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THE CR KILLING OPERATOR AND

BERNSTEIN–GELFAND–GELFAND CONSTRUCTION IN CR GEOMETRY

YOSHIHIKO MATSUMOTO

Abstract. We elaborate the tractor calculus for compatible almost CR structures (also known

as strictly pseudoconvex partially integrable almost CR structures) on contact manifolds, and

as an application, express the first BGG invariant differential operator D0 explicitly in some

cases, i.e., for some tractor connections. An interesting outcome is the fact that the “modified”

adjoint tractor connection ∇̃ governing infinitesimal deformations of parabolic geometries gen-

erates what we call the CR Killing operator as its first BGG operator, and actually, it does not

agree with the first BGG operator of the normal (unmodified) adjoint tractor connection. The

relationship between the CR Killing operator and analysis of ACHE (asymptotically complex

hyperbolic Einstein) metrics, or more specifically the CR obstruction tensor, is also discussed.

1. Introduction

Theory of parabolic geometries, as partly summarized in the standard reference of Čap–Slovák

[13], has proven to be a useful tool in studying certain kinds of differential-geometric structures.

The fundamental idea of the theory is to single out one preferred Cartan connection among

the ones admitted by the underlying geometric structure by introducing a normality condition

described in the Lie-theoretic language, thereby constructing preferable linear connections of

naturally defined vector bundles (called tractor bundles), which fit together well with Lie algebra

homology/cohomology theory. In this article, we describe this approach in detail in the case of

CR geometry, and in particular, how a specific linear differential operator D, which we suggest

calling the CR Killing operator, can be put in its context.

As pointed out by Čap–Schichl [12] and perhaps also intended by earlier authors, the scope

of the approach toward CR geometry from the theory of parabolic geometries is not limited to

CR structures in the classical sense; the formal integrability condition can be relaxed. Stated

in a more precise language, the category of normal regular parabolic geometries of type (G,P ),

where G = PSU (n + 1, 1) and P is its parabolic subgroup that consists of all the elements

preserving some fixed null complex line in C
n+1,1, is equivalent to the category of so-called strictly

pseudoconvex partially integrable almost CR structures on contact manifolds, or compatible

almost CR structures by the term coined in [30]. The subtleties about the CR Killing operator

that we are going to discuss become visible only by taking those non-integrable CR structures

into consideration.

We define the CR Killing operator

(1.1) D : Re E(1, 1) → Re(E(αβ)(1, 1)⊕ E(αβ)(1, 1))

on a contact manifold equipped with a compatible almost CR structure by

(1.2) Df = (i∇(α∇β)f −Aαβf − iN(αβ)γ∇
γf,−i∇(α∇β)f −Aαβf + iN(αβ)γ∇

γf)
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in terms of any Tanaka–Webster connection, where the necessary notation to interpret (1.1) and

(1.2) is recalled in the next section. One can verify that the operator given by (1.2) does not

depend on a particular choice of the Tanaka–Webster connection (i.e., a choice of a contact

form), or in other words, that it is determined purely by the compatible almost CR structure. In

fact, as we will see in Section 3, this operator has a CR-geometric meaning: it describes trivial

infinitesimal deformations of compatible almost CR structures induced by contact Hamiltonian

vector fields.

As already mentioned, one major purpose of this article is to illustrate that the operator (1.2)

also pops up from the theory of parabolic geometries. It is actually what is called the first BGG

(Bernstein–Gelfand–Gelfand) operator associated with the “modified” adjoint tractor connection

introduced by Čap in [9].

Theorem 1.1. The first BGG operator D∇̃
0 of the modified adjoint tractor connection ∇̃ equals

the CR Killing operator D.

Actually, it is also very important to note that, for general non-integrable compatible almost

CR structures, the “unmodified” normal adjoint tractor connection ∇ does not play the same

role; using the modified connection ∇̃ is really necessary. The author believes that this obser-

vation gives some insight toward the idea of “holographic” reconstruction of normal parabolic

geometries associated with compatible almost CR structures on the conformal infinity of ACHE

(asymptotically complex hyperbolic Einstein) spaces.

In order to compute the first BGG operators D∇
0 and D∇̃

0 and to show that the latter agrees

with D, we derive the formulae of ∇ and ∇̃ relative to an arbitrarily chosen exact Weyl structure

(which is equivalent to a contact form; see Section 6.3). The derivation is given starting mostly

from scratch. The necessary general background is summarized in Section 4, which contains an

account of the correspondence of normal regular parabolic geometries and underlying infinitesimal

flag structures and a sketch of the theory of tractor connections and BGG operators. Section 5 is

devoted to Lie algebra homology computations that we need to specify the normality condition of

the CR Cartan connection and also to invoke the BGG construction later. In Section 6, we first

recall the general notion of Weyl structures and Weyl forms and how they are used to describe

tractor connections. They are followed by a description of frame bundles associated with CR

geometry, and in the latter part of this section, the determination of CR normal Weyl forms is

given. Finally, in Section 7, we obtain the promised formulae of the adjoint tractor connections

and their associated first BGG operators. Here we also discuss the case of the standard tractor

connection; for this purpose, in Section 6, we also consider the frame bundle corresponding to

the group G♯ = SU (n+ 1, 1), which is an (n+ 2)-sheeted covering of G = PSU (n+ 1, 1).

In the literature, CR tractor bundles over integrable CR structures have been discussed in

several ways. The most explicit, hands-on approach is taken in a work of Gover–Graham [20],

which gives the formula of the standard (co)tractor connection relative to exact Weyl structures

and actually uses it as the definition of the connection, without referencing to normal Cartan

connections or normal Weyl forms. Another description of standard tractors using the ambient

metric construction of Fefferman [19] is sketched by Čap [7]; an analogous theory in the case

of conformal geometry is detailed in a work of Čap–Gover [10]. Yet another, closely related

approach via Fefferman’s conformal circle bundle over CR manifolds ([19], see also Lee [26]) is also

mentioned in [7] and extensively used by Čap–Gover [11]. Herzlich [24] gives a realization of the

standard tractor bundle as the bundle of 1-jets of CR-holomorphic sections of a certain complex

line bundle, which resembles the work of Bailey–Eastwood–Gover [2] in conformal geometry.
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However, tractor bundles over non-integrable compatible almost CR structures have not been

investigated well, which are, as our observation reveals, also worthy of attention. Note also that,

in the terminology of the general theory of parabolic geometries, integrable CR structures com-

prise the subclass of torsion-free geometries of the class of |2|-graded geometries corresponding

to compatible almost CR structures. The investigation given in this paper might serve as impor-

tant working example in the general theory, especially regarding the role played by the torsion

of parabolic geometries.

In addition to this, we also believe that this article fixes a lack of detailed references in

the integrable case on how the CR standard tractor connection of Gover–Graham [20] can be

reconstructed based on the general theory of parabolic geometries.

To conclude the introduction, we briefly discuss possible relationships between CR tractor

bundles and other constructions for compatible almost CR structures. For integrable CR struc-

tures, the standard tractor bundle can be recovered by the ambient metric construction as we

already mentioned; by contrast, there is no plausible notion of the ambient metric for general

compatible almost CR structures. But here we want to recall the related notion of complete

Kähler-Einstein spaces in the integrable case, whose boundaries at infinity (“conformal infinity”)

carry integrable CR structures and the total spaces of whose canonical bundle, with zero section

removed, carry the ambient metrics (see [19] or an article of Fefferman–Graham [17]). These

complete Kähler-Einstein spaces generalize to ACHE spaces of Biquard [3], whose conformal

infinities are equipped with compatible almost CR structures. Consequently, a natural hope

may be that ACHE spaces can be used to recover the standard tractor bundles associated with

compatible almost CR structures.

Our observation in this paper sheds a doubt over this näıve idea. ACHE spaces have some

indirect relationship with the CR Killing operator via the CR obstruction tensor introduced by

the author [28] as we recall in Section 3, and so there should be some nice way to reconstruct the

CR Killing operator using ACHE metrics. But as we will see, the CR Killing operator is related

to the modified adjoint tractor connection ∇̃, which has little to do with the standard tractor

bundle. Therefore, a more natural expectation might be as this: there is a way to reconstruct

the adjoint tractor bundle AM of compatible almost CR structures J from ACHE spaces, and

when J is integrable, the realization of AM as a subbundle of End(V) via the standard tractor

bundle V (see Section 7.2) can be seen as its specialization. The author wants to come back

to such a holographic reconstruction of AM using ACHE spaces in the future. In fact, another

article [30] by the author is also an attempt toward this idea.

2. Preliminaries

We summarize basic matters in pseudohermitian geometry of compatible almost CR structures

by largely following [28, Section 3], supplementing them with some new formulae and minor

notational modifications.

2.1. Basic definitions. Throughout this article, we assume that we are given a contact manifold

(M,H) of dimension 2n+1 that is cooriented, i.e., associated with a fixed orientation of the line

bundle H⊥ of 1-forms annihilating H . By a contact form we mean a nowhere-vanishing section

of the bundle H⊥ that is positive with respect to the given orientation; hence any two contact

forms are related as θ̂ = euθ, where u ∈ C∞(M). Any choice of θ determines the direct sum

decomposition

(2.1) TM = H ⊕ RT,
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where T , the Reeb vector field, is characterized by θ(T ) = 1 and T y dθ = 0.

Let J be an almost CR structure on a contact manifold (M,H), by which we mean that J

is a complex structure of H . The compatibility of the almost CR structure J , which we always

assume, means that

(2.2) h(X,Y ) = dθ(X, JY ), X, Y ∈ H

is a positive-definite Hermitian form on H , called the Levi form∗. The compatibility condition is

irrelevant to the choice of θ because θ̂ = euθ implies dθ̂(X, JY ) = eudθ(X, JY ). We sometimes

call (H, J), instead of J , a compatible almost CR structure.

Remark 2.1. It is well known that the formal integrability condition of J implies that (2.2) is a

Hermitian form. Then the nondegeneracy of (2.2) is automatic because of the contact condition,

and the positive-definiteness is referred to as strict pseudoconvexity. Therefore, the notion of

compatible almost CR structures is a generalization of that of strictly pseudoconvex (integrable)

CR structures. The point of this Section 2 is that pseudohermitian geometry does not change

much in the broader class. Our “compatible almost CR structures” have been more often called

“strictly pseudoconvex partially integrable almost CR structures” (e.g., in Čap–Schichl [12]) in

view of the fact that (2.2) being a Hermitian form is equivalent to a weaker formal integrability.

We also note that a compatible almost CR structure (H, J) together with a fixed contact form

θ is equivalent to a contact metric structure in the sense of Blair [5].

A compatible almost CR structure (H, J) naturally comes with the decomposition

(2.3) CH = H1,0 ⊕H0,1

of the complexification of H into the (±i)-eigenspaces of J (the compatibility of J is actually

irrelevant here). In actual computations, we often need to take a local frame {Zα } of H1,0.

By doing so, at the same time, we obtain a local frame {Zα } of H0,1, which is the complex

conjugate of {Zα }.

When θ is moreover fixed, we have the admissible coframe { θα } associated with any fixed

local frame {Zα }, which is the set of complex 1-forms satisfying θα(Zβ) = δ α
β and θα(Zβ) =

θα(T ) = 0. Its complex conjugate is denoted by { θα }. Then (2.2) and T y dθ = 0 imply that

(2.4) dθ = ihαβθ
α ∧ θβ ,

where hαβ = h(Zα, Zβ) is pointwisely a positive-definite Hermitian matrix.

A section of H1,0 can be expressed locally by symbols with an index upstairs (e.g., vα) in

terms of any fixed local frame {Zα }. For this reason, the bundle H1,0 itself is denoted by Eα in

the sequel, where α is an “abstract index.” In general, any tensor bundle (i.e., a tensor product

of H1,0, H0,1, (H1,0)∗, (H1,0)∗ and its geometrically natural subbundle) will be denoted by E

associated with the same indices used for expressing their sections locally, and if applicable,

some additional symbols representing a particular type of subbundles. For example, the Levi

form hαβ is a section of Eαβ = (H1,0)∗ ⊗ (H1,0)∗ (actually hαβ has the Hermitian symmetry

and so is a section of the Hermitian symmetric part of Eαβ , which has no commonly accepted

notation). The Tanaka–Webster torsion tensor Aαβ (defined in Section 2.3) is a section of

Eαβ = (H1,0)∗ ⊗ (H1,0)∗, and since Aαβ = Aβα, it is further said that it is a section of E(αβ),

where (· · · ) denotes the symmetrization with respect to the enclosed indices. Likewise, [· · · ]

∗We assume for brevity that the Levi form h is positive definite, but everything in this article can be imme-

diately generalized to the case in which h has arbitrary (nondegenerate) signature as well.
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denotes the skew-symmetrization. Note also that the symmetry property Aαβ = Aβα can also

be expressed as Aαβ = A(αβ).

Furthermore, we observe the well-accepted custom in the field that the space of (possibly

local) sections, or the sheaf of germs of local sections, of a tensor bundle is denoted by the same

symbol assigned to the tensor bundle itself. The distinction will be clearly made by context.

Next, we introduce the density bundles E(w,w′), where w and w′ are integers∗. The canonical

bundle K over (M,H, J) is the complex line bundle
∧n+1

(H0,1)⊥; K is generated by θ∧θ1∧· · ·∧θn

for any choice of θ and an admissible coframe { θα }. Working locally if necessary, we fix an

(n+ 2)-nd root of K and write its dual E(1, 0). Then we define

E(w,w′) = (E(1, 0))⊗w ⊗ (E(1, 0))⊗w′

, w, w′ ∈ Z

and its sections are called (w,w′)-densities. Moreover, we write E στ
αβ

(w,w′) = E στ
αβ

⊗E(w,w′),

etc., and sections of such bundles are referred to as weighted tensors.

Particularly important density bundles are those of the form E(w,w), for they are independent

of the choice of E(1, 0), and as a consequence, globally defined. In other words, although tensors

weighted by general E(w,w′) should be considered as an object defined on (M,H, J, E(1, 0)),

those weighted by E(w,w) can be understood as an object on (M,H, J). Some readers may feel

comfortable by regarding tensors weighted by E(w,w′), w 6= w′, as intermediate objects and

those weighted by E(w,w) as “actual” objects.

Any choice of a contact form θ determines a trivialization of E(w,w) uniquely. To see this, let

ζ = θ ∧ θ1 ∧ · · · ∧ θn be a section of K = E(−n − 2, 0), where { θα } is some unitary admissible

coframe with respect to the Levi form h, possibly only locally defined. Then ζ is pointwisely well-

defined up to phase (and it is volume-normalized with respect to θ in the sense of Lee [26, Section

3]). If ξ is a section of E(1, 0) satisfying ξ−n−2 = ζ, then |ξ|2w is a globally defined section of

E(w,w) that depends only on θ. The mentioned trivialization of E(w,w) can be given by |ξ|2w.

Remark 2.2. For any change θ̂ = euθ of contact forms, the (w,w)-density |ξ|2w scales as |ξ̂|2w =

e−wu|ξ|2w. Therefore, if f and f̂ are the trivializations of the same (w,w)-density with respect

to θ and θ̂, respectively, then f̂ = ewuf . An intuitive understanding of E(w,w) is that it is the

bundle of scalar-valued quantities that rescales like f̂ = ewuf for the change θ̂ = euθ.

We have |ξ̂|2 = e−u|ξ|2 in particular. Consequently, the weighted contact form

θ = θ ⊗ |ξ|2

is independent of θ, which also implies that there is a canonical identification H⊥ ∼= E(−1,−1).

The weighted Levi form

hαβ = hαβ ⊗ |ξ|2 ∈ Eαβ(1, 1)

and its inverse

h
αβ = hαβ ⊗ |ξ|−2 ∈ Eαβ(−1,−1)

are also independent of θ.

Notation 2.3. Whenever some fixed θ is taken, possibly implicitly, for any tensor weighted by

E(w,w), we use the same symbol to express itself and its trivialization with respect to θ (in order

to reduce the use of boldface letters). The distinction is made by context.

∗The definition of E(w,w′) can immediately be generalized to w, w′ ∈ C satisfying w − w′ ∈ Z, which we do

not need. See Gover–Graham [20, p. 4].
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Based on the above notational convention, we could have used the symbol hαβ for the weighted

Levi form instead of hαβ (and keep the unweighted one denoted by hαβ as well), and even could

have used θ for the weighted contact form. We try to take this way from now on as much as

possible.

2.2. The Nijenhuis tensor. The non-integrability of a compatible almost CR structure J is

measured by the Nijenhuis tensor N , which is a section of Eγ
[αβ] , defined by∗

[Zα, Zβ ] = −Nγ
αβZγ mod H1,0,

or equivalently,

(2.5) dθγ =
1

2
Nγ

αβ θ
α ∧ θβ mod θα, θ, Nγ

(αβ) = 0.

Moreover, N can be understood as a real tensor by setting

Nγ

αβ
= Nγ

αβ ,

the practice we repeatedly apply to various tensors in the sequel, sometimes without mentioning.

The index upstairs of Nγ
αβ can be lowered using the weighted Levi form as

(2.6) Nγαβ = hγσN
σ
αβ .

Therefore, Nγαβ is a section of Eγ[αβ](1, 1). Given a fixed contact form θ, hγσ on the right-hand

side can also be understood as the unweighted Levi form, Nγαβ on the left as the trivialization

of its weighted version, and (2.6) is justified as an equality between sections of Eγ[αβ] as well.

It can be shown that the index-lowered Nijenhuis tensor Nγαβ has a symmetry, in addition to

the obvious Nγ(αβ) = 0, that

(2.7) Nαβγ +Nβγα +Nγαβ = 0,

by differentiating (2.4) and using (2.5).

For convenience, we write

N sym
αβγ = N(αβ)γ , N skew

αβγ = N[αβ]γ .

Note that (2.7) implies

N skew
αβγ =

1

2
(Nαβγ −Nβαγ) = −

1

2
Nγαβ.

Moreover, if we define |N |2 = NαβγN
αβγ and |N sym|2, |N skew|2 in a similar manner, then we

have

(2.8) |N skew|2 =
1

4
|N |2, |N sym|2 = |N |2 − |N skew|2 =

3

4
|N |2.

Furthermore, when θ is fixed, we write

(∇∗N)symαβ = −∇γN(αβ)γ , (∇∗N)skewαβ = −∇γN[αβ]γ

using the Tanaka–Webster connection ∇ defined in the next subsection.

∗We use a different convention on the sign and the order of the indices compared to [28, p. 2137].



7

2.3. The Tanaka–Webster connection. The Tanaka–Webster connection of a manifold M

with a compatible almost CR structure (H, J) associated with a choice of a contact form θ

is the connection of TM characterized by the fact that it preserves the splitting (2.1), makes

T , J , h parallel, and satisfies some torsion condition (see [28, Proposition 3.1] for the detailed

characterization). Note that the connection also preserves the complex splitting (2.3) because J

is parallel. Therefore, upon fixing a local frame {Zα } of H1,0, the Tanaka–Webster connection

∇ is described by the connection forms ω β
α and their complex conjugates ω β

α . Since ∇h = 0

(where h is the unweighted Levi form), we have

(2.9) ωαβ + ωβα = dhαβ .

The torsion condition for ∇ implies that

(2.10) dθγ = θα ∧ ω γ
α + A γ

α θ ∧ θα +
1

2
Nγ

αβ
θα ∧ θβ

holds for some uniquely determined tensor A γ
α ∈ E γ

α (−1,−1), which is called the Tanaka–

Webster torsion tensor. It is known that Aαβ = Aβα.

The Tanaka–Webster connection induces a connection of the canonical bundle K, and hence

that of E(w,w′), all of which are denoted by ∇. Let ζ = θ ∧ θ1 ∧ · · · ∧ θn be a section of K,

where { θα } is some unitary admissible coframe with respect to θ. Then we have ∇ζ = −ω γ
γ ⊗ζ.

Consequently, if ξ is a section of E(1, 0) satisfying ξ−n−2 = ζ, then considering (2.9) we obtain

(2.11) ∇(ξw ⊗ ξw
′

) =
w − w′

n+ 2
ω γ
γ ⊗ (ξw ⊗ ξw

′

).

In particular, |ξ|2w = ξw ⊗ ξw is a parallel section of E(w,w), and hence the trivialization of

weighted tensors using |ξ|2w is compatible with covariant differentiation. As a result, the weighted

contact form and the weighted Levi form are also parallel.

We express the curvature form Π β
α = dω β

α − ω γ
α ∧ ω β

γ as

(2.12) Π β
α = R β

α στ θ
σ ∧ θτ +W β

α γ θ
γ ∧ θ +W β

α γ θ
γ ∧ θ +

1

2
V β
α στ θ

σ ∧ θτ +
1

2
V β
α στ θ

σ ∧ θτ ,

where V β
α (στ) = V β

α (στ) = 0. Among the components on the right-hand side, R β
α στ is called

the Tanaka–Webster curvature tensor, and it satisfies

(2.13) R
αβστ

= R
βατσ

, R β
α στ −R β

σ ατ = −Nγ
ασN

β
τγ .

The other components are given in terms of N and A as follows∗:

W β
α γ = ∇βAαγ +NαγσA

βσ, W β
α γ = −W β

αγ = −∇αA
β
γ −Nβ

γσA
σ

α ,

V β
α στ = 2iδ β

[σ| Aα|τ ] −∇βNαστ , V β
α στ = −V β

αστ = 2ihα[σA
β
τ ] +∇αN

β
στ .

Moreover, we define

Rαβ = R γ

γ αβ
, R′

αβ
= R γ

αβγ
, R′′

αβ
= R γ

α γβ

and

R = R γ
γ , R′ = R′ γ

γ (= R), R′′ = R′′ γ
γ .

Then it follows from (2.13) that

(2.14) R′
αβ

= Rαβ + 2N(αλ)µN
µλ

β
, R′′

αβ
= Rαβ −NλµαN

µλ

β

∗Two vertical bars within (· · · ) (resp. [· · · ]) indicate that the indices between them are excluded from the

symmetrization (resp. the skew-symmetrization).
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and

R′′ = R−NλµνN
µλν = R− |N sym|2 + |N skew|2 = R −

1

2
|N |2

by (2.8). Note also that Rαβ = Rβα, R
′
αβ

= R′
βα

immediately follow from the definitions and

R′′
αβ

= R′′
βα

holds because of the second equality in (2.14).

As in Gover–Graham [20, p. 6], we define the CR Schouten tensor Pαβ by

Pαβ =
1

n+ 2

(

Rαβ −
1

2(n+ 1)
Rhαβ

)

,

and P ′
αβ

(resp. P ′′
αβ

) will denote the similarly defined quantity with Rαβ replaced with R′
αβ

(resp.

R′′
αβ

) and R replaced with R′ (resp. R′′) (but note that R′ = R). Then (2.14) implies

P ′
αβ

= Pαβ +
2

n+ 2
N(αλ)µN

µλ

β
,

P ′′
αβ

= Pαβ −
1

n+ 2
NλµαN

µλ

β
+

1

4(n+ 1)(n+ 2)
|N |2hαβ .

We define P = P γ
γ , P ′ = P ′ γ

γ , and P ′′ = P ′′ γ
γ , which are related by

(2.15) P ′ = P, P ′′ = P −
1

4(n+ 1)
|N |2.

We will later need the following transformation law, taken from [28, Proposition 3.6], for

changes of contact forms.

Proposition 2.4. Let θ and θ̂ = euθ be two contact forms, where u ∈ C∞(M). Then, for any

local frame {Zα } and the dual admissible coframe { θα } with respect to θ, the Tanaka–Webster

connection forms ω̂ β
α for θ̂ with respect to {Zα } are expressed in terms of those for θ by

ω̂ β
α = ω β

α + (uαθ
β − uβθα) + δ β

α uγθ
γ + i(uβα + uαu

β + δ β
α uγu

γ)θ,

where the indices following u denotes the Tanaka–Webster covariant differentiation with respect

to θ. Moreover,

Âαβ = Aαβ + iu(αβ) − iuαuβ + iN(αβ)γu
γ ,

P̂αβ = Pαβ −
1

2
(uαβ + uβα)−

1

2
uγu

γhαβ,

where the unhatted (resp. hatted) quantities are associated with θ (resp. θ̂).

It follows from (2.10), (2.11), and (2.12) that commutation of covariant derivatives on densities

is given as follows, generalizing Gover–Graham [20, Proposition 2.2].

Proposition 2.5. For f ∈ E(w,w′),

∇α∇βf −∇β∇αf = −ihαβ∇0f +
w − w′

n+ 2
Rαβf,

∇α∇βf −∇β∇αf = −Nγ
αβ∇γf +

w − w′

n+ 2
· 2V γ

γ αβ f = −Nγ
αβ∇γf −

w − w′

n+ 2
(∇γNγαβ)f,

∇α∇0f −∇0∇αf = A γ
α ∇γf +

w − w′

n+ 2
W γ

γ α f = A γ
α ∇γf +

w − w′

n+ 2
(∇γAαγ −NλµαA

λµ)f,

where ∇0 is the θ-component of the covariant derivative.
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The following transformation law of the connection on densities is given by the same formulae

as [20, Proposition 2.3].

Proposition 2.6. Let θ and θ̂ = euθ be two contact forms. Then, for f ∈ E(w,w′),

∇̂αf = ∇αf + wuαf,

∇̂αf = ∇αf + w′uαf,

∇̂0f = ∇0f − iuγ∇γf + iuγ∇γf +
1

n+ 2
((w + w′)u0 + iwuγγ − iw′u γ

γ − i(w − w′)uγu
γ)f,

where the last equality should be understood as an identity in E(w−1, w′−1). If T and T̂ denote

the weighted Reeb vector field for θ and for θ̂, respectively, then ∇0f in the right-hand side (resp.

∇̂0f in the left-hand side) means ∇T f (resp. ∇̂
T̂
f).

Proof. We prove the case (w,w′) = (−n− 2, 0), i.e., the case of the canonical bundle K; then the

general case follows immediately. It suffices to consider ∇ζ and ∇̂ζ for some nowhere-vanishing

local section ζ of K. Moreover, without loss of generality, we can use a unitary local frame {Zα }

with respect to θ to show the formulae. So we let ζ = θ∧θ1∧· · ·∧θn by using the dual admissible

coframe of such a unitary frame {Zα }, and let ω β
α and ω̂ β

α be as in Proposition 2.4. Then we

already know that

∇ζ = −ω γ
γ ⊗ ζ.

On the other hand, we can take { e−u/2Zα } as a unitary frame with respect to θ̂. The associated

admissible coframe { θ̃α } with respect to θ̂ is given by θ̃α = eu/2θ̂α ≡ eu/2θα mod θ, and hence

ζ̂ = θ̂ ∧ θ̃1 ∧ · · · ∧ θ̃n, which equals e(1+n/2)uζ, satisfies

∇̂ζ̂ = −ω̃ γ
γ ⊗ ζ̂ , which implies ∇̂ζ = −ω̃ γ

γ ⊗ ζ −
(

1 +
n

2

)

du⊗ ζ,

where ω̃ β
α is the connection forms of ∇̂ with respect to { e−u/2Zα }. Since ω̃ β

α and ω̂ β
α are

related by ω̃ β
α = ω̂ β

α − (1/2)δ β
α du, we conclude that

∇̂ζ = −ω̂ γ
γ ⊗ ζ − du ⊗ ζ.

Then it follows from Proposition 2.4 that

∇̂ζ = ∇ζ − ((n+ 2)uγθ
γ + (u0 + iuγγ + i(n+ 1)uγu

γ)θ)⊗ ζ,

which implies the formulae to be shown in view of the fact that T̂ = T − iuγZγ + iuγZγ . �

3. The CR Killing operator

The formula (1.2) of the CR Killing operator D now makes sense thanks to various definitions

introduced in Section 2. It can be checked by using Propositions 2.4 and 2.6 that the right-hand

side of (1.2) is independent of the choice of a contact form θ. Moreover we want to note that, in

view of Proposition 2.5, D can also be expressed as

(3.1) Df = (i∇α∇βf −Aαβf − iNβαγ∇
γf,−i∇α∇βf −Aαβf + iNβαγ∇

γf).

For integrable CR structures (i.e., if N = 0), the operator D reduces to

Df = (i∇(α∇β)f −Aαβf,−i∇(α∇β)f −Aαβf).

This operator essentially appears in the literature. The “new” CR differential complex of

Akahori–Garfield–Lee [1] contains the mapping f 7→ ∇(α∇β)f − iAαβf (acting on complex-

valued functions) as the first operator, and it is known that it describes the infinitesimal action
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of Kuranishi’s “wiggle,” i.e., internal moves of embedded CR manifolds within a complex mani-

fold. The same operator is revisited in Hirachi–Marugame–Matsumoto [25] from the viewpoint

of Fefferman’s ambient metric construction.

In this section, we first give the derivation of the CR Killing operator D as what describes

trivial infinitesimal changes of compatible almost CR structures caused by contact Hamiltonian

vector fields. Then we discuss the fact that D also appears in the context of asymptotic expansion

of ACHE metrics (asymptotically complex hyperbolic Einstein metrics) and the CR obstruction

tensor, whose basic theory is developed in the author’s previous papers [28, 29].

3.1. Trivial infinitesimal deformations. Let f ∈ Re E(1, 1). Given a fixed contact form θ,

f is trivialized in the manner discussed in Section 2.1 and identified with a smooth real-valued

function. We define the associated contact Hamiltonian vector field Xf on M by
{

θ(Xf ) = f,

dθ(Xf , Y ) = −df(Y ), Y ∈ H.

The vector fieldXf is irrelevant to the choice of θ. Indeed, if θ̂ = euθ, then since the corresponding

trivialization of the density is given by f̂ = euf , we have θ̂(Xf ) = euf = f̂ and

dθ̂(Xf , Y ) = eu(dθ + du ∧ θ)(Xf , Y ) = −eu(df(Y ) + f du(Y )) = −df̂(Y ) for Y ∈ H.

In terms of the Reeb vector field T associated with θ, one can explicitly write

(3.2) Xf = fT + i(∇αf)Zα − i(∇αf)Zα,

where the indices α and α are raised by the unweighted Levi form.

By Cartan’s formula, it follows that the Lie derivative LXf
satisfies

(3.3) LXf
θ = d(θ(Xf )) + dθ(Xf , ·) = (Tf)θ,

which implies that Xf is a contact vector field. Moreover, the restriction of dθ to H rescales

conformally, with the same conformal factor as the one for θ, as we can see by

(3.4) LXf
dθ = d(dθ(Xf , ·)) = −d(df − (Tf)θ) ≡ (Tf)dθ mod θ.

These computations also imply that the compatibility of J is preserved by the flow Flt gener-

ated by Xf . Indeed, (3.3) and (3.4) imply that Fl∗t (dθ) ≡ dθt mod θ, where θt = Fl∗t θ. Conse-

quently, if we pull back the symmetric form dθ(·, J ·) on H by the flow, then we get dθt(·, Jt·) on

H , where Jt = (Fl−1
t )∗ ◦ J ◦ (Flt)∗. Therefore, the latter bilinear form is symmetric and positive

definite, which implies that Jt satisfies the compatibility condition. Thus we get a family Jt of

compatible almost CR structures on the same underlying contact manifold (M,H).

In general, if J̃ is a compatible almost CR structure on (M,H) sufficiently close to J point-

wisely, then we can define the deformation tensor ϕ as the bundle homomorphism H1,0 → H0,1

such that

T̃ 1,0M =
⊔

p∈M

{Z + ϕp(Z) | Z ∈ H1,0
p } .

The homomorphism ϕ can be expressed as ϕ β
α in index notation. We set ϕ β

α = ϕ β
α so that ϕ

is understood to be a real tensor.

We apply this general definition to our Jt = (Fl−1
t )∗ ◦J ◦ (Flt)∗ and let ϕt be the deformation

tensor of Jt. We set

ψ =
dϕt

dt

∣
∣
∣
∣
t=0

,
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i.e., ψ is the “derivative” of our family of almost CR structures Jt taken in terms of the deforma-

tion tensor. If we simply regard Jt itself as a tensor and differentiate it, then the derivative at

t = 0, which is nothing but the Lie derivative of J , can be computed as follows. For Z ∈ H1,0,

JtZ = Jt((Z + tψ(Z))− tψ(Z)) = i(Z + tψ(Z)) + itψ(Z) +O(t2) = iZ + 2itψ(Z) +O(t2),

and hence

(3.5) LXf
J = lim

t→0

Jt − J

t
= −2J ◦ ψ.

It is immediate from the definition that ψ can be seen as an element of Re(Eαβ (1, 1)⊕E
αβ

(1, 1))

by lowering the upper index by the weighted Levi form. In addition, the compatibility of Jt and

(3.5) imply that dθ(·, J ◦ ψ(·)) is symmetric on H , by which we can conclude that

ψ ∈ Re(E(αβ)(1, 1)⊕ E(αβ)(1, 1)).

The following proposition claims that the assignment f 7→ ψ actually equals the operator D

defined by (1.2).

Proposition 3.1. The infinitesimal deformation tensor ψ associated with the contact Hamilton-

ian vector field Xf is given by ψ = Df .

Proof. Let {Zα } be a local frame of H1,0. Note first that

(LXf
J)(Zα) = [Xf , iZα]− J [Xf , Zα] = 2i[Xf , Zα]0,1,

where the subscript “0,1” denotes the projection from CH = H1,0 ⊕ H0,1 onto the second

summand. On the other hand, (3.5) implies (LXf
J)(Zα) = 2iψ(Zα), by which we conclude that

ψ(Zα) = [Xf , Zα]0,1, or equivalently,

ψ β
α = θβ([Xf , Zα]).

The right-hand side can be rewritten as

θβ([Xf , Zα]) = −dθβ(Xf , Zα)− Zα(θ
β(Xf )) = −dθβ(Xf , Zα) + iZα∇

βf,

where the second equality follows by (3.2). Furthermore, it follows from (2.10) and (3.2) that

dθβ(Xf , Zα) =

(

θγ ∧ ω β
γ −A β

γ θγ ∧ θ +
1

2
Nβ

γσ θ
γ ∧ θσ

)

(Xf , Zα)

= θγ(Xf )ω
β

γ (Zα) +A β
α θ(Xf ) +Nβ

γα θ
γ(Xf )

= −iω β
γ (Zα)∇

γf +A β
α f + iNβ

γα∇
γf,

which implies ψ β
α = i∇α∇

βf −A β
α f − iNβ

αγ∇
γf . This means ψ = Df because of (3.1). �

3.2. As an operator whose adjoint annihilates the CR obstruction tensor. The CR

obstruction tensor Oαβ ∈ E(αβ)(−n,−n) of a contact manifold (M,H) with a compatible almost

CR structure J is introduced in [28] when dimM = 2n + 1 ≥ 5. Recall that Oαβ vanishes

when J is integrable. In this paper, we prefer regarding O as a section of Re(E(αβ)(−n,−n) ⊕

E(αβ)(−n,−n)) by setting O = (Oαβ ,Oαβ), where Oαβ = Oαβ . Then it is known [28, Theorem

1.2 (3)] that

(3.6) D∗O = 0,

where

D∗ : Re(E(αβ)(−n,−n)⊕ E(αβ)(−n,−n)) → Re E(−n− 2,−n− 2)
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is the formal adjoint of the CR Killing operator (1.2).

The CR obstruction tensor is an analog of the Fefferman–Graham conformal obstruction

tensor [17, 18], which we write Oij , defined for conformal manifolds of even dimension ≥ 4. To

define Oij , one considers the asymptotic Dirichlet problem for the Einstein equation for AH

metrics (asymptotically hyperbolic metrics) with Dirichlet data given by a conformal manifold

(M, [g]); then Oij is the obstruction to the existence of formal power series solutions to this

problem. In view of the fact that any AH Einstein metric admits a so-called polyhomogeneous

expansion [16,4] at boundary at infinity in an appropriate gauge, one can also say that Oij is the

first logarithmic term coefficient of the expansion of an AH Einstein metric g+ with prescribed

conformal infinity (M, [g]), assuming that such an metric exists (note that Oij itself can always

be defined for any conformal manifold, no matter g+ exists or not).

In the standard notation in conformal geometry, Oij is a symmetric section of the weighted

tensor bundle Eij [−n+2], and the trace of Oij always vanishes; so we may write Oij ∈ E(ij)0 [−n+

2]. In 4 dimensions, Oij is also known as the Bach tensor Bij , which is explicitly given by

Bij = ∇kCijk + P klWikjl ,

where P , C, and W are the Schouten, the Cotton, and the Weyl tensor, respectively, of any

fixed representative metric g of the conformal class [g] (see [18] for details). It is easy to see that

Oij can also be expressed in general dimensions by a universal formula given in terms of the

curvature tensor and its covariant derivatives, although deriving the concrete formula is quite a

hard task.

Likewise, the CR obstruction tensor Oαβ of (M,H, J) is the obstruction to the existence of

formal power series solutions to the asymptotic Dirichlet problem for the Einstein equation for

ACH metrics with conformal infinity (M,H, J). If a contact form θ is fixed, then Oαβ can be

universally expressed in terms of the Tanaka–Webster local invariants, although the concrete

formula is currently lacking in any dimensions ≥ 5.

Remark 3.2. Originally, the definition of the conformal obstruction tensor Oij is given in [17]

using the ambient metrics, whose formal expansion theory is basically parallel with that of AH

Einstein metrics. On the other hand, the ambient metric approach in CR geometry is only partly

available. For integrable CR structures the notion of ambient metrics exists (and it is actually

the origin of the notion; see Fefferman [19]), but the ambient metric is not yet known for general

compatible almost CR structures, and the CR obstruction tensor Oαβ can be currently only

defined via ACH Einstein metrics.

Equality (3.6) follows from the (contracted) second Bianchi identity satisfied by the Ricci

tensor of ACH Einstein metrics. More precisely, to show (3.6), we use an ACH metric g+ with

the prescribed conformal infinity having a power series asymptotic expansion such that its Ricci

tensor Ric(g+) is asymptotic to λg+, where λ is a negative constant, to a certain sufficiently high

order. Then the first non-vanishing coefficient of the power series expansion of Ric(g+) − λg+
contains the CR obstruction tensor O, and the second Bianchi identity implies some equality

satisfied by O, which is (3.6), actually.

If we employ the same procedure in conformal geometry, the equality that we obtain is the

well-known (e.g., [18, Theorem 3.8 (2)]) divergence-freeness of the conformal obstruction tensor

(3.7) ∇jOij = 0.
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The divergence operator here can be naturally understood as the formal adjoint of the conformal

Killing operator

K : Ei[2] → E(ij)0 [2], vi 7→ ∇(ivj)0 .

The parallelism of K and D is the reason why we suggest the name “the CR Killing operator”

for the operator D.

Taking advantage of this opportunity, we want to present that there is another way to show

(3.7) in conformal geometry or (3.6) in CR geometry, which is based on the variational formula

of the total integral of the Q-curvature [21, 29]. In conformal geometry, we argue as follows.

Recall that the conformal Killing operator K describes the trivial infinitesimal deformation of

conformal structure induced by vector fields in E i ∼= Ei[2]. Consequently, it follows from the

variational formula that

0 =

∫

M

〈Kv,O〉 =

∫

M

〈v,K∗O〉 for any v = vi ∈ Ei[2],

which implies that K∗O = 0. The same argument works in CR geometry as well, because the CR

Killing operatorD describes trivial infinitesimal deformations of compatible almost CR structure

as we saw in Proposition 3.1.

4. Parabolic geometries, tractor connections, BGG operators

In this section, we summarize some general notions and results from the theory of parabolic

geometries that we use in the subsequent developments. For more background and details, see the

extensive reference of Čap–Slovák [13] and, for various specific aspects, Yamaguchi [33], Sharpe

[31], Calderbank–Diemer [6], for example.

4.1. Cartan geometries. Let G be a Lie group and H a closed subgroup. Their Lie algebras

are denoted by g and h, respectively. Then a Cartan geometry of type (G,H) is a smooth

manifold M of the same dimension as G/H equipped with a principal H-bundle G →M and an

H-equivariant g-valued 1-form ω on G satisfying the following conditions:

(i) ω(ζX) = X for each X ∈ h, where ζX is the fundamental vector field;

(ii) ωu : TuG → g is a linear isomorphism for all u ∈ G.

The 1-form ω is called a Cartan connection. Note that ωu induces an isomorphism Tπ(u)M ∼= g/h

for each u ∈ G, where π is the projection G →M , and thus TM is identified with the associated

vector bundle G ×H g/h.

The curvature form of a Cartan geometry (G, ω) is the g-valued 2-form K on G defined by

K = dω +
1

2
[ω ∧ ω].

An equivalent notion is the curvature function κ : G →
∧2

g∗ ⊗ g, which is defined by

κ(u)(X,Y ) = Ku(ω
−1
u (X), ω−1

u (Y )), X, Y ∈ g.

It follows from the definition that K is a horizontal H-equivariant 2-form, and hence κ can also

be seen as a function with values in
∧2

(g/h)∗ ⊗ g.

The torsion form of a Cartan geometry (G, ω) is defined to be πg ◦K, where πg : g → g/h is

the natural projection. The geometry (G, ω) is called torsion-free when the torsion form vanishes,

or equivalently, the curvature form K takes values in h.
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4.2. Parabolic geometries. Now let G be a (real or complex) semisimple Lie group, and sup-

pose that its Lie algebra g is given a |k|-grading

(4.1) g = g−k ⊕ g−k+1 ⊕ · · · ⊕ gk−1 ⊕ gk,

i.e., a direct sum decomposition of g such that [gi, gj ] ⊂ gi+j and g− = g−k ⊕ · · · ⊕ g−1 is

generated by g−1. It is known that the subalgebra g0 is reductive, and there exists a unique

element E in the center of g0 such that ad(E) = i id on gi for all i, which is called the grading

element (see [33, Section 3]).

Associated with the above |k|-grading is the filtration

(4.2) g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk−1 ⊃ gk ⊃ { 0 } ,

where gi =
⊕

i≤j gj. In particular, g0 is also denoted by p. A closed subgroup P of G is called

a parabolic subgroup admitted by the |k|-grading (4.1) if its Lie algebra equals p and the adjoint

action of any p ∈ P preserves each gi.

Definition 4.1. A parabolic geometry is a Cartan geometry of type (G,P ), where G is a semisim-

ple Lie group and P is its parabolic subgroup.

The Levi subgroup G0 ⊂ P is defined by

G0 = { p ∈ P | Ad(p)(gi) ⊂ gi for all i } .

In view of the fact that the elements X ∈ g0 are characterized by the property ad(X)(gi) ⊂ gi
for all i [13, Lemma 3.1.3], it follows that the Lie algebra of G0 equals g0.

Among the P -modules gj in the filtration (4.2), not only p = g0 but also p+ = g1 is particularly

important for us, because there is an isomorphism p+ ∼= (g/p)∗ of P -modules induced by the

Killing form of g. On the other hand, g/p is isomorphic to g− as a G0-module, but g− does

not carry a natural P -module structure. It is known that the mapping G0 × p+ → P defined

by (g0, Z) 7→ g0e
Z is a diffeomorphism [13, Theorem 3.1.3], and consequently, if we define

P+ = exp p+, then P is the semidirect product G0 ⋉ P+.

Recall that the curvature function κ of a parabolic geometry (G, ω) takes values in
∧2

(g/p)∗⊗g.

As a P -module,
∧2

(g/p)∗ ⊗ g is isomorphic to
∧2

p+ ⊗ g, and this is the chain space C2(p+, g)

in the Lie algebra homology complex for p+ with values in g. Let W be a g-module in general

and consider the chain space Ck(p+,W) =
∧k

p+ ⊗W. Then the boundary operator, which is

traditionally denoted by ∂∗ and called the Kostant codifferential, acting on Ck(p+,W) is defined

by the following formula of the action on decomposable elements, where Z1, ..., Zk ∈ p+, w ∈ W,

and ˇ indicates the omission:

(4.3)

∂∗(Z1 ∧ · · · ∧ Zk ⊗ w) =
∑

i

(−1)i+1Z1 ∧ · · · ∧ Ži ∧ · · · ∧ Zk ⊗ (Zi · w)

+
∑

i<j

(−1)i+j [Zi, Zj] ∧ Z1 ∧ · · · ∧ Ži ∧ · · · ∧ Žj ∧ · · · ∧ Zk ⊗ w.

Also, by identifying Ck with
∧k

g∗− ⊗W as a G0-module, we define ∂ : Ck → Ck+1 by

(4.4)

∂ϕ(X1, . . . , Xk+1) =
∑

i

(−1)i+1Xi · ϕ(X1, . . . , X̌i, . . . , Xk+1)

+
∑

i<j

(−1)i+jϕ([Xi, Xj ], X1, . . . , X̌i, . . . , X̌j , . . . , Xk+1),
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where X0, ..., Xk ∈ g−. The Lie algebra homology Hk(p+,W) and cohomology Hk(g−,W) are

defined by

Hk(p+,W) :=
ker(∂∗ : Ck → Ck−1)

im(∂∗ : Ck+1 → Ck)
and Hk(g−,W) :=

ker(∂ : Ck → Ck+1)

im(∂ : Ck−1 → Ck)
,

where we understand that C−1 = 0 as usual.

Definition 4.2. A parabolic geometry (G, ω) is said to be normal if its curvature function

satisfies ∂∗κ = 0.

When W = g, the chain space Ck(p+, g) carries a natural G0-invariant grading, with respect

to which Ck(p+, g)l is the set of elements in Ck(p+, g) =
∧k

p+ ⊗ g that are expressible as

a sum of elements in gi1 ∧ · · · ∧ gik ⊗ gj with i1 + · · · + ik + j = l; elements of Ck(p+, g)l
are said to be of homogeneity l. The associated P -invariant filtration is defined by setting

Ck(p+, g)
l =

⊕

l≤m Ck(p+, g)m.

Similarly, any g-moduleW admits a g0-invariant eigendecomposition with respect to the action

of the grading element E corresponding to real eigenvalues, and hence the set of homogeneity

l elements and the p-invariant filtration of Ck(p+,W) are naturally defined. These are further

inherited by the homology Hk(p+,W) because (4.3) shows that ∂∗ preserves the homogeneity

degree. Also, the notion of homogeneity l elements of Hk(g−,W) makes sense because (4.4)

implies that ∂ preserve the homogeneity degree.

4.3. Tractor bundles and connections. Let (G, ω) be a Cartan geometry of type (G,H). As

G → M is a principal H-bundle, any H-module gives rise to the associated vector bundle over

the space M . If W is moreover a G-module, then the associated vector bundle W = G ×H W,

which is called the tractor bundle, naturally carries a linear connection.

We describe this in a slightly generalized situation. Suppose that W is a (g, H)-module, i.e.,

thatW is a g-module together with an action ofH whose induced action of h equals the restriction

of the action of g. Then we can still define the associated tractor bundle by W = G×H W. Recall

that sections of W are identified with elements of Γ(G,W)H , i.e., W-valued functions on G that

are H-equivariant. Then a natural linear connection of W can be defined as follows.

Definition 4.3. (1) For any H-module W, the fundamental derivative on W = G ×H W is

defined by Dξs = ω−1(ξ)s for any section s of W and ξ ∈ g.

(2) For any (g, H)-module W, we define ∇ξs = Dξs+ ξ · s for any section s of the associated

tractor bundle W = G ×H W and ξ ∈ g. Then ∇s gives an element of Γ(G, (g/h)∗ ⊗W)H , and

thus ∇ can be understood as a linear connection of W , which is called the tractor connection.

Now consider a parabolic geometry (G, ω) of type (G,P ), with associated |k|-grading (4.1)

of g. Then any (g, P )-module W carries, as discussed in the previous subsection, a natural

g0-invariant eigendecomposition with respect to the grading element E, which is actually G0-

invariant because E is fixed by the adjoint action of any element of G0. As a consequence, a

P -invariant filtration of Ck(p+,W) is induced, and the bundle Ωk ⊗W of k-forms with values in

the tractor bundle W inherits a filtration.

Then it follows that ∇ is of homogeneity 0 in the sense that sections of W l are mapped by

∇ to sections of (Ω1 ⊗ W)l. Passing to the associated graded bundles, the induced mapping

gr∇ : Γ(grl(W)) → Γ(grl(Ω
1 ⊗W)) is in fact algebraic, and equals gr ∂. This is also the case for

differential forms of higher degree if we assume that (G, ω) is a regular parabolic geometry (see

the next subsection): the covariant exterior derivative d∇ maps sections of (Ωk⊗W)l to sections

of (Ωk+1 ⊗W)l, and gr d∇ = gr ∂.
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A case of particular interest is when W = g. In this case, the associated tractor bundle, which

we write AM , is called the adjoint tractor bundle and plays an important role. Note that there

is a canonical projection Π: AM → TM induced by the quotient map g → g/p.

The curvature function κ of a parabolic geometry (G, ω), which takes values in
∧2

(g/p)∗ ⊗ g,

is clearly P -equivariant, so it can be interpreted as a 2-form on M with values in AM . We can

use this fact to introduce another linear connection ∇̃ of AM by

(4.5) ∇̃s = ∇s+ ιΠ(s)κ,

where s is a section of AM and Π(s) denotes, by abuse of notation, the vector field Π ◦ s.

Definition 4.4. We call ∇̃ defined by (4.5) the modified adjoint tractor connection.

Čap [9] introduced this connection in relation with deformations of parabolic geometries. In

fact, trivial infinitesimal deformations of a parabolic geometry (G, ω) (or of any Cartan geometry)

are given in the form ∇̃s, as discussed in [9, Sections 3.1 and 3.2] and briefly summarized as

follows. A section s of the adjoint tractor bundle AM corresponds to a P -invariant vector field

ω−1(s) on G, or in other words, an infinitesimal principal bundle automorphism of G. The induced

infinitesimal change Lω−1(s)ω of the Cartan connection is a horizontal P -equivariant g-valued

1-form on G and hence is an element of Ω1(M,AM), and actually it is given by ∇̃s. In addition,

it is also known by [9] that the covariant exterior differentiation d∇̃ : Ω1(M,AM) → Ω2(M,AM)

assigns to an infinitesimal modification of the Cartan connection the induced infinitesimal change

of the curvature.

4.4. Infinitesimal flag structures and regularity. For a parabolic geometry (G, ω) of type

(G,P ), with Levi subgroup G0 of P , we define the principal G0-bundle G0 → M by G0 = G/P+,

which we call the graded frame bundle of (G, ω).

Note that, since ωu defines a linear isomorphism TuG → g for each u ∈ G, the filtration (4.2)

of g induces the filtration

(4.6) TG = T−kG ⊃ T−k+1G ⊃ · · · ⊃ T 0G = V G,

where T i
uG is the preimage of gi by ωu and V G is the vertical bundle for the projection G →M .

Then (4.6) naturally induces the filtration

TG0 = T−kG0 ⊃ T−k+1G0 ⊃ · · · ⊃ T 0G0 = V G0

of TG0, and furthermore, the one

TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T 0M = 0

of the tangent bundle TM of the base manifold M .

One can show that, for −k ≤ i ≤ −1, the gi-component ωi of the Cartan connection ω

restricted to T iG descends to a G0-equivariant section of (T iG0)
∗ ⊗ gi over G0 [13, Proposition

3.1.5], which we write θi. Thus G0 comes with a collection (θ−k, . . . , θ−1) of partially defined gi-

valued 1-forms with each θi satisfying ker θi = T i+1G0. The triple ((T
iM)−1

i=−k,G0, (θ−k, . . . , θ−1))

is called the induced infinitesimal flag structure of a parabolic geometry (G, ω). Abstractly,

infinitesimal flag structures are defined as follows.

Definition 4.5 ([13, Definition 3.1.6]). An infinitesimal flag structure of type (G,P ) on a smooth

manifold M is a triple ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1)), where:

(i) (T iM)−1
i=−k denotes a filtration TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M satisfying

rankT iM = dim(gi/p);

(ii) G0 is a principal G0-bundle over M ;
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(iii) θi is a G0-equivariant section of (T iG0)
∗ ⊗ gi, where T

iG0 is the preimage of T iM , such

that ker θi = T i+1G0.

There is a reinterpretation of infinitesimal flag structures in terms of a reduction of the struc-

ture group of the full graded frame bundle FgrM of the graded tangent bundle gr(TM). Note

that the adjoint action of G0 preserves the grading (4.1) and thus defines a group homomorphism

Ad: G0 → GLgr(g−), with respect to which we reduce the structure group∗.

Proposition 4.6 ([13, Proposition 3.1.6]). An infinitesimal flag structure of type (G,P ) on

a manifold M is equivalent to the pair of a filtration (T iM)−1
i=−k of TM as in Definition 4.5

(i) and a reduction of the structure group of FgrM to G0 with respect to the homomorphism

Ad: G0 → GLgr(g−).

The notion of infinitesimal flag structures should be supplemented by an important notion of

regularity. An infinitesimal flag structure ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1)) is said to be regular if

the filtration (T iM)−1
i=−k is compatible with the Lie bracket and the induced bundle map

gri(TM)× grj(TM) → gri+j(TM)

coincides with the map induced by the Lie algebra bracket gi × gj → gi+j (see [13, Section

3.1.7] for details). A parabolic geometry is called regular if it induces a regular infinitesimal flag

structure.

The following fact is crucial when we consider the BGG construction for the modified adjoint

tractor connection in the next subsection.

Proposition 4.7 ([13, Corollary 3.1.8 (2)]). A parabolic geometry (G, ω) is regular if and only if

its curvature function κ is of homogeneity 1, i.e., seen as the AM -valued 2-form, κ is a section

of (Ω2 ⊗AM)1.

Giving an infinitesimal flag structure is a universal way of describing certain kind of geometry

of the base space M . For example, if G = PSU (n + 1, 1) and P is defined to be the stabilizer

of a null complex line in the complex Minkowski space Cn+1,1, then infinitesimal flag structures

of type (G,P ) on a (2n+ 1)-dimensional smooth manifold M are in one-to-one correspondence

with compatible almost CR structures on M , as discussed in detail in Section 6.2.

The following theorem, which is basically due to works of Tanaka in 1960–70s, provides a

generalization in terms of parabolic geometries of the construction of normal Cartan connection

associated with compatible almost CR structures carried out by Tanaka [32] and Chern–Moser

[15] (in the integrable case).

Theorem 4.8 (cf. Čap–Slovák [13, Sections 3.1.13–14]). Let ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1)) be

a regular infinitesimal flag structure of type (G,P ), and suppose that H1(g−, g) is concentrated in

non-positive homogeneity degrees and g0 carries no simple ideals of g. Then, there exists a normal

regular parabolic geometry (G, ω) that induces ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1)), which is unique

up to the action of principal P -bundle isomorphisms inducing the identity on the underlying

infinitesimal structure.

The fact that CR geometry satisfies the assumption of the above theorem is well-known and

checked later in Section 5.4. In fact, it suffices to compute the Lie algebra homology H1(p+, g) to

verify the cohomological assumption, since it is known that H1(g−, g) is isomorphic to H1(p+, g)

as a G0-module.

∗The homomorphism Ad: G0 → GLgr(g−) need not be injective.
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4.5. BGG operators. As an application of the theory of parabolic geometries, we can construct

certain invariant linear differential operators in a systematic way. An implementation of such

techniques is given by the “curved” BGG construction of Čap–Slovák–Souček [14], which is then

simplified by Calderbank–Diemer [6]. It starts with the tractor connection ∇ of any tractor bun-

dle W = G×P W of a parabolic geometry (G, ω) and ends up with a sequence of “BGG operators”

Dk, k ≥ 0, which forms a complex when (G, ω) is locally flat (i.e., locally homogeneous). In fact,

the same construction can also be triggered for some modified connections of W , including the

modified adjoint tractor connection ∇̃ discussed in Section 4.3, as pointed out by Čap [9] and

sketched below.

Let (G, ω) be a regular parabolic geometry of type (G,P ), W the tractor bundle associated

with a (g, P )-module W, and let ∇ be the tractor connection (unmodified, for the time being).

Then the following twisted de Rham sequence can be considered, where d∇ is the covariant

exterior differentiation:

(4.7) W Ω1 ⊗W Ω2 ⊗W · · · .∇ d∇ d∇

The BGG operators are introduced to extend the sequence (4.7) into a certain commutative

diagram. Recall that the Lie algebra homology Hk(p+,W) is defined by

Hk(p+,W) =
ker(∂∗ : Ck → Ck−1)

im(∂∗ : Ck+1 → Ck)
,

where Ck = Ck(p+,W) =
∧k

p+ ⊗ W. Note that, in addition to the chain spaces Ck, we have

another two families of P -modules, namely Zk = ker ∂∗ ⊂ Ck and Hk. The vector bundles

associated with Ck are Ωk ⊗ W , and we set Zk := G ×P Zk and Hk := G ×P Hk. Then, the

diagram that extends (4.7) will be

W Ω1 ⊗W Ω2 ⊗W · · ·

Z0 Z1 Z2

H0 H1 H2 · · · .

∇ d∇ d∇

proj proj proj

D0 D1 D2

The definition of the BGG operators Dk is given by

(4.8) Dk = proj ◦ d∇ ◦ Lk

where Lk : Hk → Zk is some differential splitting operator. In order that (4.8) may make sense,

it is necessary that the image of d∇ ◦Lk is contained in Zk+1. General constructions of such Lk

are given by [14] and [6]. However, we do not need to use those constructions of Lk because it is

known that the requirement we just mentioned also gives the characterization of Lk, as pointed

out by Čap [8]. Hammerl–Somberg–Souček–Šilhan [23, Theorem 3.1] summarizes this as follows.

Proposition 4.9. Let Ek be a differential operator from Ωk ⊗W to Ωk+1 ⊗W of homogeneity

0 with the property that the associated graded map coincides with gr ∂. Then for every σ ∈ Hk,

there exists a unique element s ∈ Zk with σ = [s] and Eks ∈ Zk+1. Moreover, the mapping

Lk : σ 7→ s is given by a differential operator.

The definition of the BGG operators Dk is completed by applying Proposition 4.9 to the

operator Ek = d∇.
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It is sometimes the case that the tractor connection ∇ happens to be a prolongation of

the associated first BGG operator D0, which basically means that the system of differential

equations ∇s = 0, where s ∈ W , can be recovered by extending the system D0f = 0, where

f ∈ H0, by adjoining its trivial consequences. In this case, it follows that kerD0 is in one-to-

one correspondence with ker∇, which often provides some geometric insight toward the space

under study, because in many settings D0 admits a down-to-earth geometric interpretation. Such

examples and non-examples are overviewed by Hammerl–Somberg–Souček–Šilhan [23, Section 5].

The same relationship can also happen for other differential operators E0 : W → Ω1 ⊗ W

satisfying the assumption of Proposition 4.9 and its associated first BGG operator. In particular,

the following fact regarding the first BGG operator D∇̃
0 associated with the modified adjoint

tractor connection ∇̃, which is well-defined by Proposition 4.7 and which we call the modified

first adjoint BGG operator, is proved in [23, Section 5.4] (or Hammerl [22, Section 4.3]).

Theorem 4.10. For any normal regular parabolic geometry (G, ω), the modified adjoint tractor

connection ∇̃ is always a prolongation of the associated first BGG operator D∇̃
0 .

Now let us turn to CR geometry, and recall from Section 3 that the CR Killing operator

D : Re E(1, 1) → Re(E(αβ)(1, 1) ⊕ E(αβ)(1, 1)) is an operator describing trivial deformations of

compatible almost CR structures induced by contact Hamiltonian vector fields. In particular,

kerD is the space of infinitesimal symmetries. On the other hand, Theorem 4.10 implies that the

modified first adjoint BGG operatorD∇̃
0 associated with the CR normal regular Cartan geometry

(G, ω) shares the same property that kerD∇̃
0 is the space of infinitesimal symmetries—although

the precise meaning of symmetries is different, namely, given in terms of infinitesimal principal

bundle automorphisms of G. But in any case, this observation strongly suggests that D∇̃
0 is equal

to D (perhaps up to some nonzero constant factor), which is indeed the case as we shall see in

Section 7 (without any factor, thanks to our normalization used in (1.2)).

Another point of interest is whetherD∇̃
0 is actually different from the original (i.e., unmodified)

first adjoint BGG operatorD∇
0 . The following theorem regarding this matter is due to Čap [9, 3.5

Theorem].

Theorem 4.11. If (G, ω) is a torsion-free normal regular parabolic geometry and the homology

H1(p+, g) is concentrated in non-positive homogeneity degrees, then D∇̃
0 = D∇

0 .

However, in CR geometry, the normal regular parabolic geometry (G, ω) associated with a

compatible almost CR manifold (M,H, J) by Theorem 4.8 is torsion-free only if (M,H, J) is

integrable, as we shall see in Section 6. Therefore, in the non-integrable case, Theorem 4.11 does

not guarantee that D∇̃
0 = D∇

0 . Our conclusion in Section 7 is going to be that they are actually

not the same.

5. Lie algebra homology relevant to CR geometry

Hereafter g denotes su(n+ 1, 1), the special unitary algebra of indefinite signature (n+ 1, 1),

and we consider the parabolic subalgebra p associated with a certain |2|-grading of g (see (5.4)),

which corresponds to geometry of compatible almost CR structures. In order to specialize the

general theory outlined in the previous section to this case, in this section we express the Lie

algebra homology Hk(p+,W) and the relevant Kostant codifferential ∂∗ in explicit terms when

W is the standard representation V = C
n+1,1 or the adjoint representation g, and for k = 0, 1.

It suffices to treat the both representations simply as g-modules in this section, but as group

representations we later need to consider V as a G♯-module, while g can be treated as a G-

module, where G♯ = SU (n+ 1, 1) and G = PSU (n + 1, 1). In this article, parabolic geometries
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or infinitesimal flag structures are said to be corresponding to geometry of compatible almost CR

structures or simply of CR type when they are of type (G,P ) or (G♯, P ♯), where P and P ♯ are

the parabolic subgroups defined in Section 6.2.

5.1. Preliminaries. We regard g = su(n+ 1, 1) as the Lie algebra of the special unitary group

associated with the indefinite Hermitian inner product of Cn+2 given by

(5.1)





1

I

1



 ,

where I is the n× n identity matrix. It is easily seen that

g =











a Z iz

X A −Z∗

ix −X∗ −a





∣
∣
∣
∣
∣
∣ A ∈ u(n), a ∈ C, a+ trA− a = 0

x, z ∈ R, X ∈ Cn, Z ∈ (Cn)∗,






,

where Cn and (Cn)∗ denote the set of column vectors and that of row vectors, respectively, and

∗ on the upper right of X∗ and Z∗ indicates the conjugate transpose. With index notation, we

can also express elements of g as

(5.2)





a Zβ iz

Xα A α
β −Zα

ix −Xβ −a





by setting

Xα = Xα, Zβ = Zβ , Xβ = hβαX
α, Zα = hαβZβ,

where

(5.3) hαβ = hαβ =

{

1, α = β,

0, otherwise.

We also use the complexification g̃ of g. Note that g̃ equals sl(n + 2,C), the set of complex

trace-free matrices, with complex conjugation relative to the real form g. That is, if we express

a general element of g̃ as




a Zβ iz

Xα A α
β −Wα

ix −Yβ −b



 ,

where x, z ∈ C, X , W ∈ Cn, Y , Z ∈ (Cn)∗, A ∈ gl(n,C), a, b ∈ C with a+ trA− b = 0, then





a Zβ iz

Xα A α
β −Wα

ix −Yβ −b



 =





b Wβ iz

Y α −Aα
β −Zα

ix −Xβ −a



 ,

where

Xα = Xα, Yβ = Yβ , Zβ = Zβ, Wα =Wα, A α
β

= A α
β

and indices are lowered/raised by (5.3).

We endow the Lie algebra g with the |2|-grading

(5.4) g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2
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given by the grading element

(5.5) E =





1

O

−1



 .

The subscript i of gi, which is the eigenvalue of adE on gi, equals the distance from the diagonal

of the (possibly) non-zero entries of its elements in the block form (5.2). That is,




ix



 ,



Xα

−Xβ



 ,





a

A α
β

−a



 ,





Zβ

−Zα



 ,





iz




are the elements of g−2, g−1, g0, g1, and g2, respectively.

Following the general notation used in Section 4, we write

g− = g−2 ⊕ g−1, p = g0 ⊕ g1 ⊕ g2, p+ = g1 ⊕ g2.

The complexification of the |2|-grading is expressed as g̃ = g̃−2 ⊕ g̃−1 ⊕ g̃0 ⊕ g̃1 ⊕ g̃2, and g̃−, p̃,

p̃+ denote the complexification of their untilded counterparts.

We introduce the basis ξ0, ξ1, . . . , ξn, ξ1, . . . , ξn of g̃− by

(5.6) ξ0 =





i



 , ξσ =



δ α
σ

0



 , ξσ =



 0

−hβσ



 ,

and the basis ζ0, ζ1, . . . , ζn, ζ1, . . . , ζn of p̃+ by

ζ0 =





i


 , ζσ =





δ σ
β

0



 , ζσ =





0

−hασ



 .

Note that ξ0 and ζ0 are real elements, which belong to g−2 and g2, respectively. The vectors ξσ,

ξσ ∈ g̃−1 are the complex conjugates of each other, and so are ζσ, ζσ ∈ g̃1.

Lemma 5.1. g0 contains no nontrivial ideals of g.

Proof. Suppose that I is an ideal of g contained in g0. Then, since (5.4) is a grading, any element

F =





a

A α
β

−a



 ∈ I

must satisfy [F, ξ0] = [F, ξσ] = 0. Then Re a = 0 and A α
β − aδ α

β = 0 follow, and consequently,

F is of the form

F =





ic

icδ α
β

ic



 , c ∈ R.

However, since F ∈ g0 we have c = 0, and hence I = 0. �
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Since (5.4) is a grading, the Killing form B of g̃ vanishes on g̃i × g̃j unless i + j = 0. It can

be easily seen that, on g̃−2 × g̃2 and on g̃−1 × g̃1, we have

B(ξ0, ζ
0) = −2(n+ 2)

and

B(ξσ, ζ
τ ) = 2(n+ 2)δ τ

σ , B(ξσ, ζ
τ ) = 2(n+ 2)δ τ

σ , B(ξσ, ζ
τ ) = B(ξσ , ζ

τ ) = 0.

Consequently, the dual basis of p̃+ to the basis ξ0, ξσ, ξσ of g̃− with respect to B is given by

(5.7) ξ∗0 = −
1

2(n+ 2)
ζ0, ξ∗σ =

1

2(n+ 2)
ζσ, ξ∗σ =

1

2(n+ 2)
ζσ.

The dual basis (5.7) can be used in computations of the action of the Kostant codifferential

(4.3) on Ck(p+,W), identified with
∧k

(g/p)∗ ⊗W by the Killing form B, as follows. For k = 1,

we have for ψ ∈ (g/p)∗ ⊗W

(5.8) ∂∗ψ =
∑

A

ξ∗A · ψ(ξA),

where A runs through { 0, 1, . . . , n, 1, . . . , n }. Indeed, (5.8) follows from ∂∗(ξ∗A ⊗ w) = ξ∗A · w,

which is correct by (4.3). Similarly, for φ ∈
∧2

(g/p)∗ ⊗W one has

(5.9) ∂∗φ(X) = 2
∑

A

[ξ∗A, φ(X, ξA)]−
∑

A

φ([ξ∗A, X ], ξA), X ∈ g/p.

This formula appears in [13, Lemma 3.1.11].

5.2. Filtration of the standard and the adjoint representations. Corresponding to the

block form (5.2) of elements of g, those of the standard representation V = Cn+2 of g can be

expressed as

(5.10)





s

tα

u



 ,

which corresponds to the eigendecomposition

V = V1 ⊕ V0 ⊕ V−1

induced by the grading element (5.5). The associated p-invariant filtration is

V = V
−1 ⊃ V

0 ⊃ V
1,

where

V
0 = V0 ⊕ V1 =











s

tα

0










, V

1 = V1 =











s

0

0










.

Note that V carries the g-invariant indefinite Hermitian inner product

(5.11)

〈



s

tα

u



 ,





s′

t′α

u′





〉

= su′ +

n∑

α=1

tαt′α + us′.

The p-module V1 = V1 is denoted by E(−1, 0), in view of the fact that its associated tractor

bundle can be identified with the density bundle E(−1, 0), as we see in Section 6. We set

E(1, 0) = E(−1, 0)∗, E(0, 1) = E(1, 0)
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and

E(w,w′) = E(1, 0)⊗w ⊗ E(0, 1)⊗w′

.

The inner product (5.11) induces a duality between gr−1(V) = V/V0 and V1. Consequently,

(5.12) gr−1(V)
∼= E(0, 1),

which means that the bottom component u of (5.10), which is regarded as representing an

equivalence class in V/V0 in this context, can be regarded as an element of E(0, 1).

Next, we define the p-module Eα to be gr0(V)⊗ E(1, 0). Then

gr0(V)
∼= Eα(−1, 0),

where we write Eα(w,w′) = Eα ⊗ E(w,w′). This means that the second component tα of

(5.13)





s

tα

0



 ,

representing an equivalence class inV0/V1, can be regarded as an element of Eα(−1, 0). The inner

product (5.11) naturally induces a positive-definite Hermitian inner product gr0(V)×gr0(V) → C,

and hence a canonical complex bilinear mapping

Eα × Eβ → E(1, 1),

which we write

(5.14) hαβ ∈ Eαβ(1, 1).

Indeed, this pairing will induce the weighted Levi form of compatible almost CR structures.

The complexified adjoint representation g̃ = sl(n + 2) is isomorphic to the trace-free part of

End(V) = V∗ ⊗ V, and the associated graded module of End(V) is decomposed as





E Eβ E(−1,−1)

Eα E α
β Eα(−1,−1)

E(1, 1) Eβ(1, 1) E



 ,

where E is the trivial representation. Consequently, we have the isomorphisms of p-modules

gr2(g̃) = g̃2 ∼= E(−1,−1),

gr1(g̃) = g̃1/g̃2 ∼= Eβ ⊕ Eα(−1,−1) ∼= Eβ ⊕ Eα,

gr0(g̃) = g̃0/g̃1 ∼= E ⊕ E ⊕ tf E α
β ,

gr−1(g̃) = g̃−1/g̃0 ∼= Eα ⊕ Eβ(1, 1) ∼= Eα ⊕ Eβ ,

gr−2(g̃) = g̃/g̃−1 ∼= E(1, 1).

In particular, if the vectors in (5.6) are understood as representing equivalence classes in g̃/p̃,

then the first (resp. the second) summand of gr−1(g̃) = g̃−1/p̃ = Eα⊕Eβ is spanned by ξσ (resp.

by ξσ).
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5.3. Homology of p+ with values in the standard representation. Based on the block

form (5.10) for the standard representation V, elements of Ck(p+,V), which are identified with

elements of
∧k

(g/p)∗ ⊗ V, will be denoted as




sA1···Ak

tαA1···Ak

uA1···Ak





using the basis (5.6), where each Ai is an index running through { 0, 1, . . . , n, 1, . . . , n }. Some-

times the indices A1 · · ·Ak in this notation will be suppressed, in which case we will use care so

that any confusion does not occur.

Then, for an element of C1(p+,V), (5.8) implies that the action of ∂∗ is given by

∂∗





s

tα

u



 =
1

2(n+ 2)





−iu0 + tγγ
−uα

0



 .

For an element of C2(p+,V), we have from (5.9) that


∂∗





s

tα

u







 (ξ0) =
1

2(n+ 2)





tγ0γ + is γ
γ

−u α
0 + itα γ

γ

iu γ
γ



 ,



∂∗





s

tα

u







 (ξσ) =
1

2(n+ 2)





iu0σ + tγσγ
−u α

σ

0



 ,



∂∗





s

tα

u







 (ξσ) =
1

2(n+ 2)





iu0σ + tγσγ
−u α

σ

0



 .

These computations can be used to identify the homology groups H0(p+,V) and H1(p+,V)

as follows. The zeroth homology is given by

H0(p+,V) = V/ im∂∗1 = V/V0 ∼= E(0, 1),

where the last identification is nothing but (5.12). As mentioned after (5.12), we can regard

the bottom component u of the vector (5.10) in the standard representation V as an element of

E(0, 1) by identifying u with the equivalence class of the vector (5.10). Using this interpretation,

we can express the projection V → H0(p+,V) ∼= E(0, 1) as, in fact tautologically,




s

tα

u



 7→ u.

The first homology is

H1(p+,V) =
ker ∂∗1
im ∂∗2

=











sA
tαA
uA





∣
∣
∣
∣
∣
∣

uσ = 0, u0 = −itγγ

















sA
tαA
uA





∣
∣
∣
∣
∣
∣

uσ = uσ = 0, u0 = −itγγ , tστ = t[στ ]







∼= { (uσ) } ⊕ { (tα
β
) | tαβ = tβα } ∼= Eσ(0, 1)⊕ E(αβ)(0, 1),
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where the projections from ker ∂∗1 onto Eσ(0, 1) and onto E(αβ)(0, 1) are given by




sA
tαA
uA



 7→ (uσ) and





sA
tαA

uA



 7→ (t(αβ)).

To understand the latter, i.e., to see that the component (t(αβ)) of any element of ker ∂∗1 can

be regarded as an element of E(αβ)(0, 1), one must note that uσ = 0. By this, and by recalling

(5.13), we can regard the middle component of the A = σ part




sσ
tασ

0





of any element of ker∂∗1 as giving an element of Eα
σ (−1, 0). Then, by lowering an index using

(5.14) and taking the symmetric part, we arrive at the conclusion that (t(αβ)) is interpretable as

an element of E(αβ)(0, 1).

5.4. Homology of p+ with values in the adjoint representation. Following the manner

used in the previous subsection, elements of Ck(p+, g), which are identified with elements of
∧k(g/p)∗ ⊗ g, will be expressed as

(5.15)





aA1···Ak
ZβA1···Ak

izA1···Ak

Xα
A1···Ak

A α
β A1···Ak

−Zα
A1···Ak

ixA1···Ak
−XβA1···Ak

−aA1···Ak





based on (5.2). As before, the indices A1 · · ·Ak in this notation can be suppressed.

Then, for an element ψ ∈ (g/p)∗ ⊗ g expressed as (5.15), it follows from (5.8) that

∂∗ψ =
1

2(n+ 2)





x0 +Xγ
γ iXβ0 +A γ

β γ − aβ i(a0 + a0) + Z γ
γ − Zγ

γ

−ixα −Xα
β +X α

β iXα
0 + aα +A αγ

γ

0 −ixβ −x0 −X γ
γ



 .

Likewise, for φ ∈
∧2

(g/p)∗ ⊗ g, (5.9) implies that

(∂∗φ)(ξσ) =
1

2(n+ 2)





Xγ
σγ − x0σ A γ

β σγ − iXβ0σ − aσβ Z γ
γσ − Zγ

σγ − ia0σ − ia0σ
−ix α

σ −Xα
σβ +X α

βσ A α γ
γ σ − iXα

0σ + a α
σ

0 −ixσβ −X γ
γσ + x0σ



 ,

(∂∗φ)(ξσ) =
1

2(n+ 2)





Xγ
σγ − x0σ A γ

β σγ − iXβ0σ − aσβ Z γ
γσ − Zγ

σγ − ia0σ − ia0σ
−ix α

σ −Xα
σβ +X α

βσ A α γ
γ σ − iXα

0σ + a α
σ

0 −ixσβ −X γ
γσ + x0σ



 ,

(∂∗φ)(ξ0) =
1

2(n+ 2)





Xγ
0γ + ia γ

γ iZ γ
βγ +A γ

β 0γ − a0β −z γ
γ + Z γ

γ0 − Zγ
0γ

i(Xα γ
γ − x α

0 ) iA α γ
β γ −Xα

0β +X α
β0 −iZα γ

γ +A α γ
γ 0 + a α

0

−x γ
γ −i(X γ

βγ + x0β) −X γ
γ0 − ia γ

γ



 .

It follows that the zeroth homology is

H0(p+, g) = g/ im∂∗1 = g/g−1 ∼= ReE(1, 1),

where the projection g → ReE(1, 1) is given by




a Zβ iz

Xα A α
β −Zα

ix −Xβ −a



 7→ x.
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The first homology can be computed as

H1(p+, g) =
ker ∂∗1
im ∂∗2

=











aA ZβA izA
Xα

A A α
β A −Zα

A

ixA −XβA −aA





∣
∣
∣
∣
∣
∣ a0 + a0 = iZ γ

γ − iZγ
γ

Xα
0 = iA αγ

γ + iaα,

xσ = xσ = 0, x0 = −Xγ
γ ,

















aA ZβA izA
Xα

A A α
β A −Zα

A

ixA −XβA −aA





∣
∣
∣
∣
∣
∣
∣
∣ a0 + a0 = iZ γ

γ − iZγ
γ

Xα
0 = iA αγ

γ + iaα,

Xστ = X[στ ] ,

xσ = xσ = 0, x0 = −Xγ
γ ,







∼= Re({ (Xα
β
) | Xαβ = Xβα } ⊕ { (Xαβ ) | Xαβ = Xβα })

∼= Re(E(αβ)(1, 1)⊕ E(αβ)(1, 1)),

where we define the projection ker ∂∗1 → Re(E(αβ)(1, 1)⊕ E(αβ)(1, 1)) by





aA ZβA izA
Xα

A A α
β A −Zα

A

ixA −XβA −aA



 7→ (X(αβ), X(αβ)).

Note that, in particular, H1(p+, g) is concentrated in (the equivalence classes of elements of)

g1 ⊗ g−1, and hence in homogeneity 0. Together with Lemma 5.1, this fact guarantees that

Theorem 4.8 is applicable to regular infinitesimal flag structures of CR type.

6. Weyl structures and the CR normal Weyl forms

In this section and the next one, we will, for normal regular parabolic geometries of CR type,

derive concrete formulae of the tractor connections associated with the standard representation

V and the adjoint representation g.

We are going to do so with the help of the general notion of Weyl structures of parabolic

geometries (G, ω), which are by definition P+-equivariant sections σ : G0 → G where G0 = G/P+

(see Čap–Slovák [13, Chapter 5]). A choice of a Weyl structure σ gives rise to the induced Weyl

form σ∗ω ∈ Ω1(G0, g), and by studying (normal) Weyl forms directly, one can effectively avoid

using the original (normal) parabolic geometry in the description of tractor bundles, as we recall

in the general setting in Section 6.1 following [13]. In Sections 6.2–6.4, we specialize in geometries

of CR type and determine the normal Weyl form.

6.1. Tractor calculus in terms of Weyl forms. Let G be an arbitrary semisimple Lie group

and P its parabolic subgroup. Recall the notion of infinitesimal flag structures of type (G,P )

introduced in Section 4.4. Abstractly, Weyl forms of infinitesimal flag structures are defined as

follows (see [13, Definition 5.2.1]).

Definition 6.1. A Weyl form of an infinitesimal flag structure ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1))

of type (G,P ) is a G0-invariant 1-form τ ∈ Ω1(G0, g) such that

(i) τ(ζA) = A for A ∈ g0, where ζA is the fundamental vector field;

(ii) For −k ≤ i ≤ −1, τ |T iG0
takes values in gi and equals θi modulo gi+1.

Given a Weyl structure σ of a parabolic geometry (G, ω), one can use the induced infinitesimal

flag structure ((T iM)−1
i=−k,G0, (θ−k, . . . , θ−1)) and the induced Weyl form τ = σ∗ω to describe

tractor bundles. First, if W is a (g, P )-module, then the associated bundle is

W = G ×P W ∼= G0 ×G0
W,
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the isomorphism being given by identifying Jg0, wKG0 with Jσ(g0), wKP (where J· · ·K denotes the

equivalence class of (· · · )). In order to describe the tractor connection ∇ using this σ-dependent

expression W ∼= G0 ×G0
W, we need to introduce three objects related with the Weyl structure

σ. Let

σ∗ω = (σ∗ω−, σ
∗ω0, σ

∗ω+) ∈ Ω1(G0, g−)⊕ Ω1(G0, g0)⊕ Ω1(G0, p+)

be the decomposition of the induced Weyl form σ∗ω with respect to g = g− ⊕ g0 ⊕ p+. The

middle part γσ = σ∗ω0 is a principal connection of G0, which is called the Weyl connection. The

negative part σ∗ω− is the soldering form, which defines an isomorphism Tp(u)M ∼= g− for each

u ∈ G0, where p : G0 → M is the projection. The positive part P
σ = σ∗ω+ is called the Rho

tensor. Then it is known that ∇ can be expressed as follows.

Proposition 6.2 ([13, Proposition 5.1.10]). Let σ be a Weyl structure of a parabolic geometry

(G, ω). Then the tractor connection of W = G ×P W ∼= G0 ×G0
W is given by

∇ξs = ∇σ
ξ s+ P

σ(ξ) · s+ ξ · s

for a vector field ξ, where ∇σ denotes the covariant differentiation with respect to the Weyl

connection γσ and, in the last term on the right-hand side, ξ is identified with a g−-valued

function by the soldering form σ∗ω−.

It is crucially important in this approach to know that, for normal regular parabolic geometries,

we can characterize the Weyl form τ = σ∗ω induced by some Weyl structure σ directly at the

level of the infinitesimal flag structure. For an arbitrary Weyl form τ of the induced regular

infinitesimal flag structure (or of an infinitesimal flag structure in general), its curvature form

K ∈ Ω2(G0, g) is defined by

K = dτ +
1

2
[τ ∧ τ ],

and, since TM ∼= G0×G0
g−, the curvature K is equivalently expressed by the curvature function

κ : G0 →
∧2

g−⊗g. Then τ is said to be normal if ∂∗κ = 0 is satisfied. Under the assumption that

H1(g−, g) is concentrated in non-positive homogeneity degrees (cf. Theorem 4.8), the normality

is in fact a necessary and sufficient condition for τ being induced by some Weyl structure [13,

Theorem 5.2.2]. Therefore, in order to compute the normal tractor connections explicitly, it just

suffices to investigate normal Weyl forms of the induced infinitesimal flag structure.

6.2. Frame bundles in CR geometry and the Tanaka–Webster connection. We next

discuss how the geometry of a compatible almost CR structure (H, J) on M is encoded in

terms of regular infinitesimal flag structures, or equivalently (see Proposition 4.6), in terms of

reductions of the structure group of the full graded frame bundle Fgr associated with the filtration

TM = T−2M ⊃ T−1M = H . We also need to discuss how the geometry of (H, J, E(1, 0)), where

E(1, 0) is an (n+2)-nd root of the canonical bundle K (cf. Section 2.1), can be encoded similarly.

To some extent, this subsection is an elaboration of [13, Example 3.1.7].

Let G♯ = SU (n+ 1, 1) be the special unitary group with respect to the indefinite Hermitian

inner product (5.1) and G = PSU (n+1, 1) = G♯/Z(G♯) its quotient by its center Z(G♯) ∼= Zn+2

(the set of constant matrices of determinant 1 in G♯). We define the parabolic subgroup P of G

as the stabilizer of the null complex line 〈 (1 0 · · · 0 0)t 〉 in Cn+1,1, and P ♯ is defined to be the

pullback of P by the projection G♯ → G. Then the Levi subgroups are

G♯
0 =











c

U

1/c





∣
∣
∣
∣
∣
∣

c ∈ C
×, U ∈ U(n), and

c

c
detU = 1









28 YOSHIHIKO MATSUMOTO

and G0 = G♯
0/Zn+2.

First, given a compatible almost CR structure (H, J) on a smooth manifold M , we define

G0 =
⊔

x∈M






ϕ : g− → gr(TxM)

∣
∣
∣
∣
∣
∣ the brackets g−1 × g−1 → g−2 and Hx ×Hx → TxM/Hx

the complex structures j on g−1 and J on Hx, and

ϕ is a grading respecting linear isomorphism preserving





,

where Hx ×Hx → TxM/Hx is the Levi bracket. Clearly, G0 can be equivalently described as

(6.1) G0 =
⊔

x∈M

{

(Z1, . . . , Zn, T )

∣
∣
∣
∣ [Zα, Zβ] = −iδαβT in TxM/Hx

Z1, . . . , Zn ∈ H1,0
x , T ∈ TxM/Hx, and

}

,

or even as

(6.2) G0 =
⊔

x∈M

{

(Z1, . . . , Zn)

∣
∣
∣
∣ with respect to i[·, ·] : H1,0

x ×H0,1
x → TxM/Hx

Z1, . . . , Zn ∈ H1,0
x is a conformal unitary frame

}

.

The adjoint action of the group G0 on g− induces its right action on G0, given explicitly using

the second expression (6.1) by

(6.3) (Z1, . . . , Zn, T ) ·









c

U

1/c







 = (c−1(Z1, . . . , Zn)U, |c|
−2T ).

Thus the bundle G0 is a reduction of the structure group of Fgr to G0, and the agreement of the

brackets g−1 × g−1 → g−2 and Hx ×Hx → TxM/Hx means that the corresponding infinitesimal

flag structure is regular. Conversely, any regular infinitesimal flag structure corresponding to

a structure group reduction of Fgr to G0 is induced this way by some compatible almost CR

structure.

The third expression (6.2) of G0 shows that the conformal unitary group CU (n) ⊂ GL(n,C)

is naturally acting on G0 from the right. This action and the one defined by (6.3) are compatible

with the isomorphism G0
∼= CU (n) given by

(6.4)









c

U

1/c







 7→ c−1U.

Next, suppose that we are moreover given a complex line bundle E(1, 0) with E(1, 0)−n−2 = K.

Then the (n+ 2)-sheeted covering G♯
0 of G0 is defined by

G♯
0 =

⊔

x∈M






(Z1, . . . , Zn, T, η)

∣
∣
∣
∣
∣
∣ η ∈ E(1, 0)x, η

n+2 = T ∧ Z1 ∧ · · · ∧ Zn ∈ K∗
x

[Zα, Zβ] = −iδαβT in TxM/Hx, and

Z1, . . . , Zn ∈ H1,0
x , T ∈ TxM/Hx,






,

on which G♯
0 acts by

(Z1, . . . , Zn, T, η) ·





c

U

1/c



 = (c−1(Z1, . . . , Zn)U, |c|
−2T, c−1η).

The principal bundle structures of G0 and G♯
0 are compatible with the projections G♯

0 → G0 and

G♯
0 → G0, and thus G♯

0 is a reduction of the structure group of Fgr to G
♯
0. Giving such a reduction

is equivalent to giving a structure (H, J, E(1, 0)).

The Tanaka–Webster connection associated with any fixed contact form θ can be thought of

as a principal connection of G0 or G♯
0. To describe this, take any local unitary frame {Zα } of

H1,0 with respect to θ, defined over an open set U of M . Let ω = ω β
α be the Tanaka–Webster
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connection form with respect {Zα }, which takes values in u(n). Then, in terms of the local

trivialization G0|U ∼= U ×CU (n) given by the frame {Zα }, we define the cu(n)-valued principal

connection form γ of G0 by

γ = ω + g−1dg,

where g ∈ CU (n) denotes the fiber coordinate of G0 with respect to the above local trivialization.

Since G0
∼= CU (n) by (6.4), γ can also be regarded as a g0-valued 1-form, whose pullback γ by

the local section Z : U → G0|U given by {Zα } is

γ = Z
∗γ =





− 1
n+2ω

γ
γ

ω β
α − 1

n+2ω
γ

γ δ β
α

− 1
n+2ω

γ
γ



 .

The pullback of γ by the covering G♯
0 → G0, which is a principal G♯

0-connection form on G♯
0, is

denoted by γ♯.

6.3. Exact Weyl structures and determination of the induced normal Weyl form.

There is a special class of Weyl structures called exact Weyl structures in the theory of parabolic

geometries (see [13, Section 5.1.7]). Exact Weyl structures are in one-to-one correspondence with

flat connections of any fixed “bundle of scales” induced by its global trivializations. For parabolic

geometries of CR type (or more generally, for parabolic contact structures), the bundle H⊥ of

annihilators of H , which is associated with G0 through the homomorphism

(6.5) G0 → R
∗,









c

U

1/c







 7→ |c|2

or with G♯
0 through the composition G♯

0 → G0 → R∗ of (6.5) and the quotient mapping, is a

bundle of scales [13, Section 5.2.11]. Consequently, any contact form θ determines an exact Weyl

structure σθ : G0 → G, or σ♯
θ : G

♯
0 → G♯, which is characterized by the fact that the associated

Weyl connection on G0 or G♯
0 induces a linear connection of H⊥ with respect to which θ is parallel.

We are going to determine the Weyl form induced by an exact Weyl structure from a given

normal regular parabolic geometry of CR type. In fact, we discuss only the case of type (G,P )

in detail; then the Weyl form τ ♯θ induced by σ♯
θ from a normal regular parabolic geometry of type

(G♯, P ♯) can simply be obtained by pulling back the Weyl form τθ induced from the corresponding

normal regular parabolic geometry of type (G,P ) by the standard covering mapping G♯
0 → G0.

So, let (G, ω) be a regular parabolic geometry of type (G,P ) and let σθ : G0 → G be an exact

Weyl structure as above. Take an arbitrary local unitary frame {Zα } of H1,0 with respect to

θ and let { θα } be the dual admissible coframe. The induced Weyl form σ∗
θω is denoted by τθ,

or simply by τ in the sequel. Then, since the induced Weyl form τ satisfies the conditions in

Definition 6.1, its pullback τ = Z
∗τ by the local section Z : U → G0|U given by {Zα } must be

of the form

(6.6) τ =





∗ ∗ ∗

θα mod θ ∗ ∗

iθ −θβ mod θ ∗



 ,

where each ∗ denotes an unspecified component and θβ = δβγθ
γ .

If we furthermore assume the normality of (G, ω) and hence that of τ , we can determine all

the components of τ , which means that τ is determined completely. We make the following
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observation as the first step toward this. Note that some general theory regarding this step is

developed in [13, Section 5.2.11], to which we do not appeal here.

Lemma 6.3. Let (G, ω) be a normal parabolic geometry of type (G,P ), and let τ be the Weyl

form induced by the exact Weyl structure σθ : G0 → G associated with a contact form θ. Then its

pullback τ by the local section Z : U → G0|U given by a unitary frame {Zα } must be of the form

(6.7) τ =





− 1
n+2ω

γ
γ mod θ ∗ ∗

θα ω α
β − 1

n+2ω
γ

γ δ α
β mod θ ∗

iθ −θβ − 1
n+2ω

γ
γ mod θ



 ,

where { θα } be the dual admissible coframe and ω α
β is the Tanaka–Webster connection forms

with respect to {Zα }.

We remark that the notion of homogeneity is convenient to prove the above lemma and to

determine the remaining components in the next subsection. We say that a p-form τ with values

in g on an open set of G0 is of homogeneity ≥ l if ξ1 ∈ T i1G0, . . . , ξp ∈ T ipG0 implies τ(ξ1, . . . , ξp) ∈

gi1+···+ip+l. For example, Definition 6.1 implies that any Weyl form is of homogeneity ≥ 0.

Similar language is used for differential forms with values in g on open sets of M , using the

filtration T−2M ⊃ T−1M , as well. Thus, if we set

(6.8) η(0) =



θα

iθ −θβ



 ,

then (6.6) implies that τ equals η(0) modulo terms of homogeneity ≥ 1.

Proof of Lemma 6.3. Let

η̃(0) =





− 1
n+2ω

γ
γ

θα ω α
β − 1

n+2ω
γ

γ δ α
β

iθ −θβ − 1
n+2ω

γ
γ



 .

Then, (6.6) implies that the pullback of the Weyl form τ to the base should be expressed as

τ = η̃(0) +





aσθ
σ + aσθ

σ mod θ ∗ ∗

X
α
0θ A

α
β σθ

σ + A
α

β σθ
σ mod θ ∗

−Xβ0θ −aσθ
σ − aσθ

σ mod θ





︸ ︷︷ ︸

homogeneity ≥ 1

,

where the correction term (the second term) on the right-hand side is g-valued and transforms

tensorially with respect to the indices α, β (and, of course, with respect to σ and σ as well) for

changes of unitary frames {Zα }. Note that, since the correction term is g-valued, in particular

we have

aσ = aσ, aσ = aσ, aσ + A
γ

γ σ − aσ = 0.

Moreover, since the contact form θ should be parallel with respect to the linear connection of

H⊥ induced by the Weyl connection γσθ , (6.5) implies that

aσ + aσ = 0

is necessary. It follows, therefore, that

(6.9) A
γ

γ σ + 2aσ = 0.



31

The pullback of the curvature form K of τ to the base is given by

K ≡ dη̃(0) +
1

2
[η̃(0) ∧ η̃(0)]

+ d





aσθ
σ + aσθ

σ mod θ ∗ ∗

X
α
0θ A

α
β σθ

σ + A
α

β σθ
σ mod θ ∗

−Xβ0θ −aσθ
σ − aσθ

σ mod θ





+



η(0) ∧





aσθ
σ + aσθ

σ mod θ ∗ ∗

X
α
0θ A

α
β σθ

σ + A
α

β σθ
σ mod θ ∗

−Xβ0θ −aσθ
σ − aσθ

σ mod θ









modulo terms of homogeneity ≥ 2, where η(0) is defined by (6.8), because the bracketed wedge

product of two homogeneity ≥ 1 terms is of homogeneity ≥ 2. By omitting more homogeneity

≥ 2 terms, the above formula can be simplified further to

(6.10)

K ≡ dη̃(0) +
1

2
[η̃(0) ∧ η̃(0)] +



X
α
0

−Xβ0



 dθ

+



η(0) ∧





aσθ
σ + aσθ

σ

X
α
0θ A

α
β σθ

σ + A
α

β σθ
σ

−Xβ0θ −aσθ
σ − aσθ

σ







 .

The normality of τ means that its curvature function κ satisfies ∂∗κ = 0, which is equivalent

to

(6.11) ∂∗κ = 0.

We now determine the correction term using (6.11) and (6.9). First, we have

dη̃(0) +
1

2
[η̃(0) ∧ η̃(0)] =





∗ ∗ ∗
1
2N

α
στ θ

σ ∧ θτ mod θ ∗ ∗

− 1
2Nβστ θ

σ ∧ θτ mod θ ∗



 .

Consequently, (6.10) implies that K is of homogeneity ≥ 1, and if we write

K =





∗ ∗ ∗

X
α ∗ ∗

ix −Xβ ∗



 ,

then

x0σ = iXσ0,

X
α
στ = A

α
τ σ − A

α
σ τ + aτ δ

α
σ − aσδ

α
τ ,

X
α
στ = ihστX

α
0 − A

α
σ τ + aτδ

α
σ ,

X
α
στ = Nα

στ .

The normality (6.11) implies, by the computation in Section 5.4,

X
γ
σγ − x0σ = 0,(6.12a)

X
α
σβ −X

α
βσ = 0,(6.12b)

X
γ

γσ − x0σ = 0,(6.12c)

X
γ

βγ + x0β = 0.(6.12d)
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Equations (6.12a), (6.12c), (6.12d) imply

−iXσ0 + A
γ

γ σ − A
γ

σ γ − (n− 1)aσ = 0,

−2iXσ0 + A
γ

γ σ + naσ = 0,

i(n+ 1)Xσ0 − A
γ

σ γ − aσ = 0,

from which, together with (6.9), we can conclude that Xσ0 = A
γ

γ σ = A
γ

σ γ = aσ = 0. Then we

moreover obtain from (6.12b) that 2A α
β σ − A

α
σ β = 0, which implies that A α

β σ = 0. �

Note that curvature form of (6.7) is of the form

(6.13) K =





∗ ∗ ∗
1
2N

α
στ θ

σ ∧ θτ mod θ ∗ ∗

− 1
2Nβστ θ

σ ∧ θτ mod θ ∗



 ,

as the computation in the above proof shows.

We also remark that the soldering form τ− is completely determined by Lemma 6.3; the

pullback of τ− to the base manifold by any local unitary frame Z = {Zα } equals η(0) in (6.8).

Thus, differential forms on U with values in g can be thought of as functions on U with values

in
∧p

g∗− ⊗ g via η(0). This in particular implies that the homogeneity l component of a g-valued

differential form on U makes sense.

6.4. Determination of the induced normal Weyl form (continued). We continue our

discussion to determine the rest of the components of the normal Weyl form τ induced by an

exact Weyl structure σθ : G0 → G. Actually, it suffices to determine τ only modulo terms of

homogeneity ≥ 3 for our purpose of identifying the first BGG operators in Section 7. However,

we derive the full formula for future reference.

6.4.1. Homogeneity 2 components. Our task here is to determine τ modulo terms of homogeneity

≥ 3. Lemma 6.3 implies that, if we set

η(1) =





− 1
n+2ω

γ
γ

θα ω α
β − 1

n+2ω
γ

γ δ α
β

iθ −θβ − 1
n+2ω

γ
γ



 ,

then τ can be expressed as

τ = η(1) +





a0θ Zβσθ
σ + Zβσθ

σ mod θ ∗

A
α

β 0θ −Z
α
σθ

σ − Z
α
σθ

σ mod θ

−a0θ





︸ ︷︷ ︸

homogeneity ≥ 2

,

where a0 = a0 and a0 +A
γ

γ 0 − a0 = 0. Furthermore, as before, since the Weyl connection makes

θ parallel, a0 should be purely imaginary and hence

(6.14) A
γ

γ 0 + 2a0 = 0.
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The computation of the curvature form K pulled back to the base can be carried out modulo

terms of homogeneity ≥ 3 as follows:

(6.15)

K ≡ dη(1) +
1

2
[η(1) ∧ η(1)] +





a0

A
α

β 0

−a0



 dθ

+



η(0) ∧





a0θ Zβσθ
σ + Zβσθ

σ

A
α

β 0θ −Z
α
σθ

σ − Z
α
σθ

σ

−a0θ







 .

The first two terms of the right-hand side is given by (6.13) modulo terms of homogeneity ≥ 2,

and here we need to compute it one homogeneity higher. By a direct computation, we get

dη(1) +
1

2
[η(1) ∧ η(1)] =





Π(1) ∗ ∗

Π(1)α Π(1) α
β ∗

−Π(1)
β −Π(1)



 ,

which is a g-valued 2-form, where

Π(1)α = 1
2N

α
στ θ

σ ∧ θτ +Aα
σθ ∧ θ

σ,

Π(1) ≡ − 1
n+2 (Rστθ

σ ∧ θτ + 1
2Vστθ

σ ∧ θτ + 1
2Vστθ

σ ∧ θτ ) mod θ,

Π(1) α
β ≡ (R α

β στ − 1
n+2δ

α
β Rστ )θ

σ ∧ θτ

+ 1
2 (V

α
β στ − 1

n+2δ
α

β Vστ )θ
σ ∧ θτ + 1

2 (V
α

β στ − 1
n+2δ

α
β Vστ )θ

σ ∧ θτ mod θ.

(Note that Π(1) is purely imaginary because η(1) induces a flat connection of H⊥.) So if we write

K =





a ∗ ∗

X
α

A
α

β ∗

Xβ −a



 ,

then, by calculating the right-hand side of (6.15), we obtain

X
α
στ = X

α
στ = 0,

X
α
στ = Nα

στ ,

X
α
0σ = A

α
σ 0 − δ α

σ a0 + iZα
σ,

X
α
0σ = Aα

σ + iZα
σ,

A
α

β στ = V α
β στ − 1

n+2δ
α

β Vστ + δ α
σ Zβτ − δ α

τ Zβσ,

A
α

β στ = R α
β στ − 1

n+2δ
α

β Rστ + ihστA
α

β 0 + δ α
σ Zβτ + hβτZ

α
σ,

A
α

β στ = V α
β στ − 1

n+2δ
α

β Vστ − hβσZ
α
τ + hβτZ

α
σ,

aστ = − 1
n+2Vστ − Zστ + Zτσ,

aστ = − 1
n+2Rστ + ihστa0 − Zστ ,

aστ = − 1
n+2Vστ .
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The normality condition (6.11) implies that

iA α γ
β γ −X

α
0β +X

α
β0 = 0,(6.16a)

X
γ
0γ + ia γ

γ = 0,(6.16b)

A
γ

β σγ − iXβ0σ + aβσ = 0,(6.16c)

−A
γ

β γσ − iXβ0σ + aβσ = 0.(6.16d)

It follows from (6.16a) that

iR′ α
β −

i

n+ 2
Rδ α

β − (n+ 2)A α
β 0 + 2δ α

β a0 = 0.

Therefore, using (6.14) together, we can deduce that

(6.17a) a0 = −
i

n+ 2
P, A

α
β 0 = iP ′α

β −
i

n+ 2
δαβP.

Next, (6.16c) implies that

V γ
β σγ − iAβσ − (n+ 1)Zβσ + Zσβ = 0,

and hence

Zβσ = −iAβσ +
1

n
(∇∗N)symβσ +

1

n+ 2
(∇∗N)skewβσ

= −iAβσ +
n+ 1

n(n+ 2)
(∇∗N)βσ +

1

n(n+ 2)
(∇∗N)σβ .

(6.17b)

Finally, by (6.16d),

−R′′
βσ − (n+ 2)Zβσ − hβσZ

γ
γ = 0,

and thus we obtain

(6.17c) Zβσ = −P ′′
βσ.

Then (6.16b) is also satisfied.

6.4.2. Homogeneity 3 components. Similarly, in the next step, we determine the normal Weyl

form τ modulo terms of homogeneity ≥ 4. We have already shown that τ equals

η(2) =





− 1
n+2ω

γ
γ + a0θ Zβσθ

σ + Zβσθ
σ

θα ω α
β − 1

n+2ω
γ

γ δ α
β + A

α
β 0θ −Z

α
σθ

σ − Z
α
σθ

σ

iθ −θβ − 1
n+2ω

γ
γ − a0θ





modulo terms of homogeneity ≥ 3, where the homogeneity 2 components are given by (6.17a),

(6.17b), and (6.17c). So we can write

τ = η(2) +





Zβ0θ izσθ
σ + izσθ

σ mod θ

−Z
α
0θ





︸ ︷︷ ︸

homogeneity ≥ 3

.
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Its curvature is given modulo terms of homogeneity ≥ 4 by

(6.18)

K ≡ dη(2) +
1

2
[η(2) ∧ η(2)] +





Zβ0

−Z
α
0



 dθ

+



η(0) ∧





Zβ0θ izσθ
σ + izσθ

σ

−Z
α
0θ







 .

Note that, to determine Zβ0 and zσ using the normality condition (6.11), only the homogeneity

3 components of K are involved. So we set

dη(2) +
1

2
[η(2) ∧ η(2)] =





Π(2) Π(2)
β ∗

∗ Π(2) α
β −Π(2)α

∗ −Π(2)





and

Π(2) α
β = 1

2Π
(2) α

β KLθ
K ∧ θL, Π(2) = 1

2Π
(2)

KLθ
K ∧ θL,

Π(2)
β = 1

2Π
(2)

βKLθ
K ∧ θL,

where the indices K and L run through { 0, 1, . . . , n, 1, . . . , n }, and compute its homogeneity 3

components, namely Π(2) α
β 0σ, Π

(2) α
β 0σ, Π

(2)
0σ, Π

(2)
0σ, and Π(2)

βστ , Π
(2)

βστ , Π
(2)

βστ . By a

direct calculation, we obtain

Π(2) α
β 0σ = −W α

β σ + 1
n+2δ

α
β W γ

γ σ − i∇σA
α

β 0,

Π(2) α
β 0σ = −W α

β σ + 1
n+2δ

α
β W γ

γ σ − i∇σA
α

β 0,

Π(2)
0σ = 1

n+2W
γ

γ σ −∇σa0,

Π(2)
0σ = 1

n+2W
γ

γ σ −∇σa0,

Π(2)
βστ = ∇σZβτ −∇τZβσ,

Π(2)
βστ = 2∇[σ|Zβ|τ ] +Nγ

στ Zβγ ,

Π(2)
βστ = 2∇[σ|Zβ|τ] +Nγ

στ Zβγ .

Now if we write

K =





a Zβ ∗

∗ A
α

β −Z
α

∗ −a



 ,

then we obtain from (6.18) that

A
α

β 0σ = Π(2) α
β 0σ − δασZβ0,

a0σ = Π(2)
0σ + Zσ0 + zσ,

a0σ = Π(2)
0σ + zσ,

Zβστ = Π(2)
βστ − ihβτzσ + ihστZβ0,

Zβστ = Π(2)
βστ ,

Zβστ = Π(2)
βστ + ihβσzτ − ihβτzσ.
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The normality condition (6.11) implies that

A
γ

β 0γ − a0β + iZ γ
βγ = 0,(6.19a)

−ia0σ − ia0σ +Z
γ

γσ −Z
γ
σγ = 0.(6.19b)

It follows from (6.19a) that

Zβ0 =
1

2n+ 1
(Π(2) γ

β 0γ −Π(2)
0β + iΠ(2) γ

βγ )

=
1

2n+ 1
(−W γ

β γ + 1
n+2W

γ
γ β − i∇γA

γ
β 0 −

1
n+2W

γ
γ β +∇βa0 + i∇γZ

γ
β − i∇γ

Zβγ)

= −
i

2n+ 1
(∇γP

′ γ
β +∇γP

′′ γ
β − 2i∇γAβγ + 1

n∇
γ(∇∗N)symβγ + 1

n+2∇
γ(∇∗N)skewβγ ).

(6.20a)

Likewise, (6.19b) implies that

zσ = −
i

2n+ 1
(Π(2) γ

γσ −Π(2)γ
σγ)

= −
i

2n+ 1
(∇σZ

γ
γ −∇γ

Zγσ −∇σZ
γ
γ +∇γZ

γ
σ −Nγ1σγ2

Z
γ2γ1)

=
i

2n+ 1
(∇γP

′′ γ
σ − i∇γAσγ − iAγ1γ2Nγ1γ2σ

+ 1
n (∇

γ(∇∗N)symσγ − (∇∗N)symγ
1
γ
2

Nγ
1
γ
2

σ )−
1

n+2 (∇
γ(∇∗N)skewσγ − (∇∗N)skewγ

1
γ
2

Nγ
1
γ
2

σ )).

(6.20b)

The formulae that we have just obtained may be simplified further by the Bianchi identities

of the Tanaka–Webster connection, but there is no point in doing it here in full generality. In

the integrable case (i.e., if N = 0), we have (see Lee [27, Lemma 2.2])

∇γP
γ

α =
1

n+ 2
((2n+ 1)∇αP − i(n− 1)∇γAαγ).

Therefore, (6.20a) becomes

Zβ0 = −
2

2n+ 1
(∇γAβγ + i∇γP

γ
β ) = −

2i

n+ 2
(∇βP − i∇γAβγ),

which equals −2iTβ in the notation of Gover–Graham [20], and (6.20b) becomes

zσ =
i

2n+ 1
(∇γP

γ
σ − i∇γAσγ) =

i

n+ 2
(∇βP − i∇γAβγ),

which is iTβ of [20].

6.4.3. Homogeneity 4 component. This is the last step of the determination of the normal Weyl

form τ . We already know that τ equals

η(3) =





− 1
n+2ω

γ
γ + a0θ Zβσθ

σ + Zβσθ
σ + Zβ0θ izσθ

σ + izσθ
σ

θα ω α
β − 1

n+2ω
γ

γ δ α
β + A

α
β 0θ −Z

α
σθ

σ − Z
α
σθ

σ − Z
α
0θ

iθ −θβ − 1
n+2ω

γ
γ − a0θ




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modulo terms of homogeneity ≥ 4, where the homogeneity ≥ 2 components in the matrix entries

are given by (6.17a), (6.17b), (6.17c), and (6.20a), (6.20b). We write

τ = η(3) +





iz0θ




︸ ︷︷ ︸

homogeneity ≥ 4

.

Then the curvature is given by the following formula modulo terms of homogeneity ≥ 5:

(6.21) K ≡ dη(3) +
1

2
[η(3) ∧ η(3)] +





iz0


 dθ +



η(0) ∧





iz0θ






 .

In determining z0, only the homogeneity 4 components of K are involved. So if we set

dη(3) +
1

2
[η(3) ∧ η(3)] =





∗ Π(3)
β iΠ(3)

∗ ∗ −Π(3)α

∗ ∗





and

Π(3)
β = 1

2Π
(3)

βKLθ
K ∧ θL, Π(3) = 1

2Π
(3)

KLθ
K ∧ θL,

where the indices K and L run through { 0, 1, . . . , n, 1, . . . , n }, then we only need to compute its

homogeneity 4 components, namely Π(3)
β0σ, Π

(3)
β0σ, and Π(3)

στ , Π
(3)

στ , Π
(3)

στ . Actually, we

do not need all of them as we see as follows. If the curvature of τ is expressed as

K =





∗ Zβ iz

∗ ∗ −Z
α

∗ ∗



 ,

then (6.21) implies

Zβ0σ = Π(3)
β0σ,

Zβ0σ = Π(3)
β0σ − ihβσz0,

zστ = Π(3)
στ + ihστ z0,

zστ = Π(3)
στ ,

zστ = Π(3)
στ ,

and the normality condition (6.11) in this degree reads

Z
γ

γ0 −Z
γ
0γ − z

γ
γ = 0,

which implies that

z0 =
i

3n
(−Π(3) γ

γ0 +Π(3)γ
0γ + Π(3) γ

γ ).

Therefore, it suffices to compute Π(3)
β0σ and Π(3)

στ . By a direct computation, we obtain

Π(3)
β0σ = −∇σZβ0 +∇0Zβσ +A γ

σ Zβγ − A
γ

β 0Zγσ + a0Zβσ,

Π(3)
στ = ∇σzτ −∇τ zσ − iZγ

σZγτ + iZγσZ
γ
τ .
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Consequently, we get

(6.22)
z0 =

i

3n
(∇γ

Zγ0 −∇γ
Zγ0 −Aγ1γ2Zγ1γ2

+Aγ
1
γ
2Zγ

1
γ
2

+ A
γ2

γ1 0Z
γ1

γ2
− A

γ
2

γ
1

0Z
γ
1

γ
2

− 2a0Z
γ

γ −∇γ
zγ +∇γ

zγ − iZγ1γ2
Z
γ1γ2 + iZγ1γ2

Z
γ1γ2).

The explicit formula in terms of the Tanaka–Webster invariants, which we omit, can be obtained

by putting (6.17a), (6.17b), (6.17c), and (6.20a), (6.20b) into the above. In the integrable case,

it becomes

z0 =
1

n
(∇γTγ +∇γTγ + PαβP

αβ −AαβA
αβ),

which is −S in the notation of [20].

7. Computation of CR BGG operators

Having written down the CR normal Weyl form explicitly in the previous section, we are now

able to express the normal tractor connection associated with the standard representation of

G♯ = SU (n+ 1, 1) and the one associated with the adjoint representation of G = PSU (n+ 1, 1)

using Proposition 6.2. Then we can also derive the formula of the modified adjoint tractor

connection ∇̃. We are going to compute the first BGG operator associated with these three

tractor connections.

7.1. The case of the normal standard tractor connection. Let σθ be the Weyl structure

associated with a contact form θ. Then, the conclusion from the previous section is that the

associated normal Weyl form τ is given by

τ =





− 1
n+2ω

γ
γ + a0θ Zβσθ

σ + Zβσθ
σ + Zβ0θ izσθ

σ + izσθ
σ + iz0θ

θα ω α
β − 1

n+2ω
γ

γ δ α
β + A

α
β 0θ −Z

α
σθ

σ − Z
α
σθ

σ − Z
α
0θ

iθ −θβ − 1
n+2ω

γ
γ − a0θ



 ,

where (6.17a), (6.17b), (6.17c), (6.20a), (6.20b), and (6.22) are observed.

Proposition 6.2 implies that the normal tractor connection ∇ for the standard tractor bundle

V = G♯ ×P ♯ V ∼= G♯
0 ×G♯

0

V, the latter identification being given by the Weyl structure σθ, can be

expressed as

∇σ





s

tα

u



 =





∇σs+ Zβσt
β + izσu

∇σt
α + δ α

σ s− Z
α
σu

∇σu



 ,(7.1a)

∇σ





s

tα

u



 =





∇σs+ Zβσt
β + izσu

∇σt
α − Z

α
σu

∇σu− tσ



 ,(7.1b)

∇0





s

tα

u



 =





∇0s+ a0s+ Zβ0t
β + iz0u

∇0t
α + A

α
β 0t

β − Z
α
0u

∇0u− a0u+ is



 .(7.1c)

For later purpose, let us also write down the normal tractor connection associated with the dual

representation of V (the normal standard cotractor connection). It is given by

∇σ

(
σ τα ρ

)
=

(
∇σσ − τσ ∇στα − Zασσ ∇σρ+ Z

γ
στγ − izσσ

)
,

∇σ

(
σ τα ρ

)
=

(
∇σσ ∇στα + hασρ− Zασσ ∇σρ+ Z

γ
στγ − izσσ

)
,

∇0

(
σ τα ρ

)
=

(
∇0σ − a0σ − iρ ∇0τα − A

β
α 0τβ − Zα0σ ∇0ρ+ a0ρ+ Z

β
0τβ − iz0σ

)
,
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which boils down to [20, Equation (3.3)] in the integrable case.

In order to compute the associated first BGG operator D0, we need to identify the lifting

operator L : H0(p+,V) → V satisfying that ∇Lu lies in the kernel of ∂∗ : Ω1(V) → V for every

u = H0(p+,V) ∼= E(0, 1). If we write

Lu =





s

tα

u



 ,

then computations in Section 5.3 shows that ∂∗∇Lu = 0 implies

tα = ∇αu, s =
1

n+ 1
(−∇γt

γ + i∇0u− ia0u+ Z
γ
γu).

Therefore, ∇Lu projects down to the element (∇σu,∇(αtβ) − Z(αβ)u) of H1(p+,V) = Eσ(0, 1)⊕

E(αβ)(0, 1). As a consequence, we can conclude that the first BGG operator D0 is given by

(7.3) D0u = (∇αu,∇(αtβ) − Z(αβ)u) =

(

∇αu,∇(α∇β)u− iAαβu−
1

n
(∇∗N)sym

αβ
u

)

.

In the integrable case, the above operator reduces to

(7.4) D0 : u 7→ (∇αu,∇α∇βu− iAαβu).

This system of equations for u ∈ E(0, 1) is essentially discussed in Čap–Gover [11, Section

4.14] in terms of the standard cotractor connection (see also [11, Section 4.2] carefully). Their

computation in the proof of [11, Proposition 4.13] shows that the standard tractor connection ∇

is a prolongation of the operator (7.4).

Therefore, it is a remarkable observation that if we relax the integrability condition, then D0

no longer prolongs to ∇. Formally, we can formulate this fact as follows.

Proposition 7.1. Let ∇ be the standard tractor connection and D0 : E(0, 1) → Eσ(0, 1) ⊕

E(αβ)(0, 1) the associated first BGG operator (7.3). Assume that the Nijenhuis tensor N is

nonzero at a point p ∈ M , and there exists a nontrivial jet solution of the equation D0u = 0 at

p. Then there are no linear differential operators u 7→ tα and u 7→ s in any neighborhood of p

such that

D0u = 0 at the level of jets at p

implies

∇





s

tα

u



 = 0 at the level of jets at p.

Proof. Suppose that there were such differential operators u 7→ tα and u 7→ s. Then, if D0u = 0

is satisfied, then in view of (7.1b) and (7.1c), tα and s must be given by

tα = ∇αu and s = i∇0u− ia0u = i∇0u+
1

n+ 2
Pu.

Moreover, (7.1a) implies that such u should also satisfy ∇βt
α+ δ α

β s−Z
α
βu = 0, or equivalently,

∇β∇
αu+ δ α

β

(

i∇0u+
1

n+ 2
Pu

)

+ P ′′α
βu = 0.

Then it follows from Proposition 2.5 that

∇α∇βu−
1

n+ 2
R α

β u+
1

n+ 2
δ α
β Pu+ P ′′α

βu = 0
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and hence, since D0u = 0 implies ∇βu = 0,

−
1

n+ 2
R α

β u+
1

n+ 2
δ α
β Pu+ P ′′α

βu = 0.

Taking the trace and R = 2(n + 1)P yields (P ′′ − P )u = 0, which implies |N |2u = 0 by (2.15).

Note that our argument so far works as well at the level of jets. Therefore, there must be a

nontrivial jet u at p satisfying |N |2u = 0, but this contradicts our assumption that N does not

vanish at p. �

7.2. The case of the normal adjoint tractor connection. Note that

g = Re sl(n+ 2,C) = Re tf End(V)

as a G♯-module. Consequently, the adjoint tractor bundle AM = G ×P g = G♯ ×P ♯ g can be seen

as

AM = Re tf End(V),

and hence it follows from the results in the previous subsection that the normal tractor connection

of AM reads as in Figure 1.

The lifting operator L acting on H0(p+, g) ∼= Re E(1, 1) is defined so that ∇Lx lies in the

kernel of ∂∗ : Ω1(AM) → AM for every x ∈ Re E(1, 1). This implies that Lx ∈ AM is of the

form

Lx =





∗ ∗ ∗

i∇αx ∗ ∗

ix i∇βx ∗



 .

Then

∇σLx =





∗ ∗ ∗

∗ ∗ ∗

0 i∇σ∇βx− iZβσx ∗





=





∗ ∗ ∗

∗ ∗ ∗

0 i∇σ∇βx−Aβσx− i
n (∇

∗N)symβσ − i
n+2 (∇

∗N)skewβσ ∗



 .

This implies that the first BGG operator is given by

x 7→

(

−i∇(α∇β)x+Aαβx+
i

n
(∇∗N)symαβ , i∇(α∇β)x+Aαβx−

i

n
(∇∗N)sym

αβ

)

.

7.3. The case of the modified adjoint tractor connection. Recall from (4.5) that, in order

to compute the action

∇̃





a Zβ iz

Xα A α
β −Zα

ix −Xβ −a





of the modified adjoint tractor connection ∇̃, we need to know the interior product of the

curvature function κ and the vector field given by




∗ ∗ ∗

Xα ∗ ∗

ix −Xβ ∗



 ,



4
1

∇σ







a Zβ iz

Xα A α
β

−Zα

ix −Xβ −a






=







∇σa− Zσ + ZγσX
γ − zσx ∇σZβ + ZγσA

γ
β

− Zβσa− izσXβ i∇σz + Z
γ
σZγ − ZγσZ

γ − 2izσ Re a

∇σX
α − A α

σ + δασa− iZα
σx ∇σA

α
β

+ δ α
σ Zβ + Z

α
σXβ − ZβσX

α −∇σZ
α + iδ α

σ z + Z
γ
σA

α
γ + Z

α
σa − izσX

α

i∇σx+Xσ −∇σXβ − iZβσx −∇σa− Z
γ
σXγ + zσx







∇σ







a Zβ iz

Xα A α
β

−Zα

ix −Xβ −a






=







∇σa+ ZγσX
γ − zσx ∇σZβ + ihβσz + ZγσA

γ
β

− Zβσa− izσXβ i∇σz − ZγσZ
γ + Z

γ
σZγ − 2izσ Re a

∇σX
α − iZα

σx ∇σA
α

β
− hβσZ

α − ZβσX
α + Zα

σXβ −∇σZ
α + Z

γ
σ
A α

γ + Zα
σa− izσX

α

i∇σx−Xσ −∇σXβ −Aβσ − hβσa− iZβσx −∇σa+ Zσ − Z
γ
σXγ + zσx







∇0







a Zβ iz

Xα A α
β

−Zα

ix −Xβ −a







=







∇0a+ z + Zγ0X
γ − z0x ∇0Zβ − A

γ
β 0

Zγ + a0Zβ + Zγ0A
γ

β
− Zβ0a− iz0Xβ i∇0z + Z

γ
0
Zγ − Zγ0Z

γ − 2iz0 Re a

∇0X
α + iZα + A

α
γ 0X

γ − a0X
α − iZα

0x ∇0A
α

β
+ A

α
γ 0A

γ
β

− A
γ

β 0
A α

γ − Zβ0X
α + Z

α
0Xβ −∇0Z

α − A
α

γ 0Z
γ + a0Z

α + Z
γ
0A

α
γ + Z

α
0a− iz0X

α

i∇0x+ 2iRe a −∇0Xβ + iZβ + A
γ

β 0
Xγ − a0Xβ − iZβ0x −∇0a− z − Z

γ
0Xγ + z0x







Figure 1. The normal adjoint tractor connection
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which is XαZα+XαZα+xT . The computation in the previous subsection implies that only the

g−2- and the g−1-valued components are relevant to the first BGG operator associated with ∇̃.

We know from (6.13) that the curvature of the normal Weyl form is of the form

K =





∗ ∗ ∗

Π(2)α ∗ ∗

0 −Π(2)
β ∗





where

Π(2)α = 1
2N

α
στ θ

σ ∧ θτ +Π(2)α
0σθ ∧ θ

σ +Π(2)α
0σθ ∧ θ

σ.

The curvature components Π(2)α
0σ and Π(2)α

0σ can be computed using (6.15), and it follows

that

ιXαZα+XαZα+xTΠ
(2)α ≡ −Nα

στX
τθσ+(A α

σ 0−δ
α

σ a0+ iZ
α
σ)xθ

σ+(Aα
σ+ iZ

α
σ)xθ

σ mod θ.

Consequently, the lifting operator L remains the same as in the previous subsection and the first

BGG operator is given by

D∇̃
0 x = D∇

0 x+ proj(ιΠ(Lx)K)

= D∇
0 x+ (−iN sym

αβγ∇
γx+Aαβx− iZ(αβ)x, iN

sym

αβγ
∇γx+Aαβx+ iZ(αβ)x)

=
(

−i∇(α∇β)x+Aαβx− iN sym
αβγ∇

γx, i∇(α∇β)x+Aαβx+ iN sym

αβγ
∇γx

)

.

This shows that D∇̃
0 is nothing but the CR Killing operator.
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[12] A. Čap and H. Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000),

no. 3, 453–505.

[13] A. Čap and J. Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs vol. 154, American

Mathematical Society, Providence, RI, 2009. Background and general theory.
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[23] M. Hammerl, P. Somberg, V. Souček, and J. Šilhan, On a new normalization for tractor covariant derivatives,

J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1859–1883.

[24] M. Herzlich, The canonical Cartan bundle and connection in CR geometry, Math. Proc. Cambridge Philos.

Soc. 146 (2009), no. 2, 415–434.

[25] K. Hirachi, T. Marugame, and Y. Matsumoto, Variation of total Q-prime curvature on CR manifolds, Adv.

Math. 306 (2017), 1333–1376.

[26] J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. 296 (1986), no. 1,

411–429.

[27] , Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1988), no. 1, 157–178.

[28] Y. Matsumoto, Asymptotics of ACH-Einstein metrics, J. Geom. Anal. 24 (2014), no. 4, 2135–2185.

[29] , GJMS operators, Q-curvature, and obstruction tensor of partially integrable CR manifolds, Differ-

ential Geom. Appl. 45 (2016), 78–114.

[30] , Canonical almost complex structures on ACH Einstein manifolds, Pacific J. Math. 314 (2021), no. 2,

375–410.

[31] R. W. Sharpe, Differential geometry, Graduate Texts in Mathematics vol. 166, Springer-Verlag, New York,

1997. Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern.

[32] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math.

Soc. Japan 14 (1962), 397–429.

[33] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Progress in differential ge-

ometry, Adv. Stud. Pure Math. vol. 22, Math. Soc. Japan, Tokyo, 1993, pp. 413–494.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka

560-0043, Japan

Email address: matsumoto@math.sci.osaka-u.ac.jp


	1. Introduction
	2. Preliminaries
	2.1. Basic definitions
	2.2. The Nijenhuis tensor
	2.3. The Tanaka–Webster connection

	3. The CR Killing operator
	3.1. Trivial infinitesimal deformations
	3.2. As an operator whose adjoint annihilates the CR obstruction tensor

	4. Parabolic geometries, tractor connections, BGG operators
	4.1. Cartan geometries
	4.2. Parabolic geometries
	4.3. Tractor bundles and connections
	4.4. Infinitesimal flag structures and regularity
	4.5. BGG operators

	5. Lie algebra homology relevant to CR geometry
	5.1. Preliminaries
	5.2. Filtration of the standard and the adjoint representations
	5.3. Homology of p+ with values in the standard representation
	5.4. Homology of p+ with values in the adjoint representation

	6. Weyl structures and the CR normal Weyl forms
	6.1. Tractor calculus in terms of Weyl forms
	6.2. Frame bundles in CR geometry and the Tanaka–Webster connection
	6.3. Exact Weyl structures and determination of the induced normal Weyl form
	6.4. Determination of the induced normal Weyl form (continued)

	7. Computation of CR BGG operators
	7.1. The case of the normal standard tractor connection
	7.2. The case of the normal adjoint tractor connection
	7.3. The case of the modified adjoint tractor connection

	References

