .

Remark 4.5. The real skew symmetric matrix A = (cij) is normal, that is,
it commutes with its adjoint (which, in this case, is the transpose). Hence by
the Spectral Theorem (Theorem 2.5.4 in page 101 of [5]) A is diagonalizable.
So if all eigenvalues of A are zero, A is the zero matrix. Hence A cannot
have all eigenvalues zero, since X is a non-zero vector field. Thus, we see
that a degree one vector field on Sp,q can have at most (p − 1) invariant
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meridians. In fact, we can readily construct a vector field with (p − 1)
invariant meridians starting with a (p+1)× (p+1) skew-symmetric matrix
with (p− 1) eigenvalues zero.

Example 4.6. Let p = 2 in Sp,q. Then X = (−x2, x1 − x3, x2) is a vector
field on Sp,q. So

A =





0 −1 0
1 0 −1
0 1 0



 .

Note that the eigenvalues of A are ±
√
−2, 0. In this case, the unique eigen-

vector is (1, 0, 1), and hence the corresponding invariant meridian is given
by {x1 + x3 = 0}. Further, we see that this matches with the bound in
Remark 4.5 which is 1 in this case.

4.2. General Case. Now we look at the case of vector fields of degree
greater than or equal to four.

Theorem 4.7. Assume m ≥ 4. We have the following.

(1) There exists a vector field of degree m with 3m−10 invariant merid-

ians counted with multiplicity when p = 2.
(2) There exists a vector field of degree m with 6m−21 invariant merid-

ians when p = 3.

Proof. First we construct Rjs, when j ∈ {p + 2, . . . , n}, for the invariant
vector field X . Let Rjs be given by

Rp+2 = x1(x
2
p+2 − 1)H, Rp+3 = x1xp+2xp+3H, Rp+4 = x1xp+2xp+4H,

Rp+5 = x1xp+2xp+5H, Rp+6 = x1xp+2xp+6H, . . . , and, Rn = x1xp+2xnH

where H ∈ R[x1, . . . , xp+1, xp+2, . . . , xn].
For (1): Let

D := (
3
∑

i=1

aixi)
m−3,

and

R1 =
1

2
x4(x

2
1 − a2)D, R2 =

1

2
x4x1x2D and R3 =

1

2
x4x1x3D.

Observe that the vector field X determined by the above choices for
R1, R2, R3 and R4, . . . , Rn is invariant on Sp,q if we let H = D. To be
precise, for these Ris , X satisfies equation (3.2) with K = 2x1x4. We shall

prove that the vector field X , defined by these Ris have
∑3

i=1 aixi = 0 as
an invariant meridian with multiplicity 3m − 10 for X . The polynomial
∑3

i=1 aixi belongs to the vector space W := span{x1, x2, x3}. We note that

if
∑3

i=1 aixi = 0 gives an invariant meridian for this vector field X , then
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∑3
i=1 aixi is a factor of the corresponding extactic polynomial

EW (X ) = det





x1 x2 x3
X (x1) X (x2) X (x3)
X 2(x1) X 2(x2) X 2(x3)



 .

In our case, this is the following

det





x1 x2 x3
1
2x4(x

2
1 − a2)D 1

2x4x1x2D
1
2x4x1x3D

g1D
2 + h1E g2D

2 + h2E g3D
2 + h3E



(4.4)

where

E := X (D) = (m− 3)(
3
∑

i=1

aixi)
m−4(

3
∑

i=1

aixσ(i)) ·D

= (m− 3)(
3
∑

i=1

aixi)
2m−7(

3
∑

i=1

aixσ(i))

for some permutation σ on {1, 2, 3}, and gi, hi ∈ R[x1, . . . , x3, x4, . . . , xn] for
i ∈ {1, 2, 3}. The third row consists of the terms like

X (
1

2
x4(x

2
1−a2)D) =

1

2
(x24−1)(x21−a2)D2+

1

2
x1x

2
4(x

2
1−a2)D2+

1

2
x4(x

2
1−a2)E

which we have written as g1D
2 + h1E. Since D2 = (

∑3
i=1 aixi)

2m−6, in the

third row, one sees that (
∑p+1

i=1 aixi)
2m−7 is a common factor of each term in

the third row of the matrix in (4.4). Also in the second row, D is a common
factor, hence

EW (X ) = D ·E · h′(x1, x2, x3, x4) = (
3
∑

i=1

aixi)
3m−10h(x1, x2, x3, x4)

for some polynomials h′ and h in R[x1, x2, x3, x4, . . . , xn]. Thus (1) is proved,

since (
∑3

i=1 aixi) divides EW (X ) with multiplicity 3m− 10.

For (2): Let R := (
∑4

i=1 aixi)
m−3 and

R1 =
1

2
x5(x

2
1 − a2)R, R2 =

1

2
x5x1x2R, R3 =

1

2
x5x1x3R, and, R4 =

1

2
x5x1x4R.

Observe that (
∑4

i=1 aixi) is a polynomial in W = span{x1, x2, x3, x4} and
the corresponding extactic polynomial is

EW (X ) = det









x1 x2 x3 x4
X (x1) X (x2) X (x3) X (x4)
X 2(x1) X 2(x2) X 2(x3) X 2(x4)
X 3(x1) X 3(x2) X 3(x3) X 3(x4)









.

In order to compute EW (X ) in this case, let us first determine

T := X (R) = (m− 3)(

4
∑

i=1

aixi)
2m−7(

4
∑

i=1

aixσ(i)),
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and

U := X (T ) = (m− 3)(2m − 7)(
4
∑

i=1

aixi)
3m−11(

4
∑

i=1

aixσ(i))
2

+ 2(m− 3)(
4
∑

i=1

aixi)
3m−10(

4
∑

i=1

aixσ′(i))

where σ and σ′ are some permutations on the set {1, 2, 3, 4}. Then EW (X )
becomes

EW (X ) = det









x1 x2 x3 x4
1
2x5(x

2
1 − a2)R 1

2x5x1x2R
1
2x5x1x3R

1
2x5x1x4R

f31R
2 + g31T f32R

2 + g32T f33R
2 + g33T f34R

2 + g34T
f41R

3 + g41RT + h41U f42R
3 + g42RT + h42U f43R

3 + g43RT + h43U f44R
3 + g44RT + h44U









(4.5)

where the fij, glk, hst ∈ R[x1, . . . , x4, x5, . . . , xn] for i, l, s ∈ {3, 4} and j, k, t ∈
{1, 2, 3, 4}.

Notice that R is a factor of each term of the second row, (
∑4

i=1 aixi)
2m−7

is a factor of each term of the third row, and (
∑4

i=1 aixi)
3m−11 is a factor of

each term of the fourth row of the matrix in (4.5). Therefore, the extactic
polynomial can be written as

EW (X ) = (
4
∑

i=1

aixi)
6m−21 · h(x1, x2, x3, x4, x5)

for some h ∈ R[x1, . . . , x4, x5] ⊂ R[x1, . . . , x4, x5, . . . , xn]. This proves the

claim (2), since (
∑4

i=1 aixi) divides EW (X ) with multiplicity 6m− 21. �

Remark 4.8. For p = 2 and p = 3, an upper bound given by Theorem 4.3
is 3m and 6m− 2 respectively.

Example 4.9. Suppose that the vector field X is given by

(4.6)

R1 =
1

2
xp+2(x

2
1 − a2)G, R2 =

1

2
xp+2x1x2G, . . . , Rp+1 =

1

2
xp+2x1xp+1G,

Rp+2 = x1(x
2
p+2 − 1)G, Rp+3 = x1xp+2xp+3G, Rp+4 = x1xp+2xp+4G,

Rp+5 = x1xp+2xp+5G, Rp+6 = x1xp+2xp+6G, . . . , Rn = x1xp+2xnG,

whereG ∈ R[x1, . . . , xp+1, xp+2, . . . , xn] is a polynomial of degree (degX−3).
Consider the hyperplane given by xi = c where c is a constant and −1 < c <
1. We want to look at the invariant algebraic sets formed by the intersection
of these hyperplanes with Sp,q. The number of connected components of
{xi− c}∩Sp,q is one, since {xi− c}∩Sp,q is homeomorphic to Sp−1×Sq for
p ≥ 2, q ≥ 2. In this case, the extactic polynomial is

E{1,xi}(X ) = det

(

1 xi
0 Ri

)

= Ri.
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We see that the maximum possible number of these invariant hyperplanes
is mi(= degRi). In particular, letting G =

∏mi−3
j=1 (xi − cj) in the vector

field given by (4.6), and if we regard xi − 0 = xi also as one of the invariant
hyperplanes (x1−a = 0 and x1+a = 0 if i = 1), we see that we have mi−1
invariant algebraic sets of the form under consideration for this choice of the
vector field.

Similarly, one can do the computation for xj = c, when j ∈ {p+2, . . . , n},
and an almost tight bound can be obtained.

5. Invariant Algebraic sets on S1 × Sq

In this section, we give a tight upper bound for the number of invariant
hyperplanes of certain types for the vector fields on S1 × Sq. In section 3,
we showed that S1,q

∼= S1 × Sq.
If the meridians on S1,q are invariant algebraic sets, then a1x1 + a2x2

divides the extactic polynomial

E{x1,x2}(X ) = det

(

x1 x2
X (x1) X (x2)

)

= det

(

x1 x2
R1 R2

)

= x1R2 − x2R1.

(5.1)

If the parallels on S1,q are invariant algebraic sets, then
∑n

j=3 bjxj−c divides
the extactic polynomial

E{1,x3,...,xn} = det











1 x3 · · · xn
0 X (x3) · · · X (xn)
...

...
. . .

...
0 X q−1(x3) · · · X q−1(xn)











.

Proposition 5.1. The numbers of connected components of the intersec-
tions {a1x1 + a2x2 = 0} ∩ S1,q and {

∑n
j=3 bjxj = c} ∩ S1,q are two and one

respectively.

Proof. For the case {a1x1 + a2x2 = 0} ∩ S1,q, put x2 = −a1x1/a2, if a2 6= 0,
otherwise x1 = −a2x2/a1. Then (3.1) may have the following form.

(x21(1 +
a21
a22

)− a2)2 +
n
∑

j=3

x2j = 1.

That is

x21(1 +
a21
a22

) = a2 ±

√

√

√

√1−
n
∑

j=3

x2j .

For a fixed value of x1, we have that
∑n

j=3 x
2
j is a constant, which means we

get a copy of Sq−1. Fixing the sign of x1, we see that when the expression
√

1−
∑n

j=3 x
2
j is zero, the copies of Sq−1 corresponding to the plus and

minus signs inside the radical on the right hand side coincide. This implies
that they belong to the same component. The two different possible signs
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for x1 give two distinct components since x1 cannot be equal to zero since
a > 1. The argument for the case of (

∑n
j=3 bjxj = c)∩ S1,q is similar to the

proof of the second part of Proposition 4.2. �

Theorem 5.2. Let X be a polynomial vector field of degree m on S1,q such

that there are only finitely many invariant algebraic sets. Then we have the

following.

(1) There can be at most 2(m− 1) invariant meridians.

(2) There exists a polynomial vector field on S1,q with exactly 2(m − 1)
invariant meridians if (m− 1) ≥ q.

Proof. For (1): Let x1 = r cos θ, and x2 = r sin θ where r ≥ 0 and
θ ∈ [0, 2π]. With these choices of coordinates, the polynomial vector field
becomes

X =
1

r
(R1(r cos θ, r sin θ, x3, · · · , xn)r cos θ

+R2(r cos θ, r sin θ, x3, · · · , xn)r sin θ)
∂

∂r

− 1

r2
(R1(r cos θ, r sin θ, x3, · · · , xn)r sin θ

−R2(r cos θ, r sin θ, x3, · · · , xn)r cos θ)
∂

∂θ
+

n
∑

i=3

Ri
∂

∂xi
.

This implies that

x1R2 − x2R1 = r2θ̇ = (x21 + x22)θ̇.(5.2)

Observe that the maximum degree of the left hand side of (5.2) is m + 1
and x21 + x22 is irreducible over R. By Proposition 5.1, we know that the
intersection {a1x1 + a2x2} ∩ S1,q has two connected components. Hence
there can be at most 2(m− 1) invariant meridians on S1,q. This proves the
claim (1).

For (2): We consider the vector field X on S1,q given by

R1 = x1x3 · · · xn − x2G, R2 = x2x3 · · · xn + x1G,

and

Rj =
2

q

(

−a2(x21 + x22) +
n
∑

s=3

x2s − 1

)

x3 · · · xj−1xj+1 · · · xn

for j = 3, . . . , n. Taking

G =

m−1
∏

i=1

(aix1 + bix2),

one can see that G is a factor of Ex1,x2
(X ) of (5.1). We know that the

intersection {a1x1+a2x2}∩S1,q has two connected components. Therefore,
the number of invariant meridians for this vector field is 2(m1 − 1). �



INVARIANT ALGEBRAIC SETS OF CERTAIN VECTOR FIELDS 17

Remark 5.3. An upper bound for the number of invariant parallels for the
vector field X on S1,q can be given by a similar calculation as in Theorem

4.3 (2). This upper bound is
(

q
2

)

(mp+2 − 1) +
∑q−1

j=1 mp+j+1.

Example 5.4. Consider the vector field X = (R1, . . . , Rn) on S1,q given by

R1 =
x1
4
(

n
∑

s=3

xs), R2 =
x2
4
(

n
∑

s=3

xs), Ri =
xi
4
(

n
∑

s=3

xs)−
a2

2
(x21+x22)+

(a4 − 1)

2
,

for i = 3, . . . , n. One can check that this vector field satisfies (3.1) with
cofactor K = (x3 + x4 + · · · + xn). Notice that all meridians are invariant
for this vector field, that is

X (a1x1 + a2x2) = K(a1x1 + a2x2)

with K = 1
4 (
∑n

s=3 xs). Hence by Proposition 2.3, X has a rational first
integral.

6. Invariant Algebraic sets on Sp × S1

In this section, we study invariant meridians and parallels of the vector
fields defined on Sp × S1 for p ≥ 2.

If a meridian in Sp,1 is an invariant algebraic set, then
∑p+1

i=1 aixi divides
the extactic polynomial

E{x1,...,xp+1}(X ) = det











x1 · · · xp+1

X (x1) · · · X (xp+1)
...

. . .
...

X p(x1) · · · X p(xp+1)











.(6.1)

If a parallel in Sp,1 is an invariant algebraic set, then xp+2− c divides the
extactic polynomial

E{1,xp+2}(X ) = det

(

1 xp+2

X (1) X (xp+2)

)

= det

(

1 xp+2

0 Rp+2

)

= Rp+2.(6.2)

Proposition 6.1. The numbers of connected components of the intersec-
tions {

∑p+1
i=1 aixi = 0} ∩ Sp,1 and {xp+2 = c} ∩ Sp,1 are one and two respec-

tively for |c| < 1.

Proof. The argument for the case of {∑p+1
i=1 aixi = 0}∩Sp,1 is similar to the

proof of the first part of Proposition 4.2.
For the case of {xp+2 = c} ∩ Sp,1, (3.1) becomes

(

p+1
∑

i=1

x2i − a2)2 + c2 = 1 or,

p+1
∑

i=1

x2i = a2 ±
√

1− c2.

Since c is a fixed constant, this gives two different concentric spheres. There-
fore {xp+2 = c} ∩ Sp,1 has two connected components, unless |c| ≥ 1. �
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We note that by the arguments in the proof of Theorem 4.3 (1) we know
that the maximum number of invariant meridians is

(

p

2

)

(m1 − 1) +

p+1
∑

i=2

mi + 1.

Proposition 6.2. Let X be a vector field on Sp,1 such that X has only
finitely many invariant algebraic sets. Then the maximum number of in-
variant parallels for X is (m − 1) where m = degX . Moreover, there is a
vector field on Sp,1 with exactly (m− 1) invariant parallels in Sp,1.

Proof. The vector field X is invariant on Sp,1. So, by definition, we have

4

(

p+1
∑

i=1

x2i − a2

)(

p+1
∑

i=1

xiRi

)

+ 2xp+2Rp+2 = K(x1, . . . , xp+1, xp+2)





(

p+1
∑

i=1

x2i − a2

)2

+ x2p+2 − 1



 .

(6.3)

If xp+2 − ai = 0 gives a parallel, then xp+2 − ai is a factor of Rp+2 by
Proposition 2.2 and (6.2). Then Rp+2 must be of the form

Rp+2 =
ℓ
∏

i=1

(xp+2 − ai) · h(x1, . . . , xp+1),

where 0 ≤ ℓ ≤ degRp+2 ≤ m and h has no factor of the form xp+2 − a.
Suppose that ℓ = m. Then h is a constant, since degRp+2 ≤ m. Now

putting x1 = x2 = · · · = xp+1 = 0 in (6.3), we have the following.

2xp+2

ℓ
∏

i=1

(xp+2 − ai) · h = K(0, . . . , 0, xp+2)(x
2
p+2 + a4 − 1),

where a > 1. We see that the left hand side is non-zero. So, K(0, . . . , 0, xp+2)
is also non-zero. The polynomial (x2p+2 + a4 − 1) is irreducible over R, since
a > 1. But all factors in the left hand side have degree one. So, we arrive at
a contradiction. Thus, we have that ℓ ≤ (m− 1) and the proof is complete
for the first part.

Now, consider the vector field X given by

Ri = xp+2

(

∑p+1
i=1 x2i − a2

)

4
H

Rp+2 =

(

∑p+1
i=1 xi

)

(x2p+2 − 1)

2
H,

(6.4)

where Ri ∈ R[x1, x2, . . . , xp+1, xp+2] for i = 1, . . . , p + 1. Observe that X is

a vector field on Sp,1. Let H :=
∏m−3

i=1 (xp+2 − ci) for ci ∈ R with |ci| < 1.
Then from (6.2), we see that (x2p+2 − 1)H divides the extactic polynomial

E{1,xp+2}(X ). Therefore, the vector field given by (6.4) has (m−1) invariant
parallels in Sp,1. �
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We remark that there exists 2(m−3)+2 = 2(m−2) connected components
in this case, since each parallel has two connected components if −1 < ai < 1
by Proposition 6.1.

We note that when p = q, then Sp,1 and S1,q are homeomorphic. However,
their equations say that they are different algebraic subsets of Rp+2.

Example 6.3. Consider the polynomial vector field determined by

Ri =
1

4
xixp+2 and Rp+2 =

x2p+2

2
−

p+1
∑

i

a2

2
x2i +

(a4 − 1)

2

for i = 1, . . . , p+1. One can check that this vector field satisfies (6.3), with
the cofactor xp+2. Hence X = (R1, . . . , Rp+1) is a vector field on Sp,1. Notice
that all meridians on Sp,1 are invariant for this vector field, that is

X (a1x1 + · · ·+ ap+1xp+1) = K(a1x1 + · · · + ap+1xp+1),

with K =
xp+2

4 . Hence by Proposition 2.3, X has a rational first integral.
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