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Abstract

Topological data analysis (TDA) is a rising field in the intersection of math-

ematics, statistics, and computer science/data science. The cornerstone of TDA

is persistent homology, which produces a summary of topological information

called a persistence diagram. To utilize machine and deep learning methods on

persistence diagrams, These diagrams are further summarized by transforming

them into functions. In this paper we investigate the stability and injectivity of

a class of smooth, one-dimensional functional summaries called Gaussian persis-

tence curves.

1 Introduction

One of the main tools of topological data analysis (TDA) is persistent homology, which

measures how certain topological features of a data set appear and disappear at different

scales. This information can be stored and visualized in a concise format called a

persistence diagram.

Functional summaries play an important role in topological data analysis, as they

allow one to apply machine and deep learning techniques to analyze topological in-

formation contained in persistence diagrams. In [6] a new class of one-dimensional

smooth functional summaries was introduced called Gaussian persistence curves (GPC’s).

These functional summaries were built by combining (a slight variation of) the persis-

tence curve framework from [7] with the persistence surfaces construction from [1],

and they were used to study the texture classification of grey-scale images [6].

In this paper, we investigate the stability of GPC’s and the injectivity of both persis-

tence surfaces and GPC’s. Loosely speaking, stability refers to the property that small

changes in diagrams correspond to small changes in the resulting summaries and the

injectivity of a summary implies that the summary can distinguish between distinct dia-

grams. We show that unweighted GPC’s are stable (Theorem 3.3) and that, under mild

conditions, weighted GPC’s are both stable (Corollary 3.5 and Theorems 3.6 & 3.7)

and almost injective (Theorem 4.4). Furthermore we show that unweighted persistence

surfaces are injective (Theorem 4.3).

Other summaries in topological data analysis include persistence landscapes [4],

the persistent entropy summary function [2], persistence silhouettes [5], persistence

surfaces and persistence images [1]. We refer to [3] for a review of the properties and

applications of these summaries. All of these other summaries are known to be stable,
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but among them only the persistence landscapes are known to be injective. Note that

persistence landscapes can be viewed as a sequences of one-dimensional functions

and for any n ≥ 1 injectivity will fail if only the first n terms of the sequences are

considered.

The outline of this paper is as follows. In Section 2 we introduce Gaussian per-

sistence curves and derive some basic properties and useful formulas. In Section 3

we apply these formulas to prove stability of unweighted GPC’s and certain weighted

GPC’s. Finally, in Section 4 we investigate the extent to which the functional sum-

maries produced by persistence surfaces and GPC’s are injective.

2 Gaussian Persistence Curves

Here we describe the construction of Gaussian persistence curves which can be viewed

as a combination of the persistence surfaces introduced in [1] and the persistence curve

framework from [7]. We refer to [8] for background on persistent homology and per-

sistence diagrams.

The input to our construction is a persistence diagram, by which we mean a finite

multi-set D of points in the plane which lie above the main diagonal y = x. Let Σ be

a symmetric, positive semi-definite 2 × 2 matrix. For a point µ ∈ R
2, Let gµ,Σ be the

probability density function (PDF) of a bivariate normal distribution with mean µ and

covariance matrix Σ. That is,

gµ,Σ(x) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

2π|Σ|1/2 .

Let κ : R2 → R be a function with κ(b, b) = 0 for all b ∈ R. We refer to any such κ as

a weighting function.

Definition 2.1. [1] The persistence surface associated to the diagram D with weight κ

is the function

ρD,κ(x, y) =
∑

(b,d)∈D
κ(b, d)g(b,d),Σ(x, y).

In [1] the authors choose a grid on the plane, integrate the persistence surface over

each box in the grid, and then use these values to produce a vector summary of the

original diagram. Instead, we look at this surface from the perspective of the persis-

tence curve framework from [7]. This framework produces a functionG : R → R such

that the value of G(t) depends on measuring some property of the diagram inside the

fundamental box Ft = {(x, y) | x < t, y > t}.

Definition 2.2. Let ρD,κ be a persistence surface. The corresponding Gaussian per-

sistence curve is the function

GD,κ(t) =

∫

Ft

ρD,κ(x, y)dxdy.

If κ(x, y) = 1 for all (x, y), then we drop κ from the notation and denote the

corresponding surface and curve by ρD(t) and GD(t) respectively. We refer to this

curve as the unweighted Gaussian persistence curve on D.
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We will always consider Σ to be fixed ahead of time and do not include it in the

notation for the curve GD,κ(t). While the definition makes sense for more general Σ,

in this paper we fix Σ to be a multiple of the identity matrix by a scalar σ2. This allows

us to split gµ,Σ as

gµ,Σ = φ(
y − d

σ
)φ(

x − b

σ
)

where φ is the pdf of the standard normal distribution. This assumption allows one to

easily preform the integration over the fundamental box and obtain the CDF realiza-

tion of GD,κ(t) as

GD,κ(t) =
∑

(b,d)∈D
κD(b, d)Φ(

t− b

σ
)Φ(

d− t

σ
).

Gaussian persistence curves fit into (a slight modification of) the persistence curve

framework from [7] in the following way. Let D be the set of all persistence diagrams,

Ψ be the set of all functionsψ : D×R
3 → R with ψ(D;x, x, t) = 0 for all (x, x) ∈ R

2

and D ∈ D. Let R represent the set of functions on R. Let T be a set of operators

T (S, f) that read in a multi-set S and real-valued function f and returns a scalar. Given

D ∈ D, ψ ∈ Ψ, and T ∈ T , the corresponding persistence curve is the function

PD,ψ,T (t) := T (Ft, ψ(D;x, y, t)), t ∈ R.

The functionPD,ψ,T (t) is called a persistence curve onD with respect to ψ and T .

In this notation, choosing ψ(D;x, y, t) = ρD,κ(x, y) and T (f, S) =
∫

S f(x, y)dxdy,

we obtainPD,ψ,T (t) = GD,κ(t).
We start with a few examples of Gaussian persistence curves, which are smooth

versions of persistence curves appearing in [7].

Example 2.3. When κD(b, d) = 1 for all (b, d), the resulting unweighted Gaussian

persistence curve can be viewed as a smooth version of the Betti curve from [7]. For

this reason we also refer to the unweighted Gaussian persistence curve GD(t) as the

Gaussian Betti Curve.

Example 2.4. Let ℓD(x, y) := (y − x) · χD(x, y) and let ℓsum =
∑

(b,d)∈D ℓ(b, d).

Define κD(x, y) =
ℓ(x,y)
ℓsum

. The corresponding Gaussian persistence curve is a smooth

version of the life curve from [7] which we call the Gaussian Life Curve.

Example 2.5. Let msum =
∑

(b,d)∈D(b + d) and define κD(x, y) = x+y
msum

. The

corresponding Gaussian persistence curve is a smooth version of the midlife curve

from [7] which we call the Gaussian midlife Curve.

With this set up, generating new Gaussian persistence curves is only a matter of

selecting a covariance matrix Σ, which controls the smoothness of the curve and a

function κ, which is a weighting function. For example, by using weight functions

such as entropy function (- d−b∑
(b,d)∈D

d−b log
d−b∑

(b,d)∈D
d−b ) and multiplicative life func-

tion (db ), we can obtain Gaussian versions of the life entropy and multiplicative life

3



persistence curves. In general, we can produce a Gaussian version of any function in

the persistence curve framework.

The next two lemmas will be used to compute the L1–norm of a Gaussian persis-

tence curve. Their proofs are elementary exercises in Calculus.

Lemma 2.6. Given b > 0 ∈ R,

∫ ∞

−∞
Φ(
b− t

σ
)Φ(

t− b

σ
)dt =

σ√
π
. (1)

Proof. We will first prove the result for b = 0 and σ = 1. By integration by parts (by

letting u = Φ(−t) and dv = Φ(t)dt), we obtain

∫ ∞

−∞
Φ(−t)Φ(t)dt = [tΦ(−t)Φ(t) + Φ(−t)φ(t)]∞−∞

︸ ︷︷ ︸

I

+

∫ ∞

−∞
tφ(t)Φ(t) + φ2(t)dt

︸ ︷︷ ︸

II

.

For I , by the elementary facts Φ(t) → 1 as t → ∞ and L’Hopital’s rule, one can

evaluate that I = 0.

For the II , we consider each integral separately. By [9],

we have that
∫∞
∞ tΦ(a + bt)φ(t)dt = b√

1+b2
φ( a√

1+b2
). Since in our case a = 0

and b = 1, ∫ ∞

−∞
tΦ(t)φ(t)dt =

1√
2
φ(0) =

1

2
√
π
.

By [9] again, we know that

∫ ∞

−∞
φ2(t)dt =

1

2
√
π
Φ(

√
2t)

∣
∣
∣
∣

∞

−∞
=

1

2
√
π
.

Thus, sum over them to obtain the desired result. To obtain the final result simply apply

the substitution, s = t−b
σ then ds = 1

σdt.

∫ ∞

−∞
Φ(
b− t

σ
)Φ(

t− b

σ
)dt =

∫ ∞

−∞
Φ(−s)Φ(s)σds = σ√

π
.

Lemma 2.7.

∫ ∞

−∞
Φ(at+ b1)(Φ(at + b2)− Φ(at+ b3))dt (2)

=
−
√
2

a

[
b1 − b2√

2
Φ(
b1 − b2√

2
) + φ(

b1 − b2√
2

)− b1 − b3√
2

Φ(
b1 − b3√

2
)− φ(

b1 − b3√
2

)

]

(3)
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Proof. Let s = u+ (at+ b3). Then ds = du.

∫ ∞

−∞
Φ(at+ b1)(Φ(at+ b2)− Φ(at+ b3))dt

=

∫ ∞

−∞
Φ(at+ b1)

∫ at+b2

at+b3

φ(s) dsdt

=

∫ ∞

−∞

∫ at+b2

at+b3

Φ(at+ b1)φ(s) dsdt

=

∫ ∞

−∞

∫ b2−b3

0

Φ(at+ b1)φ(at+ b3 + u) dudt

=

∫ b2−b3

0

∫ ∞

−∞
Φ(at+ b1)φ(at+ b3 + u) dtdu.

To evaluate the integral, we recall that
∫∞
−∞ Φ(x + ǫ)φ(x) dx = Φ( ǫ√

2
). Consider

another substitution: x = at+ b3 + u, so dx = adt.

∫ ∞

−∞
Φ(at+ b1)φ(at+ b3 + u) dt

=

∫ ∞

−∞
Φ(x− u− b3 + b1)φ(x)

1

a
dx =

1

a
Φ(
b1 − b3 − u√

2
).

Let v = b1−b3−u√
2

. Then dv = −1√
2
du. Finally, we obtain

∫ b2−b3

0

∫ ∞

−∞
Φ(at+ b1)φ(at+ b3 + u) dtdu

=

∫ b2−b3

0

1

a
Φ(
b1 − b3 − u√

2
) du.

=

∫ b1−b2√
2

b1−b3√
2

−1

a

√
2Φ(v)dv =

−
√
2

a
[vΦ(v) + φ(v)]

b1−b2√
2

b1−b3√
2

=
−
√
2

a

[
b1 − b2√

2
Φ(
b1 − b2√

2
) + φ(

b1 − b2√
2

)− b1 − b3√
2

Φ(
b1 − b3√

2
)− φ(

b1 − b3√
2

)

]

.

Proposition 2.8. Let GD(t) be an unweighted Gaussian persistence curve on a dia-

gram D. Then

‖GD(t)‖1 =
∑

(b,d)∈D

[

(d− b)Φ(
d− b√
2σ

) +
√
2σφ(

d − b√
2σ

)

]

. (4)
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Proof.

‖GD‖1 =
∫ ∞

−∞

∣
∣
∣
∣
∣
∣

∑

(b,d)∈D
Φ(
t− b

σ
)Φ(

d− t

σ
)

∣
∣
∣
∣
∣
∣

dt (5)

=

∫ ∞

−∞

∑

(b,d)∈D
Φ(
t− b

σ
)Φ(

d− t

σ
)dt (6)

=
∑

(b,d)∈D

∫ ∞

−∞
Φ(
t− b

σ
)Φ(

d− t

σ
)dt. (7)

By adding and subtracting Φ( t−bσ ) + Φ2( t−bσ ) and using the CDF property Φ(−t) =
1− Φ(t) we obtain,

=
∑

(b,d)∈D

∫ ∞

−∞
Φ(
t− b

σ
)Φ(

b − t

σ
) + Φ(

t− b

σ
)

(

Φ(
t− b

σ
)− Φ(

t− d

σ
)

)

dt (8)

=
∑

(b,d)∈D

σ√
π
+ (d− b)Φ(

d− b√
2σ

) +
√
2σφ(

d − b√
2σ

)− σ√
π

(9)

=
∑

(b,d)∈D

[

(d− b)Φ(
d− b√
2σ

) +
√
2σφ(

d − b√
2σ

)

]

. (10)

where (9) follows from Lemmas 2.6 and 2.7.

Let LD =
∑

{(b,d)∈D} d − b. We refer to LD as the total lifespan of D. We also

define δD = min(b,d)∈D d− b, that is δD is the minimum lifespan of a point inD. We

note that by convention, min ∅ = ∞ and 1
min ∅ = 0.

Corollary 2.9. For any persistence diagram D,

‖GD(t)‖1 ≤
∑

(b,d)∈D

[

(d− b) +
σ√
π

]

≤ (1 +
σ√
πδD

)LD.

Apply the same argument as above gives a bound for the weighted case as well. Let

MD,κ = max(b,d)∈D |κ(b, d)|.
Corollary 2.10.

‖GD,κ(t)‖1 =
∑

(b,d)∈D
|κ(b, d)|

[

(d− b)Φ(
d− b√
2σ

) +
√
2σφ(

d − b√
2σ

)

]

.

≤
∑

(b,d)∈D
|κ(b, d)|

[

(d− b) +
σ√
π

]

≤ (1 +
σ√
πδD

)MD,κLD

As long as the diagram D is finite, then the Gaussian persistence curve given by

Definition 2.2 will be a Lipschitz function with respect to the input t ∈ R (see [6]). To-

gether with some mild assumptions on the weight functions κ, this implies that when-

ever there is is a process for randomly sampling persistence diagrams the associated
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Gaussian persistence curves will satisfy a version of the central limit theorem. See

[6] for details, or [3] for more general results about statistical properties of functional

summaries.

3 Stability

Given persistence diagrams C and D, a matching between C and D is a bijection

γ : C ∪ ∆ → D ∪ ∆ where ∆ is the main diagonal in R
2 with each point assigned

infinite multiplicity. For a fixed matching γ and (b, d) ∈ C ∪∆, we denote γ(b, d) as

(γb, γd). We can compute the cost of a matching γ as

L(γ) =
∑

‖(b, d)− (γb, γd)‖∞

where the sum is over all points (b, d) ∈ C∪∆ such that either (b, d) ∈ C or (γb, γd) ∈
D. We define the 1-Wasserstein distance W1(C,D) between diagrams C and D as

the infimum of this cost function over all γ. That is

W1(C,D) = inf
γ
L(γ).

Our next goal is to show that if diagrams C and D are close with respect to the 1-

Wasserstein distance, then the corresponding unweighted Gaussian persistence curves

GC(t) and GD(t) are close with respect to the L1 norm. In the general theory of

summaries of persistence diagrams, this phenomenon is called stability.

Lemma 3.1. Let d, d′, σ ∈ R. Then

∫ ∞

−∞

∣
∣
∣
∣
Φ

(
t− d′

σ

)

− Φ

(
t− d

σ

)∣
∣
∣
∣
dt = |d− d′|.

Proof. Consider that

∫ ∞

−∞

∣
∣
∣
∣
Φ

(
t− d′

σ

)

− Φ

(
t− d

σ

)∣
∣
∣
∣
dt =

∫ ∞

−∞

∣
∣
∣
∣
∣

∫ t−d′
σ

t−d
σ

φ(z)dz

∣
∣
∣
∣
∣
dt
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Substitute z = u+ t−d
σ . Then dz = du and

∫ ∞

−∞

∣
∣
∣
∣
∣

∫ t−d′
σ

t−d
σ

φ(z)dz

∣
∣
∣
∣
∣
dt =

∫ ∞

−∞

∣
∣
∣
∣
∣

∫ d−d′
σ

0

φ

(

u+
t− d

σ

)

du

∣
∣
∣
∣
∣
dt (11)

=

∫ ∞

−∞

∫ |d−d′|
σ

0

φ

(

u+
t− d

σ

)

dtdu (12)

=

∫ |d−d′|
σ

0

∫ ∞

−∞
φ

(

u+
t− d

σ

)

dtdu (13)

=

∫ |d−d′|
σ

0

[

σΦ

(

u+
t− d

σ

)]∞

−∞
du (14)

=

∫ |d−d′|
σ

0

σdu = |d− d′|. (15)

Lemma 3.2.

∫ ∞

−∞

∣
∣
∣
∣
Φ(
t− b1

σ
)Φ(

d1 − t

σ
)−Φ(

t− b2

σ
)Φ(

d2 − t

σ
)

∣
∣
∣
∣
dt ≤ |b1 − b2|+ |d1 − d2|. (16)

Proof.

∣
∣
∣
∣

∫ ∞

−∞
Φ(
t− b1

σ
)Φ(

d1 − t

σ
)− Φ(

t− b2

σ
)Φ(

d2 − t

σ
)dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ ∞

−∞
Φ(
t− b1

σ
)Φ(

d1 − t

σ
)− Φ(

t− b2

σ
)Φ(

d2 − t

σ
) + Φ(

t− b1

σ
)Φ(

t− d2

σ
)− Φ(

t− b1

σ
)Φ(

t− d2

σ
)dt

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ ∞

−∞
Φ(
t− b1

σ
)[Φ(

t− d2

σ
)− Φ(

t− d1

σ
)] + [1− Φ(

t− d2

σ
)][Φ(

t− b1

σ
− Φ(

t− b2

σ
))]dt

∣
∣
∣
∣
.

Therefore, by Lemma 3.1 and 0 ≤ Φ(t) ≤ 1,

≤ 1

∫ ∞

−∞

∣
∣
∣
∣
Φ(
t− d2

σ
)− Φ(

t− d1

σ
)

∣
∣
∣
∣
dt+ 1

∫ ∞

−∞

∣
∣
∣
∣
Φ(
t− b1

σ
)− Φ(

t− b2

σ
)

∣
∣
∣
∣
dt

≤ |d1 − d2|+ |b1 − b2|.

Before proceeding to the first stability result, we will fix some notation that will be

used in the remainder of this section. Recall that we defined δD = min(b,d)∈D(d− b).
We will make the convention that when D = ∅, δD := infD(d − b) := ∞. For two

diagrams C and D, we further define δC,D = min{δC , δD, 1}. Now, fix a minimal

cost matching γ between two persistence diagrams C and D. Let C′ be the points of

C which match with points of D under γ, and let D′ be the image of C′ under this
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matching. Let E = (C \ C′) ∪ (D \D′), that is E consists of the points of C and D

which match to the main diagonal under γ. We denote byGE(t) the unweighted Gaus-

sian persistence curve on E. We note that since γ has been assumed to be a minimal

cost matching, all points of E are matched to their closest point on the main diagonal

under γ. In particular, if (b, d) ∈ E, then the contribution that this point makes to the

cost of γ is d−b
2 . Finally, we enumerate the points of C′ as {(b1, d1), ..., (bN , dN )},

and denote the image of an enumerated point under γ as γ(bi, di) = (γbi , γdi).
We can now proceed to prove our first stability result for the case of unweighted

Gaussian persistence curves.

Theorem 3.3. Let C andD be persistence diagrams and letGC(t) andGD(t) be their

unweighted Gaussian persistence curves. Then

‖GC(t)−GD(t)‖1 ≤ AW1(C,D) (17)

Where A = max
{

2, 2
(

1 + σ√
πδC,D

)}

Proof. We first consider the case when neither C nor D are the empty diagram.

‖GC(t)−GD(t)‖1

≤
∫ ∞

−∞
|
N∑

i=1

Φ(
t− bi

σ
)Φ(

di − t

σ
)− Φ(

t− γbi
σ

)Φ(
γdi − t

σ
)|+ |

∑

(b,d)∈E
Φ(
t− bi

σ
)Φ(

di − t

σ
)| dt

≤
N∑

i=1

|di − γdi |+ |bi − γbi |+ ‖GE(t)‖1

≤ 2
N∑

i=1

‖(bi, di)− (γbi , γdi)‖∞ +

(

1 +
σ√
πδE

)
∑

(b,d)∈E
(d− b)

≤ max

{

2, 2

(

1 +
σ√
πδC,D

)}

W1(C,D)

= AW1(C,D).

Here the second inequality follows from Lemma 3.2 and Corollary 2.9.

One might hope to remove terms depending on the diagram from A. However,

some term involving δC,D will necessarily appear in this bound. To see this, suppose

D = C ∪ E where E consists of k points with total lifespan small when compared to

δC . In other words suppose LE ≤ ε and ε is sufficiently small. Further, note that the

optimal matching between diagrams C and D matches all points of E to the diagonal.

Then W1(C,D) = LE ≤ ε. However, one can see by way of Proposition 2.8 that

‖GC(t) − GD(t)‖1 = ‖GE(t)‖1 ≥ σk√
π

. For this reason it seems natural to consider

weights κ(b, d) which go to zero as b → d. E.g. one can take the lifespan function

κ(b, d) = d− b.

We now consider the case where GC,κC
(t) and GD,κD

(t) are weighted Gaussian

persistence curves on diagramsC and D. We will derive a bound for arbitrary weights

9



and then show how this bound can be improved by imposing restrictions on the weight

functions.

We keep the same notation as before, but in this case we also need to define the fol-

lowing notation for the weighting function. For each (b, d) ∈ E, define κE(b, d) to be

κC(b, d) if (b, d) ∈ C or to be κD(b, d) if (b, d) ∈ D. LetMC = max(b,d)∈C |κC(b, d)|
and define MD, ME , MC′ , and MD′ similarly. Let MC,D = max{MC ,MD}, and

Mγ = max(b,d)∈C′ |κC(b, d)− κD(γb, γd)|.

Theorem 3.4.

‖GC,κC
(t)−GD,κD

(t)‖1 ≤ BW1(C,D) +Mγ‖GD′‖1 (18)

with B = max{2MC, 2ME

(

1 + σ√
πδE

)

}.

Proof. In order to simplify notation, let wi = κC(bi, di), ui = κD(γbi , γci), Fi(t) =

Φ( t−biσ )Φ(di−tσ ), and Hi(t) = Φ(
t−γbi
σ )Φ(

γdi−t
σ ). With this notation, the CDF real-

izations of GC,κC
(t) and GD,κD

(t) are given by

GC,κC
(t) =

N∑

i=1

wiFi(t) +
∑

(b,d)∈C\C′

κC(b, d)Φ(
t− b

σ
)Φ(

d − t

σ
)

GD,κD
(t) =

N∑

i=1

uiHi(t) +
∑

(b,d)∈D\D′

κD(b, d)Φ(
t− b

σ
)Φ(

d− t

σ
)

Hence

‖GC,κC
−GD,κD

‖1

≤
N∑

i=1

∫ ∞

−∞
|wiFi − uiHi| dt+

∑

(b,d)∈E

∫ ∞

−∞
|κE(b, d)Φ(

t− b

σ
)Φ(

d− t

σ
)| dt

We consider each component of this sum separately. By Corollary 2.10 we have,

∑

(b,d)∈E

∫ ∞

−∞
|κE(b, d)Φ(

t− b

σ
)Φ(

d− t

σ
)| dt = ‖GE,κE

‖1

≤
∑

(b,d)∈E

(

1 +
σ√
πδE

)
2ME(d− b)

2

10



Now we consider
∑N

i=1

∫∞
−∞ |wiFi − uiHi| dt.

N∑

i=1

∫ ∞

−∞
|wiFi − uiHi| dt

≤
N∑

i=1

∫ ∞

−∞
|wiFi − wiHi + wiHi − uiHi| dt

≤
N∑

i=1

wi

∫ ∞

−∞
|Fi −Hi| dt+ |wi − ui|

∫ ∞

−∞
|Hi(t)| dt

≤ 2MC

N∑

i=1

‖(bi, di)− (γbi , γdi)‖∞ +Mγ‖GD′‖1

Combining the above inequalities and letting B = max{2MC , 2ME

(

1 + σ√
πδE

)

},

‖GC,κC
−GD,κD

‖1 ≤ BW1(C,D) +Mγ‖GD′‖1.

One might hope to improve this bound by removing the additive term,Mγ‖GD′‖1.

However, we can show that without additional assumptions placed on the weighting

functions such an improvement is impossible. Indeed, suppose that C = {b, d}, D =
{b+ 1, d+ 1}, κC(b, d) = 1 and κD(b+ 1, d+ 1) = u. Then for all d− b sufficiently

large, W1(C,D) = 1 but

‖GC,κC
−GD,κD

‖1 ≥ (u− 1)‖GD‖1

In other words, ‖GC,κC
− GD,κD

‖1 goes to infinity as either u or d − b goes to

infinity.

To avoid this potentiality we will impose additional restrictions on the weighting

functions κC and κD. Precisely, we will assume that there exists a constant K such

that for all (x, y) and (w, z),

|κC(x, y)− κD(w, z)| ≤ K‖(x, y)− (w, z)‖∞.

This holds, for example, when κC = κD is K–lipschitz with respect to the L∞

norm on R
2. Using the notation of the above proof we will have

N∑

i=1

|wi − ui| ≤
N∑

i=1

K‖(bi, di)− (γbi , γdi)‖∞

We can then replace Mγ with KW1(C,D) in the above bound and thus obtain a

bound that does not depend on the matching γ.

Corollary 3.5. Suppose there exists a constant K such that for all (x, y) and (w, z),

|κC(x, y)− κD(w, z)| ≤ K‖(x, y)− (w, z)‖∞

11



Let

J = max{B,K‖GD′‖1} = max{2MC, 2ME

(

1 +
σ√
πδE

)

,K‖GD′‖1}

≤ max{2MC, 2MC,D

(

1 +
σ√
πδC,D

)

,K‖GD‖1}.

Then,

‖GC,κ(t)−GD,κ(t)‖1 ≤ JW1(C,D).

We now consider a few natural weight functions, starting with the lifespan function

ℓ(b, d) = d − b. Note that ℓ is 1–lipschitz. We proceed as in the proof of the previous

theorem, but in this case we split E into disjoint subdiagrams E′ and E′′ where E′ =
{(b, d) ∈ E | d− b ≥ 1} and E′′ = E \ E′.

∑

(b,d)∈E
(d− b)(d− b+

σ√
π
)

=
∑

(b,d)∈E′

(d− b)(d− b+
σ√
π
) +

∑

(b,d)∈E′′

(d− b)(d− b +
σ√
π
)

≤
∑

(b,d)∈E′

(

ME′ +
σ√
π

)

(d− b) +
∑

(b,d)∈E′′

(d− b)(1 +
σ√
π
)

≤ max{2
(

ME +
σ√
π

)

, 2 +
2σ√
π
}

∑

(b,d)∈E
(d− b)

Since each (b, d) ∈ E contributes d−b
2 to the cost of γ, we obtain

Theorem 3.6. LetG = max{2MC, ‖GD′‖1, 2
(

ME + σ√
π

)

, 2+ 2σ√
π
} ≤ max{2MC , ‖GD‖1, 2

(

MC,D + σ√
π

)

, 2+
2σ√
π
}. Then

‖GC,ℓ(t)−GD,ℓ(t)‖1 ≤ GW1(C,D).

We can remove the dependence of our bound on ‖GD‖1 by normalizing the lifespan

functions. Recall that LD is the total lifespan of the diagram D.

Recall that by Corollary 2.9

‖GD‖1 ≤
(

1 +
σ√
πδD

)

LD.

It is also straightforward to check (see [7, Section 5.2]) that

|LC − LD| ≤ 2W1(C,D).

Define ℓ̂D(b, d) = d−b
LD

. We will assume that diagrams C and D both have total

lifespan at least 1, and hence MC,D ≤ 1.

12



Theorem 3.7.

‖GC,ℓ̂C (t)−GD,ℓ̂D(t)‖1 ≤ PW1(C,D).

Where P = max{2, 2
(

ME + σ√
π

)

, 2+ 2σ√
π
, 4+ 4σ√

πδD
} ≤ max{2, 2+ 2σ√

π
, 4+ 4σ√

πδD
}

Proof. The 2MC = 2 term and the max{MEσ√
π
, 1 + σ√

π
} terms can be computed as

in the general weights theorem and the lifespan computation above (noting that d−bLD
is

always less then d− b)

We focus on the Mγ‖GD′‖ term in the theorem with general weights. this term

comes from bounding
N∑

i=1

|wi − ui|
∫ ∞

−∞
|Hi(t)| dt

N∑

i=1

|di − bi

LC
− γdi − γbi

LD
|
∫ ∞

−∞
|Hi(t)| dt

≤
N∑

i=1

|di − bi

LC
− di − bi

LD
+
di − bi

LD
− γdi − γbi

LD
|
∫ ∞

−∞
|Hi(t)| dt

≤
N∑

i=1

|di − bi

LC

LD − LC

LD
|+ | (di − bi)− (γdi − γbi)

LD
|
∫ ∞

−∞
|Hi(t)| dt

≤
N∑

i=1

4

LD
W1(C,D)

∫ ∞

−∞
|Hi(t)| dt

≤ 4

LD
W1(C,D)‖GD‖1

≤
(

4 +
4σ√
πδD

)

W1(C,D).

4 Injectivity

In this section we study the injectivity of the transformation from a persistence diagram

to either the persistence surface or the corresponding Gaussian persistence curve. By

injectivity here we mean that distinct diagrams produce distinct persistence surfaces or

curves. In general, this notion depends on the choice of weight functions, see example

4.5. However, we show the injectivity of unweighted persistence surfaces and (in most

cases) unweighted Gaussian persistence curves. We also conjecture that any weight

functions defined independently of the diagrams will produce injective persistence sur-

faces and curves.

We first show injectivity for unweighted persistence surfaces. Given two diagrams

C and D, this amounts to showing that the multi-set of means in the corresponding

13



surfaces is equal. We achieve this by setting up an infinite system of equations, which

can only be solved when the multi-sets of means are exactly equal. We will first give

some technical lemmas.

Lemma 4.1. Let A,B ⊂ R be finite sets of equal cardinality. Suppose

∑

a∈A
φ

(
x− a

σ

)

=
∑

b∈B
φ

(
x− b

σ

)

.

Then for every n ∈ N,
∑

a∈A
an =

∑

b∈B
bn

Proof. Let n ∈ N and suppose

∑

a∈A
φ

(
x− a

σ

)

=
∑

b∈B
φ

(
x− b

σ

)

.

Multiplying by xn

σ and integrating over R with respect to x gives

∑

a∈A

∫

R

xn
1

σ
φ(
x− a

σ
)dx =

∑

b∈B

∫

R

xn
1

σ
φ(
x− b

σ
)dx (19)

∑

a∈A

n∑

k even

(
n

k

)

an−kσk(k − 1)!! =
∑

b∈B

n∑

k even

(
n

k

)

bn−kσk(k − 1)!!. (20)

Here (20) follows from computing the nth moment of the normal distribution. We

will now prove that
∑

a∈A a
n =

∑

b∈B b
n for all n ∈ N by induction. When n = 1

this follows immediately from equation (20) above. Now assume that
∑

a∈A a
m =

∑

b∈B b
m for all m < n. Then again by equation (20) we have,

∑

a∈A

n∑

k even

(
n

k

)

an−kσk(k − 1)!! =
∑

b∈B

n∑

k even

(
n

k

)

bn−kσk(k − 1)!!

n∑

k even

(
n

k

)

σk(k − 1)!!
∑

a∈A
an−k =

n∑

k even

(
n

k

)

σk(k − 1)!!
∑

b∈B
bn−k

∑

a∈A
an =

∑

b∈B
bn,

where the last step follows by our inductive hypothesis.

Lemma 4.2. Let A,B ⊂ R
2 be finite sets of equal cardinality. Suppose

∑

(a,b)∈A
φ

(
x− a

σ

)

φ

(
y − b

σ

)

=
∑

(α,β)∈B
φ

(
x− α

σ

)

φ

(
y − β

σ

)

.

Then for any m1,m2 ∈ N,

∑

(a,b)∈A
am1bm2 =

∑

(α,β)∈B
αm1βm2 .
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Proof. Let m1,m2 ∈ N and suppose

∑

(a,b)∈A
φ

(
x− a

σ

)

φ

(
y − b

σ

)

=
∑

(α,β)∈B
φ

(
x− α

σ

)

φ

(
y − β

σ

)

.

Multiplying by xm1ym2 and integrating over R with respect to x and y yields,

∑

(a,b)∈A

∫

R

xm1φ

(
x− a

σ

)

dx

∫

R

ym2φ

(
y − b

σ

)

dy

=
∑

(α,β)∈B

∫

R

xm1φ

(
x− α

σ

)

dx

∫

R

ym2φ

(
y − β

σ

)

dy (21)

∑

(a,b)∈A

m1∑

k even

(
m1

k

)

am1−kσk(k − 1)!!

m2∑

l even

(
m2

l

)

bm2−lσl(l − 1)!!

=
∑

(α,β)∈B

m1∑

k even

(
m1

k

)

αm1−kσk(k − 1)!!

m2∑

l even

(
m2

l

)

βm2−lσl(l − 1)!!. (22)

Now when m1 = m2 = 1, equation 22 yields

∑

(a,b)∈A
ab =

∑

(α,β)∈B
αβ.

We proceed by proving that the claim is true for all m1 + m2 = n ∈ N by strong

induction on n. The base case has been proven above so assume that the statement is

true for all m1 +m2 = j < n ∈ N. Note that m1 − k +m2 − l = j where j ∈ N

and j < n for all k, l ∈ 2N with k ≤ m1, l ≤ m2. Then the inductive hypothesis and

equation 22 yields
∑

(a,b)∈A
am1bm2 =

∑

(α,β)∈B
αm1βm2

as desired.

Theorem 4.3. Let C and D be persistence diagrams and let ρC and ρD be the corre-

sponding unweighted persistence surfaces. If ρC ≡ ρD, then C = D.

Proof. We will denote the points of C by (bCi , d
C
i ) and analogously the points of D

will be denoted (bDi , d
D
i ). Assume that ρC = ρD. We first note that

∫

R2 ρC = |C|.
Thus, we must have |C| = |D|. We will assign N = |C|. Thus, we have

N∑

i=1

φ

(
x− bCi
σ

)

φ

(
y − dCi
σ

)

=

N∑

i=1

φ

(
x− bDi
σ

)

φ

(
y − dDi
σ

)

.

Integrating over R with respect to y and dividing by σ yields

N∑

i=1

φ

(
x− bCi
σ

)

=
N∑

i=1

φ

(
x− bDi
σ

)

.
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An application of Lemma 4.1 yields
∑N
i=1(b

C
i )

n =
∑N

i=1(b
D
i )

n for all n ∈ N. A

similar method yields
∑N

i=1(d
C
i )

n =
∑N

i=1(d
D
i )

n. Next, an application of Lemma 4.2

yields that for eachm1,m2 ∈ N we have
∑N

i=1(b
C
i )
m1(dCi )

m2 =
∑N
i=1(b

D
i )

m1(dDi )
m2 .

Before proceeding we recall the following basic fact: suppose a1, ..., ak are non-

negative real numbers and c1, ..., ck are positive real numbers such that ak > ai for all

1 ≤ i < k. Then there exists m ∈ N such that

cka
m
k >

k−1∑

i=1

cia
m
i .

Now, label the points in C such that bC1 ≤ bC2 ... ≤ bCN and whenever bCi = bCi+1,

dCi ≤ dCi+1. Label the points in D in the same way.

Suppose that some bCk 6= bDk . Choosing k to be the largest such index, it follows

from above that that for all n ≥ 1.

k∑

i=1

(bCi )
n =

k∑

i=1

(bDi )
n.

Without loss of generality, we assume that bCk > bDk . Since bDk ≥ bDk−1 ≥ ... ≥ bD1 ,

we can find an m such that

k∑

i=1

(bCi )
m ≥ (bCk )

m >

k∑

i=1

(bDi )
m

which is a contradiction. Hence we have that bCi = bDi for all 1 ≤ i ≤ N .

Now suppose that for some k, dCk 6= dDk . Again we choose k to be largest such

index and assume without loss of generality that dCk > dDk . Now we choose m1 such

that (bCk )
m1dCk > (bDi )

m1dDi for all 1 ≤ i < k. m1 exists since for all 1 ≤ i ≤ k,

either bCk = bDk > bDi , or bCk = bDk = bDi and dCk > dDk ≥ dDi .

Given this m1, we can apply the above fact again to find m2 such that

k∑

i=1

((bCi )
m1dCi )

m2 ≥ ((bCk )
m1dCk )

m2 >

k∑

i=1

((bDi )
m1dDi )

m2

which is another contradiction. Hence, we must have that dCi = dDi for all 1 ≤ i ≤ N

which means we have shown that C = D.

We prove a partial result for the unweighted Gaussian Persistence Curve.

Theorem 4.4. Let C and D be two persistence diagrams with maximum death values

dCmax, d
D
max and minimum birth values bCmin, b

D
min respectively. Suppose that either

dCmax 6= dDmax or bCmin 6= bDmin. Then GC 6= GD.
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Proof. Let (b1, d1) be a point of C and (b2, d2) a point of D. We first show that if

d1 > d2 then,

lim
t→∞

Φ( t−b2σ )Φ(d2−tσ )

Φ( t−b1σ )Φ(d1−tσ )
= 0. (23)

We will proceed by cases. If b1 = b2 then with L’hospital’s rule we have,

lim
t→∞

Φ( t−b2σ )Φ(d2−tσ )

Φ( t−b1σ )Φ(d1−tσ )
= lim

t→∞
φ(d2−tσ )

φ(d1−tσ )
= lim
t→∞

e(
d2+d1−2t

σ
)(

d1−d2
σ

) = 0. (24)

Now if b1 < b2 we note that Φ( t−b1σ ) > Φ( t−b2σ ) for any sufficiently large value of t.

Applying this inequality to the limit we reduce back to the first case. Finally if b1 > b2
we have,

lim
t→∞

Φ( t−b2σ )Φ(d2−tσ )

Φ( t−b1σ )Φ(d1−tσ )
= lim

t→∞
Φ( t−b2σ )

Φ( t−b1σ )
lim
t→∞

Φ(d2−tσ )

Φ(d1−tσ )
= 0. (25)

Assume that dCmax > dDmax, and hence dCmax is larger then the death value of any

point of D. Let (bC , dCmax) be a point of C. Then

lim
t→∞

GD(t)

GC(t)
= lim

t→∞

∑

(b,d)∈D
Φ(
t− b

σ
)Φ(

d− t

σ
)

∑

(b,d)∈C
Φ(
t− b

σ
)Φ(

d− t

σ
)

≤ lim
t→∞

∑

(b,d)∈D
Φ(
t− b

σ
)Φ(

d− t

σ
)

Φ( t−b
C

σ )Φ(
dCmax−t

σ )

=
∑

(b,d)∈D
lim
t→∞

Φ( t−bσ )Φ(d−tσ )

Φ( t−b
C

σ )Φ(
dCmax−t

σ )
= 0

Hence, for any sufficiently large value of t, GC(t) > GD(t). A similar argument

applied when assuming distinct minimum birth values, one simply needs to look at the

limit as t approaches negative infinity instead.

Obtaining a result for general surfaces or curves may prove to be challenging. The

next example shows that the injectivity of persistence surfaces (hence Gaussian persis-

tence curves) cannot be generalized to arbitrary weight functions.

Example 4.5. Let κD(b, d) =
d−b
LD

. Take C = {(b, d)} and D = {(b, d), (b, d)}. That

is, C is a diagram with a single point and D is a diagram with two points both at the

same place as C. Then D 6= C but

ρC,κC
(x, y) = φ

(
x− b

σ

)

φ

(
y − d

σ

)

=
1

2
φ

(
x− b

σ

)

φ

(
y − d

σ

)

+
1

2
φ

(
x− b

σ

)

φ

(
y − d

σ

)

= ρD,κD
(x, y).
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Note that the weight function in the above example is a natural one to consider in

practice as it produced a strong stability result in the original persistence curve setting

and also performed well in computer experiments [7]. However, in this example at

least the failure of injectivity of the persistence surface is clearly tied to the fact that

different diagrams produce different weighting functions. We conjecture that this is the

only way for injectivity to fail.

Conjecture. Let κ : R2 → R
+ be a weighting function and let C andD be persistence

diagrams. Suppose that ρC,κ = ρD,κ. Then C = D.

Since ρC,κC
= ρD,κD

implies thatGC,κC
= GD,κD

, example 4.5 also shows that it

is possible for distinct diagrams to produce the same Gaussian persistence curve. How-

ever, as with persistence surfaces we conjecture that this cannot happen for weighting

functions which are independent of the diagrams.

Conjecture. Let κ : R2 → R
+ be a weighting function and let C andD be persistence

diagrams. Suppose that GC,κ = GD,κ. Then C = D.
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[2] Nieves Atienza, Rocı́o González-Dı́az, and M. Soriano-Trigueros. On the sta-

bility of persistent entropy and new summary functions for TDA. CoRR,

abs/1803.08304, 2018. 1

[3] Eric Berry, Yen-Chi Chen, Jessi Cisewski-Kehe, and Brittany Terese Fasy. Func-

tional summaries of persistence diagrams. Journal of Applied and Computational

Topology, 4(2):211–262, 2020. 1, 7

[4] Peter Bubenik. Statistical topological data analysis using persistence landscapes.

The Journal of Machine Learning Research, 16(1):77–102, 2015. 1

[5] Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Aarti

Singh, and Larry Wasserman. On the bootstrap for persistence diagrams and land-

scapes. arXiv preprint arXiv:1311.0376, 2013. 1

[6] Yu-Min Chung, Michael Hull, and Austin Lawson. Smooth summaries of persis-

tence diagrams and texture classification. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops, pages 840–841,

2020. 1, 6, 7

[7] Yu-Min Chung and Austin Lawson. Persistence curves: a canonical framework for

summarizing persistence diagrams. Adv. Comput. Math., 48(1):Paper No. 6, 42,

2022. 1, 2, 3, 12, 18

18



[8] Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. Contem-

porary mathematics, 453:257–282, 2008. 2

[9] Jagdish K Patel and Campbell B Read. Handbook of the normal distribution, vol-

ume 150. CRC Press, 1996. 4

19


