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COMBINATORIAL AND GEOMETRIC CONSTRUCTIONS ASSOCIATED WITH

THE KOSTANT CASCADE

DMITRII. PANYUSHEV

To Alexander Grigorievich Elashvili on the occasion of his 80th birthday

ABSTRACT. Let g be a complex simple Lie algebra and b = t@® u™ a fixed Borel subalgebra.
Let A" be the set of positive roots associated with ut and X C A" the Kostant cascade.
We elaborate on some constructions related to X and applications of X. This includes the
cascade element zx in the Cartan subalgebra t and properties of certain objects naturally
associated with X: an abelian ideal of b, a nilpotent G-orbit in g, and an involution of g.
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Let G be a simple algebraic group with Lie (G) = g. Fix a triangular decomposition

g =u" @tdu . Then A is the root system of (g,t) and AT is the set of positive roots

corresponding to u*. The Kostant cascade is a set K of strongly orthogonal roots in A"

that is constructed recursively starting with the highest root § € A*, see Section 2. The
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construction of cascade goes back to B. Kostant, who used it for studying the center of
the enveloping algebra of u*. His construction is prominently used in some articles af-
terwards [9, 11, 17], but Kostant’s own publications related to the cascade appear some
40 years later [15, 16]. The cascade is also crucial for computing the index of seaweed
subalgebras of simple Lie algebras [26, 12].

Ever since I learned from A.Elashvili about the cascade at the end of 80s, I was fas-
cinated by this structure. Over the years, I gathered a number of results related to the
occurrences of X in various problems of Combinatorics, Invariant Theory, and Repre-
sentation Theory. In [24], I give an application of X to the problem of classifying the
nilradicals of parabolic subalgebras of g that admit a commutative polarisation. (General
results on commutative polarisations are due to Elashvili and Oom:s, see [8].) Some other
observations appear in this article.

Let II C A* be the set of simple roots. If v = > _;
Y wcnly : o] is the height of . The set of positive roots A* is a poset with respect to the
root order “<”, and K = {54, ..., B, } inherits this structure so that § = 3, is the unique
maximal element of X.

as, then [y : a] = a, and H;(V) =

In Section 3, we define a rational element of t associated with K. Let ( , ) denote the
restriction of the Killing form on g to t. Asusual, t and t* are identified via ( , ) and tj is
the Q-linear span of A. The cascade element of tq ~ tg is

B m ﬁz _1 m "

i=1

The numbers v(zx), v € A", are the eigenvalues of ad zx on u™, and we say that they
form the spectrum of zx on A™. It follows from (1-1) that v(zx) € 3$Z and f(zx) = 1 for
any € K. We prove that —1 < y(zx) < 2 for any v € A" and if g is not of type A,
then the eigenvalues are integral (Theorem 3.4). It is also shown that the spectrum of zx
on A* \ X is symmetric relative to 1/2, which means that if m, is the multiplicity of the
eigenvalue )\, then m, = m;_,. If f is a fundamental weight and o € II is the unique root
such that (6, a) # 0, then « is long and we prove that a(zx) = —1. On the other hand, if
¢ is not fundamental, then zx appears to be dominant. Let Q (resp. Q") denote the root
(resp. coroot) lattice in tf. The corresponding dual lattices are

the coweight lattice PV := Q* & the weight lattice P := (Q")*.

Hence zx € P unless g is of type A,,. Here Q¥ C P and we prove that z € QY if and
only if every self-dual representation of g is orthogonal (Section 4).

In [18, Section 3], A. Ooms describes an interesting feature of the Frobenius Lie algebras.
Let q = Lie (Q) be a Frobenius algebra and £ € q* a regular linear form, i.e., g¢° = {0}. Then
the Kirillov form B, is non-degenerate and it yields a linear isomorphism % : q* — q.
Letting z¢ = ¢(£), Ooms proves that (adz¢)* = 1 — ad z¢, where (ad z¢)* is the adjoint



PROPERTIES OF THE CASCADE 3

operator w.r.t. Be. This implies that the spectrum of ad z; on ¢ is symmetric relative to
1/2. We say that z¢ € q is the Ooms element associated with { € q;,,. Let txx C t be the
C-linear span of K. Then bx = tx @ u™ is a Frobenius Lie algebra, i.e., ind by = 0, see [24,
Sect. 5]. In Section 5, we prove that

e if g is an algebraic Lie algebra, then any Ooms element z, € q is semisimple;
e zx is an Ooms element for the Frobenius Lie algebra by = tx @ u*.

The latter provides a geometric explanation for the symmetry of the spectrum of zyx on
AT\ XK.

By [14], one associates an abelian ideal of b, a,, to any z € tsuch that v(z) € {-1,0,1,2}
for all v € A*. Namely, let AT (i) = {y € A" | v(2) = i}. There is a unique w, € W such
that the inversion set of w., N(w.), equals AT (1) U Af(2), and then A,y := w, (AT (-1) U
—A7(2)) is the set of roots of a.. We notice that w.(z) is anti-dominant and w, is the
element of minimal length having such property. Kostant’s construction applies to z = zx
unless g is of type A,, and we obtain a complete description of wx := w,, and ax := a,,
(Sections 6,7). In this setting, we prove that wx () € —II and —wx(zx) is a fundamental
coweight. That s, if wx (0) = —a;, then —wy(vx) = 2w;/(a;, a;) =: ;. Since [b, ax] C ax,
the set of roots Axy = A(ax) is an upper ideal of the poset (A", <). Therefore, A, is
fully determined by the set of minimal elements of A, or the set of maximal elements of
AT\ Ay Letting A% (i) = AF, (i) and Ik (i) = II N A% (4), we prove that

(1) mlH(A<g<>) = ’LU(}((H(K(—]_)) and max(A+ \ A<g<2\)_/: —’LU(K(H[K(]_)),
(2) ifdyx = 143 cn 00 1 o, then Ay = {v | ht () > dx}.

In order to verify (2), we use explicit formulae for wx. To get such formulae, we exploit a
description of wy ' (I1) (Theorem 7.1). Then we check directly that ht (wy(a)) = dy for any
a € IIx(—1) and that #11x(—1) = #{v | ht(v) = d«}.

In Section 8, we naturally associate an involution ox € Aut(g) to X if z € PV, ie., g
is not of type A,,. It is proved o is the unique, up to conjugation, inner involution such
that the (—1)-eigenspace of ox contains a regular nilpotent element of g.

For any simple Lie algebra (sly,;; included), we construct the nilpotent G-orbit as-
sociated with X, see Section 9. Let e, € g, be a nonzero root vector (y € A). Then
ex = ) sex €p € @ is nilpotent and the orbit Ox = G-ex does not depend on the choice
of root vectors. Properties of O« essentially depend on whether 6 is fundamental or not.
We prove that if 6 is fundamental then (ad ex)® = 0 and (ad ex)* # 0; whereas if § is not
fundamental then (ad ex)® = 0 (and, of course, (ad ex)? # 0). By [19], this means that Oy
is spherical if and only if # is not fundamental. Here [z, ex] = ex and zx € Im (adex).
Therefore, 2z« is a characteristic of ex and the weighted Dynkin diagram of Ox, D(Ox)
is determined by the dominant element in W-(2zx). Actually, this dominant element is
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—2wx(xx), and if g # sly, 1, then —2wx(xx) = 2@}, cf. above. Hence, in these cases,
D(Ox) has the unique nonzero label on the node a; and Oy is even, cf. Tables 1, 2.

Main notation. Throughout, G is a simple algebraic group with g = Lie (G). Then

— b is a fixed Borel subalgebra of g and u™ = u = [b, b};

— tis a fixed Cartan subalgebra in b and A is the root system of (g, t);

— A% is the set of roots corresponding to u™;

- I ={ay,...,a,}is the set of simple roots in A" and the corresponding fundamen-
tal weights are @y, ..., w,;

— t;, is the Q-vector subspace of t* spanned by A, and ( , ) is the positive-definite
form on tf, induced by the Killing form on g; as usual, v = 2v/(v,v) for v € A.

— For each v € A, g, is the root space in g and e, € g, is a nonzero vector;

— If ¢ C ut is a t-stable subspace, then A(c) C A™ is the set of roots of ¢;

— 0 is the highest root in A™;

- W C GL(t) is the Weyl group.

Our main references for (semisimple) algebraic groups and Lie algebras are [27, 28]. In
explicit examples related to simple Lie algebras, the Vinberg-Onishchik numbering of
simple roots and fundamental weights is used, see e.g. [27, Table 1] or [28, Table 1].

2. PRELIMINARIES ON ROOT SYSTEMS AND THE KOSTANT CASCADE

We identify II with the vertices of the Dynkin diagram of g. For any v € AT, let [y : o] be
the coefficient of a € II in the expression of v via II. The support of  is supp(y) = {«o €

I | [y : a] # 0} and the height of ~ is ht(7) = 3_.cn
connected subset of the Dynkin diagram. For instance, supp(#) = Il and supp(a) = {a}. A

[7 : a]. As is well known, supp(7) is a

root 7y is long, if (,7) = (0, 0). We write A; (resp. A,) for the set of long (resp. short) roots
in A. In the simply-laced case, A, = @.

Let “<” denote the root order in A™,i.e., we write vy < 7/ if [y: a] <[y : o] forall a € IL.
Then +' covers v if and only if ' — v € II, which implies that (A", ) is a graded poset.
Write v < 7/ if v < 4" and v # +'. An upper ideal of (A*, <) is a subset / such thatif y € /
and v < 7/, then ' € I. Therefore, [ is an upper ideal if and only if c = €P. .; g, is a b-ideal
of u(i.e., [b,¢c] C ¢).

For a dominant weight \ € ), set AT = {y € A* | (\,7) =0}and A, = Af UA;. Then
A, is the root system of a semisimple subalgebra g, C g and II, = II N A7 is the set of
simple roots in Af. Set A7 = {y € AT | (A7) > 0}. Then AT = AT UAT? and

e P, = g, + bisastandard parabolic subalgebra of g;
e the set of roots for the nilradical ny = p}' is A7Y; it is also denoted by A(n,).

If A = 6, then the nilradical ny is a Heisenberg Lie algebra. In this case, Hy := A(ny) is said
to be the Heisenberg subset (of A™).
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The construction of the Kostant cascade X in A™ is recalled below, see also [11, Sect. 2],
[17, Section 3a], and [15, 16]. Whenever we wish to stress that X is associated with g, we
write K(g) for it.

1. We begin with (g(1), A(1), 51) = (g, A, #) and consider the (possibly reducible) root
system Ay. The highest root § = f; is the unique element of the first (highest) level in
K. Let Ay = U?iz A(j) be the decomposition into irreducible root systems and I1(j) =
TN A(j). Then Iy = U?; II(j) and {II(j)} are the connected components of I, C II.

2. Let g(j) be the simple subalgebra of g with root system A(j). Then gy = @?2:2 a(7).
Let j; be the highest root in A(j)™ = A(j) N A*. The roots S, ..., B4, are the descendants
of 31, and they form the second level of X. Note that supp(5;) = II(j), hence different
descendants have disjoint supports.

3. Making the same step with each pair (A(j), 5;), 7 = 2,...,d2, we get a collection of
smaller simple subalgebras inside each g(j) and smaller irreducible root systems inside
A(j). This provides the descendants for each §; (j = 2,...,d), i.e., the elements of the
third level in K. And so on...

4. This procedure eventually terminates and yields a maximal set X = {1, 52, ..., O}
of strongly orthogonal roots in A™. (The latter means that 5; = 3; ¢ A for all 7, j). We say
that X is the Kostant cascade in A™.

Thus, each 8; € K occurs as the highest root of a certain irreducible root system A(i)
inside A such that II(:) = II N A(i) " is a basis for A(i).

We think of X as poset such that 3; = 6§ is the unique maximal element and each f;
covers exactly its own descendants. If 3; is a descendant of f;, then 5; < f; in (AT, X)
and supp(f;) & supp(f;), while different descendants of j; are not comparable in A*.
Therefore the poset structure of X is the restriction of the root order in A*. The resulting
poset (X, <) is called the cascade poset. The numbering of X is not canonical. We only
require that it is a linear extension of (X, <), i.e., if 3; is a descendant of j;, then j > i.

Using the decomposition AT = Al LI Hy and induction on rk g, one readily obtains the
disjoint union determined by X:

(2-1) AT = ﬂﬂﬁi = | | %,
=1

BeX

where Hp, is the Heisenberg subset in A(i)* and H 3, = H,. The geometric counterpart of
this decomposition is the direct sum of vector spaces

m
u+ = @ hia
=1

where b, is the Heisenberg Lie algebra in g(i), with A(h;) = Hs,. In particular, h; = ny.
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For any 8 € X, set ®(8) = I1 N Hp. Then Il = | |54 ®(3) and @ is thought of as a map
from X to 2™. Our definition of subsets ®(3;) yields the well-defined map &' : II — X,
where ®7!(a) = 3; if « € ®(5;). Note that o € (P~ !(«)). We also have #P(;) < 2 and
#®(;) = 2 if and only if the root system A(i) is of type A,, with n > 2.

The cascade poset (X, <) with the set ®(/5) attached to each [ is called the marked cascade
poset (MCP). In [24], we use (X, %, @) for describing the nilradicals of parabolic subalge-
bras that admit a commutative polarisation. The Hasse diagrams of (X, <) are presented
in Appendix A, where the Cartan label of the simple Lie algebra g(j) is attached to the
node f3;. These diagrams (without Cartan labels) appear already in [11, Section 2].

Let us gather some properties of (X, <) that either are explained above or easily follow
from the construction.

Lemma 2.1. Let (X, <, ®) be the MCP for a simple Lie algebra g.

(1) The partial order in X coincides with the restriction to X of the root order in A™;

(2) Bi, B; € K are comparable if and only if supp(f;) N supp(B;) # @, and then one support
is properly contained in the other;

(3) each 3, j = 2, is covered by a unique element of X;

(4) for any j; € X, the interval [3;, b1]lx = {v € X | B; S v < B1} C K is a chain.

(5) For a € 11, we have o € ®(3;) if and only if («, 5;) > 0.

Clearly, #X < rk g and the equality holds if and only if each 3; is a multiple of a funda-
mental weight for g(i). Recall that # is a multiple of a fundamental weight of g if and only
if g is not of type A,,, n > 2. It is well known that the following conditions are equivalent:
(1)ind b = 0; (2) #X = rk g, see e.g. [1, Prop.4.2]. This happens exactly if g is not of type
A, (n > 2), Dy, (n > 2), Eg. Then @ yields a bijection between X and II.

For future reference, we record the following observation.

Lemma 2.2. If g is of type Byy11 or G, then K contains a unique short root, which is simple. In
all other cases, all elements of X are long.

Write r, € W for the reflection relative to v € A.

Proposition 2.3 ([15, Prop. 1.10]). The product wg := rg,- ... rg,, does not depend on the order
of factors and it is the longest element of W (i.e., wo(A") = A~). In particular, wy(5;) = —B; for
each i.

It follows from this that wy = —1 if and only if m = rk g.
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3. THE CASCADE ELEMENT OF A CARTAN SUBALGEBRA

In this section, we define a certain element of t associated with the cascade X and consider
its properties related to A. As usual, we identify t and t* using the restriction of the Killing
form to t.

Definition 1. The cascade element of t is the unique element zx € (51, ..., fn)o C tg such
that 3;(z«) = 1 for each i.

Since the roots {3;} are pairwise orthogonal, we have

31) re= Y Gy = 5 A

Therefore, v(xy) € %Z for any v € A, and it follows from Prop. 2.3 that wy(zx) = —x«. If

1
X c A, then one can also write z« = W Z B;.
) i—1

e Itis a typical pattern related to X and z« that a certain property holds for series A,,
and C,, but does not hold for the other simple types. The underlying reason is that

0 is a fundamental weight if and only if g is not of type A,, or C,,.

(Recall that § = w; + w, for A, and 0 = 2w, for C,.) It is often possible to prove that
a property does not hold if ¢ is fundamental, and then directly verify that that property
does hold for sl,,,; and sp,,, (or vice versa).

* Yet another pattern is that one has to often exclude the series Ay, from consideration.
The reason is that

the Coxeter number of g, h = h(g), is odd if and only if g is of type Aay,.
(The same phenomenon occurs also in the context of the McKay correspondence.) Recall

thath=1+3,.,[0: o] = 1 + ht(9).

To get interesting properties of zx, we need some preparations. Set n, = [0 : o], i.e
0 = > .cn Nt Suppose that 0 is a fundamental weight, and let & be the unique simple
root such that (6, &) # 0. Then (0, &") = 1 and (0, &) = 1, hence & is long. Next,

1
(0. nac) = (0,15d) = 5na(d, &),
a€cll

which means that ns = 2. Let IT be the set of simple roots that are adjacent to & in the
Dynkin diagram. Since & is long, one also has I = {v € I | (v,&") = —1}. Then

1=(0,6")=na(@a")+ > n,(ma’)=4-> n,

vell vell
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Hence Y, s, = 3and #(II) < 3. Set J = {i € [1,m] | (&, 3) < 0}. Then1 ¢ J and we

vell

proved in [23, Sect. 6] that

o1 &, & 1
(32) = (9 -y ((6,-,6,-))6’) = 50— ap) and Y =3,

1eJ e e

see [23, Lemma 6.5]. Here ¢; € N and therefore #.J < 3. Set K := {8, | i € J}.
We say that z € tis dominant, if y(z) > 0 for all v € A*.

Lemma 3.1. If 0 is fundamental, then &(zx) = —1 and (0 — &)(zx) = 2. In particular, xy € t
is not dominant.

Proof. Take v = &. Using (3-1) and (3-2), we obtain

~ 1.0 (B Bi) | _ 4 o
afzx) = 2 [(9,9) ZEZJ (Bi, Bs) ] ={-8/2=-1

Then (6 — a)(zx) =1+ 1= 2. O

Conversely, if § is not fundamental, then the example below shows that x4 is dominant.

Example 3.2. (1) For g = sl,,;1, one has 3; = ¢; — g0, withi =1,....m = [(n 4+ 1)/2].
Here Z;’;rll gj=0and w; =¢; +--- +¢;. Hence

ik 2 if n=2p—1
(979):(:9{ _ ZBZ _ { Wp, Irn p

i1 wp + wWpr1, if n=2p.

diag(1/2,...,1/2,-1/2,...,—1/2),  if n=2p—1
diag(1/2,...,1/2,0,—1/2,...,—1/2), if n=2p.
(2) For sp,,,, one has f5; = 2¢; withi = 1,...,m = n. Hence (0, 0)-z5 = Y | 2e; = 2w,,.

In the matrix form, one has x« = {

Consider the multiset My of values {vy(zx) | v € A* \ K}. That is, each value d is taken
with multiplicity m, = #R4, where Ry = {y € AT\ K | v(zx) = d}.

Lemma 3.3. For any d, there is a natural bijection between the sets R, and Ry_4. In particular,
Mg = my_g, i.e., the multiset My is symmetric w.r.t. 1/2.

Proof. For any v € AT\ X, there is a unique j € {1,...,m} such that y € A(b;) \ {5;},
see (2-1). Then 8; — v € A(h;) and y(zx) + (8; —7)(zx) = 1. u

As we shall see in Section 5, there is a geometric reason for such a symmetry. It is
related to the fact that a certain Lie algebra is Frobenius.

Theorem 3.4. If g is a simple Lie algebra, then —1 < y(zx) < 2 for all v € A*. More precisely,
(1) If gis of type Aypy 0r Cyy, then {(xx) | v € AT} = {0, 1};
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(2) If gis of type Ay, then {y(zx) | v € AT} ={0,3,1};
(3) For all other types, i.e., if 0 is fundamental, we have {~y(zx) | v € At} = {-1,0,1,2}.

In particular, if g is not of type Ao, then v(xzx) € Z for any v € AT,

Proof. 1°. Using explicit formulae for X, all these assertions can be verified case-by-case.
For instance, data of Example 3.2 provide a proof for (1) and (2). However, this does not
explain the general constraints —1 < y(zx) < 2. Below we provide a more conceptual
argument, which also uncovers some additional properties of zx.

2°. If m = rkg = n, then X is a basis for t*. Hence y can be written as v = >, k;3;,
where k; = 1(v,8Y) € 3Z, and v(zx) = Y., ki. We are to prove that —1 < > | k; < 2.

If v = 3;, then y(zx) = 1. Therefore we assume below that v ¢ K. If v € A(b;) for
some ¢ > 1, then the whole argument can be performed for the simple Lie subalgebra
g(i) C g and the cascade X(g(i)) C K, which has the unique maximal element ;. Since
rk g(i) < rkg fori > 2, it suffices to prove the assertion for i = 1 and f; = 6.

Assume that v € 3; = A(h;) and v # 6. Then (v,6%) =1,y = 30+ >, k;3;, and

(3-3) A(7,7) = (0,0) + > (2k:)*(B:. By).-

=2

(i) For v € A/, it follows from (3-3) that 3 = Z4k52 (8:, 5;) Since #(X N A}) < 1

()
i>2
(Lemma 2.2), the only possibilities for the nonzero coefficients k; are:
o ko ks, ky = +£5 with £, 63, 6 € Af;
L4 k2 = :l:%/ k3 = +1 with B? € A+/ B3 € A: and (527B2)/(ﬁ3uﬁ3) = 2/
[this happens only for By, 1];
o ky==43 with 8, € Al and (6,0)/(52, =) =3 [this happens only for G].

In all these cases, we have vy(zx) € {—1,0, 1,2}, as required.
(i) Ify € Af and —— (6,6) _ = 2, then (3-3) shows that 2 = Z4k2 (8, 5) 24/’{;2 Since
(.7) = () T 5
#(KX N Af) < 1, the only possibility here is:
o ky =41 with 8, € A} [this happens for B,, C,, and F,].
Therefore y(zx) = 3 + ko € {0, 1}.

(iii) If v € A7 and ((j’i)) = 3, then (3-3) shows that 1 = ;4]52 ((%751))

possibility is ky = j: and f3; is short  [this happens for Gs].

Here the only

3°. If m < rkg = n, then X is not a basis for t*. Nevertheless, one can circumvent this
obstacle as follows. Let wy € W be the longest element. Then —w, € GL(t) takes A*
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to itself and 3; € t7° for each i, see Prop. 2.3. Moreover, X is a basis for t™“°, see [23,
Lemma 6.2]. Hence 5 := 1(y —wo(v)) = Y1ty kiBli, ki € 17, and

Z = Y(zx) = v(2x).

Therefore, the argument of part 2° applies to 7 in place of 7. However, a new phenomenon
may occur here. As above, we begin with v € A(h;) \ 6. Theny = 16 + > iso kil But
in this case, 7 is not necessarily a root and it may happen that k£; = 0 for « > 2. Then
() = 1/2. (This does occur for g of type Ay,: if v =1 — €11, then wo(y) = €9p41 — €pa
and 7 = 10. Conversely, if 7 = 16, then ht 0) = 2-ht (7). Hence the Coxeter number of g
is odd, and this happens only for Ay,.)

4°. Recall that wy = —1 if and only m = rk g and then 7 = ~. Therefore, part 2° can be
thought of as a special case of a more general approach outlined in 3°. O

Remark 3.5. An analysis of possibilities for {k;} in the proof of Theorem 3.4 reveals the
following features:

(1) for any v € A%, 7 is a linear combination of at most four different elements of X;

(2) if #K =rkgand X C A, then every v € A \ X is presented as a linear combi-
nation of exactly four different elements of X;

(3) if y(xx) =2o0ry(zx) = —1, theny € A}'.

Example 3.6. Let g = soy be realised as the set of skew-symmetric N x N-matrices w.r.t.
the antidiagonal.

e For N = 2n,one has t = {diag(xy, ..., 2, —Tpn,...,—21) | ; € C}.
— If n = 2k, then #X = 2k and the entries of x4 are xo,_; = 1 and z9; = 0 for
i=1,...,k.

-Ifn = 21{: + 1, then still #X = 2k, the entries x; with j < 2k are the same as for
5045, and xo, 1 = 0.
e For N = 2n+1,onehas t = {diag(z1,...,2,,0, —xp,...,—x1) | z; € C} and #K = n.
Here the entries of xy are z9;_; =1 for i <[(n+1)/2] and xg; = 0 for i < [n/2].

Using Examples 3.2 and 3.6, one readily computes the numbers {«(zx)} with a € II for
all classical Lie algebras. For the exceptional Lie algebras one can use explicit formulae
for X, see Appendix A. An alternative approach is to use the recursive construction of X.
One has IT = | |I”, ®(f;), and it suffices to describe the numbers «(zx) for any simple Lie
algebra and o € ®(f;) = ©(6).

(1) If 6 is fundamental, then ®(0) = {a} C II, and &(xx) = —1 (Lemma 3.1);
(2) if g = sp,,, then = 2wy and ®(0) = {ay } C 1. Here 0 = 2a4 + B2 and ay (zx) = 0;
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(3) For sl, 1 (n > 2), we have ®(0) = {1, }. If n > 3, then oy (x) = ay,(zx) = 0; if
n=2,then § = oy + ag and oy (zx) = an(zx) = 1/2;
(4) For sly, one has 6 = «; and oy (z«) = 1.

The resulting labelled diagrams are presented in Figures 1 and 2.

0 0o 12 12 o 0
Ay, : o -O—0O0—0O—-C0O O
0 0 1 0 0
Ay o- O0—0O0—C0O - O
0 0 0 0 1
C, o—O0—0— - —0<=0
1 -1 1 -1 1
B2y—1 O—O0—0O— -+ —C=0
1 -1 1 71 1 0

By, o—O0—0O— -

Dy: O—O—O— - w(i
Dopri:  O—O—O— - aw(i

FIGURE 1. Numbers {a(zx) | o € I1} for the classical cases

Eﬁ:
2—1

Fi: O—O<=0—0

-1

G, : O=0

FIGURE 2. Numbers {«a(zx) | a € IT} for the exceptional cases
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Let us summarise main features of the diagrams obtained.

Remark 3.7. 1) Fractional values occur only for g of type Ay, For A,,_; and C,, the
dominant element zx is a multiple of the fundamental weight w,. More precisely,
Ty = T?ap)wp (cf. Remark 3.2).

2) All these diagrams have no marks ‘2" and all the marks {«(zx)} are nonzero if and
only if g is of type Bg,_1, Doy, E7, Es, Go. The subset {o € II | a(zx) = %1} is always
connected and the marks ‘1" and ‘—1” alternate in this subset.

3) If a(xzx) = —1 and o € Il is adjacent to ¢, then o/(zx) = 1. Moreover, if o/ (zx) = 1,
then o/ € X.

4) The numbers {a(xx)} are compatible with the unfolding procedures C, — Ay, 4,
B,_, — D,, Fs — Eg, and G, — D,. For instance, Cl)ebl — LA 1 .
4. THE CASCADE ELEMENT AND SELF-DUAL REPRESENTATIONS OF g

Consider the standard lattices in tf, associated with A [27, Chap.4,§2.8]:
o Q=@ Za; - the root lattice;
o QY =@, Za; —the coroot lattice;
o P =P, Zw,; - the weight lattice;
o PV =@, Zw, - the coweight lattice, where w,” = 2w;/(a;, ;).
Then P > Q, PY D QY, P = (QY)*, and P = Q*, where L* stands for the dual lattice of
L. For instance, P¥ = Q* ={v € tg | (v,7) € Z Vv € A}.

If g is not of type A,,, then zx € PV (Theorem 3.4). However, then zx does not always
belong to @Y, and we characterise below the relevant cases. If M C tq is finite, then
M| == 3", . Asusual, set 20 = > v = [AT[and 20" = 3> 7" = [(AY)F].
Then h(g) = (0", 0) + 1 and the dual Coxeter number of g is h* = h*(g) := (o,0") + 1.

Lemma 4.1. One has 20 =" (h*(g(j)) —1)3; and 20" =37, (h(a(s)) — 1)5;.

Proof. Since AT = | || Hg, and Sy = 0, it is sufficient to prove that |Hy| = (h(g) — 1)6
and |Hy| = (h*(g) — 1)6. Since H, \ {6} is the union of pairs {v,6 — v}, where the roots
and 6 — v have the same length, it is clear that || = af" for some a € N. Then

a = (5|361.0) = (¢",0) = h(g) — 1.
The proof of the second relation is similar. O

Proposition 4.2. The following conditions are equivalent:

(1) zx € QY
(2) every self-dual representation of g is orthogonal.
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Proof. By a classical result of Dynkin, if ) : g — V), is an irreducible representation with
highest weight ), then 7, is self-dual if and only if wy(A) = —A. Then 7, is orthogonal if
and only if (0¥, \) € N [5], cf. also [27, Exercises 4.2.12-13] or [28, Chap. 3, §2.7]. Hence
every self-dual representation of g is orthogonal if and only if ¢¥ € QY.

Therefore, it suffices to prove that ¥ — zx € QY, if g is not of type A,,. By Lemma 4.1,

we have
~ h(g(j)) — 2
=SSO =2 o
i=1
It remains to observe that, for any simple g, the Coxeter numbers h(g(j)), j = 1,...,m,
have the same parity, and if g is not of type A,,, then all these numbers are even. O

Using Proposition 4.2 and [27, Table 3], one readily obtains that
zx € Q' <= g € {Byy_1,Bup, Dy, Dyyi1, Eg, Es, Fy, Go}

Although the coefficients [p" : ;'] are usually not integral, this does not necessarily mean
that ¥ ¢ Q". For, the elements 7, ..., 3y, do not form a (part of a) basis for Q.

5. THE CASCADE ELEMENT AS THE OOMS ELEMENT OF A FROBENIUS LIE ALGEBRA

Given an arbitrary Lie algebra q, one associates the Kirillov form B, on q to any n € q*. By
definition, if (, ) : ¢* x g — C is the natural pairing and z, y € q, then

By(z,y) = (0, [z, y]) = —(ad"(z)n, y).

Then B, is skew-symmetric and Ker B, = g, the stabiliser of 7 in q. The index of q is
ind g = miney- dim g7, and g5, = {€ € ¢* | dimq° = ind q} is the set of regular elements of
q* . Suppose that q is Frobenius, i.e., there is £ € q* such that B, is non-degenerate. Then
g = {0} and ¢ € 0reg- The 2-form B, yields a linear isomorphism between q and q*. Let
Tq¢ = xe € q correspond to { under that isomorphism. It is noticed by A.Ooms [18] that
ad x¢ enjoys rather interesting properties. Namely, using the non-degenerate form B, one
defines the adjoint operator (ad z¢)* : ¢ — q. By [18, Theorem 3.3], one has

(51) (ad$§)* =1- adl’§.

Therefore, if ) is an eigenvalue of ad z, with multiplicity m,, then 1 — X is also an eigen-
value and m, = m;_,. Hence try(ad z¢) = (dimq)/2. We say that x is the Ooms element
associated with ¢ € g};,,. Another way to define ¢ is as follows. Since ¢* = {0}, we have
q-£ = q*. Then z, € q is the unique element such that (ad*z¢)-§ = —¢.

If ¢ = Lie(Q) is algebraic, then each element of g has the Jordan decomposition [27,
Ch. 3. §3.7]. Furthermore, if q is Frobenius and algebraic, then gy, is the dense Q-orbit in
qjeg- Therefore, all Ooms elements in q are ()-conjugate, and we can also write x¢ = x4 for
an Ooms element in .
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Lemma 5.1. If qis Frobenius and algebraic, then any Ooms element x is semisimple.

Proof. For the Jordan decomposition ¢ = (x¢)s + (2¢),, the defining relation (ad*z¢)-§ =
—& obviously implies that ad*((x¢)s)-§ = —£. Then the uniqueness of the Ooms element
associated with £ shows that z¢ = (z¢), is semisimple. O

Let spec(z¢) denote the multiset of eigenvalues of ad z¢ in q. In other words, if A is
an eigenvalue and q()) is the corresponding eigenspace, then A € spec(x¢) is taken with
multiplicity dim q(A). Then it follows from (5-1) that spec(z,) is symmetric w.r.t. 1/2.

In [24], we defined the Frobenius envelope of the nilradical p™' of any standard parabolic
subalgebra p C g. For u = b", this goes as follows. Set tx = (f1,...,0m)c = (K)c C t.
In more direct terms, tx = @@, [eg,, e—p,]. Then tx is an algebraic subalgebra of t, and the
Frobenius envelope of u is by = tx @ u, which is an ideal of b. Note that by = b if and
only if #X = rk g. By [24, Proposition 5.1], we have ind by = 0, i.e., by is Frobenius. Here
bi ~ g/bi can be identified with by, = t®u~ as vector space and t-module. Furthermore,
under this identification, we have

Gc=D e € (bl
Bex
Therefore, (ad*zx)éx = —£x, i.e., the Ooms element z¢, associated with £x is nothing but
the cascade element xx from Section 3. Hence spec(zx ) is symmetric w.r.t. 1/2. Note that
since tx C by (0), @sex 85 C bx(1), and dim tx = dim(} 54 95) = #K, the symmetry of
the multiset spec(zx) w.r.t. 1/2 is equivalent to the symmetry established in Lemma 3.3.

In this situation, we have
1

S (dimu 50 = % dim by = try, (ad ) = > () = 20(z0).

>0
Since ind u = #X = m [11], the sum 3(dim u + #X) is the magic number associated with u.
Comparing this with Lemma 4.1, we obtain

m

S (dim -+ m) = 20(r) = S (h*(a3)) ~ 1)
=1
Remark 5.2. The case of g = sly,+; in Theorem 3.4 shows that the eigenvalues of the Ooms
element for the Frobenius algebra by are not always integral. Nevertheless, there are
interesting classes of Frobenius algebras q such that spec(z,) C Z. Using meander graphs
of type A,, [4] or C,, [25], I can explicitly describe the Ooms element z, for any Frobenius
seaweed subalgebra p of sl,, 1, or sp,, and then prove that the eigenvalues of ad =, belong to
Z. However, being symmetric with respect to 1/2 and integral, the eigenvalues of such z,
do not always confine to the interval [—1, 2].
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6. THE ABELIAN IDEAL OF b ASSOCIATED WITH THE CASCADE

If g is not of type Ay, then zx € thas the property that {y(zx) | v € AT} € {-1,0,1,2}
(Theorem 3.4). By Kostant’s extension of Peterson’s theory [14, Section 3], every such
element of t determines an abelian ideal of b. In particular, one may associate an abelian
ideal of b to z« (i.e.,, to K) as long as g is not of type A,,. Our goal is to characterise
this ideal. If a is an abelian ideal of b, then a is t-stable and a C u™. Hence it suffices to
determine the set of positive roots A(a) C A*.

Recall that the inversion set of w € W is N(w) = {y € A" | w(y) € A~}. Then N(w) and
AT\ N(w) are closed (under root addition), i.e., if 7/,7” € N(w) and 7/ ++” € A", then
v ++" € N(w), and likewise for AT\ N(w). Conversely, if S C A" and both S and A*\ S
are closed, then S = N(w) for a unique w € W [13, Prop. 5.10]. Below, v > 0 (resp. v < 0)
is a shorthand for v € A* (resp. v € A7).

Kostant’s construction. Set D,, = {t € tg | =1 < y(t) < 2 Vy € AT}. Kostant associates
the abelian ideal a,<1b to each z € ©,,NPY [14, Theorem 3.2], i.e., if v(2) € {—1,0, 1,2} for
any v € A". Unlike the Peterson method, his construction exploits only 1 and does not

invoke the affine Weyl group W and “minuscule” elements in it. Set AZ(i) = {y € AT |
v(z) =i} and A, (i) = AF (i) UA; (i). Note that —Af (i) = A (—i). We have

(61) AT = | | AT()

i=—1
and both subsets Af(1) U Af(2) and Af(—1) U AF(0) are closed. Therefore, there is a
unique w, € W such that N(w,) = Af (1) U A} (2). By definition, then

Aa,) = w, (AT (1)) Uw.(—AF(2)) c AT,

Hence dima, = #(Af(—1) U A} (2)). Note that A,(0) is a root system in its own right,
and A} (0) is a set of positive roots in it. We say that the union in (6-1) is the z-grading of
AT, and if v € A (i), then i is the z-degree of .

Proposition 6.1. Let z € ©,, N'PY be arbitrary.

(i) If v € AT(0) is not a sum of two roots from AF(0), then w,(v) € II;
(it) if 0(z) =1,ie., 0 € Af(1), then w.(0) € —IL
Proof. Recall that N(w,) = A} (1) UAS(2).
(i) Since v ¢ N(w,), we have w,(vy) > 0. Assume that w.(y) = p1 + po, where p; > 0.
Then v = w; (1) + w; ' (ua). Letting v; := w;* (), we get the following possibilities.
1°.If 71, 72 > 0, then the z-grading of A* shows that there are further possibilities:

e 3 € Af(—1)and v, € Af(1). But then py = w,(72) < 0. A contradiction!
® 71,72 € Af(0) — this contradicts the hypothesis on 7.
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2°. Suppose that y; > 0 and v, < 0. Then v; & N(w,) and —7, € N(w,).
Hence 7, € AT(<0) and —y2 € AT (>1),1.e., 72 € A (< —1). Itfollows that v, + 12 =7 €
A.(< —1). A contradiction!

Thus, cases 1° and 2° are impossible, and w, () must be simple.

(i) Since #(z) = 1, we have w,(#) < 0. Assume that w,() = —y; — 72, where ; > 0.
Then 6 = w;'(—y1) + w; (=) and p; := w;*(—v;) > 0 for i = 1,2. Then u; € N(w,) and
hence p;(z) > 1. Therefore 0(z) = u1(z) + u2(z) > 2. A contradiction! O

Remark 6.2. Note that v € A}(0) is not a sum of two roots from A} (0) if and only if v
belongs to the base (= set of simple roots) of A,(0) that is contained in A} (0).

Let C C tg denote the dominant Weyl chamber, i.e., C = {z € tg | a(z) > 0 Va € II}.

Proposition 6.3. We have w.(z) € —C, i.e., it is anti-dominant. Moreover, w, is the unigue
element of minimal lenght in W that takes z into —C.

Proof. For any A € g, let \™ be the dominant representative in W-\. By [10, Lemma 4.1],
there is a unique element of minimal length wy € W such that wy-A = A" and then
N(wy) = {y € AT | (7,A) < 0} (cf. also [22, Theorem4.1]). Translating this into the
assertion on the anti-dominant representative in W-.z C tg, we see that the element of
minimal length @ that takes z into —C is defined the property that

N(w) ={y € A" | (v,2) > 0} = AT (1) UAL(2).
Therefore, w = w,. O

We will use Kostant’s construction with z = z4. Therefore, it is assumed below that
spec(zx) C Z, which excludes the series A,,. For simplicity, write A7(i), ax, and wyx in
place of A} (i), a,,, and w,,, respectively. By the symmetry of spec(zx), one has dim ax =
#AL(—1) + #A5(2) = 2#AL(2) and #AL(0) + #K = #AL(1). Set (i) = ITN AL (4).

Example 6.4. For sl,, and sp,,, the element x4 is dominant and A7.(2) = @. Therefore,
ax = {0} in these cases. In the other cases, i.e., when 6 is fundamental, ax is a non-
trivial abelian ideal of b. Anyway, for all simple Lie algebras except sls,, 11, we obtain a
non-trivial element wyx € W, which possesses some interesting properties, see below.

Proposition 6.5. The rank of the root system Ax(0) equals rkg — 1 and the dominant weight
—wx (zx) is a multiple of a fundamental weight. Namely, if wy(0) = —a; € —II (cf. Proposi-

tion 6.1), then —wy(zx) = ri)wj =: w;-/.
7

Proof. Clearly, —wx(zx) is a multiple of a fundamental weight if and only if the rank of
the root system Ax(0) = {y € A | v(zx) = 0} equals rk g — 1. Therefore, it suffices to point
out rk g — 1 linearly independent roots in AJ(0).
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Since I11; := Iy (—1) U Ilx(1) is connected and the roots from Ilx(—1) and IIx(1) alter-
nate in the Dynkin diagram (see Remark 3.7(2)), there are (#I1,;) — 1 edges therein and
each edge gives rise to the root o;, + oy, € Af(0). Together with the roots in Iy (0), this
yields exactly rk g — 1 linearly independent roots in AZ(0). Actually, these roots form the
base of Ay (0) in A% (0).

If wy(zx) = —a;w; and wx(0) = —a;, then
1 =0(zx) = wx(0)(wx(zx)) = ai(oy, @;).

Hence i = j and a; = 2/(ay, a;). O

Important characteristics of the abelian ideal ax can be expressed via wx € W. Since
A(ax) =: Ay is an upper ideal of the poset (A*, x), it is completely determined by its
subset min(A ) of minimal elements w.r.t. the root order “<”. Similarly, the complement

Ay = AT\ Ay is determined by the subset of its maximal elements, max(A ;).
It follows from (6-1) and the definition of N(wy) that

In this union, the first and last sets form Ay, and two sets in the middle form A ,. Hence
(6-2) wi (D) = Ak (=1) U =A% (2) = A% (-1) U AK(=2) ;
(6-3) wie' (Bg) = Ag(0) U =Ag(1) = Ag(0) U Ag(-1) .
Theorem 6.6. One has min(A ) = wx (Il (—1)). In other words,
v € min(Ay) <= wy'(v) € Hx(-1).
Proof. We repeatedly use the following observation. For v € Ay, it follows from (6-2)
that if wy'(7) > 0, then wy' () € AL (—1); whereas if wy' () < 0, then wy' (7) € —AL(2).
1°. If wi'(y) = a € lx(—1), then v € Ax). Assume further that v is not a minimal
element of Ay, i.e., v = 7/ + u for some v € Ay and p > 0. Then @ = wi' (v') + wi' (1)
and there are two possibilities:
(@): wi'(y) < 0and wi'(p) > 0;
(b): wi'(v) > 0and wy'(p) < 0.
For (a): By (6-2) and (6-3), one has w.' (/) € Ax(—2) and wy ' (1) € AL (0)UAZ(—1). Then
their sum belongs to Ay (< — 2) = Ax(—2), and this cannot be o € A7 (—1). Hence this
case is impossible.
For (b): By (6-2) and (6-3), one has wy'(7/) € Af(—1) and wy'(p) € Ax(—2) U Ax(—1).
Then their sum again belongs to Ax(—2), which is impossible, too.
Thus, v = wx (o) must be a minimal element of A .

2°. Suppose that v € Ay and wy' (v) € Ilx(—1). By (6-2), there is a dichotomy:
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@: wi'(y)>0;
(b): wi'(y) <O0.

For (a): By (6-2), one has wy'(7) € Af(—1). Since wy' (Awy) NI = Ilx(—1), we have
wgzl(v) = 1 + po for some fy, g > 0. From the zi-grading of AT, we deduce that
w € Af(—1) and py € AL(0). Letting v; = wx(u;), we see that y; € Ay and v, > 0.
Hence v = v, + 72 is not a minimal element of A .

For (b): Here wy'(y) € —A%(2). Since # € Af(1), we have wy'(y) # —6 and hence
wgzl(v) = 1y — 1, for some vy, v, > 0. Using the zx-grading of A, one again encounters
two possibilities:

(i) v € AL(—1),1n € AL(1);
(i) 1 € AL(0), 10 € AL(2).

In both cases, v = wx (1) +wx(—12) and one of the summands lies in A, while the other
is positive. Hence v & min(A ). O

Theorem 6.7. One has max(Axy) = —wx(Ilx(1)). In other words,
v € max(A ) <= —wi' (7) € Hx(1).

Proof. To a great extent, the proof is analogous to that of Theorem 6.6, and we skip similar
arguments.

1°. If —wy'(y) € Mx(1), then an argument similar to that in part 1° of Theorem 6.6
proves that v € max(A ).

2°. Conversely, suppose that 7 € Ay and —wy' () € Hx(1). In view of (6-3), one has
to handle two possibilities for wy' (7).

(@): If wy'(y) > 0, then wy'(y) € Af(0). Arguing as in the proof of Theorem 6.6 (part
2°(a)), we show that v = 7; — v, where v, € m and v, > 0. Hence v ¢ max(m).

(b): If wy ' (v) < 0, then —wy ' (7) € A(1) \ Ik (1). Hence —wi' () = 1 + v for some
v1, 5 > 0. There again are two possibilities:

(1) v € AL(0), vy € AL(1); [(0,1)-decomposition of —wy'(7)]
(2) v € AL(-1),1n € AL(2). [(—1,2)-decomposition of —wy' ()]

In case (1), we get v = v, — 71, where 7, 1= —wx (1) € m and vy; = wy(v1) > 0. Hence
v & max(A ).

In case (2), one similarly obtains the presentation of +y as difference of two elements of
A x), which is useless for us. However, one can replace such a (—1,2)-decomposition of
—wi' (7) with a (0, 1)-decomposition, which is sufficient. Since v, € Af(2), the root v, is
long (Remark 3.5(3)) and not simple (for, IIx(2) = @). Hence (v, 15) < 0 and v, = v + v/}
with v}, > 0. W.l.o.g., we may assume that (v, 7}) < 0. One has three possibilities for
the zy-degrees of (v}, 14),i.e., (1,1),(2,0), (0,2), and it is easily seen that —w;' (y) = (1 +
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vh) + V4 is either a (0, 1)-decomposition, or still a (—1, 2)-decomposition, with v € AL(2).
But in this last case we have ht (v}) < ht (), which provides the induction step. O

Remark 6.8. Theorem 6.6 holds for arbitrary z € ®,, N P" in place of zx, with certain
amendments. That is, if #(z) < 1, then the statement and the proof remain the same.
If 6(2) = 2, then —w,(f) has to be added to min A(a,). Certain complements of similar
nature are also required in Theorem 6.7. I hope to elaborate on this topic in a subsequent
publication.

7. AN EXPLICIT DESCRIPTION OF wg € W AND THE IDEALS ax

The element wy € W and the abelian ideal ax have many interesting properties, which
can be verified case-by-case. To this end, we need explicit formulae for wy. Our main tool
is the following

Theorem 7.1. Given z € ©,, N'PY, suppose that rk A,(0) = rk A — 1 and 6(z) = 1. Then
w; *(IT) = {the base of A,(0) in A (0)}uU {-6}.

z

Proof. Setp = rk A, and let vy, ...,1,_; € Af(0) be the base of A,(0). By Proposition 6.1,
we have w,(1;) € 1 (i =1,...,p—1) and w,(0) € —II. The assertion follows. O

By Proposition 6.5, Theorem 7.1 applies to z = xx. We demonstrate below how to use
this technique for finding wyx € GL(t).

Example 7.2. (1) Let g be of type Dy,. Then IIx(0) = & and the base of AJ(0) corre-
sponds to the edges of the Dynkin diagram, i.e., it consists of oy + g, g + 3, . .., Vo2 +
Qon—1, Qo2 + Qay, cf. the diagram for Dy, in Fig. 1. Therefore, the root system Ax(0) is of
type A,_1 + D,,. More precisely,

{a1 + g, a3+ ay, ..., Q9,3 + qo,_o} is a base for A(A,_1);

{ag+ as,ay + as, ..., Qop g + Qop_3, Q02 + Q2 1, Qoo + (o, } is @ base for A(D,,).
Since the Dynkin diagram of A,,_; + D,, is obtained by removing the node «,, from the
Dynkin diagram of Ds,,, we must have wy'(,,) = —6. Then an easy argument shows that

A wg_cl(al) = Qop_3 + Qop_2,... ,wil(an_g) = a3 + Qa, wj_gl(an—l) =)+ oy —
for the A,,_;-part;
* wg_cl(anﬂ) =aytas,... 7w3_<1<a2n—2) = Qigp—4 + Qi2y_3,

wj_(1<{a2n—17 Qo }) = {Qon—2 + Qan_1, Qop_o + 9,1} — for the D,,-part;

The only unclear point for the D, -part is how to distinguish wgzl(ozgn_l) and wil(a%).
Using the expressions of simple roots of Dy, via {¢;}, i = 1,...,2n, we obtain two pos-
sibilities for wy as a signed permutation on {¢;}, where the only ambiguity concerns the
sign of transformation ey, — *e9,. We then choose this sign so that the total number of
minuses be even, see Example 7.3 below.
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(2) Similar argument works for the other orthogonal series.
(3) For the exceptional Lie algebras, a certain ambiguity (due to the symmetry of the
Dynkin diagram) occurs only for Eg.

For the classical cases, our formulae for wx use the explicit standard models of W as
(signed) permutations on the set of {¢;}. Write ord(wx(g)) for the order of wyx = wx(g).

Example 7.3. Here we provide formulae for wy if g is an orthogonal Lie algebra.
1°. If g is of type Dy, then

€1 €3 ... E2p—3 E2n-1 €2 €4 -.. E2n-—2 Ean
wy: { L { { Lol !
—&p —Ep_1 ... —E€3  —€1 |Epy1 Epyo ... Eop_1 (—1)"eoy

The last sign is determined by the condition that the total number of minuses must be
even for type Dy.

2°. For g of type By,,_1, one should merely omit the last column in the previous array.

3°. If g is of type Dy, 1, then the following adjustment works:

€1 €3 co. Eop—3 Eop—1| &2 €4 ... Eop—2 Eop €2n+1
wec: 1 ool 1 1 N \J
—&n —E&p-1 ... —E&2 —€1 | €n+1 En42 -+ E2n—1 Eon (—1)"€2n+1

4°. For g of type B,,, one should merely omit the last column in the previous array.

e It follows that in all four cases wx (6) = wx(e1+¢€2) = —€,+€n41 = —a,, which agrees
with Lemma 6.1(ii).

e For Dy, 1, one has IIx(0) = {ag,, as,11} (see Fig. 1) and wx takes Ilx(0) to itself.
Recall that here ay, = €3, — €2,41 and 9,41 = €2, + €2,41. The same happens for B,,,
where I (0) = {ag, = €9, }, cf. Lemma 6.1(i).

Example 7.4. Here we provide formulae for wy if g = sly, or sp,,.
1°. If g is of type Ay,_1, then

€1 9 C En—1 En | En+1 En42 .. Eop—1 E2p
weyc: 4 N 2 A N A
Entl Eng2 --- En_1 Ean | €1 € ... Ep_1 En
It follows that w (0) = wx(e1—e2n) = —€n+En+1 = —a,, which agrees with Lemma 6.1(ii).

. Qi 1< n
Here I (0) = IT \ {a,} (see Fig. 1) and wx (o) = .
Qi_p, >N

2°. If g is of type C,,, then

€1 €2 S | En

—&n —E&p—1 ... —E&2 —&1
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Here wy(0) = —ay,, Tk (0) =11\ {a,}, and wy(a;) = v, for i < n.

e Inboth cases here, one has w3 = 1.

Example 7.5. 1°. For g of type F,, we write (a;azasza4) for Zj‘zl a;cv;. Then wy () = o for
i =1,2and wx(as) = —(2421), wx(ay) = (2431) = 6 — ay. It follows that wy(6) = —ay.

2°. For g of type Es, we write (ajazasaqasaq) for v = Zle a;o; = a1a2gza4a5 . Then
wy (o) = a; for i = 1,2,4,5 and wx(as) = —(122211), wx(as) = (123211) = 6 — . It
follows that wy(0) = —ag.

3°. For g of type Gy, we have II; = {as}, wx = (ra,7a,)?, and wy(0) = —a.

e In all three cases, one has wi. = 1.

Example 7.6. 1°. For E7, we have Ilx(—1) = {a, a4, s} (see Fig. 2) and

Q; ‘ ai Q2 as Qy Qs Qs ar ‘
wy(ay)| -122210 122211 -112211 112221 012221 012321 -111221
1 1 1 1 1 1 1

It follows that wy () = —ay. A direct calculation shows that ord (wx) = 18.

2°. For Eg, we have Ilx(—1) = {a1, a3, a5, a7 } (see Fig. 2) and

a; ‘ (03] 9 Qa3 iy (673 (875 (0%4 ag ‘
wyc(ay)| 0123431 0123421 1123421 -1123321 1223321 1223321 1233321 -1222321
2 2 2 2 2 1 1 2
It follows that wy(0) = —ay. A direct calculation shows that ord(wy) = 5.

Remark 7.7. (1) We do not know a general formula for ord(wx(soy)). Using Example 7.3,
it is not hard to prove that ord(wx) takes the same value for Bs,,_1, Ds,, By, Do, 41. But
explicit computations, up to n = 13, show that the function n — ord(wx(D,,)) behaves
rather chaotically.

(2) If o € IIx(0), then wx(a) € Ix(0) as well. But this does not hold for arbitrary
2 € D,p. In general, it can happen that « € I1,(0), but w,(a) € II'\ I1,(0).

The main result of this section is an explicit uniform description of A(ax).
Theorem 7.8. Set dx = ht(0) + 1~ e [0 0] =1+ X oen oo)lf : - Then

(i) ht(y) = dx ifand only if wi (y) € Hy(—1);
(i) ht(y) = dx — Lifand only if —wg(y) € Tx(1);
(i) Alax) = {y € A" | ht(y) > dx}.

Proof. 1°. For Ay, and C,,, z« is dominant. Hence [Ix(—1) = &, dx = E;(H) +1 = histhe
Coxeter number, and A(ax) = @, which agrees with (iii). Here 6 is the only root of height
dy — 1, Ix(1) = {o,}, and wx(a,) = —6, see Example 7.4. This confirms (ii), whereas (i)
is vacuous.
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2°. In the other cases, [Ix(—1) # @.

(i) Using formulae from Examples 7.3-7.6, one directly verifies that if o € Ilx(—1), then
ht(wx( )) = dx. It also happens that #{7 | ht( ) = dx} = #Ilx(—1) in all cases.

(i) Again, this can be verified directly. Alternatively, this follows from (i), Theorem 6.6,
and Theorem 6.7 (without further verifications).

(iii) This follows from (i) and Theorem 6.6. O
Notethat h—1=ht(0)= Y [0:al+ > [f:a]+ > [0:q]
a€lly (1) a€llyk (0) a€lly(—1)
and 1=0(xx)= Y [f:a]— Y [0:q].
aEHg((l) OzEHg((—l)

Therefore, if [1x(0) = @, then dx = (h/2) + 1; whereas, if I1x(0) # @, then dyx > (h/2) + 1.

Remark 7.9. A remarkable property of the abelian ideal ax is that min A(ax) consists of
all roots of a fixed height. This can be explained by the properties that I (—1) U IIx(1)
is connected in the Dynkin diagram and that +1 and —1 nodes alternate. For, if o; and
a; are adjacent nodes, o; € Ilx(—1), and «; € Ilx(1), then a; + «; is a simple root in
AF(0). Hence wx(a;) € min A(ax), —wx () € max(AT \ A(ax)), and wx(a; + «;) € IL.
Hence ht (wx(ag)) =14+ ht (—wx (). In view of Theorems 6.6 and 6.7, together with the
connectedness and the alternating property for Ilx(—1) U Ilx(1), this relation propagates
to any pair in min A(ax) x max(A™\ A(ax)).

But the exact value of the boundary height, which is dy is our case, has no explanation.

8. THE INVOLUTION OF g ASSOCIATED WITH THE CASCADE

In this section, we assume that spec(zx) € Z, i.e., g # sly,+1. Then partition (6-1) yields
the partition of the whole root system A = | J__, Ax (i) such that Ax(2) = AL(2).

Set Ay = Ax(—2) U Ax(0) UAx(2) and Ay = Ax(—1) U Ax(1). Consider the vector
space decomposition g = gy & g1, where gp = t & (Pren,09,) and g1 = B,ea,9,. Thisis a
Zs-grading and the corresponding involution of g, denoted oy, is inner.

Lemma 8.1. The involution oy has the property that
dimgy = dimb — #X and dimg; = dimu + #X.

Proof. This readily follows from the symmetry of spec(zx) on the Frobenius envelope by
and the equality dim by = dimu + #X, see Section 5 or Lemma 3.3. For, one has

i |21 0 |12
4ALG0) [ 0 [ a [o—#%
AN || a | b | b—#K
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for some a,b. Then dimu = 2a + 2b — #XK, dimgg = 2a + 2b + rkg — 2#XK and dim g; =
2a + 2b. O

Since ind u = #X and ind b+ind u = rk g, the formulae of Lemma 8.1 mean that dim g; =
dimu +indu = dim b — ind b and dim gg = dimu + ind b = dim b — ind u.

Recall that tx = @;"[es,, 5] C t.
Lemma 8.2. The subalgebra tx contains a regular semisimple element of g.

Proof. By Eq. (2-1), if v € A, then v € Hg, for a unique 3; € K. That is, for any v € A™,
there exists 3; € K such that (v, 8;) > 0. Therefore, thereisa v € (i, ..., 5)g such that
(7,v) # 0 for every v € A*. Upon the identification of t and t*, this yields a required
element of ty. O

Theorem 8.3. The involution ox has the property that g, contains a reqular semisimple and a
reqular nilpotent element of g.

Proof. For each ; € X, consider the subalgebra sl,(5;) with basis {es,,e_g,, [es, e—s,]}-
Then sly(8;) ~ sl, and since the elements of X are strongly orthogonal, all these sl,-
subalgebras pairwise commute. Hence h = (P]_, slz(;) is a Lie algebra and ty is a Cartan
subalgebra of . Recall that §;(z«) = 1, i.e., 5; € A%(1) for each j. By the very definition
of oy, this means that h N gy = tx and hNg1 = (B~ 9s.) ® (B, g—p,). Clearly, there is a
Cartan subalgebra of § that is contained in h N g; (because this is true for each sl,(3;) sep-
arately). Combining this with Lemma 8.2, we see that g; contains a regular semisimple
element of g.

Finally, for any involution o, its (—1)-eigenspace g; contains a regular semisimple ele-
ment if and only if it contains a regular nilpotent element. OJ

Remark 8.4. (i) One can prove that if ¢ is a Cartan subalgebra of h = ', 5l2(;) that is
contained in h N gy, then ¢ is a maximal diagonalisable subalgebra of g;. In other words,
¢ C g1 is a Cartan subspace associated with ox. Therefore, the rank of the symmetric vari-
ety G /Gy equals dim ¢ = #X.

(i) The involution oy is the unique, up to G-conjugacy, inner involution such that g;
contains a regular nilpotent element. Moreover, o has the property that O N g, # @ for
any nilpotent G-orbit O C g, see [2, Theorem 3].

(iii) If #X = rkg, then dimg; = dim b, dim gy = dimu, and g; contains a Cartan subal-
gebra of g. In this case, oy is an involution of maximal rank and one has a stronger assertion
that O N g, # @ for any G-orbit O in g ([2, Theorem 2]).
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9. THE NILPOTENT G-ORBIT ASSOCIATED WITH THE CASCADE

Consider the nilpotent element associated with X

m

9-1) ex 1= Zeﬁ = Zegi eu’

BeX i=1
Since the roots in X are linearly independent, the closure of G-ex contains the space
@D jcx 95- Hence the nilpotent orbit G-ex does not depend on the choice of root vectors
eg € gp. The orbit Oy := G-ex is said to be the cascade (nilpotent) orbit. Our goal is to
obtain some properties of this orbit.

Recall from Section 3 that if § is fundamental, then & is the only (long!) simple root such
that (6,4) > 0and X = {f € K | (8,&) < 0}. It then follows from (3-2) that #X < 3 and
#X = 3 if and only if the roots in K are long. Actually, one has #X = 1 for Gy, #X = 2
for B3, and #5{ = 3 for the remaining cases with fundamental 6.

Theorem 9.1. 1°. Suppose that 0 is fundamental, and let & be the unique simple root such that
(0,&) # 0. Then (i) (adex)*(e_pra) # 0and (i) (adex)® = 0.
2°. If  is not fundamental, then (ad ex)* = 0.

Proof. 1°(i). It follows from Eq. (9-1) that

(adex)* = Z ad(eg, )-...-ad(eg, ),

11,82,13,%4

where the sum is taken over all possible quadruples of indices from {1,...,m}. Set
Ail,i2,i3,i4 = ad(eﬁil )ad(eﬁiz )ad<€ﬁi3 )ad<€ﬁi4 )

As the roots in X are strongly orthogonal, the ordering of factors in A;, ;, ;, i, is irrelevant.
Hence the operator A;, ;, ;,.., depends only on the 4-multiset {7y, is, i3, i, }. Furthermore,
the nonzero operators corresponding to different 4-multisets are linearly independent.
Therefore, to ensure that (ad ex)* # 0, it suffices to point out a 4-multiset M and a root
vector e, such that Ay(e,) # 0. Of course, in place of 4-multisets of indices in [1,m/], one
can deal with 4-multisets in XK.

Using (3-2) and K C K, one defines a natural 4-multiset M in K. The first element
of M is & = $; and then one takes each §; € K with multiplicity k& = (&,a)/(6:, 5:).
The resulting 4-multiset has the property that (=6 + &) + (0 + >_,., kif5;) = 0 — & and
(=0 + @, ) < 0forany jin M. This implies that

0# Am(e—em) € go—a-

(i) Now we deal with 5-multisets of K. Assume that M = {Bir, .., B} and Ay # 0.
Then there are v, € A such that 0 # Ay(9-,) C g,. Hence v+ p = Z?:l B, and
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(v + p)(zx) = 5. But y(zx) < 2 for any 7 € A (Theorem 3.4(3)). This contradiction shows
that (ad ex)® = 0.

2°. By Theorem 3.4(1)(2), we have y(zx) < 1 for any v € A. Hence the equality v + p =
2?21 s, is impossible. This implies that Ay = 0 for any 3-miltiset M of X and thereby
(ad eg)® = 0. O

Let ' C g be the set of nilpotent elements. Recall that the height of e € N, denoted
ht(e) or ht(G-e), is the maximal [ € N such that (ade)’ # 0 (see [20, Section 2]). By the
Jacobson-Morozov theorem, (ade)? # 0 for any e € N, i.e., ht(G-e) > 2.

The complexity of a G-variety X, c¢¢(X), is the minimal codimension of the B-orbits in
X. If X is irreducible, then cg(X) = trdeg C(X)?, where C(X)¢ is the field of B-invariant
rational functions on X. The rank of an irreducible G-variety X is defined by the equality
ca(X) +rg(X) = trdeg C(X)Y [21]. If ¢g(X) = 0, then X is said to be spherical.

Proposition 9.2.

(i) If 0 is fundamental, then the orbit G-ex is not spherical and ht(G-ex) = 4.
(i) If 0 is not fundamental, then the orbit G-ex is spherical and ht(G-ex) = 2.

Proof. By [19, Theorem (0.3)], a nilpotent orbit G-e is spherical if and only if (ade)* = 0.
Hence both assertions follow from Theorem 9.1. O

9.1. A description of the cascade orbits. For the classical Lie algebras, we determine the
partition corresponding to Ox. While for the exceptional Lie algebras, we point out a
“minimal including regular subalgebra” in the sense of Dynkin [6].

I. In the classical cases, we use formulae for the height of nilpotent elements of sl(V) or
s0(V) or sp(V) in terms of the corresponding partitions of dim V, see [20, Theorem 2.3].

* g = s0gn41. Since ht(Ox) = 4, the parts of A(ex) does not exceed 3, i.e.,, A(ex) =
(32,2°,1¢) with @ > 0 and 3a + 2b + ¢ = 2N + 1. Then A(e) = (2%,1,...,1). Hence
rk (ex) = 2a + b and rk (e%) = a. On the other hand, here #X = N = rk g and using the
formulae for roots in X and thereby the explicit matrix form for ex, one readily computes
that

rk (ex) = gﬂ i x z z‘;zn and 1k (¢2) = Irk (ex) = [(N4+1)/2].
Therefore, if N is either 2j—1 or 25, then a = j and b = 0.

Hence A(ex) = (37,1771 or (37, 1911), respectively.

* g=s50,y. Here ht(Ox) = 4 and A(ex) = (3¢,2°,1¢), with @ > 0 and 3a + 2b + ¢ = 2N.
Then again rk (ex) = 2a + b and rk (e%.) = a. The explicit form of X and ex shows that

N if N is even
rk (eq) = 7 and rk (e2) = irk (eq) = [N/2].
(ex) N—1, if Nisodd (ex) = grklen) = [N/2]
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Therefore, a = [N/2] and b = 0 in both cases. Hence
Aex) = (37,19),if N =2j; A(ex) = (37, 1772),if N = 25 + 1.

* g = sly,; or spyy. Then ht(Ox) = 2, Alex) = (24,1%), and a = rk(ex) = #X.
Therefore, A(ex) = (2") for sly, and sp,,, while A(ex) = (2", 1) for sly, 1.

IL. In the exceptional cases, one can use some old, but extremely helpful computations
of E.B. Dynkin. Following Dynkin, we say that a subalgebra b of g is regular, if it is nor-
malised by a Cartan subalgebra. As in Section 8, consider h := ", sl>(5;). Then b is
normalised by t and ex € b is a regular nilpotent element of ). Clearly, b is a minimal
regular semisimple subalgebra of g meeting Ox.

For every nilpotent G-orbit O in an exceptional Lie algebra g, Dynkin computes all, up
to conjugacy, minimal regular semisimple subalgebras of g meeting O, see Tables 16-20
in [6]. (This information is also reproduced, with a few corrections, in Tables 2-6 in [7].)
Therefore, it remains only to pick the nilpotent orbit with a “minimal including regular
subalgebra” of the required type, which also yields the corresponding weighted Dynkin
diagram D(Ox).

For the regular subalgebras sl, C g, Dynkin uses the Cartan label A, (resp. A)) if the
corresponding root is long (resp. short). Therefore, we are looking for the “minimal
including regular subalgebra” of type mA;, m = #X, if X C A;; whereas for g of type G,
we need the subalgebra of type A; + A,.

9.2. Another approach to Ox. By the very definition of z« € t and ex, we have [z, ex] =
ex. It is also clear that 4 € Im (ad ex). Therefore hy = 2xy is a characteristic of ey [28,
Chap. 6, §2.1]. Hence the weighted Dynkin diagram D(Ox) is determined by the domi-
nant representative in the Weyl group orbit W-hyx C t. Since the antidominant represen-
tative in Wz is wx(z«) (Prop. 6.3) and wy(zx) = —xx, the dominant representative is
—wyc(xsc). Therefore, if g # sly,. 1, then W-hye N C = {Qw]V}, where j is determined by the
condition that wx () = —a; (cf. Prop. 6.5). Thus, if g # sl5,11, then Ox is even and D(Ox)
has the unique nonzero label “2” that corresponds to ;.

Let g = @,., 9(i) be the Z-grading determined by hyx = 2zy; that is, hy has the eigen-
value i on g(7). Then

ht(ex) = max{i | (i) # 0} = 2max{y(ax) | 7 € A}.

Using results of Section 3, we again see that ht(ex) < 4 and the equality occurs if and only
if § is fundamental. Note that

dim g(2) = #(A%(1) UAL(1)) = #(AL(1) UAL(-1)) = #(A%(1) UAL(2)),
dim g(4) = #A%(2) = #Ax(2) = dim Im (ad ex)*,

and also 2 dim g(4) = dim ax.
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In Tables 1 and 2, we point out dim Ox and D(Ox). For classical cases, we provide
the partition A(ex); while for the exceptional cases, the Dynkin-Bala—Carter notation for
orbits is given, see e.g. [3, Ch. 8]. We also include dimensions of the spaces g(2) and g(4).
In Table 1, the unique nonzero numerical mark ”2” corresponds to the simple root «;
for all even cases. For A,;, two marks “1” correspond to the roots a; and «a;4;. We also
assume that j > 2 in the four orthogonal cases. (For, By = A, D, = A; + A, B; = Cy, and
D; =A;)

TABLE 1. The cascade orbits for the classical Lie algebras

g |Alex)  dimOx D(Ox) dimg(2) dimg(4) |
Ay | () 277 0— - —0—2—0— —0 7 0
A, (27,1) 252425  0——0—1—1—0— —0 52 0
G, |[@) e () o
Boj—i | (37, 771) 57=3j o—-o—2—0——0=>0  2°—5 ()
o 0 .
D,; (37,17)  55%—j of~-~70—2—07~-~70< 22 ()
0
By | (3. UH) 5%+  o-o—m2—o—mo=0 2745 ()
Dyj1 | (37, 1972) 552435 ofmfo—z—ofmfo( 252425 ()
0

TABLE 2. The cascade orbits for the exceptional Lie algebras
g | Ox dim Oy D(Ox) dimg(2) dimg(4) |

Ec | A 42 0—0—?—0—0 20 1

2
E; | Ay + 3A; 84 0—0—0—?—0—0 35 7
2
Es | 2A; 156 0*0*0*0*(‘1*0*2 64 14
0
F, | Ay 30 0—0<=0—2 14 1
G2 Gg(al) 10 <=2 4 1

Let us summarise main properties of the cascade orbit in all simple g.

e The cascade orbit Ox is even unless g is of type A,;; this reflects the fact that
zx € PV unless g is of type A,;.
e If # is fundamental, then ht(Ox) = 4 and Ox is not spherical.
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e If #is not fundamental, then ht(Ox) = 2 and Ox is spherical. Moreover, it appears
that Oy is the maximal spherical nilpotent orbit in these cases.

e Using the general formulae for the complexity and rank of nilpotent orbits in
terms of Z-gradings [19, Sect.(2.3)], one can prove that c;(Ox) = 2dimg(4) =
dim ax and rg(Ox) = dim tx = #X for all simple g.

e If § is fundamental, then (Ox is even and) the node with mark “2”, regarded as a
node in the affine Dynkin diagram, determines the Kac diagram of the involution
ox. (See [28, Chap.3, §3.7] for the definition of the Kac diagram of a finite order
inner automorphism of g.)

e If 0 is not fundamental and Oy is even, then the node with mark “2” and the extra
node in the affine Dynkin diagram, together determine the Kac diagram of the
involution oy.

APPENDIX A. THE ELEMENTS OF X AND HASSE DIAGRAMS

Here we provide the lists of cascade elements and the Hasse diagrams of cascade posets
X for all simple Lie algebras, see Fig. 3-6. To each node 3; in the Hasse diagram, the
Cartan label of the simple Lie algebra g(j) is attached. Recall that §3; is the highest root for
g(j). If g(j) ~ sl and p; is short, then we use the Cartan label A,. (This happens only for
B, 1 and G,.) It is also assumed that A; = C,;. The main features are:

o Il = {ay,..., g} and the numbering of II follows [27, Table 1],
e (3, = 0 is always the highest root,
e The numbering of the f3;’s in the lists corresponds to that in the figures.

We use the standard e-notation for the roots of classical Lie algebras, see [27, Table 1].

The list of cascade elements for the classical Lie algebras:

Apn=>22 Bi=¢c —cnai=a;+ - tanp (=1,2,..., [nTHD,

Coon=1l ;=2=2(;+ - +a,1)+a, (=12 ....,n—1)and 5, = 2, = ay;
Bon, Dony Dony1 (02> 2): Boi1 = €951 + €94, foi = €2i-1 — €2; (1 =1,2,...,n);
B.,.1,n > 1: here 31, ..., [, are as above and (32,11 = €2,11;

For all orthogonal series, we have 35, = ay;—1, 7 = 1,...,n, while formulae for ;,_; via Il
slightly differ for different series. E.g. for Dy, one has (35,1 = agi—1 +2(agi +- - -+ a2,—2) +
Qop—1 + Qo (7' = 17 27 s, — 1) and ﬁ2n—1 = Qigp.

The list of cascade elements for the exceptional Lie algebras:
GQ: 51 = (32) =3a; + 20(27 52 = (10) = Qq;

F4: ﬁl = (2432) = 20&1 +4042 +30&3—|—2OK4, ﬁg = (2210), ﬁg = (0210), ﬁ4 = (0010) = Qs3,
Eg: () =12321, 5, = 11111, 5 = OLL10,, ;= 00100 = a;
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Er (1= 123832, fy= 122210, ;= 100000 = vy, 4= 001210, 5= 001000 = a,
fio= 000010 = a5, 3= 000000 = ay;
Ex: fy= 2345612, 5= 0123432 , = 0122210 , ;= 0100000 = 1y, 5= 0001210,

fig= 0001000 = cy, = 0000010 = c, = 0000000 = i

FIGURE 3. The cascade posets for A, (p > 2), C,, (n > 1), F4, Gy

29

61 {A’anl} ﬁl {AQn} ﬁl {Cn} 61 {F4}
| ;
A, A, c. ‘ F,: Ba{Cs} ; 5|1{G2}
Bn-1 {As} Bn-1 {As} Bp-1{Cs} Bs{C} ﬁg{,&l}
|
B {A:} B {A2} By {Ci} Ba{C1}
FIGURE 4. The cascade posets for series B, p > 3
/ ﬁ1{8271+1} / Bl {BQH}
{Al} 52 / ﬁ3{82n71} {Al} ﬁQ / ﬁ3{BQ7L72}
{A1} B {A} B4
Boyi1: : Bon—3 {35} B, : Bon—3 {34}
{Al}BQn—Q B?n—l {BS} {Al}ﬁ2n—2 B?n—l {BZ}
s e
{A} Bon Pon+1 {A;} {A1} Bon
REFERENCES

[1] D.V. ALEKSEEVSKY and A.M. PERELOMOV. Poisson and symplectic structures on Lie algebras. I, J.
Geom. Phys. 22 (1997), no. 3, 191-211.



30

DMITRI I. PANYUSHEV

FIGURE 5. The cascade posets for series D, p > 4

/ B1{Da,} / B1{Dani1}
{Al} 52 / ﬁS{D27172} {Al} ﬁ2 / ﬁS{D27171}
{Al} 64 {A1}54
D.,.: Bon—s {Db} D PAE Bon—3 {D)}
/ /
{Al}BQn—4 /8271,—3 {D4} {Al}ﬁ2n—2 B?n—l {DS}
RN pd
{A1}Bon—2 {A} Ban—1 Bon {A:1} (A} Bon
FIGURE 6. The cascade posets for Eg, E7, Eg
Bi{Es}
N\
B1{Es} {E7} By Bo{Er}
/ /
B {As} {Dg} 2 B3{Ds }
o ’ / N\ = /N
Bs{As} Bu{Ds}  Ba{Ai} Bs{Ds}  BufAr}
/N
Ba{Ar} {A1}55 Bs{A1}  Br{Ai} Be{A:}
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