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ABSTRACT. We study the zero exterior problem for the elliptic equation
AO‘/Qu—)\u:ﬁ z€D; wu|lpe=0
as well as for the parabolic equation
u=A2u+f, t>0,z€D; u0,)p=uo, ulor)xpe = 0.

Here, o € (0,2), A > 0 and D is a C1'! open set. We prove uniqueness and
existence of solutions in weighted Sobolev spaces, and obtain global Sobolev
and Holder estimates of solutions and their arbitrary order derivatives. We
measure the Sobolev and Holder regularities of solutions and their arbitrary
derivatives using a system of weights consisting of appropriate powers of the
distance to the boundary. The range of admissible powers of the distance to
the boundary is sharp.

1. INTRODUCTION

We study the elliptic equation

A 2y(z) — du(z) = f(x), z € D,
u(z) =0, x € D¢,

and the parabolic equation

dwu(t,x) = A 2u(t,z) + f(t, z), (t,z) € (0,T) x D,
u(0,x) = up(x), x €D, (1.2)
u(t,z) =0, (t,x) € [0,T] x D°,
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where o € (0,2) and D is either a half space or a bounded C'! open set. The
fractional Laplacian A®/24 is defined as

2°T(432)

u(z +y) —u(x) (caim )
T w0 (—a/2)]”

AY2y(z) = cqlim
(z) y[dte

d
o0 Y,

ly|>e

In the probabilistic point of view, equations (L.2) and (L)) are related to a
certain pure-jump process which is forced to assume undefined or killed state when
it leaves the open set D. The zero exterior condition describes that the influence of
the jump process vanishes or is ignored when the process is outside of D. See Section
for detail. In fact, the equations are ill-posed if only zero-boundary condition is
assigned.

In this article we study equations (II]) and (Z2]) in the weighted Sobolev spaces
H),(D) and L,((0,T); H) 4(D)), respectively. Here p > 1 and 6,7y € R. For
instance, if y=0,1,2,---, then

o 1/p
lullay 0y = (Z/ |kaku|”p9_ddx> ,
k=0"D

where p(z) := dist(x,0D). In general, we use a unified way to define the spaces
H ; o(D) for all v € R. The powers of p are used to control the behaviors of functions
near the boundary.

The main contribution of this article is to present weighted Sobolev regularity
of arbitrary nonnegative real order derivatives of solutions. To be more precise, for
elliptic equation (II) we prove for any v > 0 and p > 1,

e oy < CUSli, ., 0 (13)

p,0+ap/2

provided that 8 € (d—1,d—14p). The admissible range of 6 is sharp (cf. Remark
23). We also prove a parabolic version of (3] for parabolic equation (L2Z). See
Theorems and for our full Sobolev regularity results of the elliptic and
parabolic equations. In particular, if ¥ = 0 then (3] implies

J R N (T R )
D D

Note that due to the presence of p®/2 beside f in (I4), the function f is allowed
to blow up near the boundary of D. Indeed, it can behave like p~®/2 near 0D.

We also obtain global space-time Holder estimates of arbitrary derivatives of
solutions (see Corollaries and [ZTT). One advantage of our results is that it
gives Holder estimates of solutions even when the free terms are quite rough. For
instance, if o — % > 6 € (0,1), then for the elliptic equation we prove

8 _a 6 _a a
lpr 2 ulepy + 10" 2 ulcspy < ClIYfllL, o(D)- (1.5)

Now we give a description on the mostly related works below. Our focus lies in
the results on domains. Accordingly, regarding the results on the whole space R,
we only refer e.g. to [4, [0 [I8] 29, 40] for Holder estimates and [17], 28], 30, BT [44, [45]
for L, estimates.

First, we describe Hoder estimates. As for elliptic equation (L), it was proved
in [47] that

fe€Low(D) = ueCY*RY), p=°/?u e C*(D)
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for some s > 0. Here, p(x) := dist(x,0D). Higher order estimate
/2 a/2
|u|§3+a/[; <C (|U|Ca/2(Rd) + |f|§371§ )) , 5>0

was also obtained in [47], where | - |l(7a) denotes the interior Holder norm (see e.g.
[23] or [32]). The result of [47] was generalized for elliptic equations with stable-like
operators in [3], 34, 49]. We also refer to [41], 50] for the local result of the type

feC’D) = uweCl™™D), B>0

loc
proved for non-local elliptic equations with singular kernels or general operators.
Also, see [12] [35], [48] for related works on non-linear elliptic equations. Now, we
discuss the results on parabolic equation (I2)). In [21], it was proved that if ug €
Lo(D) and f € Loo((0,T) x D), then

€

€ 0,37;5*“/2(@0,1”) x D), p~*?u e c; 27 (49, T) x D) (1.6)

for any e > 0 and t¢ € (0,7). Note that this result is local with respect to the time
variable. For a global estimate, we refer to [53], which in particular proved

sup (010, + 18724l 757) < € (ol 2 +sup 557 ) (1)

for any 6 € (0,/2) and v € (0,1). This estimate does not give Holder regularity
with respect to the time variable. As compared to (@) and (7)), our results give
global Holder regularity with respect to both time and spacial variables.

Next, we describe results in L, spaces. The global summability results were
studied e.g. in [T, 42]. For instance, for elliptic equation (1), the inequality

lulle o)+ 1Al ) SClIflL,my (L<p<2d/(d+a)) (1.8)

d—ap d—ap/2

was proved in [42]. We remark that (L8) does not cover the full regularity of
solution, that is, estimate of A%/2y is not covered. There are also several interior
regularity results, such as those introduced in [7} [8] [16] [46]. For instance, the results

felyD) = wueHy, (D), (1<p<oo)

and

pd
52}
d+pa/2
were proved in [7] and [46] respectively. Note that p. < p since p > 2. We
also refer to [I0] 20, 27] for results on Hilbert spaces. We finally refer to [24, 25]
for the regularity results in the p-transmission spaces Hj (®) (D), proved for the
equations with pseudo-differential operators satisfying the u-transmission property.
In particular, it is proved that if f € L, (D), then elliptic problem (LI]) has a unique
solution u € HO‘/2(°‘)(D).

Our approach is different from those in the above mentioned articles and is based

on weighted Sobolev spaces. We summarize our results and their differences from
above mentioned results as follow.

feL, (D) = weHy (D) (p>2 p.:=max{

p,loc

(1.9)

e We prove the weighted Sobolev regularity result of solutions to both elliptic
and parabolic equations. For instance, for the elliptic equation we prove

(@T3), which is

H“HH;ff (D) < Cllflla (D)> (1.10)

p,0+ap/2
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foranyp>1,y>0and 0 € (d—1,d—1+0p).

e We emphasize that unlike in any of above mentioned articles, our results,
e.g. (CI0), are proved for any v > 0, despite that D is an only C! open
set. This is possible because we use appropriate weighted Sobolev spaces.

e As can be seen from ([4]), regularity of p~ /2y near dD changes according
to 6. For instance, as 6 | d — 1, p~®/?u decays faster. Among the results
described above, the closest result to (L) (or (LIO)) can be found in [24]
25], which in particular show that if D is a bounded C*° domain and
f € Ly(D) then p=*/2u € Hy/*(D). This result is close to (I4) if 6§ =
d. Besides that 6 can vary in the present article, we require the weaker
assumption p®/2f € L,(D, p’~dz).

e We use (LLI0) to prove versions of (L8)) and (9] under weaker assumption
on f. See Remark 2-T4] for a comparison of our results with those in [T, [42]
16).

e We also obtain global Holder estimates for the elliptic and parabolic equa-
tions; the free terms can be quite irregular and unbounded. For instance,

in (CH) we only require p®/2f € L, (D).

Now, we introduce the organization of this article. In Section 2] we introduce our
main results, Sobolev space theory and Holder estimates of solutions. In Section [3]
we study the representation of solutions and estimate the zero-th order derivative
of solutions. In Section M, we prove higher regularity of solutions, and we give the
proofs of main results in Section

We finish the introduction with notations used in this article. We use “:=" or
=:" to denote a definition. N and Z denote the natural number system and the
integer number system, respectively. We denote N; := N U {0}, and as usual R?
stands for the Euclidean space of points z = (z!,...,z%),

«

By (z)={yeR: [z —y|<r}, RL={(a'....,2") eR:z' >0}

For nonnegative functions f and g, we write f(z) =~ g(x) if there exists a constant
C > 0, independent of z, such that O~ f(z) < g(z) < Cf(x). For multi-indices
B= (B, - ,B4), Bi € Ni, and functions u(z) depending on z,

_ Ou DPu(z) == ng e Dflu(az).

Dju(z) = R "

We also use D}u to denote the partial derivatives of order n € N4 with respect to

the space variables. For an open set U C RY, C(U) denotes the space of continuous

functions u in U such that |u|c @y := supy |u(z)| < oo. Co(U) is the set of functions

in C(U) satisfying lim wu(z) =0and lim u(z) = 0. By CZ(U) we denote the space
|| =00 z—0U

of functions whose derivatives of order up to 2 are in C(U). For an openset V. C R™,
where m € N, by C2°(V') we denote the space of infinitely differentiable functions
with compact support in V. For a Banach space F and 6 € (0, 1], C°(V; F) denotes
the space of F-valued continuous functions u on V such that

lulcsv.ry = |ulow;ry + [ulosv,m

ulr) —u
sup fu(@)] + sup LAD—4Wlr
zeV z,yeV lz -yl

< 0.
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Also, for p > 1 and a measure g on V, L,(V, u; F') denotes the set of F-valued
Lebesgue measurable functions u such that

1/p
H“”%(Vﬂf) = (/ |U|% dM) < 00.
%

We drop F and p if F = R and p is the Lebesgue measure. By D(U), where U
is an open set in R?, we denote the space of all distributions on U, and for given
f € D(U), the action of f on ¢ € C°(U) is denoted by

(f:9)v = f(9).
Finally, if we write C = C(a, b, - -), then this means that the constant C' depends

only on a,b,---.
2. MAIN RESULTS

In subsection 2.1 we prove the uniqueness and existence results in a wide class
of function spaces, and we give the regularity of solutions in subsection 2.2.
Throughout this article, D is either a half space Ri or a bounded C*! open set.

2.1. Uniqueness and existence. For suitable functions f defined on R? (e.g.
f € C3(R%)), we define the fractional Laplacian A%/2f as

flaty) - f@) ,

AY2f(x) == ¢qlim , (2.1)
el Jiy|>e |y|d+a
a d4+o
where ¢ = % Also, for functions f, g defined on E C R, we set

(f9)E = /E fgdzx.

Definition 2.1. (i) (Parabolic problem) For given f € Ly 10.([0,T] x D) and ug €
L1,10¢(D), we say that u is a (weak) solution to the problem
owu(t, x) = A u(t, ) + f(t, z), (t,z) € (0,T) x D,
(0, z) = uo(x), zx €D, (2.2)
u(t,z) =0, (t,xz) € [0,T] x D°,

if (a) u =0 a.e. in [0,T] x D¢, (b) (u(t,-),#)ra and (u(t,-), A%?¢)ga exist for any
t <T and test function ¢ € C'°(D), and (c) for any ¢ € C°(D) the equality

<u(t7 ')7 ¢>Rd = <U,0, ¢>D + /0 <u(87 ')7 Aa/2¢>Rdd8 + /0 <f(57 ')7 ¢>Dd8 (2'3)

holds for all ¢t < T.
(#7) (Elliptic problem) Let A € [0, 00). For given f € L1 jo.(D), we say that u is
a (weak) solution to

{AO‘/Qu(x) — Au(z) = f(w), z €D, (2.4)

u(z) =0, x € D¢,

if (a) u = 0 a.e. in D° (b) (u,d)ga and (u, A*/2¢)pa exist for any test function
¢ € C(D), and (c) for any ¢ € C(D) we have

(u, A2 P)ga — Mu, §)ra = (f, ). (2.5)
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It is clear if u(t,z) is a strong (or point-wise) solution to (Z2]) and sufficiently
regular, then u becomes a weak solution in the sense of Definition 211

For an explicit representation of weak solutions, we introduce some related
stochastic processes. Let X = (X);>¢ be a rotationally symmetric a-stable d-
dimensional Lévy process defined on a probability space (2, F,P), that is, X; is a
Lévy process such that

EeXt = ¢7I61% ve e RY
Let
p=71h:=inf{t>0:2+ X, & D}

denote the first exit time of D by X. We add an element, called a cemetery point,
d ¢ R? to RY, and define the killed process of X upon D by

D _ Dz .’L'+Xt t<T[$),
X=X '_{8 t> 78

The cemetery point 9 is introduced to define f(9) := 0 for any function f so that
f(XPy=0ift > 715. Let pP(t,2,y) denote the transition density of XP, i.e., for
any Borel set B C R?,

P(X]" € B) = / pP(t,x,y)dy.
B

Recall p(z) = dist(x,0D). We denote L, ¢(D) := L,(D, p~dx) for any § € R
and p > 1. In other words, L, ¢(D) is the set of functions u such that

o a 1/p
lullz, oDy = (/D |u|Pp®~ d:z:> < 0.

For T < oo, we also define the space
Lpo(D,T) := Lp((0,T); Lp,e(D))

given with the norm

T 1/p
lullL, o(p,7) = </ / |u|pp9ddxdt> )
0 D

Here are our uniqueness and existence results of the elliptic and parabolic equa-
tions. The proofs are given in Section

Theorem 2.2 (Parabolic case). Let o € (0,2) and p € (1,00). Assume 6 €
(d —-1,d-1 —|—p), fe Lp,e-‘rap/Q(D; T) and ug € Lp,@—ozp/2+o¢(D)-
(i) The function

u(t, x) :=/DPD(t,:E,y)uO(y)dy+/o /DpD(t—saway)f(say)dyds (2.6)

belongs to Ly g_ap/2(D,T) N {u = 00n [0,T] x D} and is the unique weak
solution to ([Z2)) in this function space.
(i) For the solution u, we have
HuHLp,97QP/2(D>T) < O(HfHLp,9+ap/2(D7T) + ||u0HLp,97ap/2+Dt(D))7 (2.7)

where C' is independent of u and T.
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Theorem 2.3 (Elliptic case). Let a € (0,2) and p € (1,00). Assume 0 € (d —
1,d—14p) and f € Lp)9+ap/2(D).
(i) Let A > 0 or D be bounded. Then, the function

ue) = uN @)= [ ([T P i) s

D
belongs to Ly, g_aps2(D) N{u = 00n D} and is the unique weak solution to
@) in this function space.

(i) Let A\ =0 and D =R%. Then, ut/™) converges weakly in L,(R?, p?=4=2P/2dy),
and the weak limit u is the unique solution to equation [24) in the function
space Ly, g_ap/2(D) N{u = 0o0n D}.

(iii) For the solution u, we have

1ll, o apo(D) S CUFIL, 010p2(D)

where C' is independent of u and .

Remark 2.4. By definition of the norm in I, g_q,/2(D, T) and 2.7),

T
_ —/2 6—d
o = [l it < o

provided that —1 < § —d < —1+ p. This suggests that u vanishes at a certain rate
near the boundary of D. The detailed behaviors of solutions and their derivatives
will be handled in the following subsection.

Remark 2.5. The range 6 € (d — 1,d — 1 + p) in Theorems and is sharp.
We demonstrate this with a simple example for the elliptic problem. The parabolic
problem can be handled similarly.

Let D = B1(0) and f be a (non-zero) nonnegative function in C°(D) so that
f € Lyg(D) for any 6 € R.

1. First, we show 6 > d — 1 is necessary. Denote

G (z.y) == / T pP(tay)dt and u() = /D G () £ (4)dy.

Due to [13, Corollary 1.2], if y € supp(f) and (r + 1)/2 < |z| < 1 where r :=
1 —dist(supp(f),dD) > 0, then G (x,y) =~ p(z)*/?. Hence, for (r+1)/2 < |z| < 1,

u(z) ~ p(a)*/? = (1 - |z])*/2,

and consequently

1
[y iy 2C [ )" st s

(r+1)/2
The right-hand side above is finite only if # — d > —1. Therefore, the condition
0 —d > —1 is needed to have u € L, g_op/2(D).
2. Next, we show 6 < d — 1+ p is also necessary. Suppose Theorem 2.3 holds for
some 6 > d — 1+ p. Then,

| Ghatdy
D

< OHg||Lp,e+ap/27 Vg € Lp,0+ap/2(D>'
Ly.0—ap/2(D)
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Since G% (z,y) = G4 (y, x) (see e.g. [15, Theorem 2.4]), by Holder’s inequality,

u(@)g(x)da G (e, )g(x)d ) £(v)dy
/, L, ) st
| Ghtaamdy

S ‘

||f||Lp/’9/+Qp//2(D)
Ly.0—ap/2(D)

S C||g||Lp’9+ap/2(D)||f||Lp/,9/+ap//2(D)’
where 1/p+1/p" =1 and 0/p+6'/p’ = d. Since Ly g:_qp /2(D) is the dual space
of Ly, g+ap/2(D) (cf. Lemma 2.7(i77)), this leads to
wllz, oo o) S CUFIL, g1y (D) < 0O (2.8)
Note that 8/ < d —1. As shown above, (2.8)) is not possible, and therefore we get a

contradiction.

Remark 2.6. Since A®/2¢ belongs to the dual space of Lyg_ap/2(D) for any
¢ € C(D) (cf. Lemma[dl) and C2°(D) is dense in the dual space, we can replace
(-,)p and (-, )pe in [Z3) and 23X by (-,-)p for the solutions in Theorems 22 and
2.9l

2.2. Regularity of solutions. In this subsection, we present Sobolev regularity
of solutions. We also obtain Holder estimates of solutions based on a Sobolev
embedding theorem. In particular, we give asymptotic behaviors of solutions and
their ‘arbitrary’ order derivatives near the boundary of D.

To describe such results, we first recall Sobolev and Besov spaces on R?. For
p € (1,00) and v € R, the Sobolev space H) = H (R%) is defined as the space of
all tempered distributions f on R? satisfying

Il =11 = A2 ||, < o0,
where

(1= A2 f@) = F [+ ] PY2F] (@),

Here, 7 and F ! denote the d-dimensional Fourier transform and the inverse
Fourier transform respectively, i.e.,

FUNO = [ e e, FUUAW) = g [ e

As is well known, if v € N, then we have
H) =W, :={f:Dlue L,(R%, |8 <~}.
For T € (0,00), define
HZ(T) = Lp((OvT);H;?), Lp(T) = Hg(T) = Lp((ovT)§Lp)-

Now we take a function ¥ whose Fourier transform F[¥] is infinitely differentiable,
supported in an annulus {£ € R?: £ < [¢] < 2}, F[¥] > 0 and

Y OFW(27) =1,  VE#0.
JEL
For a tempered distribution f and j € Z, define
0
Ajf(x) = FHFIOIQ)FIA] (@), Sof(w)= ) Ajf(a).

j=—o0
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The Besov space B) = B) (R%), where p > 1,7 € R, is defined as the space of all
tempered distributions f satisfying

- 1/p
1 £lsy == 1Soflle, + [ D270 015 | < oo
j=1

It is well known (see e.g. |51, Remark 2.5.12/2]) that if v = n + J, where n € N4
and § € (0,1), then

1/p
|DEf(z+y) — DEf(z)P
1y = 1y + | S0 / / d il wdr| (29
1Bl=
Moreover, for any p > 1, we have
H» B if 7y <. (2.10)

Next, we introduce weighted Sobolev and Besov spaces on D C R?. Recall
p(x) = dist (x,0D) and L, (D) := L,(D, p’~%dzx). For any § € R and n € N,
define

po(D) ={u:u,pDyu, -, p"Diu € Lyg(D)}.
The norm in this space is defined as

1/p
lullng 0 = 3 ([ 107020t ~taz) (211)

1Bl<n

To generalize this space and define H; o(D) for any v € R, we proceed as follows.
We choose a sequence of nonnegative functions ¢, € C*°(D),n € Z, having the
following properties:

(1) supp(Cn) C{x € D : kie™" < p(x) < kee™™}, ko > k1 >0, (2.12)

(i7) sup |DI'Go(z)| < C(m)e™™, ¥m e Ny (2.13)
z€eR4

(i) > (a(x) > >0, VaeD. (2.14)
nez

Such functions can be easily constructed by considering mollifications of indicator
functions of the sets of the type {z € D : kse™™ < p(x) < kse~™}. If the set
{x € D: ke ™ < p(x) < kee™ "} is empty, we just take ¢, = 0.

Now we define weighted Sobolev spaces H;e(D) and weighed Besov spaces
B;)G(D) for any 7,0 € R and p > 1. To understand these spaces, one needs to
notice that for any distribution v on D, (_,u becomes a distribution on R%. Obvi-
ously, the action of ¢_,u on C°(R?) is defined as

(Cntts O)a = (u,C—nP)p, ¢ € CZ(RY). (2.15)
By H) ,(D) and B} 4(D) we denote the sets of distributions u on D such that
lullf ooy = > e llCn(emyule™)1hy < oo, (2.16)
nez
and
[l iy = 3 eI ule™ )y < oo,

nez
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respectively. The spaces H) o(D) and B) (D) are independent of choice of {(,}
(see e.g. [43, Proposition 2.2]). More precisely, if {&, € C°(D) : n € Z} satisfies
EI2) and 2I3), then
D ellenemule™ )5, < Cllully oy (2.17)
neL '

and the reverse inequality of (2I7) also holds if {,} satisfies (ZI4]). The similar

statements hold in the space B;e(D) as well. Furthermore, if v = n € N4, then

the norms defined in (ZTIT]) and (ZI6) are equivalent (cf. [43] Proposition 2.2]).
Obviously, by ([Z10), we have for any p > 1 and 0 € R,

H%(D) C B)(D) if 7 <. (2.18)

Furthermore, for an equivalent norm in B} ,(D), we can apply (2.9) and prove the
following: if v =n + ¢ > 0, where n € N+, 5 € (0,1), and 0 — d + yp > —1, then

1/p

DB —_ DB p
lull 7 oy = lull s, o) + Z// o- d+w| z];x)_y|d+;:(y)l aydr|
|B]=n

(2.19)
where p; , = p(z) A p(y). The proof of [2.19) is left to the reader. Relation ([2.19)
will not be used elsewhere in this article.

Next, we choose (cf. [32]) an infinitely differentiable function 1 in D such that
~ p on D, and for any m € N

sup[p™ (2) DY ()] < C(m) < oo
D

For instance, one can take ¢(z) := >, ;e "Cu(2).
Below we collect some other properties of the spaces H (D) and B) ,(D). For
v € R, we write u € "V H) 4(D) (resp. u € v™B) 4(D)) if ¥"u € H) 4(D) (resp.
Yru € B) (D))
Lemma 2.7. Letv,0 € R and p € (1,00).
(i) The space C°(D) is dense in H) ,(D) and B} 4(D).
(ii) For 6 € R, H) o(D) = ¢°H) ;. s (D) and B o(D) = ¢°B) 5,5 (D). More-
over,
lull s oy = 1%~ ull ey

p,0+dp
(#i) (Duality) Let

p,0+dp

oy, lullsy, 0y = o~ ullpr, .. (D)

By 61op
1/p+1/p' =1, 6/p+0'/p=d
Then, the dual spaces of H) ,(D) and B) 4(D) are H,, (D) and B, (D),
respectively.
(iv) (Sobolev embedding) Let p <y, 1 <p<gq and 6 < T such that
p—d/g<~y—dfp, T/9="0/p.
Then, we have
lallz. oy < Cllela 0y
(v) (Sobolev-Hé’lder embedding)
Letw— ¢ >n+4 for somen € Ny and § € (0,1). Then, for any k < n,

|¢k+5D§U|C(D) + "5 DU es by < Cd, 7,1, 0)|ulary ()
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Proof. The proofs for B} ,(D) are similar to those for H ,(D), and we only consider
the claims for H; o(D). When D is a half space, the claims are proved by Krylov
in [37, Lemma 2.2, Theorem 2.5], and those are generalized by Lototsky in [43]
for arbitrary domains. Here, we remark that the results in [43] are still valid for

bounded C'! open sets. The lemma is proved.
(I

Now we define solution spaces for the parabolic equation. For T € (0, c0), denote
Hg,e(DvT) = Lp((0,T); H;,e(D))-
We write u € ] o(D, T) if u € Y*/>H) (D, T), u(0,-) € $*/2~*/P BT */?(D), and
there exists f € w_o‘/QH;;a(D, T) such that for any ¢ € C°(D)

¢
(ult, )00 = (u(0.).6)p + [ (f(s,) )pds, F<T.
0
In this case, we write u; := Oyu := f. The norm in ﬁ;ye(D, T) is defined as
lullsy ,p,m) ¢:||¢_a/zu||Hg,9(D,T) + ||1/)a/zut||H;;a(D,T) (2.20)

+ ||1/}*0¢/2+0¢/1”u(07 ~)||B;;a/p(D).

Remark 2.8. (i) The Banach space ﬁ;ye(D,T) is a modification of the corre-

sponding space defined for a = 2 (see e.g. [32] for C' domains and [39] for a half
space). The completeness of this space for a € (0,2) can be proved by repeating
the argument in [39, Remark 3.8].

(74) The same argument in [38, Remark 5.5] shows that C2°([0,T] x D) is dense
in 7 ,(D,T).

The following two theorems address our Sobolev regularity results. The proofs
are given in Section

Theorem 2.9 (Parabolic case). Let v € [0,00), and assume f € w’“/QHZ)G(D,T)
and ugy € wa/Q_o‘/pB;Jgafa/p(D). The unique solution u in Theorem[2.2 belongs to
.6Z§a(D,T), and for this solution we have

lullgytepry <€ (HUJQ/QJCHHZ,S(D,T) + ||1/)7°‘/2+a/puo||nga—a/p(D)) (221

where C' depends only on d,p,c,y,0 and D.

Theorem 2.10 (Elliptic case). Let v, A € [0,00) and assume f € 1/170‘/2H;0(D).

Then, the unique solution u in Theorem [Z.3 belongs to 1/)0‘/2H;J5Q(D), and for this
solution we have

/\HUJQ/QUHH;”Q(D) + ||1/17a/zu||H;f9°‘(D) S O||¢a/2f||H;,9(D)a (2.22)
where C' depends only on d,p,a,y,0 and D. In particular, it is independent of \.

Remark 2.11. (i) Let v+« > n, where n € N;. Then, (Z11) and (222) certainly
yield

/2P | plme/2 Dyl o [p 2 Dy |P ) pf e < oo,
lp p P P
D

(#4) The parabolic version of (i) also holds.
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(#1i) Let H) ;,.(D) denote the space of all distributions on D such that un € H,
for any n € C2°(D). Then, due to the definition of H,(D) (see [2.IG)), one can
easily find that H) ,(D) C H),,.(D). Note that if D is bounded, then L,(D) C

p,loc
Ly dtap/2(D). Thus, our result directly implies the ones in [7, I8, [16] when D is

a bounded C*! open set, while the latter ones cover a more general class of open
sets.

The following estimates are consequences of Lemma 2.7(iv).
Corollary 2.12. Let u be taken from Theorem [2.9 and
p—d/g<y+a—d/p, T/qg=0/p.

Then, we have

1=l o.rysms (py) < C (”dja/QfHHZ,S(D,T) + ||1/)7a/2+a/puo||B;ga—a/p(D)) -
Corollary 2.13. Let u be taken from Theorem [2.10 and
p—d/g<~y+a—d/p, T/q=0/p.

Then, we have
||7/17a/2u||H1;,T(D) < O||1/)a/2f||H;19(D)'

Remark 2.14. We compare Corollary 2.T3] with the results in [I], 42} [46]. Below
we assume D is bounded.
(i) Let g € (1,00), p = max{2, 772} and f € Ly, g1 apja(D). Then,
a d d
———<a-—-.
2 q p
Thus, by Corollary and Theorem 210,

197" ull o2y < CIY™* Il a0y

where 7/¢q = d/p, which implies u € H:;l/fc(D). This is proved in [46] given that
f € Ly(D) and ¢ > 2 (instead of ¢ > 1). Since L,(D) € L, giap/2(D), our
result extends the one in [46], although [46] considered more general domains and
non-local equations.

(i7) Let a/2 < f < v and ¢ > p such that
d d dp
et D 2.23
B STy 1S (2.23)
In this case, pd/q € (d—1,d — 1+ p), which allows us to apply Corollaries 213l and

[L5:) to get
19220 Pu| ) = [0~ 2 A |, )

< C”'@b_amu”f]fid(p)

< Ol £l (D) (2.24)
According to [Il Theorem 1.4], if a/2 < 8 < (1 A ) and

RPN ) (2.25)
q P

then
167N u) o) < ClF Ly
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Also, by [42, Theorem 24], if
d
=a——, l<p<—oyj (2.26)
D o
then it holds that

A |,y < Cllf ]|z, (D)-

One can note that ([2.23)), (2:25]), and ([2.26)) are distinct conditions. Note that given
that /2 < B, we have L,(D) C Ly q4p(a/2+d/q)(D) for p,q € (1,00) satisfying
@23). Consequently, [2.24) allows a broader class of data f.

For Holder regularity of the solution to the parabolic equation, we use the fol-
lowing parabolic embedding.

Proposition 2.15. Let o € (0,2), p € (1,00), and 7,0 € R. Then, for any
1/p<v <1,

a(v=1/2) (4, . < N
P (u—u(0,-)) G n (0TS HTE v (D)) C||U||g;; (D,T) (2.27)
where C' depends only on d, v, p, 8, a and T'.

Proof. We repeat the argument in [39] which treats the case a = 2. Considering
u — uo in place of u, we may assume ug = 0. Let u; = f. By (2.10) and Lemma

R.7(E),
‘wa(v—l/2)u

p

Cv=V/p ([0, T HY 57 (D))

< CZ en(0+pa(u71/2))|u(',en')cin(en.)
nez

Denote vy, (t, ) = u(t, e"x)(_,(e™x). Then, Oiv,(t,x) = f(t,e"x)(_n(e"x). Thus,
by Lemma [A5 with ¢ = e="P/2,

enpa(u71/2) |u(, 6n~)<,n(6n')

p
CV*I/F([O)T];H;+OL*VO¢)' (228)

P
Cr=V/p([0,THHYT7")
< Ce—npa/2||u(., en')C—n(en')||§H;+a(T) + Ce"pa/2||f(', €n')<—n(€n')”§ﬁ;(T)'

Coming back to (Z.28) and using ([2.14)),

p

wa(vfl/Q)u

Cr=1/p (0L HY 4 (D)

< cnw—“/?ungmwm +Clv Ml (o

This and Lemma [2.7)(i4) prove (2Z27)). O
Proposition and Lemma 2.7@) yield the following results.

Corollary 2.16. (Holder regularity for parabolic equation) Let u be taken from
Theorem[2.9, 1/p <v <1, and

d
’y—l—a—uoz—z—?zn—ké, neNy, 0 €(0,1).
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Then,

- €4 o(p_1
> ket (v=3) Dk (u — w(0, Nlev-1/v(0,17:0(DY)
k=0

. [wn+5+%+a(l/*%>D2(u(t7 ) = u(s, )]s (o < Clu
Sup > U|| v+ .
t,5€[0,T] |t — s|v—1/p 575%(D,T)

Corollary 2.17. (Hélder regularity for elliptic equation) Let u be taken from The-
orem [2.10 and y
”y+a—]—?2n+5, n € N4, 0 € (0,1).

Then,
n 0 _«a n s=$pn -
> W2 Dhulpy + [P T2 Dulco(py < Cl¢p /QUHHQ?}@(D)'
k=0

Remark 2.18. Corollaries[Z.T0 and 217 give various Holder estimates of solutions
and their arbitrary order derivatives. Below we elaborate some special cases. We
only consider v =0,1,2,--- and § = d. Note L, 4(D) = L,(D).

(i) Parabolic Holder estimates when v = 0. Let up = 0 for simplicity, and
assume /2 f € Np>d/alip,a(D, T). Obviously this holds e.g. if D is bounded and
/2 f € Loo([0,T] x D). Taking v 1 1 and p 1 oo, from Corollary 216 we get

sug |¢O‘/2_5(x)u(-, :E)|C175([O)T]) < 00
S

for any small §,e > 0. This gives maximal regularity with respect to time variable.
Now, we take p sufficiently large and v sufficiently close to 1/p to get

sup [y~ />0 @)u( @)lce o7y + sup /2t MNea-er(py < o0
xeD tE[O,T]

for any small §’, &’ > 0. The second term above gives the maximal interior regularity
with respect to space variable, and the first one gives a decay rate near the boundary
of D. In particular,

sup |u(t,z)| < C(6)*?~ (z), V& > 0.
t€[0,T]
(43) Elliptic Holder estimates when v = 0. Let ¢*/2f € Np>d/aLlp,d(D). Taking
p sufficiently large, from Corollary 217 we get
U] cae () + [l gara-<(py + [0 *F0ulce(p) < 00 (2:29)
for any small d,¢ > 0. In [47], it is proved that if A =0 and f € Loo(D), then
U] car2(py + Y™ 2u|cs(py < 00 (2.30)

for some 8 > 0. Thus, there is a slight gap between (2.29)) and (Z.30). However, our
result holds even when f blows up near the boundary since we assume (at most)
»*/? f is bounded.

(i4i) Higher order estimates. Let v = n € N. Then, the same arguments above
show that all the claims in (i)-(ii) also hold for ¥ D,u,¥?>D?u,--- 4" D%u. That
is, the estimates hold if one replaces u by any of these functions. In particular, if
Y2 f 2D, f € NpsajaLlpa(D), then, together with (Z2J), we also have

|¢1+a/2D1U|Ca*E(D) + |wD:Eu|Ca/27€(D) + |¢1_a/2+5Dwu|CE(D) < %0
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for any small §,e > 0.

3. THE ZERO-TH ORDER DERIVATIVE ESTIMATES

In this section, we estimate the zero-th order derivative of the solutions to the
parabolic equation

opu(t, x) = A u(t, x) + f(t,z), (t,z) € (0,T) x D,
(0, z) = uo(x), zx €D, (3.1)
u(t,z) =0, (t,z) € [0,T] x D°.

as well as to the elliptic equation

A2y (z) — du(x) = f(x), x €D,
{u(x) =0, x € D°. (3.2)

3.1. Weak solutions for smooth data. Recall that X = (X);>¢ is a rotationally

symmetric a-stable d-dimensional Lévy process. Let p(t, ) g;d(t x) denote the
3,

transition density function of X. Then, it is well known (e.g. [3 .

(3.6)]) that
palt, ) = (21) /R el gg
t t

el 7

The equality above also implies that p4(t,-) is a radial function and

pal(t,z) = tfgpd(l,tfé:r).

D= dn p(z) :x €D,
R I cx ¢ D.

~ETE A Y(t,z) € (0,00) x RY.

Denote

The following lemma gives an upper bound of p? (t,z,y).

Lemma 3.1. For any z,y € RY,

o /2
b C (1 A df//;) (1 A %) p(t,x —y) if D is a half space,
p (t7x7y) S et d5/2 d;/2 . .
Ce NG LA == p(t,x —y) if D is bounded.

Here, C c > 0 depend only on d,a and D.

Proof. See [9, Theorem 5.8] for the case D = R%. Let D be bounded. Then, by [9,
Theorem 4.5], there exist C, ¢, > 0, depending only on a,d and D, such that for
any z,y € D

/2 da/?
D < —2ct T Y a _ .
p~ (t,z,y) < Ce (7\5/\7"0‘/2/\1) <7\/f/\r°‘/2/\1>p(t/\r , T — 1Y)

This actually implies the claim of the lemma. Indeed, the case t < r® is obvious,
and if ¢ > r® then

p(r®,z —y) = rp(L,r Yz —y)) <r dp(l,t7w (@ — y)) = 1 UV p(t,x — y).

This certainly proves the claim. The lemma is proved. O
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For € R?%, we use E, and P, to denote the expectation and distribution of
x + X. For instance, P, (X; € A) :=P(x + X; € A). Recall that f(9) := 0 for any
function f, where 0 is the cemetery point.

Now, we introduce the probabilistic representation of equation (B for smooth
data.

Lemma 3.2. (i) Suppose up € C°(D) and f € C((0,T) x D). Then,

u(t, ) := Ey[uo( X)) +/0 E,[f(s, X2 ,)]ds

- /D PP (¢, 2, y)uo(y)dy + /O /D PPt — 5,2, ) f (5 y)dyds

is a weak solution to (BI)) in the sense of Definition [21](1).
(i1) Let u € C([0,T] x D). Then,

u(t, ) = By [u(0, X)) +/ E.[f(s, X ,)]ds, (3.3)
0

where f = dyu — A%y,

Proof. (i) If up = 0, then it follows from [53, Lemma 8.4]. The general case is
handled similarly.

(i4) This follows from [53, Theorem 5.5]. We remark that [53, Theorem 5.5] is
proved only on bounded open sets, but the result holds even on a half space. Indeed,
let D,, C D =R% be a sequence of bounded C*! open sets such that D,, 1 D and
supp(u(t,-)) C Dy, for all t € [0,T]. Since D,, is bounded, by [53} Theorem 5.5],

u(t, r) = Ey[u(0, XPr)] + E, UO T — s, XJ)ds| |

where 7p, is the first exit time of D, by X, and XP~ is the killed process of
X upon D, (see Section [2). By following the proof of [53, Lemma 5.4], we have
7p, T Tp. This, since both «(0) and f are bounded, certainly yields B3]). The
lemma is proved. ([l

Let {T;}:>0 and {TP};>0 be the transition semigroups of X and X defined by

Tif (@) =Eo[f(X0)],  T7f(2) = Ea[f(X])],
respectively. It is known (see e.g. [I1, Example 1.3] and page 68 of [I4]) that
{Ti}+>0 and {TP};>0 are Feller semigroups. For instance, {T}”}:>¢ is a family of
linear operators on Lo (D) such that
(i) for any f € Loo(D),
TtDTst :Tt[J)rsfa
(ii) for any f € Co(D), TP f € Co(D) and
. Dy _
i [72F = £l o) = .
We also define infinitesimal generators A and Ap by
i Tif(x) = fz) o TP f(x) — f(2)
Af(z) = %8#’ Apf(z) := 1&8#
provided that the limits exist. It is well known (e.g. [5, Theorem 2.3]) if f € Co(D

and one of Af(x) and Apf(z) exists, then the other also exists and Af(x) =
Apf(x). Moreover if f € CZ(R?), then Af(z) = A2 f(z) (e.g. [5, Lemma 2.6]).
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Lemma 3.3. Assume u € Co(D) and Au(x) exists for all x € D. If u satisfies
Au—du=0in D, X>0, (3.4)
then, u = 0.

Proof. Assume supu > 0. Since u € Cy(D), there exists zo € D such that
z€D

u(xg) = sup u(z).
xz€D

By the definition of the infinitesimal generator,

Auton) = i B 0] wton)

Hence, [B.4)) yields a contradiction. Using the similar argument for —u, we conclude
that v = 0. The lemma is proved. (]

For A > 0, we define the Green function
G (@, y) :=/ e MpP(t,a,y)dt.
0

By Lemma Bl G (z,y) is well defined if = # y.

Lemma 3.4. Let D be a half space (resp. a bounded C' open set) and A > 0
(resp. A >0). For f € C(D), define

o) = [ Ghl.nfwiy. (35)
(i) v e Cy(D), Av(z) exists for all x € D, and v is a strong(point-wise) solution
to
Av(z) — M(x) = f(x), z €D, (3.6)
v(z) =0, x € D°.

(i) v is a weak solution to [B2) in the sense of Definition [Z1)(ii).
(iii) Let u € C°(D) and g := A*/?u — \u. Then,

u() = /D G (2, y)g(y)dy. (3.7)

Proof. (i) The claim follows from [34, Lemma 3.6] if D is bounded and A = 0. We
repeat its proof for the case A > 0. First, we show v € Cy(D). By Lemma 3]

/ / “MpD (¢ )| £ (y )|dydt<C||f||Loo(D)/ / otz — y)dydt

_C”f”Loo(D)/ )\tdt<00.
0
Thus, by Fubini’s theorem,
v(x) :/ e MTP f(2)dt
0

Since TP f € Co(D) and TP fll.opy < |Ifll(p), the dominated convergence
theorem easily yields v € Cy(D).
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Since {T}P};>0 is a Feller semigroup, for any z € D,

TPuv(x) — v(x)

Apv(x) := lim (provided that the limit exists)

tl0 t
1 (e o) (e o)
= lim - (TtD/ e MTP f(x)ds —/ e_’\STSDf(x)ds)
tl0 0 0
1 e o) oo
= lim — (/ e MTE  f(x)ds — / e_’\STSDf(:E)ds>
tl0 t 0 0

1 oo oo
=lim = ( eM e~ TP f(z)ds — e~ TP f(z)d >
(o [P s [T et s

t0 t
[o%¢) 1 t
/ e TP f(x)ds 4 lim n (/ e)‘STSDf(:zr)ds>
¢ 0

t—0

. e)\t ~1
= lim
tl0 t

= Av(z) + f(2).

Since the limits exist, we conclude that Apwv exists, Apv = Av, and v satisfies (3.4)).
(i1) Let ¢ € C(D). Since | T ¢llr..p) < [#ll.0p),

tli)rgo e MTPy =0.

Since ¢ € C°(D), we can use the relation 0, T ¢ = TPA*2¢ (see [53, Lemma
8.4]) to get

(U,Aa/2g0)Rd =/ (e_’\tTth, Aa/2<p)Ddt
0

- / (f, e MTP A2 ) pdi
0

- / (f, e MOTL D) pt
0

- tlggo(f’ e MTPo)p + (f,0)p + /Ooo(fa Xe MTP o) pdt
= (f,¢)p +Av,9)p.

(i3i) Note that f := A2y — \u € C(D). Assume \ > 0 for the moment. Take
v(z) from (F5). Then, since u € CZ(R?), we have Au = A®/?y (e.g. [5, Lemma
2.6]), and therefore both u and v satisfy the equation Aw(x) — Aw(z) = f(x) for
each z € D. We conclude u = v due to Lemma B3l If A =0 and D is a bounded
C11 open set, then the uniqueness result in [34, Theorem 3.10] easily yields (B.7).
The lemma is proved. O

3.2. Estimates of zero-th order of solutions. Denote

TSuo(t, ) := / P (t, 2. y)uo(y)dy,
D

Tof(t, ) = / /D PPt — 5,2,4)f (5, y)dyds,

M () = /D G () f(y)dy.
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In this subsection, we prove the operators
Tp 2P Ly (D) = /%Ly e(D, T),
To ™2 Ly o(D,T) — /L, ¢(D, T),
Gpy = 2Ly (D) — /2Ly p(D)

are bounded. Our proofs highly depend on the following lemma, which is proved
in Lemma [A.3]

Lemma 3.5. Let a € (0,2), 70, 11 € R. Suppose that
2 2
—— <7, 2<Mm—7<2+-.
a a

Then, for any (t,z) € (0,00) x RY,
/ p(t,z — y)dzoia/zdy < C(Vt+de/?)omn
N e .
where C = C(d, «, v0,v1, D).
We first consider the operator Tp.
Lemma 3.6. Let a € (0,2) and p € (1,00). Suppose that
d—1<6<d—1+p.
Then, there exists C = C(d,«, 0, p, D) such that for any f € 1/)70‘/2LP19(D,T),
1= To flln, oo,y < CIY*"2flIL, o(D.1)-
Proof. By Lemma 27{Ez) and (2.I1]), it suffices to show

T T
/ / AP/ T f(t, @) |Pdzdt < C / / drror/2| £ (¢ ) |Pddt, (3.8)
0 D 0 D

where p:= 6 —d. Forp' =p/(p—1), since u € (—1,p—1), we can take By satisfying

2 4 2 2
e R NP =Ly R (3.9)
pQ p po y4e
and
2p —1 2 2\ 1 2 -1
_ (p ):——<ﬁ0< 2+ 2 ) =24+ = p_ (3.10)
D p/ (e p’ « p

Sincel—%< fj—g—l—l—l—z%—%and 127_Z+1< %—Fl,wecantakeconstantsﬂl
and [, such that
2 2 2 2
1-Z<B-p<Lr1y == (3.11)
p y4es pax p
and

2(p—1)

2
p—Z+1<ﬂo+ﬂ2< 1. (3.12)
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ds/’?

Let Rt)m = W

By Lemma B and Hoélder’s inequality,
¢ , , 1/
[Tof(t, )| <C (/ / p(t—s,x— y)d;aﬁop /2R§£;i1)p R (1- ,32)10 dyds)

1/p
([ / (1= 5.0 = )R R )Py
—=C x I(t,z) x II(t, ). (3.13)
By Lemma B with 79 = (1 — S2)p" — Bop’ and 11 = (1 — S2)p’, we have
/D p(t — 5,2 — y)d 500 2RI gy < O(T— 5 + de/2) o
Using this inequality and changing variables,
I(t2) < Ca0-5) p/z/ (VT3 4 do/2)=Bor' —(1=01 g
< Cd;“Pov'/? / Ao (/5 4 1)~ Por' =(=B0r" gg — cqa—abor' /2 (3.14)

0
Therefore, due to (B13), (314) and Fubini’s theorem,

T T
/ / d!|d;*/*Tp f(t,x)|Pdzdt < C / / drror/2=a=aBor/2 [T (t )P dxdt
0 D 0 D
T
=C/ /If(s,y)lpd‘;ﬂ‘)m (3.15)
0 D

T
% (/ / dg+ap/2—0‘_o‘30p/2p(t -5,z — )Rflg zRfﬂs’ yd;vdt> dyds.
D
Now, again by Lemma 3.5 with 7o = 2u/a+p — 2 — Bop + B1p and 71 = Pip,

t—s,y

T
/ / ngrO‘p/Q*a*O‘B“p/zp(t — 85,7 — y)Rf“Z, IRﬁzp dzdt
D

T
< Cd(;'@me/ (\/t — s+ d;‘/2)2ﬂ/a+lﬂ—2—30p—,@2pdt

S

< Od5+ap/2—a60p/2 /OO(\/Z + 1)2H/0¢+P—2—,30P—32Pdt < Od5+ap/2—a60p/2' (3.16)
0

This and B.I3) yield (B8), and the lemma is proved. O

Next, we consider the operator 73 defined for initial data.

Lemma 3.7. Let a € (0,2) and p € (1,00). Suppose that
3
d—1<0<d—1+p+ (a(p—l)/\iap).

Then, there exists C = C(d,,0,p, D) such that for any ug € »=/?*2/P L, o(D),

4= ThuollL, oo,y < ClY™** *"Pug| 1, (D)
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Proof. As in the proof of Lemma [3.0] it is enough to prove
T
/ / A= P2 TS u(t, x)|Pdedt < C / drto=or/2y () Pda,
o Jp D

where p:=60 —d. Since pe (-1,p—1+ %ap), we can choose (g satisfying

2 2 2 2 2
i Y Ry
yges p yges p p&
and
2(p—1 2 2\ 1 2 -1
b (2+_>_,_ <2+_>p_,
p p D « p
where p’ = p/(p—1). Also, since 2
2 2 2
el Sl <ot fr< oL
yyes P
Let Ry := \[d:i;an By Lemma [3.1] and Hoélder’s inequality,

, 1/p
| THuo(t, z)| <C </D p(t,z — y)d;ozﬁop /2R§71y—31)p dy)

1/p
< ([ e =g Rl ay
D
=:C x I(t,z) x II(t,x),
By Lemma B with 49 = (1 — 1)p’ — Bop’ and 11 = (1 — $1)p’, we have

I(t, x)p' _ / otz — y)d;a,@op/ngyfﬁl)p’dy < C(\/E + dg/2)—60p'
D
Therefore, applying Fubini’s theorem,
T
/ / d!|d; **Thuo(t, ) |Pdwdt
o Jp
T
<C / / dP=oPI2 (Nt 4 /)PP [ (t, 2)Pdadt
D
< C/ uo(y)[PdS P2 K (T, y)dy, (3.17)
D
where
K(T,y) ::/ Rﬁ“’/ (t,@ — y)di= /2 (Vi + d2/?) PR dudt
0
- / RBlp/ (t,x — y)d"(Vt + do/2)~PoP=Pdxdt.
0
By Lemma B8 with 9 = 2u/a and 1 = Bop + p,
T
K(T,y) < C’/O Rf);f’(\/f + d;/2)2u/afﬁopfpdt

< Ol bor/2map[2 /Oo(\/g + 1)21/a=Bop=p=Bip gy
0
< Odg—a,@gp/2—ap/2+a.
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This with (8I7) proves the lemma. O

Finally, we consider the operator G for elliptic equation (B.2).

Lemma 3.8. Let a € (0,2), p€ (1,00) and 0 € (d —1,d — 1+ p). Suppose that D
is a half space (resp. a bounded C1'! open set) and X > 0 (resp. X >0). Then, for
any f €Y=Ly (D),

102G} fllz, o0y < ClIV**flIL, (D)
where C = C(d, p, @, 0, D) is independent of \.
Proof. As before, we need to show

| arerrigsswpas <o [ arerf@pas, (3.13)
D D

ds’?

where p := 6 — d. Take 3y, 81 and [ satisfying (39)-B12). Let R;, := Wl

By Lemma [B] and Hoélder’s inequality,
oo , 1/p
|g1):‘)f(:1:)| <C </ / p(t,x — y)d;aﬁop /2R§}w—ﬂ1)p R 1 —B2)p dydt>
o Jp

00 1/p
([ ] pea =R R )P )
o Jp
=:C x I(t,z) x II(t,x). (3.19)
Similar argument used to prove (314) yields
I(t,z)? < Cdet=Pow'/2 / Oo(\/i 4 de/2)=Por' ==Y g < Cge—eBor’/2 . (3.20)
0
Therefore, by (3.19), (3.20) and Fubini’s theorem,

| aazo gy flaypas
<C / ditop/2=a=aBor/2 [ (¢ 2)Pdrdt
=C / 1 (y I’”daﬁ(”’/2 / / ditep/2mazabor/2)f —y)RE;PRﬁzpdxdt)dy.
As in (BI4), we get
/00 / ngrap/Q*a*o‘ﬁ“p/Qp(t, T — y)Rf’;pRtﬂépd:Edt
D
< Cdgﬁzp/z /OO(\/E + d3/2)2u/a+p*2*ﬁop*ﬁ2pdt < Cd5+ap/2*aﬁop/2_

0
Thus, we prove (3.I8) and the lemma. O

4. HIGHER ORDER ESTIMATES

In this section, we prove that one can raise regularity of solutions as long as the
free terms are in appropriate function spaces.
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We first prepare some auxiliary results below. Let {(, : n € Z} be a collection of
functions satisfying (212)-@2.I4) with (ki, ko) = (1, e?). We also take {n, : n € Z}
satisfying (212)-@I4) with (k1,k2) = (e72,¢e*) and

mm=1lon{zxeD:e " ! <plx)<e "}
Consequently, 1, = 1 on the support of (, and {, 1, = (,.

Lemma 4.1. For any v € R, there exists a constant C = C(d, a,7y) such that for
u€ CX(D) andn € Z,

|02 (@ um-n)(e™)) = o) A2 ((wn-n)(e™)) |

<o s (e,

Proof. By 21,
A2 (u¢-nn-n) (")) (@) = (") A2 ((un-n) (™)) (z)

—u(e"z)n—n(e"T) Ay (") (2) = C/ Hp(z,y)ly|~ "y, (4.1)
Rd

where
Hu(z,y) = [(un—n)(€"(z +y)) — (un-n)(e"2)][(-n(e"(x + y)) = (-n(e"x)].
In the virtue of 2I3)), for any m € Ny,
| D (C=n(e™ (@ +y)) = Conle™x))| < C(m)(L Alyl).

Thus, (—n(e"(z +y)) — (—n(e"x) becomes a point-wise multiplier in H) (see e.g.
[36, Lemma 5.2]), and therefore

[Hn ()l g < CAAyDI(un—n)(€" (- +y)) = (un—n)(€" )|y
By [52, Lemma 2.1], the above is bounded by

€ (e n-n(e™ g Al NA (e o) 1) - (42
By Minkowski’s inequality and ([@2]),

H/ Hn(-,y)lyld“dy‘
R4 Hy

< C||Aa/4(u(6n')n—n(€n'))||H;/ . |y|—d—a/2+1dy

lyl<

Ol )n (€™ / 4" dy

ly|>1

< € (187 ((un )" ) g + (™ (e )ry ) (43)
On the other hand, by (2.I)) and 2.13)),

DR A (e @) < CIDEC (@ [yl oy

ly|<1

+ DI (€ / |~ "dy < C.

ly|>1
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Thus, again by [30, Lemma 5.2], we have
(e ) (€™ ) A2 (Cn(€")) iy < Cllule™)n—n(e™)]| 1z (4.4)
Combining ([@1)), ([£3) and [@4), we prove the lemma. d

Lemma 4.2. Letd—1—ap/2 <0 <d—1+p+ap/2. Then, for any v € R and
ue C=(D),

p
S en@er e @) a ([ =noa(e™ue™) | < Clwmully o).
nez P

(4.5)
where C = C(d,p,7,a,0,D).

Proof. Tt is certainly enough to prove (@3] for only v =m € N;.
By the choice of {n_,, : n € Z}, we have ¢, (x) = §,(z)n,(x) for all z, and

Cnle"z)(I —n_n(e(x+y)) =0 if |y| <do,
where 0p := 1 — e~ . Thus, by .1,

Fu(@) 1= Ca(e"0) A2 ([ = n_p (e )u(e™) ) (2)

¢
C [ e i) D= e+ )l
ly|>do

= O/|my|>50 U(eny) (Cfn(en:p)[l — nfn(eny)ﬂx _ y|7d7a) dy. (46)

Denote
By, := supp((_n).
Then, since (_,(e"z)(1 — n_n(e"y)) =0 for |z — y| < dy, by (2.13), we have

D2 (¢onlem@)(1 = nnlemy)le — y1 =10
< Clp, (@)1 = nn(ey)lfe —y|

+ Cl¢-nle™@)(1 — n_ple™y))||z —y| 4!
< Clg, (€"z)|1 — n_p(e™y)||lz — y| 742

Similarly, for k € N,

|DE (Cntem@) (1 = nonle™y)le -y )
< C(k) 1, (€)1 = eyl — g~

It follows from (4.6]) for each k € Ny,

IDEE ()] < C(WHL (z), (@.7)
where
Haw)i= 1, (") [ Ju(@w)l [~ n-n(ew)l [z - ol dy.
|z —y|>do
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Since ||[Fullap = 3 p<m |DEF,||L,, from @) we get

Z en(0—ap/2) ||<,n(e"~)Ao‘/2 ([1 — n,n(en.)]U(en-)) I n

nez
<CY eI H, ]
nez

Therefore, to finish the proof of ([£.X]), we only need to show

SO ln < Ol | o). (4.8)
nez

Case 1. Let d — 1+ ap/2 <60 <d—14p+ ap/2. Observe that

/ 55 lu(e™(x 4+ y))(1 — n_pn(e"(x + y)))llyl’d*“dy

<>/ Ju(e” (z + y)lly|~*—dy

=0/ 24 s0<lyl<2r+15

oo

—c@e Y / (e + )|y dy

o J2Fen o<yl <2k +1iens,

o e 1 .
< 022 : ondokd lu(e™z + y)|dy
k=0

/2ken50§|y|<2k+len50
< C’Z 2 FMu(e"z) = CMu(e"z),
k=0

where Mu is the maximal function of u defined by

1
Mu(x) = sup 7/ u(y)|dy.
D= R B o Y

Therefore, Hy,(z) < C(1p,Mu)(e™x). Since e ~ p on B,, by the change of
variables,

S, g <0 [ puto) o) e,
ne

Due to [19, Theorem 1.1], the function p?~*?/2=¢ belongs to the class of Muck-
enhoupt Ap-weights, and therefore we can apply the Hardy-Littlewood Maximal
inequality ([22, Theorem 7.1.9]) to get

S|, <C [ futa)Ppte) o,
p Rd

neZ

This proves @) if d — 1+ ap/2 <8 <d—1+p+ ap/2.

Case 2. Let d — 1 —ap/2 < 6 <d+ ap/2. Then, we can choose § € (0, a) such
that

—1<0—-d—ap/2+pp<0.
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By (£8) and Holder’s inequality, for p’ :=p/(p — 1),

|z — y|d+hp

1/p
> (/ |z — y|—d—(a—ﬂ)p’dy>
|z—y|>60

e\
<Clg,(e"z / ———dy . 4.9
) < o—y|>8y 1T — Y[TTOP (49)

By the change of variables and Fubini’s theorem,

> e een A,

neZ

n,\ [P
< en(@—ap/2) / / 1Bn (enx) |u(e y)' dydz
Z R J|z—y|>d0 |I

nez
S enl0-d-ap/245p) /

L]

b= ja—ylzendo

n n P 1/p
Ha(w) < 1p, (¢"2) (/ N [ue"y) (1 = n-n(e"y))| dy)

Lp, (a)lz =y~ Pdz | [u(y)Pdy. (4.10)

In the virtue of ([@9) and ([@I0), to prove (3], it suffices to show that for y € D,

Z en(0—d—ap/2+pp) /

b= ja—y|2endo

1, (2)|z —y|~*"PPde < Cdy 472 (417

For fixed y € D, we take ng = ng(y) € Z such that
et < d, < emott

If n < ng and @ € B, then e" < d, < e"™? < e™0t2 < 03 < (. and
consequently |z — y| > d, — d, > Ce™. Thus,

S ez [ 4 (@) -y

n<no |z—y|>Cen
defdfap/QqLﬁp
<c S 1@

— y|d+Bp
|x—y|>Ce™0 n<no |I y|

dG—d—ap/2+Bp

< C/ -
|lr—y|>Cen0,d,<d, |.’II - y|d+,8p

< Ce—noﬁpdG—d—aP/2+3P < C’d@—d—0¢10/27

— Yy — Yy

dx

(4.12)

where C'is independent of y. For the second inequality above, we used Y 1p, (z) <

n<ng

C14,<a,, and for the third inequality, we used Lemma [A4)i:) with p = Ce™ and
T =dy.
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Next, we handle the summation for n > ng. Since § — ap/2 — d < 0,

3 en(e—d—ap/zwp)/ 1p. ()& — |~ PP ds
n>no |z—y|>d0e™
<C Z en(9*d*ap/2+6p)/ |z — y|~ 4 Prdy
n>no |z—y|>d0e™
=C Z e77,(07d70¢p/2) — Ceno(Gfdfap/2) < Odzfdfap/Z. (413)
n>ngo
Combining ([@I2)) and @I3), we obtain [@IIl). Thus, (X8) and the lemma are
proved. O

Lemma 4.3. Letd—1—ap/2<0<d—1+4+p+ap/2 and v € R. Then, for any
u € C*(D),

Z en(efozp/Q) HAQ/Q (u(en)cin(en)) _ Cfn(en')Aa/2(u(€n~)) p )
neZ Hp
—a/2, |P
< C”d’ u||H2’\/9(’Y+a/2)(D)7 (4-14)
where C = C(d,p,, 0,7, D).
Proof. Recall n_,,(_,, = (_,,. Thus, by the triangle inequality,
Aa/Q Y (e™)) = ¢y (e Aa/2 n,
2 (utem1ente) = Catem a2 ute )|
< 87 () -t i),

+entemya2 (i = nouteue)|

HY
Also, note
el yeere & (ullig + 1A% ull )
Therefore, Lemma [£.1] and Lemma easily lead to the claim of the lemma. O

Lemma 4.4. Letd—1—ap/2 <0 <d—-1+p+ap/2, and v > —a. Then, for
any u € C®(D), we have A*/?u € 1/170‘/2H;9(D) and

||7/1a/2Aa/2u||H;’9(D) < O||1/)70‘/2U||H;;‘*(D)' (4.15)
Proof. By Lemma 277(#i) and the relation A®/?u(e™z) = e~ (A% ?u(e™-))(x),
[P ARl ) < O Y (A (e

= O O P () A (u(em)) s -
By (@1I4)), the last term above is bounded by

p
C Y e er/2 A2 (w(e™ )¢ n(em) + O Pul” oo
neZ Hy Hp’e (D)

S OHU)_O‘/ZU,”II)_I,HB,Q(D)

The lemma is proved. O
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By Lemmal4] for any yo € R and ¢ € C°(D), A*/2¢ belongs to the dual space
of H"® (D) (see Lemma 27(iii)). Therefore, for u € wo‘/2H;°9+a(D), we can

p,0—ap/2
define A®/2y as a distribution on D by

(A2, ¢)p = (u, A*2¢)p, ¢ € CX(D). (4.16)
Corollary 4.5. Letd—1—ap/2<0<d—1+p+ ap/2.
(i) Let v € R, u € wo‘/QH;:gO‘(D), and A®?u be defined as in ([@EIB). Then,
A2y e p=2H) (D), and @IF) holds.
(i) If v > —a/2 and u € HY o2 (D), then the left-hand side of ([AI4) makes

p,0—ap/2

sense, and inequality (LI14]) holds.

Proof. It v > 0, then (¢) is a consequence of Lemma [£4] and Lemma 27(i). If
v < 0, then by Lemmas [£.4] and 27(ii7),

(A2, §)p| < ClY™2ull e ) [0 A 2] oo )
< CI|¢_Q/2U||H;;&(D)||1/’_a/2¢||H;ﬂe,(D)’

where 1/p+1/p' =1 and 8/p + 6’ /p' = d. This implies A®/? is a bounded linear
operator from ¢a/2H;;ra(D) to ¢_a/2H;79(D). Thus, (z) is proved.

Next, we show (i7). The left-hand side of (I4]) makes sense due to (i) and
@I3). Now, the claim of (i7) follows from Lemma [43] and Lemma [27(7). The
corollary is proved. O

Theorem 4.6 (Higher regularity for parabolic equation). Let 0 < p < v, and
0 € (d—-1—-%Ld—1+p+ ). Suppose that f € ¢~*/*H) *(D,T), ug €
1/)0‘/2’°‘/pB;yga/p(D), and u € ¢“/2H579(D,T) N{u=00n[0,T] x D} is a weak
solution to (Z2). Then, u € 1/)“/2HZ79(D, T), and for this solution

||1/)_a/2u”Hgy9(D,T) < O(Hw—a/%‘ra/puOHB;;a/p(D)
+ 9 fllyy ooy + 107 Pl omy) s (417)

where C = C(d, p, o, v, u,0, D).

Proof. 1. We first note that it is enough to consider the case v < p+ /2. Indeed,
if the claim holds for the case v < u + «/2, then repeating the result with ' =
w4 a/2,u+2a/2, -+ in order, we prove the lemma when v = pu + ka/2, k € N,.
Now let v = u+ ka/2 + ¢, where k € Ny and ¢ € (0,/2). Then, applying the
previous result with g’ = pu + ka/2, we prove the general case.

2. For each n € Z, denote
Un(t,x) :=u(e"t, e"x), fu(t,x):= f(e"*t,e"x), uon(z) = up(e"x).

Then, u,(-)¢—n(e") € HE(e™™*T') and it is a weak solution (or solution in the sense
of distribution) to the equation

{8tvn(t, z) = A2y, (t,z) + Fo(t,2),  (t,z) € (0,e~"T) x R?
(0, 2) = (uon(-)Cn(e™)) (@), z € R?
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where
Eo(t,x) = e (fu(s)Cnle™))(t, z)
= (A ) (€)1 2) = Gl ) A (1))
=:€"*(fnl:,)Cn(e™))(t, 2) — Gn(t, z).
3. By Corollary L5(i4) with 4" = u — /2, we have
S G I < OF O G e  e

ne”z neZ
< Cllw™2ult, ) | (o) (4.18)
Therefore, due to f € ¢~*/2H ,*(D,T),
F, € H} (e "°T).
Thus, we apply [45, Theorem 1] to conclude u,(—,(e™) € Hy(e™"*T), and
1A (u(-, ) (e” Mo
= " A2 (up (-, )G (e ))||Hw & (e
< Ce" Con(e Juon (I, sy + O™ NG, )
+ 0" e Cn (€™ ) fals My (o nar)
= Ce"IC=n (€™ Juon (s —arp + ClGA (™ gy —a

||H’Y Ot e naT)

O (B (1.19)
By (@I8) and [@I9) (also see Lemma 2.7)i7)),
D PN CTOVEL T (o Mo
nez
< (el
HW P,y + 167 20l o)) (4.20)
Therefore, ([@20), Lemma [Z7(¢), and the relation
el & (lull e + 1A%/2ull 13-
yield (@IT) for v < u+ «/2. The theorem is proved. O

Theorem 4.7 (Higher regularity for elliptic equation). Let A > 0, 0 < p < ~,
and 0 € (d—1—- L, d—1+4+p+ ). Suppose that f € ¢_a/2H;)ga(D), and
u € ¢a/2HI’f19(D) N {u = 0onD*} is a solution to (Z4]), then, u € ¢a/2H;’9(D),
and moreover

a/2 —a/2
Al “HH;*QQ(D)"’Hw /U||H;9(D)

< C (12 fl gr=o iy + 1™l gy )
75 (D) >

where C = C(d, p,a, v, u,0, D). In particular, C is independent of \.
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Proof. We repeat the argument of the proof of Theorem As before, we may
assume v < g+ a/2.

Let n € Z. Since u is a weak solution to (Z4)), u,(z) := u(e"x) and f,(z) :=
f(e™x) satisfy the following equation in weak sense;

A2 (un()¢-n (™)) (@) = €™ Mun()¢n(e™)) (@) = Fu(x), = €R?  (4.21)
where
Fo(z) = " fr()(—n(e"z) — Gn(z)
= € fa@)Cn(€"2) = (A2 () le™))(@) = Cnle" ) A Pun () )

By Corollary @L5{(ii), we get G, € H)~* and

Z en(efap/z)HGnHZ;ﬂ <C Z e"(G*QP/Q)IIGnIIZ;IZ,Q/z
nez nez

< Cllo"ullye (422)

)
This implies that F,, € H)™“.
If A =0, then the equality [@21]) easily yields

A2 (Y (€ Ny = Bl

e FuCYn (€I + (Gl (423

Next, let A > 0. Then, by [44, Theorem 1] (or [I7, Theorem 2.1]), we have
Un(-)(—n(e™) € H)~* and

" PAP (VG- (€™ ) + N A2 (un ()Gn (™))

y—c s
HP HP

< OIE2, o < C (Il ful)on(€ya +1Cal? o) (424)

We multiply by e™?=r/2) to [@23) and [@24), then take sum over n € Z. Finally,
we use ([{L22)) and Lemma 277)(i7) to finish the proof of the theorem. O

5. PROOF OF THEOREMS [2.2] 23] AND 2,101

We only need to prove Theorems and This is because Theorem
is a consequence of Theorems and [£.6] and Theorem 2.I0 is a consequence of
Theorems and (711

Proof of Theorem

1. Existence and estimate of solution.

First, assume ug € C°(D) and f € C((0,T) x D). Then, by Lemma [B2] the
function u defined in (2.6) becomes a weak solution to (Z.2]). Also, by Lemmas
and 3.7

||1/’_a/2u||Lp,e(D,T) <C (||7/1_a/2+a/puo||Lp,e(D) + ||7/}a/2f||Lp,9(D,T)) .

Now we fix v € (0, «/p). By (ZI8)), we have L, o/(D) C B;ﬁ;,a/p(D) for any 6’ € R,
and therefore applying Theorem with p = 0, we conclude u € wo‘/zHgﬁe(D, T)

and

||7/}_a/2u||H;19(D,T) <C (||7/1_a/2+a/puo||Lp,e(D) + ||7/}a/2f||Lp,9(D,T)> .
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Using this and Corollary E5|(i), we have u; = A2y + f € 1/170‘/2HZ7;°‘(D,T),
u€ ) ,(D,T), and

lullsy 0.1y < € (1672 Puglly, yoy + 162l ooy ) - (5:1)

For general data, we take {uoptneny C C°(D) and {fn}nen € C°((0,T) x D)

such that
Ugn — Ug 1IN 1/)0‘/270‘/pB;ga/p(D),
fo— f in TPH (D, T).
Define u,, (resp. u) by (28) with ug, (resp. ug) and f,, (resp. f). Then, by Lemmas
and 3.7 u, converges to u in the space L, g_q,/2(D,T). Also, considering the
estimate (&) corresponding to u, — t;,, we conclude u,, is a Cauchy sequence in
20(D,T). Let v denote the limit of w, in H) 4(D,T). Then, v = u (a.e.) and

therefore u (or its version) is in ) ,(D, T).

Now we prove that ([23) holds for all ¢ < T. Since u,, is a solution to (Z2]) in
the sense of Definition 1] taking n — co and using

||¢7a/2(un - U)HH;,S(D,T) + ||¢a/2(Aa/2un - AQ/QU)HH;;}(D,T) — 0,

we find that (Z3) holds for uw almost everywhere on [0,7]. By Theorem 2.T5] we
know that (u(t) —wuo, ¢)p is a continuous in ¢, and therefore we conclude that (2.3)
holds for all ¢ < T. Thus, u becomes a weak solution. (2.7) also follows from the
estimates of wu,,.

2. Uniqueness.
Let u € ¥*/2L, (D, T) N {u= 0 on[0,T] x D} be a weak solution to

opu(t, x) = A ?u(t, x), (t,z) € (0,T) x D,
u(0,2) =0, €D,
u(t,z) =0, (t,xz) € [0,T] x D°.

Then, by Theorem .6 with © = 0 and v > 0, we have u € 1/10‘/2HZ70(D, T) for any
~ > 0. This and Corollary 5(¢) imply u € ﬁ;jéa(D, T) for any v € R.

Now we take a sequence u,, € C*([0,T] x D) (cf. Remark 2.8|(ii)) such that
Uy — U in ﬁ;;a(D,T). In particular, u, — u, u,(0,) — 0, and Opu, — Su in
their corresponding spaces. Define f,, := Oy, — A% ?u,,, then u, trivially satisfies

Opun — A u, = [y
By Lemma [3.2(i1),
t
n(t,2) = Euun (0. XP) + [ B[ (s, X2 s
0

Also, by Lemmas and [3.7] and Theorem (4.0]

||1/)7a/2Un||Hgﬁg;"(D,T) (5.2)

<C (”w/pw/zun(o, NMpasa-arnip) + ||1/fa/2fn||H;,9<D,T>) .
By Corollary E5(i), we have A%/?u,, — A%/?y in w_o‘/zH;)e(D, T), and therefore

frn = Outun — A ?up, — O — A2y =0
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as n — oo in the space 1/)’0‘/2H;)9(D, T). From (52), we conclude that v = 0. The
uniqueness is also proved.

Proof of Theorem [2.3]

If A > 0 or D is bounded, then it is enough to repeat the proof of Theorem 22
During the proof, one only needs to replace results for parabolic equations by their
corresponding elliptic versions.

Therefore, we only consider the case when A = 0 and D is a half space.

1. A priori estimate and uniqueness.

We first prove the a priori estimate

47" 2ul, 0y < CI2 I, o0 )

holds given that u € L, g_qp/2(D) N {u = 0on D} is a weak solution to (2.4).
Note that by Theorem .7, we have u € wo‘/Qng(D). Assume u € C°(D) for
a moment. Then, for any A\ > 0,

A2y — M= f—Auon D,
where f := A®/?yu. Thus, applying @.22) for A > 0 and letting X\ | 0, we get
estimate (G.3]) for A = 0. For general case, we take u,, € C2°(D) such that u, — u
in 1/)0‘/2H§9(D). Then, by CorollaryEL5|(4), A%/ ?u,, — A2y = finp=*/2L, ¢(D).
Consequently, this leads to (5.3]), which certainly implies

19~ 2ull,, o0y < ClID2f 1, o(0)-
The uniqueness result of solution easily follows from this.

2. Weak convergence and existence.

Let u, € ¥*/2L,¢(D) N {u = 0 on D¢} denote the solution to equation (Z4)
corresponding to A = 1. Then, by @Z22), {u,} is a bounded sequence in the
space L,(R%, pf=4=2P/2qz), and therefore there exists a subsequence {u,,} which
converges weakly to some u € Lp(Rd, pl—d—ap/ 2dz). Obviously, we have u = 0
(a.e.) on D¢. By Lemmaldd, for any ¢ € C°(D), A%/2¢ belongs to the dual space
of p*/2H (D). Therefore,

(um7¢)Rd = (um7¢)D - (u7¢)D = (uv(b)]Rd
and
(umv Aa/2¢)Rd = (umv Aa/2¢)D - (u7 Aa/2¢)D = (uv Aa/2¢)Rda

as n; — oo. Thus, we conclude u is a weak solution to (2Z4) in L, g_qp/2(D) N
{u = 0on D°}. Now we prove the weak convergence. The above argument shows
that any subsequence of u, has a further subsequence which converges weakly in
Ly(R?, p?=4=2P/2dz), and the limit becomes a solution to ZZ) in Ly g—ap/2(D) N
{u = 0onD}. Due to the uniqueness of solution proved above, we conclude that
this limit coincides with u. This proves the weak convergence, and the theorem is
proved.

APPENDIX A. AUXILIARY RESULTS

Recall that p(t,x) = pq(t,z) is the transition density function of a rotationally
symmetric a-stable d-dimensional Lévy process. It is a radial function and
t t

_d
pd(t,:E) ~tTE A |£L‘|d+a ~ (tl/o‘ + |x|)d+o¢’

(A.1)
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and
pa(t,x) =t~ pa(1,17 7). (A-2)
If f is a radial function, then we put f(r) := f(z) if r = |z|.

Lemma A.1. (i) Let d > 2 and f be a nonnegative radial function on RY. Then,

for xt #0,
/ F@ 2)da = C(d)|:v1|d_1/ F(|(1 4+ 82)172) 582, (A.3)
Ri—1 0
(ii) Let d > 2. For any t > 0 and x' # 0,

/ pa(t,zt 2 )dx' ~ pi(t,zt), (A.4)
Rd—1
where the comparability relation depends only on d and o.

Proof. (i) By the change of variables,
/ f(Il,CL'/)dCL'/:/ f($1,|$1|$/)|wl|d_ldxl
Rd—1 Rd—1
[t P
Rd—1
- C(d)|;v1|d_1/ S (1 + 82)1/2) 57 2ds,
0
(47) By (AJ) and (A3), it suffices to prove that

o0 t|$1|d_lsd_2 . t
ds~= [t7o N——+]. Ab
/o (112 + |t |(1 + s2)1/2)d+a ©° e (A.5)

Let t|zt|=* < 1, then

oo |1 g2 oo flat |41 g2
/ (t1/e + |2t (1 + s2)1/2)d+a ds ~ / 1 2)1/2 Tra 48
0 o (el + s2)1/2)

t
Now let t|z!|=® > 1. We put
ap, 1)1
o0 t|$1|d715d72 /t |z /oo
ds = S p— 3
/0 (7 + 271+ s2) 727 11/ 21|~
Then,
tl/a|m1|71
d 1
I< t_5|x1|d_l/ s172ds = C(d, )t~ =,
0
] Sd72 L
1< t|x1|+a/ S ds=C(a)t R,
/o g1 =1 (1 + 82)T

Therefore, the left-hand side of (A5 is controlled by the right-hand side. Due to
(A6, to prove (A5), we only need a proper lower bound of I. Let t[z!|~® > 1.
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By the changing variables s = t*/@|z!| 711,

tl/a‘wlrl

. / tal|d— 1502 i
= Jo (tl/a‘ + (t2/a + |I1|—252)1/2)d+a
1 ! jd—2 1
:t‘a/o (1+(1+12>1/2)d+adl:C(d,a)t_a.
The lemma is proved. (|

Lemma A.2. Let a € (0,2) and v, 71 € R. Suppose that
2 2

—— <%, —2<Mm—-Y%<2+-—. (A.7)
@ e

Then, for any (t,z) € (0,00) x R?,
|y1|70a/2 1 2 —
foa— _ W <O \/Z—F a/2y¥o RN A8
/de( T O -
where C' = C(d, o, v0,71)-

Proof. Tt suffices to prove (A.8]) when t = 1. Indeed, if it holds for ¢ = 1, then by

@),
/ ( ) e
pt,x —y)————F——7—
R Y+ ez
Y071

=Ct 2 /p(l,t‘éw—y)
R (

ETREE
< tho;vl (1+t7%|x1|a/2)'yof'n
— C(\/g + |xl|a/2)'yofm'

|y! [0/

dy

Thus, we may assume ¢ = 1. By (A4) and (AJ),

Loy e
el T T A ey

1 |yl|’ma/2 1 1
~ 1A dyt =: 1 .
A ( = y1|1+a> T+ iy =)

Thus, it only remains to show for ! € R,

I(x') < C(1+ [at[*/2)r0=n, (A.9)
Case 1. Let |2!| < 1. Put
I(z') =/ e dy’ +/ cedyt = L(ah) + L(a?).
ly'<2 lyt|>2

If [y'| <2, then by (A1),

L' <c lyt[*02dy" = C.

lyt|<2
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If [yt > 2, then |z! — yt| > |y'|/2. Thus, by (A7),

1 1le/2 "
C ly'| |y1|0‘(’)’0*'¥1)/2dy1
wips2 |2t =yt L+ [yte/2

C/ |y1|a(w07;172)71dy1 —C.
ly'1>2

IQ(.Il)

IN

IN

Therefore, I is bounded and ([A9) is proved for |z!] < 1.
Case 2. Let |2!| > 1. Put

[ s ] -
[yt >2[21] [zt]/2<|yt]<2]2?] 1/2<|yt|<|=]/2 lyt|<1/2

= Ji(zh) + Jo(zh) + Ja(zh) + Ja(2h).

I(zh)

First, we estimate J;. Note that if » > 1, then

,roz/2

[
T 14ra/2 T

1
5 (A.10)

For |y!| > 2|x'|, we have |y*| > 2. Thus, (A7) and (AIQ) yield

1 |y1|0‘/2 " a(vo=71)
Ji(zh) < 1 P) duyt
1(z7) < /y122|w1| |zl — yl[i+e (1+ |y1|a/2 ly"| Y

a(vp—v1—2)
1 0 S 1

<C

ly'[=2]z!]

—ldyl

a(vo—v1—2 a(vo—1)

= Olz! " < ol "F ™ < 0@ + |2t |/2) 0 (A.11)

Secondly, we estimate Jo. If |2!]/2 < |y!| < 2|2!], then

1la/2 1|la/2
L_LeWR 1 R
2 = 1+ |21]o/2 37 1+ |yl|er2

Therefore, we have
Jo(zh) < C(1 + |t ]*/2) 0= /pl(l,:lc1 —yh)dy?
R
= C(1+ |zt/2)0=n, (A.12)
Next, we estimate J3. If 1/2 < |y} < |#1|/2, then

lia/2 1
Lo W oy gy 2
3 1+|y1|a/2 2
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Hence, by (A1) and (A0,

1|a/2 " v
Jg(ipl) S/ 1 ( |y | > |y1| (702 Wl)dyl

1/2<yt|<|zt)/2 |2t =y T \ 1 4 |yt|e/?

<Ot / T dy!
1/2<|yt|<|=t]/2

a(vp—=v1+2) 1

< Clwll‘l‘“/ W' dy
1/2< |yt <2t ]/2

1—a a(vo—71+2)
<cpte [y
lytI<|zt]/2
= ! "™ < O(1 + |at |2y (A.13)
Lastly, we estimate Jy. If [y'| < 1/2, then
2 1 |zt
il R | Loyt > 1
35 Trppr b P ovizs

Therefore, by (A7) and (AI0Q),

1
Ia') < 1 : [ %dy’
= iz =y \ T o7
§C|$1|717a¢/ |y1|a'yg/2dy1
lyt<1

<Ol [T S O(1+ |21 0/2) 7202 < O (1 + [ /20,

Combining this with (A1), (A12) and (AI3), we prove (A9) for |z!| > 1. The
(|

lemma is proved.

Lemma A.3. Let (A1) hold for yo,71 € R. Then, for (t,z) € (0,00) x R,

d’YUOt/2
p(t,$ - y)yiady S C(\/Z_F dg‘/2)’)’0*'}/17
/D (Vi+dy/*m

where C' depends only on d, o, vg,v1 and D.
Proof. Note that it is enough to assume D is bounded. This is because if D is a
half space, the result follows from Lemma [A.2]

For R > 0, denote D := {z € D : d, > R}. Since D is bounded, one can find
Z1,...,%n € 0D such that

DcC (U(D N BR/s(%))) UDpge-
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Therefore,
da'yo/2

pt,w = y)————dy
/D (Vi+dg/m

n d;z'yo/2
SZ/ ( )p(t,w—y)

=1

DNBgrys(z: (\/Z + d(;/z)'yl
dOé'YO/2

+/ Ptz —y)———m—dy
Dryse (\/E + dy/Q)vl

=Y Ii(t,z) + II(t,x).
k=1

1. We estimate Iy (¢, z) for fixed k € {1,2,--- ,n}.

First, assume x € Bg(z;) N D. Then, (by reducing R if necessary) we can
consider a C'!-bijective (flattening boundary) map ® = (®!,--- &%) defined on
Br(z,) such that ®(Bg(zx) N D) C R% and d. ~ ®*(z) on Br(zx) N D. Then, one
can easily handle I}, using Lemma [A.2]

Second, assume x € D\ Bgr(zy). Since r — p(t,r) is nonincreasing, for any
Y,z € Brys(wy), we have |z — y| < 2R/3 < |z — y|, which implies

p(t,z —y) <p(t,z—vy).

If y1 =70 > 0, choosing z € Bp/3(xx) N D such that d, < C(D, R)d. and using the
result for the first case,

dg'yo/2
Ik(tux) S/ p(th_y)iady
DNBgy3(zk) (ﬁ+ dy/2)71
< C(\/Z 4 dg/Q)’Yo—Vl < C(\/E + dg/2)%—%_ (A'14)

If v1 — 0 < 0, by taking z € Bgys(xx) N D such that d. < d,, we also have (A.14).

2. We estimate II(t,x).
We first consider the case x € Dg/q2. For y € Dg/g, we have d, ~ d, ~ 1 and

t da/z Yo—71
(@) < C(diam(D), 0,71, R, @),

Vit de/?
p(t,z —y) (ﬂ)% dy
ViE+ de/?

Also, since d, ~ 1 on y € Dpys, it suffices to show that

1 Yo
plt,z— 1) (—) dy < C. (A.15)
/DR/G Vit
Since (A0 is obvious if t <1or vy > 0. If ¢ > 1 and 7o < 0, then by (A,

1 Yo
p(t,z —y) (—) dy < C/ td/a=10/2qy <
/DR/G \/Z +1 D
Therefore, (AH) is proved.

Using this, we get

IT<CWt+ dgtﬂ)’rr‘n /

Drys
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Next, we consider the case x € D\ Dg/12. Since dy, =~ 1, we have
dg'yo/2 1

(VE+dy/yn (VE+ 1)
Also note that |z —y| > R/12 for y € Dg/g. Thus, by (A.J),

t
I < Clix / 7d+ady + Oltth_d/a_’Yl/2
o—y|=R/12 |2 = Y]
< Clicr + Clt>1t_70/2_d/0‘t(’70—’71)/2
< COlpey + Clys tO0=1/2,

Thus if 7o > 71, then by (A7),
1T < CtO0=1/2 < O(/T + do/2yvo—n,

Now let 79 < 1. Then, 1,1 (vt + dg/z) is bounded above and ¢t ~ (¢t + dg/z) if
t>1, we get

II <Clycq + Cltzﬂf(%—%)/? < C(\/Z+ dg/Q)’Yo—%
provided that vg < ;. The lemma is proved. (Il

Next, we provide some results for the distance function d,.

Lemma A.4. Let D be a half space or a bounded C*' open set.
(i) Let zo € 0D and r > 0. Then, for any A > —1,

][ dNdz < C(d, A\, D)r. (A.16)
BT(I())

(i) Lety € D, r,p,k1 >0 and —1 < kg < 0. Suppose that r < cp for some ¢ > 0.
Then, there exists a constant C = C(d, k1, ko, ¢, D) such that

Ko

dw
—2——dx < Cp~Frfo,
/Dp(y)ﬁDT |z — y|dtr

where D,(y) :={x €D : |z —y|>p} and D" :=={x € D :d, <r}.

Proof. (i) The result is trivial if D is a half space. If D is a bounded C''! open
set, then 0D is a (d — 1)-dimensional compact Lipschitz manifold. Thus, we have

(A16) due to e.g. page 16 of [2].
(1) 1. Let D be a half space.
Assume first d > 2. By the change of variables and Fubini’s theorem,

|I1|I€0
————dx
/ry>p,rl<r |z — y|dtm

= / |$1 + y1|:~co/ |33|7d7511\1\>pdz/dxl
|zt +yt|<r Rd-1
- |:E1 _|_y1|/<0 [o%¢) Sd,Q .
B O/zl+y1|<r [t [tre Joo (14 s2)(d4m)/2 Ligtjapsyirspdsde
o0 g2 X
- O/o A szl sy rds, (A7)
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where
1|I{0
1
I(p, S y T‘ / |:E1 —y |1+Rl 1‘11,y1|>(1+52)71/2p1|m1‘g7«d$ .

Take pg = po(ko) > 1 satisfying —1 < poko. Since —1 < ko < 0 < k1, by Holder’s
inequality,

I(p,s,y*,r)
1/po ., 1/py
< (/R|$1|p0ml|m1§rd$1) (/R|TE1|pop051111|>(1+52)1/2pdiE1>
Rt or (+r1—1/p()
< Ot T (L ) T (A.18)

where pj = po/(po — 1). Combining (A17) and (AI8]), we have

|t |0
S
/|my|>p,|ml|<r |z — y|dtm
Sd72

< Cpfl%ﬁir”"*% ds
- 0 (1 + 82)(11—14-1/1)6)/2

—1—k1+2-

=Cp () rﬁo+ﬁ < Cp~rapho,

For d = 1, using (AIR), we get

/ |$|F~o p I( . )
T AT = r
le—yl>p,lal<r T — Y| P, 0.y,
K1t

< Crno+p10p < Cp="ipho,
2. Let D be a bounded open set. We take x1,...,z, € D such that

D" C LnJ BQT(I»L').

i=1

Therefore, by (i),

dro n / dro
— 2 __dx < —r __dx
/D,,( Apr [T — yldtr Z: Dy (y)"Bar (z:) 1T — Y|4

=1
S Opfdfnl,rdJrno S Opfnlrﬁo.

The lemma is proved. O

We write u € H)+t(T) if u € HYT(T), u(0,-) € Byt /" and there exists
f € H)(T) such that for any ¢ € C2°(R?),

¢
(ults ) D) = (w0, ), D)z + [ (5, Dods, VELT.
0
In this case, we write f = u;. The norm in H)**(T) is defined as

||U||Hg+a(T) = ||U||H;+Q(T) + ||Ut||H;(T) + [ (0, ')||B;+o<fa/p~
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Lemma A.5. Let p € (1,00), a € (0,2), y € Rand 1/p < v < 1. Fora > 0,
OSSStSTanduG’H;‘LO‘(T),

lu(t) = u(s) e

< Clt = s 7a 7 (aljullyyro iy + 0 el ry) (A.19)
where C' = C(a, p,v). In particular, C is independent of T and a.

Proof. One can prove the lemma by following the proof of [39) Theorem 7.3], which
treats the case o = 2. First, we note that due to the isometry (1 — A)7/2
H — H)™°, we only need to prove for any particular v € R, and therefore we
assume v = va — . Second, since CZ°([0,T] x R?) is dense in H)™*(T), we may
further assume u € C°([0,T] x R%). Third, due to the scaling argument used at
the beginning of the proof of [39] Theorem 7.3], it is enough to consider the case
a=T=1.

Finally, to prove [A9) for the case a = T' = 1, we just need to repeat the proof
of [36l, Theorem 7.2] word for word. Although [36] Theorem 7.2] handles the case
a = 2, its proof works also for a € (0, 2) thanks to [20, Lemma A.2]. The lemma is
proved. ([
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