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Abstract

Our aim is to make a step towards clarification of foundations for
the notion of entanglement (both physical and mathematical) by rep-
resenting it in the conditional probability framework. In Schrödinger’s
words, this is entanglement of knowledge which can be extracted via
conditional measurements. In particular, quantum probabilities are
interpreted as conditional ones (as, e.g., by Ballentine). We restrict
considerations to perfect conditional correlations (PCC) induced by
measurements (“EPR entanglement”). Such entanglement is coupled
to the pairs of observables with the projection type state update as
the back action of measurement. In this way, we determine a special
class of entangled states. One of our aims is to decouple the notion of
entanglement from the compound systems. The rigid association of
entanglement with the state of a few body systems stimulated its link-
ing with quantum nonlocality (“spooky action at a distance”). How-
ever, already by Schrödinger entanglement was presented as knotting
of knowledge (about statistics) for one observable A with knowledge
about another observable B.

1 Introduction

In recent articles [1]–[3], the nonlocal interpretation of the violation of
the Bell inequalities [4]–[6] was criticized; it was shown that, in fact,
this violation can be simply obtained by taking into account incom-
patibility (or mathematically non-commutativity NC) of observables
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involved into the Bell tests. We point out that the quantum non-
locality interpretation of violation of the Bell type inequalities was
criticized by many authors.1 However, the idea about quantum non-
locality is not solely coupled to the violation of the Bell inequalities.
Befittingly, it is present in the formalism of quantum mechanics and
encoded in the projection postulate when this postulate is applied to
the entangled states of compound systems. This feature of the quan-
tum state update (resulting from the back action of measurement) was
firstly discussed in the EPR paper [24]. But its authors only briefly
mentioned nonlocality as an alternative to incompleteness of quantum
mechanics. An interesting discussion connecting the EPR projection
argument with the Bell inequality argument can be found in Aspect’s
papers [25, 26]. He pointed out that in principle one need the Bell
inequality tests to only to put the projection type nonlocality into
the experimental framework. Thus, irrespectively to the Bell inequal-
ity, the notion of entanglement in combination with the projection
postulate has the flavor of nonlocality. 2

In this paper we clarify of the notion of entanglement. The key
point is the presentation of entanglement in the conditional probabil-
ity framework. In Schrödinger’s words [31, 32], this is entanglement of
knowledge (entanglement of predictions) which can be extracted via
conditional measurements. In particular, quantum probabilities are
interpreted as conditional probabilities (cf. Koopman [34], Ballentine
[35, 36], see also [17, 21, 22, 37]). We restrict considerations to per-
fect conditional correlations (PCC) induced by measurements (“EPR-
entanglement” [24]). Such entanglement is coupled to the pairs of
observables with the projection type state update as the back action
of measurement [39, 38]. In this way, we determine a special class of
entangled states.

One of our aims is to decouple the notion of entanglement from
the compound systems. The rigid association of entanglement with
the state of a few body systems (originated in Schrödinger’s article
[31, 32]) stimulated its linking with quantum nonlocality. However, al-
ready in [31, 32] entanglement was presented as knotting of knowledge
(about statistics) for one observable A with knowledge about another

1Articles [1, 2, 3] are close to the papers expressing (in one or another way) the view-
point that the seed of violation of the Bell inequalities is in incompatibility, not in nonlo-
cality. I would especially highlight the papers which explored quantum formalism [7]–[13].
Other authors explored incompatibility indirectly (i.e., without coupling to quantum for-
malism) as nonexistence of the joint probability distribution [14]–[23].

2Note that the difference between the notions of Bell locality, EPR locality and
nonsignaling was first specified mathematically in article [27]. In the present paper we
discuss EPR locality. See also [28]– [30] for Bell locality and nonlocality.
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observable B. This coupling gives the possibility to gain knowledge
about B through A-measurement (see also Bohr [33]). An entangled
state |ψ〉 served as a part of the mathematical formalism for such con-
ditional extraction of knowledge. Our framework is decoupled from
the tensor product structure of the state space related to compound
systems. The tensor product expression of entanglement is considered
as a special mathematical representation. Even CHSH inequality can
be analyzed without consideration of compound systems (see [1, 2]).

In the presented mathematical framework, it is meaningless to
speak about entanglement without pointing to the concrete pairs of
observables Ai, Bi, i = 1, ..., n, for which PCC yields (cf. Bohr [33]).
In this aspect our paper is close to the approach presented in the
papers [40, 41]; we cite [41]:

“Here we propose that a partitioning of a given Hilbert space is
induced by the experimentally accessible observables .... In this sense
entanglement is always relative to a particular set of experimental ca-
pabilities.”

This viewpoint on entanglement differs crucially from the standard
definition of entanglement; see, e.g., [42]:

“A state is said to be entangled if it cannot be written as a convex
sum of tensor product states.”

The observable based viewpoint on entanglement matches better
the views of Bohr who treated QM as measurement theory [43]; in fact,
Bohr’s reply to Einstein [33] was in the line with the observational
interpretation of entanglement, but the reasoning of Einstein and his
coauthors was firmly based on the tensor-product interpretation. May
be this striking difference in views on entanglement was one of the
reasons for their misunderstanding.

We shall discuss similarities and dissimilarities between the frame-
works of the present paper and articles [40, 41] in appendix A. 3

EPR-entanglement is represented with the simple systems of linear
equations for projections. PCC-states can be determined not only for
compatible observables A,B, but even for incompatible ones. Then
the order of conditioning is important, say PCCs A = +, B = + and
B = +, A = + are not equivalent. Of course, the formalism is es-
sentially simplified for compatible observables. Therefore the main
body of the paper is devoted to the latter case, i.e., A,B, are math-
ematically represented by Hermitian operators Â, B̂ and [Â, B̂] = 0.

3The main difference is that our paper is directed to foundational clarification of the
notion of entanglement through exploration of the calculus of conditional probabilities (a
la Ballentine [35, 36]). Thus, conditional probability and probability update are the key
structures in our study. There is nothing about them in the aforementioned articles. They
are directed merely to algebraic aspects of entanglement structures.
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And usual consideration of dichotomous observables A,B = ±1, i.e.,
Â2 = I, B̂2 = I makes PCC-theory even simpler and clearer.

In parallel to mathematical reformulation of the notion of entangle-
ment, we clarify the meaning of the projection postulate as the state
representation of probability update generated by the back action of
measurement (see article [2] for details, see also Ballentine [35, 36]) -
the quantum analog of the classical Bayesian probability update.

The paper also contains a brief foundational discussion (section
9). In short, the main foundational implication of the conditional
probability approach to PCC is disillusion of the EPR notion of an
element of reality.

2 The projection postulate as the math-

ematical tool for quantum probability

conditioning

In the quantum formalism an observable A (with a discrete range of
values) is represented by a Hermitian operator

Â =
∑

α

αEA(α), (1)

where EA(α) is projection onto the spaceHA(α) of eigenvectors for the
eigenvalue α. For a pure state |ψ〉, the probability to get the outcome
A = α is given by the Born’s rule:

p(A = α|ψ) = ‖EA(α)|ψ〉‖2. (2)

A measurement with the outcome A = x generates back-action onto
system’s state:

|ψ〉 → |ψ〉Aα = EA(α)|ψ〉/‖EA(α)|ψ〉‖. (3)

This is the projection postulate in the Lüders form [38]. 4

4It is often called the von Neumann projection postulate. However, von Neumann used
the projection postulate only to observables represented by operators with non-degenerate
spectra; for operators with degenerate spectra von Neumann considered more general state
transformations; in particular, updating of a pure state given by a vector |ψ〉 can lead to
a mixed state given by a density operator ρ̂ [39]. Later von Neumann considerations
were formalized within theory of quantum instruments describing state updates of non-
projection type even for observables with non-degenerate spectra (see, e.g., [44]–[47]).
In [49], it was shown that appealing to non-projection transformations has interesting
foundational insights on the basic problems of quantum foundations.
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The projection postulate is the mathematical tool for quantum
conditioning. Measurements of another observable, say B, conditioned
on the outcome A = α lead to probability (see, e.g., [48]):

P (B = β|A = α,ψ) = ‖EB(β)|ψαA〉‖2 =
‖EB(β)EA(α)|ψ〉‖2

‖EA(α)|ψ〉‖2
. (4)

We shall use this definition of conditional probability to define the
special form of entanglement, corresponding to PCC.

3 EPR-entanglement

We would like to embed the perfect EPR correlations in the framework
of quantum conditioning which is mathematically described with the
projection postulate - probability one conditioning. The framework is
more general than the one needed for the EPR situation and includes
even conditioning for pairs of incompatible observables A and B, i.e.,
[Â, B̂] 6= 0. However, the framework of conditional EPR entanglement
has a rich structure only in the case of compatible observables, i.e.,
[Â, B̂] = 0. Morover, our construction is not reduced to the state
spaces with the tensor product structure. The latter is considered as
just an illustrative example. Thus, as was pointed out in introduction,
we eliminate rigid coupling of entanglement with tensor product and
compound systems.

3.1 Perfect conditional correlations

Consider two discrete observables A and B which are represented by
Hermitian operators Â and B̂ with the spectral decompositions:

Â =
∑

α

αEA(α), B̂ =
∑

β

βEB(β). (5)

It is also assumed that, for these observables, the state updates as
the back action of measurement is mathematically described with the
projection postulate

|ψ〉 → |ψαA〉 = EA(α)|ψ〉/‖EA(α)|ψ〉‖, (6)

|ψ〉 → |ψβB〉 = EB(β)|ψ〉/‖EB(β)|ψ〉‖. (7)

We remark that such updates are possible not an arbitrary state, but
only if

EA(α)|ψ〉 6= 0, i.e., P (A = α|ψ) 6= 0, (8)

EB(β)|ψ〉 6= 0, i.e., P (B = β|ψ) 6= 0 (9)
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We are interested in a state |ψ〉 satisfying the following condition. The
conditional probability to get the outcome B = β if the preceding A-
measurement had the outcome A = α equals to 1,

P (B = β|A = α,ψ) =
‖EB(β)EA(α)|ψ〉‖2

‖EA(α)|ψ〉‖2
= 1. (10)

Definition 1. If equality (10) holds, then, in state |ψ〉, the ob-
servables are perfectly conditionally correlated (PCC) for the values
(A = α,B = β).5

Hence, we get the equation for the state |ψ〉

‖EB(β)EA(α)|ψ〉‖2 = ‖EA(α)|ψ〉‖2. (11)

We remark that

EA(α)|ψ〉 =
∑

y

EB(y)EA(α)|ψ〉, (12)

hence

‖EA(α)|ψ〉‖2 =
∑

y

‖EB(y)EA(α)|ψ〉‖2 = ‖EB(β)EA(α)|ψ〉‖2. (13)

Hence, ‖EB(y)EA(α)|ψ〉‖2 = 0 for any y 6= β. And equality (12) is
reduced to the equality:

EB(y)EA(α)|ψ〉 = 0 for all y 6= β, (14)

or
EB(β)EA(α)|ψ〉 = EA(α)|ψ, (15)

i.e., EA(α)|ψ〉 is the eigenvector of EB(β) with eigenvalue λ = 1.
The conditions (8), (15) give the description of the PCC-states for
(A = α,B = β).

We start to study properties of PCC-states by considering unitary
transformations, so let Û : H → H be a unitary transformation. Set
|ψ〉U = Û |ψ〉 and ÂU = ÛAÛ⋆, B̂U = ÛBÛ⋆. Then EBU

(β)EAU
(α)|ψ〉U =

ÛEB(β)EA(α)|ψ〉 = ÛEA(α)Û
⋆Û |ψ〉 = EAU

(α)|ψ〉U . We also remark
that EAU

(α)|ψ〉U = ÛEA(α)|ψ〉 6= 0.
Hence, unitary transformation applied consistently to the state and

operators preserves the PCC-property.

5Here the order is important: first A−measurement and then B-measurement. As we
shall see, it is important even in the case of compatible observables.
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We now reformulate this condition in terms of eigensubspaces, set
HA(α) = EA(α)H,HB(β) = EB(β)H. Then (15) can be rewritten as

EA(α)|ψ〉 ∈ HB(β). (16)

We remark that if
HA(α) ⊂ HB(β), (17)

then this condition is satisfied for any state |ψ〉 such that (8) holds.

3.2 Common (A = α,B = β) eigenvectors

Equality (15) implies that the vector |φ〉 = EA(α)|ψ〉 is the common
eigenvector of projections EA(α) and EB(β) (in particular, of opera-
tors Â and B̂), since EA(α)|φ〉 = |φ〉 per definition and EB(β)|φ〉 = |φ〉
per (15). Thus, in particular, [Â, B̂]|φ〉 = 0. This fact devalues con-
sideration of the above scheme in the noncommutative case.

We illustrate the previous statement by the following example.
Consider the four dimensional case. Let {e1, e2, e3, e4} be some or-
thonormal basis in H. Let HA(±) be generated by {e1, e2}, {e3, e4}.
Set f1 = (e1 + e3)/

√
2, f2 = (e2 + e4)/

√
2, f3 = (e1 − e3)/

√
2, , f4 =

(e2 − e4)/
√
2; let HB(±) be generated by {f1, f2}, {f3, f4}. Then say

EB(+) and EA(+) do not have a common eigenvector, therefore (A =
+, B = +) PCC-states do not exist.

Now let us proceed another way around. Let state |φ〉 belong to
subspace HAB(α, β) = HA(α) ∩ HB(β) which is nontrivial subspace
of H. Then, this is (α, β)PCC-state for the observables A,B.

Do all PCC-states belong to subspace HAB(α, β)?
The answer is not. Take nonzero vectors |φ〉 ∈ HAB(α, β) and |ξ〉

which is orthogonal to subspace HA(α). Set |ψ〉 = |φ〉 + |ξ〉. Then
EA(α)|ψ〉 = |φ〉 = EB(β)EA(α)|ψ〉.

3.3 Entanglement w.r.t. a set of values

Consider now another pair, (α′, β′), of the values of the observables
A,B. The PCC-condition for α′, β′ has the form:

EB(β
′)EA(α

′)|ψ〉 = EA(α
′)|ψ〉. (18)

We also have additional condition (8) for the value α′. There can be
found PCC-states for both pairs (α, β) and (α′, β′).

More generally consider observables with values (αi) and (βi) and
some set Γ of pairs (αi, βj).

Definition 2. (EPR entanglement) If, for all pairs from the set
Γ, |ψ〉 is PCC-state, then such state is called EPR Γ-entangled.
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So, conditions (10) and (15) hold for all pairs (α, β) ∈ Γ.
We would be mainly interested in sets Γ such that each of α and

β values appears in pairs once and only once (see section 6 for discus-
sion). We call such EPR entanglement complete.

For example, for two dichotomous observables with α, β = ±1, we
consider, e.g., the set of the pairs (A = +, B = −), (A = −, B =
+), in short, EPR (±,∓) entanglement, or the pairs (A = +, B =
+), (A = −, B = −), EPR (±,±) entanglement; see section 5 for
dichotomous compatible observables. (We repeat that generally the
order of measurements is important.)

4 Order of measurements, symmetric

EPR entanglement

For incompatible observables (represented by noncommuting opera-
tors, [Â, B̂] 6= 0), the order of measurements is important.

Suppose now that the observables are compatible, i.e., [Â, B̂] = 0.
One might expect that the order of measurements is unimportant
for the perfect correlation. The situation is more complicated. We
proceed under the probability non-degeneration conditions (8), (9).
Then PCCs (A = α,B = β) and (B = β,A = α) are expressed by the
pair of equalities:

EB(β)EA(α)|ψ〉 = EA(α)|ψ〉, (19)

EA(α)EB(β)|ψ〉 = EB(β)|ψ〉. (20)

They imply that
EA(α)|ψ〉 = EB(β)|ψ〉. (21)

The latter equality implies that EB(β)EA(α)|ψ〉 = EB(β)EB(β)|ψ〉 =
EB(β)|ψ〉, i.e., equality (19); in the same way one obtains (20). Thus,
in the commutative case the condition of order irrelevance of PCC is
given by the equality (21) (and the equalities (8), (9)).

For such state |ψ〉, the A = α outcome implies the B = β outcome
with probability one and vice verse, i.e., for |ψ〉, PCC is symmetric
w.r.t. order of measurements. We call such EPR entanglement sym-
metric.6

6Here the ordering is not due to incompatibility, but due to temporal structure of
experiment. Which observable is measured first? We remark that this is the standard
situation in the Bell inequalities tests. Here the probability of time coincidence for A- and
B-outcomes is zero. Approximate coincidence is determined via using the time window,
but the real experimental data shows which click was the first and which was the second.
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Definition 3. (Symmetric PCC and entanglement) If |ψ〉 is a
PCC-state for (A = αj , B = βi) and (B = βi, A = αj) for all pairs
from set Γ, then such state is called symmetrically EPR Γ-entangled.

5 Dichotomous compatible observables

Consider now compatible dichotomous observables A,B = ±1. We
study, e.g., (A = +, B = −), (A = −, B = +) EPR entanglement.
This is complete entanglement involving all possible values of observ-
ables. We proceed under conditions (8), (9) guarantying the existence
of conditional probabilities for α, β = ±1.

First we show that this is symmetric EPR entanglement, it does
not depend on order. We show that PCC for (A = +, B = −) implies
PCC for (B = +, A = −) as well as PCC for (A = −, B = +) implies
PCC for (B = −, A = +) and vice verse.

Thus (A = +, B = −), (A = −, B = +) and (B = −, A = +), (B =
+, A = −) EPR entanglements are equivalent, so we can simply speak
about A = −B entanglement.

PCC for (A = +.B = −) is characterized by the equality

EB(−)EA(+)|ψ〉 = EA(+)|ψ〉. (22)

Hence, (I−EB(+))(I−EA(−))|ψ〉 = (I−EA(−))|ψ〉, or EB(+)EA(−)|ψ〉 =
EB(+)|ψ〉, and now we use commutativity:

EA(−)EB(+)|ψ〉 = EB(+)|ψ〉. (23)

This is the PCC-condition for (B = +, A = −).
In the same way, PCC for (A = −, B = +) is characterized by the

equality
EB(+)EA(−)|ψ〉 = EA(−)|ψ〉. (24)

implies the equality

EA(+)EB(−)|ψ〉 = EB(−)|ψ〉, (25)

the latter is the PCC-condition for (B = −, A = +).
The equalities (22), (25) imply the order irrelevance equality

EA(+)|ψ〉 = EB(−)|ψ〉, (26)

which in turn implies these inequalities. In the same way, the equalities
(23), (24) are equivalent to the equality

EA(−)|ψ〉 = EB(+)|ψ〉, (27)
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We also remark that the equality (26) is equivalent to the equality
(27). Hence, each of them characterizes both (A = ±+, B = ∓) and
(B = ±, A = ∓) EPR entanglements, so we can simply speak about
A = −B EPR entanglement characterized by the equivalent conditions

EB(+)|ψ〉 = EA(−)|ψ〉(6= 0), EB(−)|ψ〉 = EA(+)|ψ〉(6= 0). (28)

We remark that A = −B EPR entanglement implies equality of
the probabilities :

P (A = +1|ψ) = P (B = −1|ψ)(6= 0), P (A = −1|ψ) = P (B = +1|ψ)(6= 0).
(29)

We also have ÂB̂ = EA(+)EB(+)+EA(−)EB(−)−EA(+)EB(−)−
EA(−)EB(+), and EA(+)EB(+)|ψ〉 = EA(+)EA(−)|ψ〉 = 0, EA(−)EB(−)|ψ〉 =
EA(−)EA(+)|ψ〉 = 0, and (EA(+)EB(−)ψ〉+EA(−)EB(+)ψ〉 = (E2

A(+)+
E2
A(−))ψ〉 = ψ〉, i.e.

ÂB̂|ψ〉 = −|ψ〉, (30)

i.e. |ψ〉 is an eigenvector the product of operators with the eigennvalue
λ = −1. Hence correlation of observables in this state equals to -1,

〈AB〉ψ ≡ 〈ψ|ÂB̂|ψ〉 = −1. (31)

In the same way for the EPR A = B entanglement,

ÂB̂|ψ〉 = |ψ〉, (32)

and
〈AB〉ψ ≡ 〈ψ|ÂB̂|ψ〉 = +1. (33)

5.1 Examples

5.1.1 dim H = 5

Consider the five dimensional case. Let {e1, e2, e3, e4, e5} be some
orthonormal basis in H. Let HA(±) and HB(±) be generated by
{e1, e2, e3}, {e4, e5} and {e1, e2}, {e3, e4, e5}, respectively. An arbi-
trary |ψ〉 can be expended as

|ψ〉 =
∑

i

ciei,
∑

i

|ci|2 = 1. (34)

Let us find EPR entangled states for A = −B. Then EA(−)|ψ〉 =
c4e4 + c5e5 and EB(+)|ψ〉 = c1e1 + c2e2. Thus, the only state which
satisfy equation EA(−)|ψ〉 = EB(+)|ψ〉 is the state |ψ〉 = e3. However,
EA(−)|ψ〉 = 0. There are no EPR entangled states for A = −B.
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Let us find EPR entangled states for A = B.We have EA(+)|ψ〉 =
c1e1 + c2e2 + c3e3 and EB(+)|ψ〉 = c1e1 + c2e2. Hence, c3 = 0, the
EPR entangled state has the form

|ψ〉 = (c1e1 + c2e2) + (c4e4 + c5e5), (35)

where |c1|2 + |c2|2 6= 0, |c4|2 + |c5|2 6= 0. We remark that vectors
|φ++〉 = c1e1 + c2e2 and |φ−−〉 = c4e4 + c5e5 belong, respectively,
to the subspaces of joint eigevectors HAB(++) and HAB(−−) (see
section 5.3).

5.1.2 dim H = 4

Consider A = −B EPR entanglement in the four dimensional case.
Let {e1, e2, e3, e4} be some orthonormal basis in H. Let HA(±) and
HB(±) be generated by {e1, e2}, {e3, e4} and {e1, e3}, {e2, e4}, respec-
tively. An arbitrary |ψ〉 can be expended as (34).

Then EA(−)|ψ〉 = c3e3 + c4e4 and EB(+)|ψ〉 = c1e1 + c3e3. These
equalities with (28) imply that c1 = 0, c4 = 0, i.e., |ψ〉 = c2e2 +
c3e3, |c2|2+|c3|2 = 1. Now encode the basis vectors by using the values
of observables, i.e., e1 = |+ +〉, e2 = | + −〉, e3 = | − +〉, e4 = | − −〉.
Hence,

|ψ〉 = c+−|+−〉+ c−+| −+〉, c+−, c−+ 6= 0, (36)

(the last inequalities are due to conditions (8), (9)); here |c+−|2 +
|c−+|2 = 1.

In the same way, A = B EPR entanglement restricts the class of
states to

|ψ〉 = c++|++〉+ c−−| − −〉, c++, c−− 6= 0. (37)

Consider now the caseHA(±) andHB(±) are generated by {e1, e2, e3}, {e4}
and {e1}, {e2, e3, e4}, respectively.

Consider A = −B EPR entanglement. Then EA(−)|ψ〉 = c4e4 and
EB(+)|ψ〉 = c1e1. Hence, c1 = 0, c4 = 0, and EA(−)|ψ〉 = EB(+)|ψ =
0, i.e., the corresponding conditional probabilities are no well defined.
In this case entangled states do not exist. Similarly, let HA(±) and
HB(±) be generated by {e1, e2, e3}, {e4} and {e1, e2, e3}, {e4}, respec-
tively. Then EA(−)|ψ〉 = c4e4 and EB(+)|ψ〉 = c1e1 + c2e2 + c3e3.
In this case entangled states do not exist. We note that in this space
encoding of eigenvectors with values of the operators is not one to one,
e1 = |++〉, e2 = |+−〉, e3 = |+−〉, e4 = | − −〉.

Consider now A = B EPR entanglement; EA(−)|ψ〉 = c4e4 and
EB(−)|ψ〉 = c2e2 + c3e3 + c4e4. Hence, c2 = 0, c3 = 0. And |ψ〉 =
c1e1 + c4e4, where c1 6= 0, c4 6= 0.
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5.1.3 dim H = 3

Consider A = −B entanglement in the case [dim = 3. Let HA(±) and
HB(±) are generated by {e1, e2}, {e3} and {e1}, {e2, e3}. We remark
that these vectors can be encoded as e1 = |++〉, e2 = |+−〉, e3 = |−+〉
(although H is not a tensor product space).7

We have EA(−)|ψ〉 = c3e3 and EB(+)|ψ〉 = c1e1. Thus, |ψ〉 =
e2 = | + −〉. But, this vector does not satisfy the probability non-
degeneration condition, since EA(−)|+−〉 = 0. This, vector generates
the perfect conditional correlation A = +1, B = −1, but not A =
−1, B = +1. Thus there are no (±∓) entangled states.

Now, we study A = B entanglement. let HA(±) and HB(±) are
generated by {e1, e2}, {e3} and {e1}, {e2, e3}. Then EA(−)|ψ〉 = c3e3
and EB(−)|ψ〉 = c2e2 + c3e3. Hence, the entangled state has the form

|ψ〉 = c1e1 + c3e3 = c++|++〉+ c−−| − −〉.

As always, c++, c−− 6= 0.

5.1.4 dim H = 2

Consider A = −B entanglement in the case [dim H = 2. Let HA(±)
and HB(∓) are generated by {e1}, {e2}, respectively. Then, for |ψ〉 =
c1e1 + c2e2, EA(+) = c1e1, EB(−)|ψ〉 = c1e1. Thus any state with
cj 6= 0 is A = −B entangled.

5.1.5 The case of Â = B̂

Let us consider the case of the trivial entanglement, i.e., let Â = B̂.
Since H = HA(−) ⊕ HA(+), then each state can be represented as
|ψ〉 = |ψ〉− + |ψ〉+ with the orthogonal components |ψ〉± ∈ HA(±).
For A = A EPR entanglement, the only restriction is the condition
guaranteeing the existence of conditional probabilities, i.e., |ψ〉± 6= 0.

And it is clear that there are no A = −A entangled states.

5.2 Tensor product state space

Consider the state space of a compound system S = (S1, S2) given
by the tensor product H = H1 ⊗ H2. Consider two dichotomous
observables a and b for subsystems S1 and S2 given by Hermitian
operators â = Ea(+) − Ea(−) and b̂ = Eb(+) − Eb(−); set Â =
â ⊗ I = EA(+) − EA(−), EA(±) = Ea(±) ⊗ I and B̂ = I ⊗ b̂ =

7If we consider the above example with dim H = 5, then such encoding is impossible,
since it would lead to coding: e1 = |++〉, e2 = |++〉, e3 = |+−〉, e4 = |−−〉, e5 = |−−〉.
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EB(+) − EB(−), EB(±) = I ⊗ Eb(±). Set H1± = Ea(±)H1, i.e.,
H1 = H1− ⊕ H1+ and H2± = Eb(±)H2, i.e., H2 = H2− ⊕ H2+. Also
set HAB(αβ) = EA(α)EB(β)H.

Let (|αj〉) and (|βi〉) be orthonormal bases in spaces H1α and
H2β, composed of eigenvectors of the operators â and b̂, i.e., â|αj〉 =
α|αj〉, j = 1, ..., nα, and b̂|βi〉 = β|βi〉, i = 1, ...,mβ , where α, β = ±.
Then (|αj〉 ⊗ |βi〉 ≡ |αβji〉), is the orthonormal basis in the space H.
An arbitrary state in H has the form:

|ψ〉 =
∑

αβji

cαβji|αβji〉.

Let us find the EPR entangled states for A = −B,

EA(−)|ψ〉 =
∑

−βji

c−βji| − βji〉 = EB(+)|ψ〉 =
∑

α+ji

cα+ji|α+ ji〉.

Hence, all coefficients c−−ji, c++ji equal to zero, and

|ψ〉 =
∑

−+ji

c−+ji| −+ji〉+
∑

+−ji

c+−ji|+−ji〉. (38)

We also have the non-degeneration conditions

‖EA(−)|ψ〉‖2 =
∑

−+ji

|c−+ji|2 6= 0, ‖EB(+)|ψ〉‖2 =
∑

+−ji

|c+−ji|2 6= 0,

In superposition (38), c−+ji 6= 0 and c+−km 6= 0 for at least one
pair of indexes. We also note that the first sum belongs to the
space HAB(−+) and the second one to the space HAB(+−), the joint
eigenspaces of the operators (see section 5.3).

Similarly we can describe all A = B EPR entangled states

|ψ〉 =
∑

++ji

c++ji|++ji〉+
∑

−−ji

c−−ji| − −ji〉, (39)

where c++ji 6= 0 and c−−km 6= 0 for at least one pair of indexes.
Consider two dimensional Hilbert spaceH and the Hermitian oper-

ators â, b̂ in it with eigen-bases (|f±〉), â|f±〉 = ±|f±〉, and (|g±〉), b̂|g±〉 =
±|g±〉. Consider H = H ⊗H and operators Â = â⊗ I and B̂ = I ⊗ b̂.
Consider (±,∓) EPR entangled states, they have the form

|ψ〉 = c+−|f+g−〉+ c−+|f−g+〉, c+−, c−+ 6= 0. (40)

For example, let x = (x1, x2, x3), y = (y1, y2, y3) and â = x1σ1+x2σ2+
x3σ3, b̂ = y1σ1 + y2σ2 + y3σ3 be two Pauli vectors, then by selecting
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the correspodning bases of eigenvectors for them, one can write the
EPR entangled state for them.

Now the previous considerations were about the operators A and
B respecting the tensor product structure of state space H. The EPR
entangled states are entangled in the usual sense (but not vice verse).8

However, in H one can consider operators which do not have the form
Â = â⊗ I, B̂ = I ⊗ b̂. Then the corresponding EPR entangled states
need not be entangled in the ordinary sense.

5.3 Joint eigenvectors and entanglement

Consider again the general case of compatible dichotomous observables
A,B = ±1, i.e., without exploring the tensor product structure. We
study, e.g., A = −B EPR entanglement. The state space can be
represented as the direct sum of subspaces for the joint eigenvectors,
Â|φαβ〉 = |φαβ〉, B̂|φαβ〉 = |φαβ〉, α, β = ±,

H = HAB(++)⊕HAB(+−)⊕HAB(−+)⊕HAB(−−). (41)

For any (normalized) vector

|ψ〉 = |ψ+−〉+ |ψ−+〉, (42)

where
|ψ±∓〉 ∈ HAB(±∓) and |ψ±∓〉 6= 0, (43)

we have EB(+)|ψ〉 = |ψ−+〉 = EA(−)|ψ〉 and EB(−)|ψ〉 = |ψ+−〉 =
EA(+)|ψ〉. Thus superposition of (non-zero) vectors from subspaces
HAB(+−),HAB(−+) is A = −B EPR entangled.

Moreover, any A = −B EPR entangled state is given by such a
superposition. To prove this, suppose that

|ψ〉 = |ψ+−〉+ |ψ−+〉+ |ψ++〉+ |ψ−−〉, (44)

with components belonging to the corresponding subspaces. Then,
e.g.,

EB(−)|ψ〉 = |ψ+−〉+ |ψ−−〉, EA(+)|ψ〉 = |ψ+−〉+ |ψ++〉.

Hence, |ψ−−〉 = 0, |ψ++〉 = 0.

8Turn to the four dimensional case. Consider e.g. the state

|ψ〉 = c++|++〉+ c+−
|+−〉+ c

−−
| − −〉,

with nonzero coefficients. Then it is not factorisable, i.e., entangled, but it is not EPR
entangled.
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Thus, for commuting dichotomous observables, the A = −B EPR
entangled states are superpositions of joint eigenvectors corresponding
to the pairs of eigenvalues (±,∓); see also examples in sections 5.1,
5.2. The direct sum decomposition (41), in particular, implies that if
some joint eigenspace is trivial, then the corresponding EPR entangled
states do not exist. Say, if HAB(++) = {0}, then there are no A = B
states.9

We remark that in our theory, the tensor product case is only a
particular case. Generally the EPR entanglement is characterized not
by the tensor product, but by the direct sum operation. The condi-
tion of non-factorization w.r.t. the tensor product is changed to the
condition of non-triviality of state’s components belonging to the cor-
responding joint eigensubspaces; say for A = −B EPR entanglement,
is characterized by conditions (42), (43)

5.4 Embedding into tensor product

The consideration of section 5.3 suggests the following embedding of
the state space into tensor product.

To illustrate this construction, let us consider the five dimensional
case (section 5.1). Let {e1, e2, e3, e4, e5} be some orthonormal basis in
H. Let HA(±) and HB(±) be generated by {e1, e2, e3}, {e4, e5} and
{e1, e2}, {e3, e4, e5}, respectively. We encode them as

e1 = |++〉1, e2 = |++〉2, e3 = |+−〉, e4 = |−−〉1, e5 = |−−〉2. (45)

Here joint egeinspaces are generated by the following bases,

HAB(++) : (|++〉1, |++〉2);HAB(+−) : |+−〉;HAB(−−) : (|−−〉1, |−−〉2)
(46)

and HAB(−+) = {0}. Hence,

H = HAB(++)⊕HAB(+−)⊕HAB(−−).

In particular, this automatically implies that there are no A = −B
entangled states.

Consider now two dimensional spaces with bases labeled as follows

Ha(+) : |+〉1a, |+〉2a,Ha(−) : |−〉1a, |−〉2a

and one dimensional spaces

Hb(+) : |+〉b,Hb(−) : |−〉b
9We also note that if H = HAB(++) ⊕ HAB(−−), then simply Â = B̂; if H =

HAB(+−)⊕HAB(−+), then Â = −B̂.
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Set Ha = Ha(+) ⊕Ha(−),Hb = Hb(+)⊕ Hb(−), and H = Ha ⊗Hb.
The latter has the basis labeled as

|++〉1 = |+〉1a|+〉b, |++〉2 = |+〉2a|+〉b, |+−〉1 = |+〉1a|−〉b, |+−〉2 = |+〉2a|−〉b,

|−+〉1 = |−〉1a|+〉b, |−+〉2 = |−〉2a|+〉b, |−−〉1 = |−〉1a|−〉b, |−−〉2 = |−〉2a|−1〉b.
Tnen we can embed H into H in two ways. The vectors e1, e2 and
e4, e5 are mapped in the corresponding vectors of H. But the vector
e3 can be mapped either to | + −〉1 or to | + −〉2.10 The operators Â
and B̂ can be extended onto H

Â|αβ〉i = α|αβ〉i, B̂|αβ〉i = β|αβ〉i. (47)

Hence, HA(±) are generated by vectors

(|++〉1, |++〉2, |+−〉1, |+−〉2), (| −+〉1, | −+〉2, | − −〉1, | − −〉2)

and HA(±) by vectors

(|++〉1, |++〉2, | −+〉1, | −+〉2), (|+−〉1, |+−〉2, | − −〉1, | − −〉2).
Let us find EPR entangled states for A = −B; we have

E
Â
(+)|ψ〉 = c++1|++〉1 + c++2|++〉2 + c+−1|+−〉1 + c+−2|+−〉2

and

E
B̂
(−)|ψ〉 = c+−1|+−〉1 + c+−2|+−〉2 + c−−1| − −〉1 + c−−2| − −〉2.

Hence coefficients c++i, c−−i, i = 1, 2, are equal to zero and the EPR
entangled state has the form

|ψ〉 = c+−1|+−〉1 + c+−2|+−〉2 + c−+1| −+〉1 + c−+2| −+〉2,

where |c+−1|2 + |c+−2|2 6= 0, |c−+1|2 + |c−+2|2 6= 0 and vector’s norm
equals to one.

Hence, as could be expected, tensor product embedding crucially
changes the EPR entangled features. This shows restriction of the
tensor product construction.

6 Can the same outcome be perfectly

conditionally correlated with two differ-

ent outcomes?

We again consider the general case, i.e., the operators do not need to
be commuting.

10In the same way, we can proceed with construction based on two dimensional spaces
Hb(±) and one dimensional spaces Ha(±).
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6.1 (A = α,B = β) and (A = α,B = β ′).

Can a state satisfy the conditions of perfect conditional correlations for
the pairs (α, β) and (α, β′), where β′ 6= β? The answer is no. Really,
let

EB(β)EA(α)|ψ〉 = EA(α)|ψ〉, EB(β′)EA(α)|ψ〉 = EA(α)|ψ〉.

Hence, EA(α)|ψ〉 = 0. This contradicts to the necessary condition for
definition of conditional probabilities. So, it cannot happen that by
getting one fixed outcome A = α, one can get with probability 1 two
different outputs of B. For dichotomous variables, α, β = ±1, EPR
entanglement of the form (A = +, B = + and (A = +, B = −) or
(A = −, B = +) and (A = +, B = −).

6.2 (A = α,B = β) and (A = α′, B = β).

Now turn to the question on the possibility to have both (α, β) and
(α′, β) perfect conditional correlations for α 6= α′. For γ = α,α′, we
have

EB(β)EA(γ)|ψ〉 = EA(γ)|ψ〉, (48)

In general, these two conditions are not contradictory. Thus, in prin-
ciple, for two different outcomes of A the conditional measurement
can give with probability 1 the same outcome of B. Such perfect con-
ditional correlations cannot be symmetric, since symmetry contradict
to the conclusion of section 6.1.

Consider now the case of the dichotomous observable A, i.e., EA(+)+
EA(−) = I. Then, (48) implies, that (EB(β)EA(+)+EB(β)EA(−))|ψ〉 =
|ψ〉, i.e.,

EB(β)|ψ〉 = |ψ〉, (49)

i.e., |ψ〉 ∈ HB(β). This is the necessary condition of (+, β) and (−, β)
perfect correlations for a dichotomous observable A. This condition
jointly with (48) imply that EB(β)EA(γ)|ψ〉 = EA(γ)EB(β)|ψ〉, γ =
± i.e.,

[EB(β), EA(γ)]|ψ〉 = 0. (50)

Thus, the corresponding projectors commute on this state.
Consider now the case of projectors commuting on some β-eigenstate

of B, i.e., (49) and (50) hold. In this case, EA(γ)EB(β)|ψ〉 = EB(β)EA(γ)|ψ〉 =
EA(γ)|ψ〉 and, hence, (48) hold.

In particular, for commuting operators, [Â, B̂] = 0, and dichoto-
mous A, a state is (±, β) EPR entangled iff it is the β-eigenstate of B.
Of course, this state should satisfy the condition EA(γ)|ψ〉 6= 0, γ = ±.

17



We remark that if both observables are dichotomous to such entangle-
ment cannot be symmetric. Thus condition of entanglement symmetry
excludes the ‘pathological cases”’.

Now turn to section 5.1.2. Let {e1, e2, e3, e4} be some orthonormal
basis in H. Let HA(±) and HB(±) be generated by {e1, e2}, {e3, e4}
and {e1, e3}, {e2, e4}, respectively. A state |ψ〉 = d1e1 + d3e3 is the
B = + eigenstate and EA(±)|ψ〉 6= 0. So, this state is both (A =
+, B = +) and (A = −, B = +) perfectly conditionally (A then B)
correlated. We can check this directly,

P (B = +|A = ±, |ψ〉) = ‖EB(+)EA(±)|ψ〉‖2/‖EA(±)|ψ〉‖2

= ‖EA(±)|ψ〉‖2/‖EA(±)|ψ〉‖2 = 1.

However, as we know, such entanglement cannot be symmetric.
We again check this directly:

P (A = ±|B = +, |ψ〉) = ‖EA(±)EB(+)|ψ〉‖2/‖EB(+)|ψ〉‖2

= ‖EA(±)EB(+)|ψ〉‖2 6= 1.

7 EPR entangled states and non-commutativity

Consider now two pairs of dichotomous observables Ai, Bj = ±1, i, j =
1, 2, such that observables in each pair (Ai, Bj) are compatible, i.e.,
[Âi, B̂j ] = 0, i, j = 1, 2. We search the states inducing the combination
of the perfect correlations (Ai = ±, Bi = ∓), i = 1, 2. They are given
by the equalities:

EB1
(+)|ψ〉 = EA1

(−)|ψ〉, EB2
(+)|ψ〉 = EA2

(−)|ψ〉 (51)

Hence,

EB2
(+)EB1

(+)|ψ〉 = EB2
(+)EA1

(−)|ψ〉 = EA1
(−)EB2

(+)|ψ〉 = EA1
(−)EA2

(−)|ψ〉,
(52)

in the same way

EB1
(+)EB2

(+)|ψ〉 = EA2
(−)EA1

(−)|ψ〉, (53)

thus,
[EB2

(+), EB1
(+)]|ψ〉 = [EA1

(−), EA2
(−)]|ψ〉, (54)

We also have

EB1
(−)|ψ〉 = EA1

(+)|ψ〉, EB2
(−)|ψ〉 = EA2

(+)|ψ〉, (55)
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thus
[EB2

(−), EB1
(−)]|ψ〉 = [EA1

(+), EA2
(+)]|ψ〉, (56)

Finally, (51) implies the equalities for combinations (+,−):

EB2
(−)EB1

(+)|ψ〉 = EA1
(−)EA2

(+)|ψ〉, (57)

EB1
(+)EB2

(−)|ψ〉 = EA2
(+)EA1

(−)|ψ〉, (58)

In turn they imply that

[EB2
(−), EB1

(+)]|ψ〉 = [EA1
(−), EA2

(+)]|ψ〉, (59)

In the same way we obtain that

[EB2
(+), EB1

(−)]|ψ〉 = [EA1
(+), EA2

(−)]|ψ〉, (60)

Finally we get
− [B̂1, B̂2]|ψ〉 = [Â1, Â2]|ψ〉. (61)

In particular, for correlation, we get

− 〈ψ|[B̂1, B̂2]|ψ〉 = 〈ψ|[Â1, Â2]|ψ〉. (62)

This is the good place to make the following remark. In the tensor
product situation (section 5.2), the operator b̂ need not be selected
as b̂ = −â, i.e., B̂ need not be equal to −I ⊗ â. This is an arbitrary
operator.

Finally, we notice that

− [Â1, Â2][B̂1, B̂2]|ψ〉 = [Â1, Â2]
2|ψ〉. (63)

and, hence,

− 〈ψ| [Â1, Â2][B̂1, B̂2] |ψ〉 = || [Â1, Â2]|ψ〉 ||2 (64)

8 Existence of EPR entangled states

for families of pairs of commuting op-

erators

We consider the scheme of sections 7. The natural question arises
on the existence of the solutions of the system of linear equations
(51). More generally one can consider a family of pairs of operators
(Âu, B̂u), where u is some parameter. Can one find a quantum state
which is EPR entangled for all these pairs?
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For simplicity, it is assumed that, for any u, [Âu, B̂u] = 0, but it
may be that, for some pairs u, v, [Âu, Âv] 6= 0 or (and) [B̂u, B̂v] 6= 0.

Let us consider the tensor product caseH = H⊗H, where dim H =
2, and two operators inH, â, b̂, with the eigenbases (f+, f−) and (g+, g−),
where âf± = f±, b̂g± = g±. Set nÂ = â⊗ I, B̂ = I ⊗ b.

Then the EPR (±,∓) entangled state has the form

|ψ〉 = c+−|f+g−〉+ c−+|f−g+〉, c−+, c−+ 6= 0. (65)

This is the good place to make the following foundational remark. Set
c+− = −c−+(= 1/sqrt2), so

|ψ〉 = (|f+g−〉 − |f−g+〉)/
√
2. (66)

This state looks as the singlet state. However, the situation is really
delicate. In fact, this is not the conventionally considered singlet state
having the form:

|ψ〉 = (|f+f−〉 − |f−f+〉)/
√
2, (67)

i.e., it corresponds to the EPR (±,∓) entanglement for â = b̂, i.e.,
Â = â ⊗ I, B̂ = I ⊗ â. Nevertheless, state (66) has the same basic
property as the state (67), namely, it preserves its form under tensor
product of unitary transformation in H with itself.

Take any unitary transformation û in H and consider operators of
the form:

âu = ûâû⋆, b̂u = ûb̂û⋆, (68)

which are diagonal w.r.t. to the bases (f ′+, f
′
−) and (g′+, g

′
−), ob-

tained with the unitary transformation û from the bases (f+, f−)
and (g+, g−). Then the state |ψ〉 preserves its form if and only if
c+− = −c−+, i.e.,

|ψ〉 = (|f+g−〉 − |f−g+〉)/
√
2 = (|f ′+g′−〉 − |f ′−g′+〉)/

√
2. (69)

Hence, such state is EPR (±,∓) entangled both for the pair Â, B̂ and
Âu = âu ⊗ I, B̂u = I ⊗ b̂u (so for all pairs (Âu, B̂u)).

9 Brief foundational discussion

This paper is devoted to an alternative mathematical approach to the
notion of entanglement, so not directly towards quantum foundations.
However, it may be useful to complete it by a brief foundational dis-
cussion. In this section we continue to consider the tensor product
state space and operators of the form Â = â ⊗ I, B̂ = I ⊗ b̂ and the
EPR entanglement for A = −B, i.e., (±,∓). These operators repre-
sent “local observables” A and B on the subsystems S1 and S2 of a
compound system S = (S1, S2).
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9.1 Elements of reality vs. perfect conditional

correlations

In the PCC approach, for any pair of operators (Â, B̂), there exists
A = −B entangled state |ψ〉 ≡ |ψ〉AB . Thus by getting the outcome
A = α for A-measurement on the system S1, one can with probability
1 predict the outcome B = −α for B-measurement on the system S2
without disturbing it in any way. Thus, according to the EPR notion
of an element of reality [24] B = −α has to be treated as the element
of reality.

However, in our formalism the case â = b̂, i.e., Â = â ⊗ I, B̂ =
I ⊗ â, is only the special case of the general formalism with arbitrary
operators â, b̂. By ignoring the finite dimensional treatment of the
problem in the present paper, we call observables a and b “position”
and “momentum” of S1 and S2, respectively. But, it seems to be
unnatural to speak about reality of “momentum” of the system S2 by
determining “position” of the system S1. It is more natural to treat
this situation in the spirit of Schrödinger [31, 32] (as well as Bohr [33]),
or in the rigorous mathematical terms, in the conditional probability
framework.

Hence, embedding of the EPR argument in more general frame-
work (PCC for arbitrary pairs (A,B) of observables) moves us from
the EPR coupling of the PCC with elements of reality. The EPR en-
tangled states are states describing the possibility of predictions with
probability 1 (cf. Plotnitsky [50, 51]).

9.2 Bell vs. EPR: joint vs. conditional mea-

surements

Typically the Bell argument [4] is considered as just the new mathe-
matical restructuring of the original EPR argument [24]. However, a
few authors questioned this viewpoint (e.g., [46, 52]). Mathematical
formalization of the notion of entanglement on the basis of condi-
tional probability illuminates the difference between Bell and EPR
arguments, as the difference between joint and conditional measure-
ments.

To speak about joint measurements in the rigorous terms, one has
to appeal to von Neumann mathematical formalization [39] of the no-
tion of the joint measurement of observables A and B. It must be
defined an observable K such that A = f(K), B = g(K) and, for
corresponding operators Â = f(K̂), B̂ = g(K̂). Such observable K
cannot be local, it is nonlocal by its meaning. However, this nonlocal-
ity has the simple classical structure based on the introduction of the
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time window and identification of the clicks inside the selected time
window.

In contrast, conditional measurements are local per their definition.

10 Concluding remarks

We demonstrated once again that the interpretation of quantum prob-
ability as the conditional one sets the natural probabilistic meaning to
the basic quantum constructions (cf. [34]-[36]). In this paper, quan-
tum conditioning was used to embed the EPR correlations into the
scheme of quantum conditioning which is mathematically described
by the projection postulate (in the Lüders form). This gives the pos-
sibility to treat these correlations as entanglement of knowledge which
can be extracted via conditional measurements. In this way the notion
of entanglement can be decoupled from the compound systems (and
mathematically from the tensor product structure) and, hence, from
and quantum nonlocality (“spooky action at a distance”).

Our approach to entanglement matches the original Schrödinger
viewpoint on it, as “entanglement of predictions”, “entanglement of
our knowledge”, see [32]:

“... between these two systems an entanglement can arise, which ...
can be compactly shown in the two equations: q = Q and p = −P. That
means: I know, if a measurement of q on the system yields a certain
value, that a Q-measurement performed immediately there-after on the
second system will give the same value, and vice versa; and I know, if
a p-measurement on the first system yields a certain value, that a P -
measurement performed immediately thereafter will give the opposite
value, and vice verse.”

Appendix A: Entanglement of operator

algebras

Articles [40, 41] describe the framework which can be refereed as op-
erator algebras entanglement; we cite again [41]:

“Our definitions will be observable-based and will mostly involve
algebraic objects. Let us consider a quantum system with finite-
dimensional state-spaceH, a subspace C ⊂ H, and a collection {Ai}ni=1

of subalgebras of End(C) satisfying the following three axioms:

• i) Local accessibility: Each Ai corresponds to a set of controllable
observables.
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• ii) Subsystem independence: [Ai,Aj] = 0, i 6= j.

• iii) Completeness: ∪ni=1
Ai

∼= ⊗n
i=1

Ai
∼= End(C).′′

This axiomatization of the observational entanglement led to the fol-
lowing basic result [40, 41]; here abbreviation TPS is used for a tensor
product structure.

Proposition 1. A set of subalgebras Ai satisfying Axioms i)–iii)
induces a TPS C = ⊗n

i=1
Hi.We call such a multi-partition an induced

TPS.

This proposition connects the algebraic definition with the stan-
dard state based definition and consideration of subspace C extends
essentially the domain of applicability. Reconstruction of TPS C =
⊗n
i=1Hi is very important for applications to quantum information

[53]) and sets coupling with system decompositions or superselection
symmetries (see [54, 55]).

At the same time reduction of iii) to TPS on C highlights again
the role of the tensor product structure. (The crucial axiom behind
Proposition 1 is iii).)

The conditional probabilistic approach to observational entangle-
ment presented in our paper is a good foundational complement to
algebraic studies in articles [40, 41]. We also point out to the fol-
lowing algebraic type differences between two approaches. The main
difference is that we proceed without axiom iii). Generally we neither
appeal to axiom ii), but the most interesting results are obtained in
the commuting case. Proceeding without appealing to axiom iii) gives
us the possibility to disconnect entanglement completely from TPSs,
but reserve the possibility of such connection in special cases.

On the other hand, we consider the special form of observational
entanglement. This form matches the framework of the EPR-paper
[24] and mathematically formalizes perfect correlations between the
outcomes of observables – via conditioning with probability p = 1.
Such unit probability correlations are important from the foundational
viewpoint for rigorous treatment of the EPR elements of reality [24].

Appendix B: Multi-observables EPR en-

tanglement

Consider now three discrete quantum observables A,B,C represented
by Hermitian operators Â, B̂, Ĉ and generating the projection type
state update. We are interested in conditional probability to get the
outcome C = γ if the preceding sequential measurements, first A and
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then B, the outcomes A = α and B = β were obtained:

P (C = γ|A = α,B = β, ψ) =
‖EC(γ)EB(β)EA(α)|ψ〉‖2

‖EB(β)EA(α)|ψ〉‖2
. (70)

The outcome C = γ is perfectly correlated with the (previous) out-
comes A = α and B = β if this conditional probability equals to 1,
i.e.,

‖EC(γ)EB(β)EA(α)|ψ〉‖2 = ‖EB(β)EA(α)|ψ〉‖2. (71)

Hence,
EC(γ)EB(β)EA(α)|ψ〉 = EB(β)EA(α)|ψ〉. (72)

Of course, the condition of non-degeneration must hold:

EB(β)EA(α)|ψ〉 6= 0. (73)

Hence, (72), (73) are necessary and sufficient conditions of the perfect
correlation (A = α,B = β,C = γ).

Consider now the case of compatible observables A and B. Ee
remark that in this case (A = α,B = β,C = γ) and (B = β,A =
α,C = γ). perfect correlations are equivalent.

Now let all observables be compatible; we find the conditions of
the joint perfect correlations, (A = α,B = β,C = γ), (B = β,C =
γ,A = α), (C = γ,A = α,B = β),

EC(γ)EB(β)EA(α)|ψ〉 = EB(β)EA(α)|ψ〉. (74)

EA(α)EC(γ)EB(β)|ψ〉 = EC(γ)EB(β)|ψ〉. (75)

EB(β)EA(α)EC(γ)|ψ〉 = EA(α)EC(γ)|ψ〉. (76)

Thus,

EB(β)EA(α)|ψ〉 = EC(γ)EB(β)|ψ〉 = EA(α)EC (γ)|ψ〉, (77)

Consider observables on a compound system S = (S1, S2, S3) with
the state space H = H1⊗H2⊗H3; let a, b, c be local observables with
operators â, b̂, ĉ and let A,B,C be the corresponding observables on
S with operators Â = â⊗ I ⊗ I, B̂ = I ⊗ b̂⊗ I, Ĉ = I ⊗ I ⊗ ĉ. Suppose
that all observables are dichotomous with values ±1. The standard
basis in H is given by (|αβγ〉). The general state is represented as

|ψ〉 =
∑

α,β,γ=±

cαβγ |αβγ〉.

We now describe the PCC-states for (A = ±, B = ±, C = ±),“EPR
entangled” for the set triples (+++), (−−−). The system of equalities
(77) implies, for α, β, γ = ±,

c+++|+++〉+ c++−|++−〉 = c+++|+++〉+ c−++| −++〉 =
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c+++|+++〉+ c+−+|+−+〉
Hence c++− = c−++ = c+−+ = 0. In the same way, by selecting
α, β, γ = −, we get c+−− = c−−+ = c−+− = 0. Hence

c+++|+++〉+ c−−−| − −−〉, c+++, c−−− 6= 0. (78)

and with normalization by 1.
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