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Abstract

In this paper we revisit Burnett (2021) & Burnett and Williams (2021)’s notion
of hedging valuation adjustment (HVA), originally intended to deal with dynamic
hedging frictions such as transaction costs, in the direction of model risk. The
corresponding HVA reconciles a global fair valuation model with the local models
used by the different desks of the bank. Model risk and dynamic hedging frictions
indeed deserve a reserve, but a risk-adjusted one, so not only an HVA, but also
a contribution to the KVA of the bank. The orders of magnitude of the effects
involved suggest that local models should not so much be managed via reserves,
as excluded altogether.
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Introduction

Cross Valuation Adjustments (XVAs) The financial landscape has undergone
significant transformation over the past few decades, particularly in the realm of coun-
terparty risk management. Initially, the focus was on modeling and quantifying coun-
terparty credit risk through credit valuation adjustment (CVA), which captures the
market value of counterparty credit risk by considering potential future exposures and
the likelihood of counterparty default (see e.g. Duffie and Singleton (1999)). However,

∗This research has benefited from the support of the Chair Capital Markets Tomorrow: Modeling
and Computational Issues under the aegis of the Institut Europlace de Finance, a joint initiative of
Laboratoire de Probabilités, Statistique et Modélisation (LPSM) / Université Paris Cité and Crédit
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the financial crisis of 2008 highlighted severe deficiencies in risk management frame-
works, revealing the complexities of interconnected financial risks.

In the aftermath of the crisis, regulatory bodies implemented more stringent col-
lateral and capital requirements to address these shortcomings. This led to the emer-
gence of funding valuation adjustment (FVA, see e.g. Burgard and Kjaer (2011, 2013);
Pallavicini, Perini, and Brigo (2011)) and capital valuation adjustment (KVA, see e.g.
Green, Kenyon, and Dennis (2014), Albanese, Caenazzo, and Crépey (2016)). FVA
accounts for the cost of funding uncollateralized trades, reflecting the funding spreads
a financial institution incurs due to its own default risk. KVA represents the cost of
holding capital against potential future losses, acknowledging the economic impact of
regulatory capital requirements.

These valuation adjustments (XVAs) are complex and nonlinear, requiring aggre-
gation at different levels. CVA can be calculated at the level of individual client rela-
tionships, considering the entire book of transactions with each counterparty. FVA and
KVA can only be validly assessed at the portfolio level of the entire bank, encompassing
all positions and the interplay of various risk factors across the institution.

Model Risk In the cost-of-capital XVA approach of Albanese, Crépey, Hoskinson,
and Saadeddine (2021) and Crépey (2022), the market is assumed to be frictionless
and no model risk is envisioned. In line with the Volcker rule that prevents proprietary
trading by banks, the market risk is assumed perfectly hedged, the focus being on
credit, funding, and capital risks. However, a perfect hedging strategy from a wrong
model bears material market risk. In this work, we introduce model risk (paramount
in recent structured products crises) and frictions (found particularly material for cross
gamma CVA hedging in Burnett and Williams (2021)) within a comprehensive XVAs
framework. In particular, the present paper provides an answer to Bichuch, Capponi,
and Sturm (2020), who notes that the baseline cost-of-capital XVA approach “assumes
that the counterparty-free payoffs of the contract are perfectly replicated, rather than
designing the replication strategy from first principles (and ignoring potential interac-
tion of risk factors)”.

Model risk is traditionally managed by reserving the price difference between out-
puts from low and high-quality models. This approach involves adjusting valuations
to account for price discrepancies and ensuring that reserves are held against potential
model inaccuracies. However, low-quality models are still used to compute hedging
strategies, leading to incorrect hedging ratios relative to higher quality models.

For discussions on model risk and associated regulatory guidelines until 2014, we re-
fer to Detering and Packham (2016) and references therein, including Karoui, Jeanblanc-
picqué, and Shreve (1998), Cont (2006), Elices and Giménez (2013), and to Farkas,
Fringuellotti, and Tunaru (2020), who propose a method to account for model risk
in capital requirements related to market risk. Bartl, Drapeau, Obloj, and Wiesel
(2021) address model risk by considering worst-case pricing and hedging with uncer-
tainty in a Wasserstein ball around a reference probability measure. However, while
the price is robust, the associated hedge remains imperfect. The model risk specific
to XVA computations is also considered in the literature. Bichuch et al. (2020) and
Silotto, Scaringi, and Bianchetti (2021) consider parameters uncertainty. Singh and
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Zhang (2019b,a) consider uncertainty around a reference probability measure in the
Wasserstein distance, in a discrete time setting and for a finitely supported reference
measure.

But under none of the above references, reserve is held against the impact of model
risk on hedging strategies. In the present work, we revisit Burnett (2021) & Burnett
and Williams (2021)’s notion of hedging valuation adjustment (HVA), originally in-
tended to deal with dynamic hedging frictions, in the direction of model risk. We
argue and demonstrate numerically that the impact of model risk on hedging strategies
can be very significant and deserves an adequate reserve, considered in addition to pric-
ing adjustments. This reserve materializes as a contribution to the KVA of the bank.
We also consider, similar to Burnett (2021) and Burnett and Williams (2021), a re-
serve against the market frictions induced by the practical implementation of dynamic
hedging strategies. These two reserves — for market frictions and for the impact of
model risk on hedging ratios — can only be computed at an aggregated level of deals,
similarly to CVA, FVA and KVA computations as explained above, making an XVAs
approach natural for this purpose.

Outline of the Paper We work in a continuous time probabilistic setup (Ω,A,F =
(Ft)t∈[0,T ],R) with a finite time horizon T > 0, interpreted as the final maturity of a
bank’s portfolio, assessed on a runoff basis as standard in XVA computations. The
risk-free asset is chosen as the numéraire. Until the concluding section of the paper,
the bank and its counterparties are assumed to be default-free. We assume that all
deals are European. For an integrable optional process Y = (Yt)t∈[0,T ] starting at 0,
interpreted as a cumulative cash-flow process associated with a deal, we define its value
process Y = va(Y) by:

Yt = Et

[
YT − Yt

]
, t ∈ [0, T ], (0.1)

where Et is the conditional expectation operator with respect to Ft under the proba-
bility distribution R. Here R is the hybrid of pricing and physical probability measures
defined in (Artzner et al., 2024, Proposition 4.1), advocated in Albanese et al. (2021,
Remark 2.3) for XVA computations. In particular, Y + Y is a martingale.

But our approach considers a dual-model environment: on one side, the global
fair valuation model (or reference model as advocated for model risk assessment in
Barrieu and Scandolo (2015)), in which prices are value processes as per (0.1); on the
other side, local trade-specific models used by traders. Due to the use of local models,
the raw profit-and-loss process pnl of the bank, defined as the sum of the profit-and-
losses associated with each individual deal and of the friction costs associated with
each hedging set, is not a martingale in the fair valuation model. From an XVA
viewpoint, this deviation from a martingale necessitates a risk-adjusted reserve, so that
the adjusted profit-and-loss process of the bank pnl− (HVA−HVA0)− (KVA−KVA0)
becomes a submartingale in line with a remuneration of the shareholders of the bank
at some hurdle rate r (e.g. 10%). Here HVA is the value process of −pnl, so that
L := −pnl + HVA − HVA0 is a martingale, while KVA is the cost of capital, sized on
the fluctuations of L.

Exploiting the linearity of the fair valuation operator, the HVA/KVA computation
can be split at different aggregation levels. This leads to three layers of valuation
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adjustments: the first layer, denoted HVAmtm, is computed at the level of individual
deals (i.e. no aggregation). The second layer, denoted HVAf , is computed at the
level of hedging sets (i.e. sets of deals that are hedged together), leading to HVA =
HVAmtm +HVAf . The third layer, the KVA, can only be computed at the level of the
bank’s portfolio as a whole. More specifically, we introduce in this work:

1. The first layer HVA (price adjustment, Section 1): This layer compensates
the loss process associated with a deal, ensuring it becomes a martingale under
the global valuation model. This adjustment accounts for the model risk inherent
in transitioning from local models to fair valuation. It corresponds to a model
risk reserve as per current market practice, reserving the local model pricing gaps
related to the asset and its static hedging component (see Proposition 1.1 and
Remark 1.4).

2. The second layer HVA (cost of market frictions, Section 2): This layer
addresses nonlinear market frictions induced by the dynamic hedging strategies
associated with individual deals. Deals are hedged collectively to exploit netting
benefits, reducing market frictions such as transaction costs, though these costs
may still be significant. The valuation of these costs constitutes our second HVA
layer, generalizing the original HVA defined by Burnett (2021) & Burnett and
Williams (2021), also accounting for model risk. With these two HVA layers, the
bank’s loss process L is a martingale.

3. The third layer HVA (KVA risk adjustment, Section 3): Despite the
price adjustments from the first two HVA layers, hedging ratios remain computed
within the local models, leading to material losses. The third HVA layer is defined
as the KVA associated with L. This layer accounts for the cost of holding capital
against exceptional losses induced by the incorrect hedges.

So far this is all restricted to market risk. The last section of the paper introduces
additional first layer HVA components related to credit and funding risks, thus incor-
porating the HVA into the global valuation framework of Albanese et al. (2021) and
Crépey (2022), and concludes.

1 First Layer HVA: HVA for Individual Deals

1.1 Abstract Framework

This section introduces our dual-model setup.

For each deal contracted between the bank and a counterparty, the bank uses a local
custom pricing model to price and hedge the deal. This holds up until a stopping time,
at which the trader starts using the fair valuation model (for instance because the local
model is no longer usable as it non longer calibrates to the market, represented in our
setup by the fair valuation model). Under this model risk specification, the associated
raw pnl of the trader is not a martingale, and we then introduce the first layer HVA as
its martingale compensator.
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Definition 1.1. We fix a generic European deal of the bank, denoted by “·”, with
maturity T ·. The corresponding raw pnl is given, for all t ≥ 0, by

pnl·t = Q·
t + q·t1{t<τ ·s} +Q·

t1{t≥τ ·s} − q·0 −
(
P ·
t + p·t1{t<τ ·s} + P ·

t1{t≥τ ·s} − p·0
)
− h·t, (1.1)

where

• Q· denotes the cumulative cash flow process received by the bank from the client
through the deal, while P · denotes the cumulative cash flow process paid by the
bank to the hedging market through a static hedging component (with P · andQ·

both assumed stopped at T ·),

• q· (resp. p·) is the price of the deal (resp. of its static hedging component), com-
puted by the trader of the bank from a local pricing model used for pricing and
hedging the deal until the stopping time τ ·s, denoted model switch time,

• Q· = va(Q·) (resp. P · = va(P ·)) is the fair valuation price of the deal (resp. of its
static hedging component), used by the trader of the bank from time τ ·s onwards,

• h· is the loss process associated to the dynamic hedging component of the deal,
ignoring transaction costs.

Since h· is a dynamic hedging loss, it should be thought about as a stochastic integral
against the hedging instruments, all assumed European-style and without dividends, so
that their prices are martingales in the global valuation model. A natural assumption
regarding h· is then:

Assumption 1.2. h· is a zero-valued martingale, i.e. va(h·) = 0.

Remark 1.1. We do not assume a frictionless market, but since numerous deals are
hedged together inside “hedging sets” by the bank, market frictions such as transaction
costs can only be addressed at the hedging set level, which will be the topic of Section
2.

Given a deal “·” the fair valuations Q· and P ·, being value processes of cash flow
processes stopped at T ·, vanish on [T ·,∞). Likewise, a natural assumption on the local
prices is then:

Assumption 1.3. On {τ ·s > T ·}, the processes q· and p· vanish on [T ·,+∞).

The key observation here is that the raw pnl process pnl· is not a martingale under
the fair valuation model (unless q· = Q· and p· = P ·). We now define the contribution
of a deal and its hedge to the first layer HVA and, eventually, the first layer HVA for
all deals, by linearity.

Definition 1.4. For each deal “·”, its contribution to the first layer HVA is given by

HVA· := −va(pnl·), (1.2)

i.e. (−pnl· +HVA·) is a martingale and HVA· = 0 on [T ·,+∞). The first layer HVA is
defined by

HVAmtm :=
∑

·
HVA· = −va(pnlmtm), (1.3)

where pnlmtm =
∑

· pnl
·.
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Remark 1.2. Without model risk, if the bank was only using the fair valuation model,
then the pnl associated to the deal “·” would simply be the martingale pnl·,∗ defined,
for all t ≥ 0, by

pnl·,∗t := Q·
t +Q·

t −Q·
0 −

(
P ·,∗
t + P ·,∗

t − P ·,∗
0

)
− h·,∗t , (1.4)

and the associated HVA· would be zero. Note that the processes P ·,∗,P ·,∗, p·,∗ and h·,∗

are a priori different from P ·, P ·, p·, h·, as the former would be derived in the setup
of the fair valuation model, while the latter rely on a local pricing model.

Remark 1.3. (i) If the trader is not willing or unable to use the fair valuation model,
the bank may consider liquidating the deal at τ ·s. To render this case, one just needs
to stop the process pnl· at τ ·s.
(ii) One could consider products with knock-out features. In that case, one would need
to introduce an additional stopping time (deactivation time) τ ·e, and to stop pnl· at
τ ·e.
(iii) We could also consider American or game claims with exercise times possibly
< T · under the control of the bank and/or client, in which case τ ·e as above should be
understood as the corresponding exercise time. Further adjustments are then required
to deal with possibly suboptimal stopping by the bank (suboptimal stopping by the
client can be conservatively ignored in the modeling). These adjustments are the topic
of Benezet, Crépey, and Essaket (2022). In the present paper we assume no early
exercise features.

Regarding this first layer HVA, one can perform explicit computations, showing
that it corresponds to the price difference between the two model prices.

Proposition 1.1. Under Assumptions 1.2-1.3, for each deal “·”, we have, for all t ≥ 0,

HVA·
t = (q·t −Q·

t − (p·t − P ·
t ))1{t<τ ·s}. (1.5)

Proof. From (1.1), one gets, for all t ≥ 0,

pnl·t = Q·
t +Q·

t + (q·t −Q·
t)1{t<τ ·s} −

(
P ·
t + P ·

t + (p·t − P ·
t )1{t<τ ·s}

)
− h·t.

By linearity of the va(·) operator, since (by definition) Q· + Q·, P · + P · and (by
Assumption 1.2) h· are martingales, we obtain from (2.1)-(1.2), for all t ≥ 0,

HVA·
t = −Et

[
(q·T · −Q·

T ·)1{T ·<τ ·s} − (p·T · − P ·
T ·)1{T ·<τ ·s}

]
+

(q·t −Q·
t)1{t<τ ·s} − (p·t − P ·

t )1{t<τ ·s},

which implies (1.5), as Q·
T · = P ·

T · = 0 and q·T · = p·T · = 0 on {T · < τ ·s}, by Assumption
1.3. □

Remark 1.4. HVA· corresponds to the current market practice for handling model risk
in the form of a reserve put aside at initial time. In actual practice, rather than paying
q·0 to the client (as implied by (1.1)) while the client would provide HVA·

0 as reserve
capital to the bank, the trader pays Q·

0 to the client and puts by himself HVA·
0 in the

reserve capital account, which is equivalent (at least if P · = p·, as then HVA·
0 = q·0−Q·

0).

6



1.2 The Vulnerable Put Example

1.2.1 Financial Model

We consider a financial derivative on a stock S, dubbed vulnerable put, whereby the
bank is long the payoff (K−ST )

+1{ST>0} at some maturity T , for some strike K (with
T,K, S ≥ 0). Using the notations introduced in Definition 1.1, we have here

T · = T,Q·
t = (K − ST )

+1{ST>0}1t≥T .

With dividend yields on S and interest rates in the economy set to 0, we assume the
global valuation model defined as the jump-to-ruin (jr) model

dSt = λStdt+ σStdWt − St−dNt = σStdWt − St−dMt, t ≥ 0, (1.6)

for some standard Brownian motion W , a constant volatility parameter σ > 0, and
M = N −λt, where N is a Poisson process of intensity λ > 0. So the stock S jumps to
0 at the first jump time θ of the driving Poisson process N . Hence, for t ≥ 0,

Q·
t = va(Q·)t = Qjr

t := Et

[
(K − ST )

+1{T<θ}
]
1{t<T}. (1.7)

The role of the local pricing model will be played by a Black-Scholes (bs) model
with volatility parameter Σ continuously recalibrated to the jump-to-ruin price

P jr
t := Et

[
(K − ST )

+
]
1{t<T}, t ≥ 0 (1.8)

of the “vanilla component” of the vulnerable put, with payoff (K − ST )
+ at time T .

The vulnerability of the vulnerable put is immaterial in this bs model, hence the local
model price q·t of the vulnerable put coincides with the vanilla put price P jr

t . We also
define τ ·s := θ. Indeed, an application of the formula (A.8) for S = 0 and −d± = +∞
shows that P jr = K on [θ, θ ∧ T [. As detailed in Remark A.1, at time θ (if < T ), the
implied volatility of the vanilla put ceases to be well-defined, hence the local pricing
model cannot be used anymore.

Remark 1.5. In this example, which is devised for the sake of analytical tractability,
the trader is short an extreme (default) event but pretends he does not see it, only
hedging market risk. Hence the hedged position is still short the default event, which
can be seen as an extreme case of “gamma negative” type position. The (Darwinian,
as per Albanese, Crépey, and Iabichino (2021)) model risk mechanism here at hand is
essentially the same as the one affecting huge amounts of structured derivative prod-
ucts, including range accruals in the fixed-income world, autocallables and cliquets
on equities, or power-reversal dual currency options and target redemption forwards
on foreign-exchange: cf. https://www.risk.net/derivatives/6556166/remembering-the-
range-accrual-bloodbath (11 April 2019, last accessed on 19 June 2024). Risk.net thus
reported that Q4 of 2019, a $70bn notional of range accrual had to be unwound at very
large losses by the industry.
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1.2.2 First Layer HVA for a Static Hedging Scheme

We first consider a static hedging scheme. The trader uses at time t = 0 the local (bs)
pricing model, in which the vulnerability of the put is immaterial: from the bs model
viewpoint, shorting the vanilla put is a perfect hedge to the vulnerable put and no
dynamic hedging is required. In the notation of Definition 1.1, this corresponds, for all
t ≥ 0, to h·t ≡ 0 and

P ·
t = (K − ST )

+1t≥T ,

p·t = P ·
t = va(P ·)t = P jr

t as per (1.8).
(1.9)

The equality p· = P · implies that the local pricing model is continuously recalibrated
(before the ruin time θ) to the vanilla put fair valuation P jr, as explained after (1.8).

Applying (1.1) and (1.5), we compute, for all t ≥ 0,

pnl·t = −K1{θ≤t}1{θ≤T},

HVA·
t = 1{t<θ}

(
P jr
t −Qjr

t

)
= JθK(1− e−λ(T−t)),

(1.10)

where, to compute pnl·, we used that Q·
t − P ·

t = −K1{θ≤T≤t}, p·t = q·t = P jr
t on

{t < θ}, and Q·
t = 0, P ·

t = K on {θ ≤ t < T}. The raw pnl process in (1.10) and the
corresponding compensated (by HVA· −HVA·

0) pnl satisfy, for t ≥ 0,

dpnl·t = −K1{t≤T}δθ(dt) = 1{t≤θ∧T}
(
− λKdt− (KdNt − λKdt)

)

dpnl·t − dHVA·
t = K1{t≤θ∧T}e

−λ(T−t)
(
λdt− δθ(dt)

)
,

(1.11)

where δθ denotes the Dirac measure at time θ.

Remark 1.6. Consistently with the qualitative features of Darwinian model risk in
Albanese et al. (2021), the seemingly positive drift 1{t≤θ∧T}λKe−λ(T−t)dt in the second

line is only the compensator of the loss −1{t≤θ∧T}Ke−λ(T−t)dNt that hits the bank in
case the jump-to-ruin event materializes. Hence the trader makes systematic profits in
the short to medium term, followed by a large loss at the model switch time.

Numerical Application For λ = 1%, T = 10y and K = 1, (1.10) yields

HVA·
0 = K(1− e−0.1) ≈ 0.095. (1.12)

1.2.3 First Layer HVA for a Dynamic Hedging Scheme

We now consider a dynamic delta hedging scheme. The trader delta hedges the vul-
nerable put with the stock S and the risk-free asset, in his local bs pricing model and
until time θ, and there is no static hedging. In the notation of Definition 1.1, we have,
for all t ≥ 0,

P ·
t = P ·

t = p·t ≡ 0 and h·t =

∫ t∧θ

0
∆bs

s−dSs, (1.13)

where ∆bs
t = N

(
− d−(t, St; 0,Σt)

)
, in which N is the standard normal cumulative

distribution function, is the delta of the vulnerable put computed in the local pricing
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model: cf. the Black-Scholes formula for puts and (A.2). Note that, in this setting,
dynamic hedging friction costs could be considered, namely transaction costs, which
will be done in Section 2.5.

From (1.1) and (1.5), we compute, for t ≥ 0,

pnl·t = 1{θ>T}1{t≥T}(K − ST )
+ + 1{t<θ}P

jr
t − P jr

0 − h·t,

HVA·
t = 1{t<θ}(P

jr
t −Qjr

t ) = 1{t<θ}K(1− e−λ(T−t)).
(1.14)

The raw pnl· in (1.14), satisfies, for 0 ≤ t < θ,

dpnl·t = δT (dt)(K − ST )
+ + dP jr

t − δtdSt,

whereas at θ (if ≤ T ) the bank incurs a loss

pnl·θ − pnl·θ− = −P jr
θ− + h·θ− − h·θ = −P bs

θ− +∆bs
θ−(Sθ− − Sθ)

= −P bs
θ− +∆bs

θ−Sθ− = −KN (−d−(θ, Sθ−; 0,Σθ−)) < 0.
(1.15)

Numerical Application In the above example, while the static hedge is perfect
before θ and the continuous-time delta hedge is not (due to the continuous recalibration
of the local pricing model), one observes a smaller loss at θ < T in the delta hedging
case:

P jr
θ− −∆bs

θ−Sθ− = KN (−d−(θ, Sθ−; 0,Σθ−)) ≤ K = P bs
θ ,

cf. (1.15), the first identity in (1.11), and the left panel in Figure 2.1.

Remark 1.7. The statically hedged position is delta and vega neutral. Hence our
vulnerable put example yields a case where delta-vega hedging the option actually
increases model risk with respect to delta-hedging it only.

2 Second Layer HVA: HVA for Dynamic Hedging Fric-
tions

2.1 Abstract Framework

As already hinted in Remark 1.1, the above processes h· are meant for standard dynamic
hedging cash flows ignoring frictions such as transaction costs. Indeed, as these are
nonlinear, they can only be addressed at the level of a hedging set “⋆”, i.e. a book of
contracts that are hedged together. In this section we consider the cost associated with
the dynamic hedging frictions, assessed at the level of each hedging set “⋆”, leading to
a corresponding contribution to the second layer HVA. We then define by linearity the
second layer HVA considering all the hedging sets.

Definition 2.1. For each hedging set “⋆”, we consider its associated dynamic hedging
frictions process f⋆. The corresponding contribution to the second layer HVA is given
by

HVA⋆ = va(f⋆), (2.1)

9
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Figure 2.1: Vulnerable put example: [left] the red histogram is the density of −pnl·1 +
HVA·

1−HVA·
0 conditional on model switch occurring before time 1, i.e. on {0 < θ ≤ 1},

for delta hedging (without frictions at this stage). The vertical blue line corresponds to
the deterministic loss −pnl·1 +HVA·

1 −HVA·
0 = K +HVA·

1 −HVA·
0 for static hedging,

also conditional on {0 < θ ≤ 1}. The numerical parameters are as above (1.12). Note
that, in both cases, HVA·

1 −HVA·
0 = 0−K(1− e−λT ) ≃ −0.095 holds on {0 < θ ≤ 1}.

[right] Monte-Carlo approximation of HVA·
0 and HVA⋆

0.

i.e. (f⋆ +HVA⋆) is a martingale and HVA⋆ = 0 on [T ,+∞).
The second layer HVA of the bank is defined by

HVAf :=
∑

⋆

HVA⋆ = va(f), (2.2)

where f =
∑

⋆ f
⋆.

A specification of the friction process f⋆ associated to the hedging set ”⋆” is nec-
essary to compute the associated HVA⋆ for frictions. Hereafter we derive such a speci-
fication by passage to the continuous-time limit starting from a classical discrete-time
specification. This sheds more rigor in the seminal contribution of Burnett (2021), who
derives a PDE for the transaction costs at the limit, while only rebalancing when the
delta of the underlying portfolio is shifted by a fixed and constant threshold D > 0
(so it seems that Burnett (2021)’s limiting HVA should increase at discrete rebalancing
times only, rather than being given by a PDE). Our approach also allows computing
HVA⋆ numerically in a model risk setup accounting for the impact of recalibration on
transaction costs, which is not considered in Burnett (2021).

2.2 Fair Valuation Setup

In this section we work in the setup of the following fair valuation model X = (X, J)
(stated under the probability measure R):

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

dJt =
L∑

ȷ=1

(ȷ− Jt−)dν
ȷ
t , λ

ȷ
t = λȷ(t,Xt−),

(2.3)
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where W is a multivariate Brownian motion and νȷt is the number of transitions of the
“Markov chain like”component J to the state ȷ on (0, t], with compensated martingale
dνȷt − λȷ

tdt of ν
ȷ. Jumps could also be introduced in X but we refrain from doing so

for notational simplicity. This setup encompasses the jr fair valuation model in our
vulnerable put example. It also includes XVA models, with room for client default
indicator processes in the J components of X , as required in view of our extension of
the setup in the concluding section of the paper.

We assume that the function-coefficients µ, σ, λ are continuous maps such that the
above-model is well-posed, referring to Crépey (2013, Proposition 12.3.7) for a set of
explicit assumptions ensuring it. In particular:

Assumption 2.2. (i) The maps λȷ, 1 ≤ ȷ ≤ L, are bounded by a constant Λ ≥ 0.
(ii) The map (t, x, ȷ) 7→ (µ, σ)(t, x, ȷ) is Lipschitz in x ∈ Rd, uniformly in (t, ȷ), and the
map (t, ȷ) 7→ (µ, σ)(t, 0, ȷ) is bounded.

Hence (see e.g. Élie (2006, (II.83) page 123)) there exists a constant C1 ≥ 0 such that

E
[
|Xt −Xs|2

] 1
2 ≤ C1(t− s)

1
2 . (2.4)

In addition, for all 1 ≤ l ≤ d,

C l := sup
t∈[0,T ]

E
[
(X l

t)
2
] 1

2
< +∞. (2.5)

2.3 Transaction Costs For Discrete Rebalancing

We assume that a trader values a hedging set “⋆” as q⋆t = q⋆(t,Xt), for some smooth
map q⋆, and that the trader delta-hedges its position with respect to the d-dimensional
risky asset X, discretely at the times of the uniform grid (ih)0≤i≤n with h = T ⋆

n for
some n ≥ 1, where T ⋆ ≤ T is the final maturity of this hedging set.

Remark 2.1. More generally, one can consider delta-hedging only with respect to some
components of X. It is actually what we will do in Section 2.5 while delta-hedging
in Black-Scholes with respect to S̃ only in X = (S̃,Σ;1[0,θ)) there (see (A.1) and
(2.11)). The extension is straightforward, as it is (at least for our purpose) equivalent
to considering no transaction costs for those non-delta-hedged assets, i.e. setting the
corresponding diagonal entries of k to 0 below.

We work in a setting similar to Kabanov and Safarian (2009, Chapter 1, Section
2), with proportional transaction costs scaled to the rebalancing time by a factor

√
h,

where h is the time interval between two rebalancing dates.

Remark 2.2. In their case, scaling proportional transactions costs by hα, with α ∈ (0, 12 ],
allows showing, in the Black and Scholes model, that perfect replication of a vanilla
call can be achieved in the limit as the number of rebalancing dates goes to infinity,
by delta-hedging the portfolio’s value computed with a modified volatility. In our case,
scaling the transaction costs by

√
h allows passing to the continuous time limit and

deriving the dynamics of the transaction costs and the PDE for the HVA⋆ with trading
indeed occurring continuously, and not only along a sequence of stopping times as in
Burnett (2021).
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Abbreviating ∂xl
into ∂l, let at =

(
alt
)
1≤l≤d

with alt = ∂lq
⋆(t,Xt), 0 ≤ t ≤ T ⋆, 1 ≤

l ≤ d.

Assumption 2.3. The cost to rebalance the hedging portfolio from a =
(
al
)
1≤l≤d

at

time t into a+ δa = (al + δal)1≤l≤d at time t+h is X⊤
t+hδa+

1
2X

⊤
t+hk(δa)

abs
√
h, where

(δa)abs := (|δal|, 1 ≤ l ≤ d) and k := diag(kl, 1 ≤ l ≤ d) for some constants kl ≥ 0,
1 ≤ l ≤ d.

The transaction costs are thus proportional to the risky asset prices (measured in units
of the risk-free numéraire asset). In the context of proportional transaction costs,
Assumption 2.3 is classical (Kabanov and Safarian, 2009, page 8).

Remark 2.3. Unless there is no Markov-chain-like component J in X , the replication
hedging ratios in setups such as (2.3) also involve finite differences (as opposed to
partial derivatives only in the above): see e.g. Proposition A.4. However practitioners
typically only use partial derivatives as their hedging ratios, motivating the present
framework, which encompasses in particular the use-case of Section 3.4.

The discrete-time hedging valuation adjustment for frictions (HVAh) is then a pro-
cess compensating the bank (on average) for these transaction costs.

Definition 2.4. The HVA for frictions associated to discrete hedging along the time-
grid (ih)0≤i≤n is defined as the (nonnegative) process HVAh such that HVAh

nh = 0 and,
for 0 ≤ i < n,

HVAh
ih = Eih

[
fh
nh − fh

ih

]
=

Eih

[
fh
(i+1)h − fh

ih +HVAh
(i+1)h

]
= Eih

[
φh
(i+1)h +HVAh

(i+1)h

]
,

(2.6)

where fh
ih =

∑i
u=0 φ

h
uh, with

φh
ih =

√
h

2
X⊤

ihk(δaih)
abs, 0 < i < n, φh

0 = φh
nh = 0,

and (δaih)
abs = (|alih − al(i−1)h|, 1 ≤ l ≤ d).

Remark 2.4. We neglect the transaction costs at time t = 0, given by (assuming d = 1
for simplicity)

√
hk
2X0|a0−a0−| (where a0− is the initial quantity of risky asset possessed

before entering the deal), and at time t = T ⋆ = nh, given by
√
hk
2XT ⋆ |a(n−1)h| (to

liquidate the hedging portfolio).

2.4 Transaction Costs in the Continuous-Time Rebalancing Limit

The results of this part specify the cumulative friction costs f⋆ and the ensuing HVA⋆

that arise in the above setup when the rebalancing frequency of the hedge goes to
infinity, i.e. when h → 0.

Definition 2.5. For all t ∈ [0, T ⋆], let φt := φ(t,Xt) with, for all (t, x, ȷ) ∈ [0, T ⋆] ×
Rd × {1, · · · , L},

φ(t, x, ȷ) =
1√
2π

x⊤k(Γσ)abs(t, x, ȷ), (2.7)
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where (Γσ)abs := (|∂x(∂lq⋆)σ|, 1 ≤ l ≤ d). Let then f⋆
t =

∫ t
0 φsds and

HVA⋆
t = va(f⋆)t = Et

[∫ T ⋆

t
φsds

]
. (2.8)

Note that the map HVA⋆ defined by HVA⋆(t, x, ȷ) := E [HVA⋆
t | Xt = (x, k)] solves the

PDE

HVA⋆(T ⋆, ·) = 0 on R× {1, . . . , L},
(∂t + G)HVA⋆ + φ = 0 on [0, T ⋆)× R× {1, . . . , L},

(2.9)

where we denote, for any smooth map u = u(t, x, ȷ), Gu = Fu+
∑L

ȷ=1 (u(·, ȷ)− u)λk,

with Fu := ∂tu+ ∂xuµ+ 1
2tr

[
σσ⊤∂2

x2u
]
, in which ∂x is the row-gradient with respect

to x, ∂2
x2 the Hessian matrix with respect to x, and tr is the trace operator.

We make the following technical hypotheses on the local valuation map q⋆:

Assumption 2.6. (i) There exists 0 < α < 1
2 such that, for all 1 ≤ l ≤ d and

1 ≤ ȷ ≤ L, the maps (t, x) 7→ ∂lq
⋆(t, x, ȷ) and (t, x) 7→ (∂x(∂lq

⋆))σ(t, x, ȷ) are α-Hölder
continuous in t and Lipschitz continuous in x;
(ii) There exists C2 > 0 such that, for any u ∈ {∂lq⋆, ∂x(∂lq⋆)σ | 1 ≤ l ≤ d},

sup
(t,x,ȷ,j)

|u(t, x, ȷ)− u(t, x, j)| ≤ C2 < ∞;

(iii) supt∈[0,T ⋆] E
[
|(∂t + F)(∂lq

⋆)(t,Xt)|2
] 1

2 ≤ C2 < ∞, 1 ≤ l ≤ d.

Theorem 2.1. We set HVAh
t := HVAh

⌊ t
h
⌋h, 0 ≤ t ≤ T ⋆. Under Assumptions 2.2, 2.3

and 2.6, we have (almost surely)

HVAh
t −−−→

h→0
HVA⋆

t , 0 ≤ t ≤ T ⋆.

Proof. see Section B.

Note that (2.8) would be virtually impossible to implement without the connection to
HVAh provided by the underlying discrete setup: transaction costs with model risk are
a case where the approximation to a limiting problem in continuous time is problematic
unless one knows where the limiting problem is coming from in the first (discrete) place.
But Theorem 2.1 is interesting from a theoretical viewpoint and important in practice
to guarantee the meaningfulness (stability for small h) of the numbers HVAh

t to be
computed numerically based on (2.6).

2.5 HVAf for the Vulnerable Put Under the Delta Hedging Scheme

Continuing in the setup of Sections 1.2.1 and 1.2.3, regarding frictions, we assume
(unrealistically but with some genericity as explained in Remark 1.5) the bank portfolio
reduced to the vulnerable put and its dynamic delta-hedge in S (with T ⋆ = T in
particular). We are thus in the setup of Sections 2.5–2.4 with X = (S̃,Σ;1[0,θ)), where

S̃ is the auxiliary Black-Scholes model (A.1), and q⋆ = P bs(t, S; Σ), the price of the
vanilla put with strike K and maturity T in the Black and Scholes model with volatility
Σ, with associated hedge ratio 1{t≤θ}∆

bs
t−, where ∆bs

t = ∂SP
bs(t, St; Σt).
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Corollary 2.2. Assume that trading is permitted only at the discrete dates ih, 1 ≤ i ≤
n, with h = T

n (for any n ≥ 1). Assume further that implementing the delta hedging
strategy triggers a cumulative cost at time ih induced by proportional transaction costs,
hence a discrete-time hedging valuation adjustment for frictions, respectively given by,
for 0 ≤ i ≤ n,

fh
ih :=

i∑

j=1

k

√
h

2
Sjh

∣∣∣1{jh≤θ}∆
bs
jh− − 1{(j−1)h≤θ}∆

bs
(j−1)h−

∣∣∣ ,

HVAh
ih := Eih

[
fh
nh − fh

ih

]
.

(2.10)

Then, as h goes to 0, the discrete HVA for frictions HVAh
⌊ t
h
⌋h converges almost surely

to HVAf = va(f) on [0, T ], for the process f such that

dft = 1{t≤θ}
k√
2π

St

∣∣∣σΓbs
t− + ςt∂

2
Σ,SP

bs(t, St−; Σt−)
∣∣∣ dt, (2.11)

where Γbs
t = ∂2

S2P
bs(t, St; Σt) ≥ 0, while ς is the diffusion coefficient of the implied

volatility process Σ.

Proof. By application of Theorem 2.1 (cf. (2.7)) with X = (S̃,Σ;1[0,θ)) and k1 = k ≥
0, k2 = 0 (as the position is not ”delta-hedged” with respect to Σ in the jr model, see
Remark 2.1). □

Interestingly, the cost of delta-hedging in the bs model computed within the jr model
also depends on the derivative of the delta with respect to the implicit volatility, or
implied “vanna”, ∂2

Σ,SP
bs. This comes from the continuous recalibration of the trader’s

model to the fair valuation of the vanilla put. Because of this impact of recalibration
into transaction costs, (2.11) would be quite demanding to implement directly, whereas
its discrete counterpart (2.10) is rather straightforward (the consistency between the
two being insured by Corollary 2.2).

Numerical Application The numerical parameters are the same as above (1.12),
along with S0 = K = 1 and σ = 0.3, and with k = 0.1 in (2.11). We perform
Monte-Carlo simulations with M = 50, 000 paths to estimate HVAh

0 = E
[
fh
nh

]
as per

(2.6)-(2.10), for a monthly time-discretization, i.e. n = 120 and h = T
n = 1

12 . As
a sanity check, we also price by Monte Carlo HVA·

0 already known from (1.14) and
(1.12). We can see from the right panel in Figure 2.1, where the horizontal red line

corresponds to HVA·
0 = 1− e−0.1, that HVA·

0 dominates HVAf
0 .

3 Third Layer HVA: Risk-adjustment

3.1 Abstract Framework

After compensation by the first layer HVA, the price is right (cf. Remark 1.4), but the
hedge is still wrong (as, for each deal “·”, before τ ·s, the hedging ratios are computed
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using the local pricing model and not the fair valuation one). Under a cost-of-capital
valuation approach, the reserve for model risk and dynamic hedging frictions would not
reduce to the first and second layers HVA, but this reserve should also be risk-adjusƒted.
This leads to the third layer HVA that we introduce in this section.

Accounting for raw pnls, hedging frictions, and their associated HVA compensators
(first and second layers HVA), we obtain the overall trading loss of the bank given as
the martingale L defined by, for all t ≥ 0,

Lt = pnlt +HVAt −HVA0

= −pnlmtm
t +HVAmtm

t −HVAmtm
0 + ft +HVAf

t −HVAf
0 ,

(3.1)

with pnl := −pnlmtm + f and HVA := HVAmtm +HVAf .

The reserves for model risk and dynamic hedging frictions will now be risk-adjusted.
Namely, the volatile swings of L due to model risk and transaction costs should be
reflected in the economic capital and the cost of capital of the bank. The corresponding
theory now proceeds as in Albanese et al. (2021) and Crépey (2022). The regulator
expects that some capital, no less than a theoretical economic capital (EC) level, should
be reserved to cover the exceptional (i.e. beyond average, which is in fact zero, thanks
to the first two HVA layers) losses over the next year. Namely:

Definition 3.1. The economic capital (EC) of the bank is defined as the time-t con-
ditional expected shortfall (ESt) of the random variable (Lt′ − Lt) at some confidence
level α ∈ (12 , 1), where L is the trading loss process of the bank and t′ = (t + 1) ∧ T ,
i.e.

ECt = ESt(Lt′ − Lt) :=
Et

(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)

Et1{Lt′−Lt≥VaRt(Lt′−Lt)}
, (3.2)

in which VaRt denotes the time-t conditional value-at-risk of level α.

The capital valuation adjustment (KVA) is then defined as the level of a risk margin
required for remunerating the shareholders of the bank, dynamically at a constant and
nonnegative hurdle rate r ≥ 0 of their capital at risk. Since the KVA, which is paid by
the clients of the bank, is also loss-absorbing (as a risk margin), hence part of capital
at risk, the latter is given by max(EC,KVA), while shareholder capital at risk only
corresponds to SCR = max(EC,KVA)−KVA) = (EC−KVA)+, Accordingly:

Definition 3.2. The third layer HVA is defined as the capital valuation adjustment
(KVA), itself defined by the inductive relation

KVAt := rEt

∫ T

t

(
ECs −KVAs

)+
ds, t ≤ T . (3.3)

Equivalently, the KVA process vanishes at T and turns the cumulative dividend process
−(L+KVA−KVA0) of the bank shareholders into a submartingale with drift coefficient
r × SCR. By standard Lipschitz BSDE results, assuming EC square integrable, (3.3)
defines a unique square integrable KVA process Crépey (2022, Proposition B.1).
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3.2 Additional Valuation Adjustment

We propose to compare the valuation adjustments (first, second and third layer HVAs
summing up to HVAmtm + HVAf + KVA as per (1.3)-(2.2)-(3.3)) to what would be
obtained if the bank was only using the fair valuation model. The difference is what we
call additional valuation adjustment (AVA, or model risk component thereof, cf. Euro-
pean Parliament (2013), European Parliament (2016) and see also https://www.eba.

europa.eu/regulation-and-policy/market-risk/draft-regulatory-technical-standards-on-

prudent-valuation).

As already noticed in Remark 1.2, if there was no model risk, i.e. if the bank was
using the fair valuation model for all its purposes, then HVAmtm would be identically
zero. The first and second layer HVAs would thus reduce to a second layer HVA
à la Burnett (2021) & Burnett and Williams (2021), the way detailed in Section 2
(but without model risk), still triggering a third layer HVA (KVA) as per Section 3.1.
Moreover, using the fair valuation model for all purposes by the bank would also imply
different and presumably much better hedges, triggering much less volatile swings of L
than the ones implied by local models, hence in turn much lower economic capital and
KVA. One would then obtain a baseline (∗) HVAf,∗+KVA∗ defined by equations (2.2)-
(3.3), but for pnl· defined by (1.4) instead of (1.1), and where HVAf,∗ is the second
layer HVA associated to the dynamic hedging strategies leading to h·,∗ in (1.4). An
additional valuation adjustment (AVA) could thus be defined as the difference

AVA = HVAmtm +HVAf +KVA− (HVAf,∗ +KVA∗). (3.4)

As a dealer bank should not do proprietary trading, the reference hedging case is
when pnl·,∗ ≡ 0 in (1.4). In that situation, the overall trading loss of the bank is the
minimalistic (compare with (3.1))

L∗ = f∗ +HVAf,∗, (3.5)

which could be taken as a reference for defining EC∗ and KVA∗ via (3.2)-(3.3) and
in turn the AVA via (3.4). After the introduction of the HVA and its risk adjust-
ment in the KVA, the use of bad quality local models should imply a positive AVA in
(3.4). Better models would imply a smaller AVA, hence an increased competitiveness
for the bank. Our AVA thus provides a measure of the shortfall for a bank, in terms
of additional KVA costs, by not using better models. Computing it could virtuously
incite banks to use higher quality models. For that, however, there is no economic
necessity for a bank of computing a baseline HVAf,∗ + KVA∗, nor of identifying the
corresponding AVA. All that matters economically is that the bank passes to its clients
the total add-on HVAmtm + HVAf + KVA = (HVAf,∗ + KVA∗) + AVA, by (3.4) (so
HVAmtm +HVAf +KVA encompasses HVAf,∗ +KVA∗ and the AVA).

We now derive the KVA (3.3) associated with the two hedging schemes of the
vulnerable put in Section 1.2, to come on top of HVA· computed in Section 1.2.2 for
the static hedging scheme and of HVA· and HVA⋆ computed in Sections 1.2.3 and 2.5
for the delta hedging scheme. These computations are done under the assumption that
the bank portfolio would solely consist of the vulnerable put and its hedge, but this
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(even though unrealistic) situation has also some genericity as explained in Remark
1.5.

3.3 KVA for the Vulnerable Put Under the Static Hedging Scheme

Regarding the static hedging scheme of Section 1.2.2, one can derive explicit EC and
KVA formulas:

Proposition 3.1. Denoting Θ = (T + ln(α)
λ )+ ≤ T , where α is the confidence level at

which economic capital is calculated, and by r the hurdle rate of the bank, we have, for
all t ≥ 0, ECt = 1{t<θ}ẼCt and KVA = 1{t<θ}K̃VAt, where

ẼCt = 1λ>− ln(α)1{t<Θ}Ke−λ(T−t),

K̃VAt = 1λ>− ln(α)Ke−λ(T−t)1{t<Θ}(1− e−r(Θ−t)),

KVA0 = 1λ>− ln(α)Ke−λT1Θ>0(1− e−rΘ).

(3.6)

Proof. For t < t′ ≤ T , (3.1) and the last line in (1.10) yield

Lt′ − Lt = (−pnl· +HVA·)t′ − (−pnl· +HVA·)t

= 1{t′≥θ>t}K + 1{t′<θ}K(1− e−λ(T−t′))− 1{t<θ}K(1− e−λ(T−t))

= 1{t<θ}

(
1{t′≥θ}(K −K(1− e−λ(T−t′))) +K(1− e−λ(T−t′))−K(1− e−λ(T−t))

)

= 1{t<θ}B
t
t′ , where Bt

t′ = 1{t′≥θ}Ke−λ(T−t′) +K(e−λ(T−t) − e−λ(T−t′)).

On {t < θ}, the Bernoulli random variable 1{t′≥θ} satisfies Et

[
1{t′≥θ} = 0

]
= e−λ(t′−t)

and, for any confidence level α > e−λ(t′−t), i.e. such that t′− t > − ln(α)
λ , VaRt(Lt′ −Lt)

is the largest of the two possible values of (Lt′ − Lt), so that the latter never exceeds

VaRt(Lt′ − Lt). As a consequence, for t′ − t > − ln(α)
λ , we have by (3.2):

ESt(Lt′ − Lt) = VaRt(Lt′ − Lt) =

1{t<θ}
(
Ke−λ(T−t′) +K(eλ(T−t) − e−λ(T−t′))

)
= 1{t<θ}Ke−λ(T−t).

For t′ − t ≤ − ln(α)
λ , we have

(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)} = Lt′ − Lt,

which is a time-t conditionally centered random variable as the increment of the mar-
tingale L. Hence

0 = Et(Lt′ − Lt) = Et

(
(Lt′ − Lt)1{Lt′−Lt≥VaRt(Lt′−Lt)}

)
= ESt(Lt′ − Lt).

Setting t′ = (t+1)∧T as prescribed in (3.2) (for T = T here), so that t′− t > − ln(α)
λ ⇔

t < Θ , we obtain by Definition 3.1:

ECt = ESt(Lt′ − Lt) = 1{t<θ}1λ>−ln(α)1t<ΘKe−λ(T−t),

which is the first line in (3.6).
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Assuming λ > − ln(α) (otherwise EC = KVA = 0), let us define the process

KVA†
t := rEt

∫ T

t
e−r(u−t)ECudu = rEt

∫ T

t

(
ECs −KVA†

s

)
ds, t ≤ T. (3.7)

We have

KVA†
t = rKEt1{t<Θ}

∫ Θ

t
e−r(u−t)1{u<θ}e

−λ(T−u)du

= rKe−λ(T−Θ)1{t<Θ}1{t<θ}

∫ Θ

t
e−r(u−t)e−λ(u−t)e−λ(Θ−u)du

= 1{t<θ}rKe−λ(T−Θ)e−λ(Θ−t)1{t<Θ}

∫ Θ

t
e−r(u−t)du

= 1{t<θ}Ke−λ(T−t)1t<Θ(1− e−r(Θ−t)) ≤ 1{t<θ}K1t<Θe
−λ(T−t) = ECt.

(3.8)

Back to the right-hand side in (3.7), the process KVA† therefore satisfies

KVA†
t = rEt

∫ T

t

(
ECs −KVA†

s

)
ds = rEt

∫ T

t

(
ECs −KVA†

s

)+
ds, t ≤ T, (3.9)

which is the KVA equation (3.3). As EC and KVA† are bounded processes, hence, by
the result recalled after Definition 3.2, KVA† is the unique bounded (or even square
integrable) solution to this equation,, i.e. KVA† = KVA. The first identity in the last
line of (3.8) then yields the second line in (3.6). □

For a baseline (*) setup (cf. Section 3.2) corresponding to dynamic, assumed fric-
tionless, replication of the vulnerable put by the stock and the vanilla put in the jr
model as per Proposition A.4, we have HVAf,∗ + KVA∗ = 0, hence the AVA (3.4)
reduces to HVA· +KVA.

Numerical Application For λ = 1%, T = 10y and r = 10%, (3.6) and (1.10) yield
as α ↓ e−0.01 ≈ 99%:

KVA0 ↓ Ke−0.1(1− e−1+0.1) ≈ 0.54K

KVA0

HVA·
0

↓ (1− e−0.9)

(e0.1 − 1)
≈ 5.64.

(3.10)

In the present case where f = 0 and a pure frictions HVAf à la Burnett (2021) &
Burnett and Williams (2021) vanishes, playing with the jump-to-ruin intensity λ in
Figure 3.1, we see from the top panels that the first layer HVA alone can be extreme.
As visible on the bottom panels of Figure 3.1, the corresponding KVA adjustment can
be even several times larger. The latter holds for α > e−λ. For α ≤ e−λ, instead, there
is no tail risk at the envisioned confidence level, hence EC = KVA = 0.
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Figure 3.1: At-the-money S0 = K, denoting MtM0 = Qjr
0 and assuming α ↓ e−λ

everywhere in the bottom panels (where the limiting value of the confidence level α
that underlies the KVA therefore depends of the abscissa λ): [top left] MtM0

K ; [top

right]
HVA·

0
MtM0

; [bottom left] KVA0
HVA·

0
; [bottom right] AVA0

MtM0
.

3.4 KVA For the Vulnerable Put Under the Dynamic Hedging Scheme

In the dynamic hedging case of Section 1.2.3, we rely on numerical approximations
to estimate the economic capital and the KVA of the bank at a quantile level α set
in the numerics to 99%. In fact, in this Markovian framework, each process Z =
HVAf ,EC,VaR·(L·′ − L·) and KVA satisfies, for all t ≥ 0,

Zt = Z̃(t, St) = 1{t<θ}Z̃(t, S̃t),

where S̃ is the auxiliary Black-Scholes model (A.1) and H̃VAf (t, 0) = ṼaR(t, 0) =

ẼC(t, 0) = K̃VA(t, 0) = 0, while, for all (t, S) ∈ [0, T ]× (0,∞), setting t′ = (t+1)∧T ,

H̃VAf (t, S) = E [fT − ft |St = S] ,

ṼaR(t, S) = VaR [Lt′ − Lt |St = S] ,

ẼC(t, S) = ES [Lt′ − Lt |St = S] ,

K̃VA(t, S) = rE
[∫ T

t
(ECu −KVAu)

+ du

∣∣∣∣St = S

]
.

(3.11)

On this basis, one can obtain approximations ĤVAf , ÊC, and K̂VA of the HVAf , EC,
and KVA processes at all nodes of a forward simulated grid (Sm

tk
)1≤m≤M
0≤k≤10 of S, by neural
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net regressions and quantile regressions that are used backward in time for solving the
above equations numerically, the way detailed in Section C.

Numerical application We plot on Figure 3.2 the processes ÊC(·, S̃·) and K̂VA(·, S̃·)
represented by the term structures of their means (in green) and quantiles of levels
10%, 90% (in blue) and 2.5% and 97.5% (in red), both with and without frictions f , as
well as in the (deterministic) static hedging case (3.6). In particular, we obtain in the
dynamic hedging case for the same numerical parameters as the ones used in Section
2.5, a confidence level α for the EC computations set at 99%, and a hurdle rate r for
the KVA computations set at 10%:

ĤVA·
0 ≃ 0.095 and ĤVAf

0 ≃ 0.046, hence ĤVA0 = ĤVA·
0 + ĤVAf

0 ≃ 0.141,

K̂VA0 ≃ 0.407,
K̂VA0

ĤVA0

≃ 2.881.
(3.12)

As could be expected from Remark 1.7, there is ultimately less risk (as assessed by
economic capital and KVA, cf. (1.12) and Figure 3.2) with the delta hedge than with
the static, aka delta-vega hedge.

In the frictionless case f = 0, we obtain by the same methodology

ĤVA0 = ĤVA·
0 ≃ 0.095,

K̂VA0 ≃ 0.433,
K̂VA0

ĤVA0

≃ 4.550.
(3.13)

In view of (3.12) (see also Figure 3.2), the dynamic hedging frictions happen to be risk-
reducing in this case, meaning that the components −pnlmtm+HVAmtm−HVAmtm

0 =
−pnl· +HVA· −HVA·

0 and f +HVAf −HVAf
0 of (3.1) are negatively correlated.

Conclusion

Executive Summary (Encompassing Credit): A Global Valuation Frame-
work In the model-risk-free and frictionless XVA setup of Albanese et al. (2021)
and Crépey (2022), pnlmtm is a zero-valued martingale and f = 0, hence HVAmtm =
HVAf = 0. In this paper, the loss process (3.14) also incorporates model risk (in
pnlmtm) and market frictions (in f), whence nontrivial first and second layers HVA.
The process HVAmtm can be seen as the bridge between a global fair valuation model
and the local models used by the different desks of the bank. The reserve for model risk
and transaction costs is then risk-adjusted by the Third HVA Layer, namely a KVA
component, where the KVA is defined from (3.1) (or more generally (3.14) below) by
(3.2)-(3.3).

Accounting methods are also models in the sense of SR-11-7 (cf. https://www.
federalreserve.gov/supervisionreg/srletters/sr1107.htm) because they produce numbers,
are based on assumptions, and have an impact on strategies. If they are misaligned
with economics they cause a misalignement of interests between executives and share-
holders. Hence, model risk is a concept that does not apply only to pricing models, but
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Figure 3.2: Plot of the deterministic maps t 7→ ẼC(t) [top left] and t 7→ K̃VA(t) [top
right] corresponding to the static hedging case (3.6). Plots of mean (in green) and

quantiles at levels 10% and 90% (in blue) and 2.5% and 97.5% (in red) of ÊC(t, S̃t)
in the delta hedging case without friction [Middle left] and in the delta hedging case
with frictions [bottom left]. Plots of mean (in green) and quantiles at levels 10% and

90% (in blue) and 2.5% and 97.5% (in red) of K̂VA(t, S̃t) in the delta hedging case
without friction [Middle right] and in the delta hedging case with frictions [bottom
right].
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should be extended to accounting principles for dealer banks, including the specification
of their CVA and FVA metrics (as these are liabilities to the bank, see Crépey (2022,
Section 1) and Albanese et al. (2021, Figure 1)). From this model risk perspective,
the CVA and FVA should be viewed as two additional “giant trades” of the bank with
associated raw pnlcva and pnlfva, deserving first layer HVA contributions in the same
way as individual deals “·” in the paper. Denoting these contributions by HVAcva and
HVAfva, the first layer HVA becomes HVAmtm + HVAcva + HVAfva. The overall loss
trading process of the bank accounting for market, credit and funding risks is given by
the martingale L defined, for all t ≥ 0, by (compare with (3.1))

Lt = −pnlmtm
t +HVAmtm

t −HVAmtm
0 − pnlcvat +HVAcva

t −HVAcva
0

− pnlfvat +HVAfva
t −HVAfva

0 + ft +HVAf
t −HVAf

0 .
(3.14)

In this defaultable extension of the theory, the probability measure under which all
equations are stated becomes the bank survival probability measure associated with
R in the sense of Albanese et al. (2021, Section 4) (see also Crépey (2022, Section B)
for a practically equivalent reduction of filtration viewpoint). In addition, similarly
to the extensions mentioned in the first two items of Remark 1.3, for each deal “·”,
the associated raw pnl process pnl· should be stopped at τ ·d, the positive default time
of the counterparty of the deal (the default of the bank itself being absorbed in the
above-mentioned switch to its survival measure).

Regarding its KVA computations, a bank could also be subject to model risk: to
enhance its competitiveness in the short term, a bank might be tempted to use a model
understating the risk and economic capital of the bank. A sound practice in this regard
is to combine different, equally valid (realistic and co-calibrated) models for simulating
the set of trajectories underlying the economic capital and KVA computations (Al-
banese et al., 2023, Section 4.3). Such a Bayesian KVA approach typically fattens the
tails of the simulated distributions and avoids under-stated risk estimates.

Take-Away Message: Bad Models Should Be Banned not Managed In this
paper we revisit Burnett (2021) & Burnett and Williams (2021)’s notion of hedging
valuation adjustment (HVA) in the direction of model risk. The fact evidenced by
Example 1.7 that vega hedging may actually increase model risk illustrates well that
model risk cannot be hedged. It can only be provisioned against or, preferably, com-
pressed by improving the quality of the models used by traders. In any case, a provision
for model risk should be risk-adjusted. But, as the paper illustrates, a risk-adjusted
reserve would be much greater than the “HVA uptick” (price difference) currently used
in banks, by a factor 3 to 5 in our experiments (cf. Remark 1.4 and (3.12)-(3.13)),
and it could be even more if one accounted for the price impact of a liquidation in ex-
treme market conditions (cf. https://www.risk.net/derivatives/6556166/remembering-
the-range-accrual-bloodbath effects already mentioned in Remark 1.5). Risk-adjusted
HVA computations are also very demanding. In particular, beyond analytical toy ex-
amples such as the one of Section 3.3 (and already in the case of Section 3.4), HVA
risk-adjusted KVA computations require dynamic recalibration in a simulation setup,
for assessing the hedging ratios used by the traders at future time points as well as
the time of explosion of the trader’s strategy (time of model switch τ ·s). Hence, from
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the computational workload viewpoint too, the best practice would be that banks only
rely on high-quality models, so that such computations are simply not needed.

In conclusion, the orders of magnitude of the corrections that would be required for
duly compensating model risk (accounting not only for misvaluation but also for the
associated mishedge), as well as the corresponding computational burden for a precise
assessment of the latter, suggest that bad models should not so much be managed via
reserves, as excluded altogether.

A Pricing Equations in the Jump-to-Ruin Model

In this section we provide pricing analytics in the jr model (1.6) for S, with jump-
to-ruin time (first jump time of N) θ. We also consider the auxiliary Black-Scholes
model

dS̃t = λS̃tdt+ σS̃tdWt, (A.1)

starting from S̃0 = S0, where λ and σ (omitted in the notation for d± below when clear
from the context) were introduced after (1.6). Hence St = 1{Nt=0}S̃t, t ≥ 0. Given the
maturity T > 0 and strike K > 0 of an option, let, for every pricing time t and stock
value S,

d±(t, S;λ, σ) =
ln( S

K ) + λ(T − t)

σ
√
T − t

± 1

2
σ
√
T − t. (A.2)

We first consider the pricing of a vanilla call option.

Proposition A.1. The jr value process (0.1)-(1.8) of the call option with payoff (ST −
K)+ at time T can be represented as

Cjr
t = u(t, St)1[0,T ), t ∈ [0, T ],

where the pricing function u = u(t, S) := E
(
(ST −K)+

∣∣St = S
)
is the unique classical

solution with linear growth in S to the PDE

{
u(T, S) = (S −K)+, S ≥ 0

∂tu(t, S) + λS∂Su(t, S) +
σ2S2

2 ∂2
S2u(t, S)− λu(t, S) = 0, t < T, S ≥ 0.

(A.3)

For t < T ,

Cjr
t = StN (d+(t, St))−Ke−λ(T−t)N (d−(t, St)). (A.4)

Proof. We have ST = 1{θ>T}S̃T = 1{θ>T}S0 exp
(
σWT + (λ− σ2

2 )T
)
. Since (ST −

K)+ = 0 on θ ≤ T and ST = S̃T on θ > T , it follows that, on {t < θ},

Et

[
(ST −K)+

]
= Et

[
1{θ>T}(ST −K)+

]
= (A.5)

= Et

[
1{θ>T}(S̃T −K)+

]
= Et

[
e−λ(T−τ)(S̃T −K)+

]
,
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by independence between W and N in (0.1). One recognizes the probabilistic expres-
sion for the time-t price of the vanilla call option in the auxiliary Black-Scholes model
(A.1), hence the proposition follows from standard Black-Scholes results. □

We now consider the pricing of a put option in the jr model, in two forms: either a
vanilla put with payoff (K − ST )

+, or a vulnerable put with payoff 1{θ>T}(K − ST )
+.

Proposition A.2. The jr value process (0.1) of the vanilla put can be represented as

P jr
t = v(t, St)1[0,T ), t ∈ [0, T ], (A.6)

where the vanilla put pricing function v = v(t, S) := E
(
(K − ST )

+
∣∣St = S

)
is the

unique bounded classical solution to the PDE





v(T, S) = (K − S)+, S ≥ 0

∂tv(t, S) + λS∂Sv(t, S) +
σ2S2

2 ∂2
S2v(t, S)

−λv(t, S) + λK = 0, t < T, S ≥ 0.

(A.7)

For t < T ,

P jr
t = Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)). (A.8)

Proof. Taking expectation in the decomposition ST −K = (ST −K)+ − (ST −K)−

yields the (model-free) call-put parity relationship

St −K = u(t, St)− v(t, St), t ≤ T, (A.9)

hence v = u − (S − K), from which the PDE characterization based on (A.7) for v
results from the PDE characterization based on (A.3) for u. Moreover, we deduce from
(A.4) that, for t < T ,

P jr
t = Cjr

t − (St −K) = St (N (d+(t, St))− 1)−K
(
e−λ(T−t)N (d−(t, St))− 1

)

= Ke−λ(T−t)N (−d−(t, St))− StN (−d+(t, St)) +K(1− e−λ(T−t)),

which is (A.8). □

In accordance with (A.8):

Definition A.1. For t < θ ∧ T , given the observed spot price St = S > 0, the Black-
Scholes implied volatility Σt = Σ(t, S) of the vanilla put in the jr model is the unique
solution Σ to

Ke−λ(T−t)N (−d−(t, S;λ, σ))− SN (−d+(t, S;λ, σ)) +K(1− e−λ(T−t))

= KN (−d−(t, S; 0,Σt))− SN (−d+(t, S; 0,Σt)).
(A.10)

We also set Σ(t, 0) = 0.

Remark A.1. For S = 0, any Σ ≥ 0 solves (A.10): for any Σ, d± = −∞ as ln( 0
K ) = −∞,

so KN (−d−)− SN (−d+) = K − S = K (for S = 0).
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Proposition A.3. The value process (0.1) of the vulnerable put is given by

Qjr
t = 1t<θ∧T

(
P jr
t − (1− e−λ(T−t))K

)
=

1t<θ∧T

(
Ke−λ(T−t)N

(
− d−(t, St)

)
− StN

(
− d+(t, St)

))
.

(A.11)

For t < T ,

P jr
t −Qjr

t = 1t<θK(1− e−λ(T−t)) + 1t≥θK. (A.12)

Proof. We have

1{θ>T}(ST −K) = 1{θ>T}
(
(ST −K)+ − (ST −K)−

)
,

which in jr reduces to

ST − 1{θ>T}K = (ST −K)+ − 1{θ>T}(ST −K)−.

By taking time-t conditional expectations, we have, on {t < θ∧T}, that St−Ke−λ(T−t) =
Cjr
t −Qjr

t , which yields

Qjr
t = Cjr

t − St +Ke−λ(T−t),

out of which (still on {t < θ∧T}) the first identity in (A.11) follows from (A.9) and the
second identity in turn follows from (A.8). Besides, on {t ≥ θ}, we have Qjr = 0 and
P jr = K, whereas on {t ≥ T} we have Qjr = 0, which completes the proof of (A.11)
and (A.12). □

Proposition A.4. Setting w(t, S) = v(t, S) − K(1 − e−λ(T−t)) (see Proposition A.2
and (A.12)), the vulnerable put is replicable on [0, θ∧T ] in the jr model (in the absence
of model risk and hedging frictions), by the dynamic strategy ζ in S and η in the vanilla
put given by

ζt = −
N
(
− d+(t, St)

)

1−N
(
− d−(t, St)

) , ηt = −
N
(
− d−(t, St)

)

1−N
(
− d−(t, St)

) , t < τs ∧ T, (A.13)

and the number of constant riskless assets deduced from the budget condition w(t, St)
on the strategy.

Proof. The profit-and-loss associated with the hedging strategy ζ in S and η in the
vanilla put, both assumed left-limits of càdlàg processes, evolves following (the position
being assumed to be unwound at θ)

dpnlt = 1{t≤θ}(dQ
jr
t − ζtdSt − ηtdP

jr
t )

(with pnl0 = 0). Itô formulas with (elementary) jump exploiting the results of Propo-
sitions A.2 and A.3 yield (cf. (1.6))

dpnlt = 1{t≤θ}(αtdWt + βtdMt),
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where

αt = σSt

(
∂Sw(t, St−)−ζt−ηt∂Sv(t, St−)

)
, βt = −w(t, St−)+ζtSt−+ηt

(
v(t, St−)−K

)
.

Hence the replication condition α = β = 0 reduces to the linear systems

∂Sw(t, St−)− ζt − ηt∂Sv(t, St−) = −w(t, St−) + ζtSt− + ηt
(
v(t, St−)−K

)
= 0 (A.14)

in the (ζt, ηt) (one system for each t < τs∧T ). Using (A.8) for the first line and (A.11)
and (A.12) for the second line, one verifies that (A.13) solves (A.14). □

B Proof of Theorem 2.1

Lemma B.1. Under Assumptions 2.2 and 2.6, there exists C3 > 0 such that, for all
h > 0 and u ∈ {∂lq⋆, (∂x(∂lq⋆)σ; 1 ≤ l ≤ d},

sup
0<t−s<h

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2 ≤ C3h

α.

Proof. Since 1 −
∏L

ȷ=1 1{νȷt=νȷs} ≤
∑L

ȷ=1(ν
ȷ
t − νȷs), we have, for some constant C ≥ 0

varying from line to line,

E
[
|u(t,Xt)− u(s,Xs)|2

] 1
2

≤
√
2E

[
|u(t,Xt, Jt)− u(t,Xt, Js)|2

] 1
2
+
√
2E

[
|u(t,Xt, Js)− u(s,Xs, Js)|2

] 1
2

≤ C


E


|u(t,Xt, Jt)− u(t,Xt, Js)|2

L∑

ȷ=1

(νȷt − νȷs)




1
2

+ (t− s)α + (t− s)
1
2




≤ C




L∑

ȷ=1

E
[∫ t

s
λȷ
rdr

] 1
2

+ (t− s)α


 ≤ C

(
L
√
Λ(t− s) + (t− s)α

)
≤ C3h

α,

where we used equation (2.4) and the bound on the maps λȷ. □
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Coming to the proof of the theorem, we have, for t = 0 for notational simplicity,

∣∣∣HVAh
0 −HVAf

0

∣∣∣ =
∣∣∣∣∣E

[
n∑

i=1

φh
ih

]
− E

[∫ T ⋆

0
φtdt

]∣∣∣∣∣

=

∣∣∣∣∣

√
h

2
E

[
n∑

i=1

X⊤
ihk(δaih)

abs

]
− 1√

2π
E

[
n∑

i=1

∫ ih

(i−1)h
X⊤

t k(Γσ)abs(t,Xt)dt

]∣∣∣∣∣

≤
d∑

l=1

kl

∣∣∣∣∣

√
h

2
E

[
n∑

i=1

X l
ih

∣∣∣alih − al(i−1)h

∣∣∣
]
− 1√

2π
E

[
n∑

i=1

∫ ih

(i−1)h
X l

t |∂x(∂lq⋆)σ|(t,Xt)dt

]∣∣∣∣∣

= h

d∑

l=1

n∑

i=1

kl

∣∣∣∣∣E
[

1

2
√
h
X l

ih

∣∣∣alih − al(i−1)h

∣∣∣− 1

h
√
2π

∫ ih

(i−1)h
X l

t |∂x(∂lq⋆)σ|(t,Xt)dt

]∣∣∣∣∣

≤ T ⋆
d∑

l=1

kl sup
0≤s<t≤T ⋆,t−s=h

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣∣alt − als

∣∣∣− 1

h
√
2π

∫ t

s
X l

u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣ .

We fix 1 ≤ l ≤ d and we show that

sup
t−s=h

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣∣alt − als

∣∣∣− 1

h
√
2π

∫ t

s
X l

u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣ →h→0 0. (B.1)

In fact, for all 0 ≤ s < t ≤ T ⋆ such that t− s = h,

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣∣alt − als

∣∣∣− 1

h
√
2π

∫ t

s
X l

u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣

≤ 1

2
√
h

∣∣∣E
[
(X l

t −X l
s)
∣∣∣alt − als

∣∣∣
]∣∣∣

+
1

2
√
h

∣∣∣E
[
X l

s

(∣∣∣alt − als

∣∣∣− |∂x(∂lq⋆)σ(s,Xs)(Wt −Ws)|
)]∣∣∣

+

∣∣∣∣E
[

1

2
√
h
X l

s |∂x(∂lq⋆)σ(s,Xs)(Wt −Ws)| −
1

h
√
2π

∫ t

s
X l

u|∂x(∂lq⋆)σ|(u,Xu)du

]∣∣∣∣

(B.2)

Regarding the first term in the r.h.s. of (B.2), we have, by Assumption 2.2 and
Lemma B.1,

1

2
√
h

∣∣∣E
[(

X l
t −X l

s

) ∣∣∣alt − als

∣∣∣
]∣∣∣ ≤ 1

2
√
h
E
[∣∣∣X l

t −X l
s

∣∣∣
2
] 1

2

E
[∣∣∣alt − als

∣∣∣
2
] 1

2

≤ C1

2
h−

1
2
+ 1

2
+α =

C1

2
hα.

(B.3)

We now consider the second term in the r.h.s. of (B.2). With δ∂lq
⋆(t, x, j, k) :=

∂lq
⋆(t, x, j) − ∂lq

⋆(t, x, k) and C l defined in (2.5), recalling that |δ∂lq⋆(t, x, j, k)| ≤ C2
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by Assumption 2.6, we compute by Itô’s formula:

1

2
√
h

∣∣∣E
[
X l

s

(∣∣∣alt − als

∣∣∣− |∂x(∂lq⋆)σ(s,Xs)(Wt −Ws)|
)]∣∣∣

≤ 1

2
√
h
E
[
X l

s

∫ t

s
|(∂t + F)∂lq

⋆(u,Xu)| du
]
+

L∑

ȷ=1

1

2
√
h
E
[
X l

s

∣∣∣∣
∫ t

s
δ∂lq

⋆(u,Xu, k)dν
k
u

∣∣∣∣
]

+
1

2
√
h
E
[
X l

s

∣∣∣∣
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s
(∂x(∂lq

⋆)σ(u,Xu)− ∂x(∂lq
⋆)σ(s,Xs)) dWu
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]

≤ C l

2
E
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(B.4)

where we used

E
[
X l

s(ν
ȷ
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]
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]
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udu
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] 1

2
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λȷ
udu
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] 1
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E
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|(∂t + F)∂lq

⋆(u,Xu)|2 du
] 1

2

=

(∫ t

s
E
[
|(∂t + F)∂lq

⋆(u,Xu)|2
]
du

) 1
2

≤
√
h sup
u∈[0,T ⋆]

E
[
|(∂t + F)∂lq

⋆(u,Xu)|2
] 1

2 ≤ C2

√
h,

and Lemma B.1.

We finally deal with the last term in the r.h.s. of (B.2). As ∂x(∂lq
⋆)σ(s,Xs) (Wt −Ws)

has, conditionally on Fs, the law N
(
0,h |∂x(∂lq⋆)σ(s,Xs)|2

)
, we have

1

2
√
h
E
[
X l

s |∂x(∂lq⋆)σ(s,Xs) (Wt −Ws)|
]
=

1√
2π

E
[
X l

s |∂x(∂lq⋆)σ(s,Xs)|
]
.
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We then obtain for this last term:
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∫ t
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⋆)σ(u,Xu, Ju))

2 du
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1
2

,

where the (random) r ∈ (s, t) in the next-to-last line is obtained via the mean value
theorem. We have, for a constant C changing from term to term,
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(B.5)

as
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t∈[0,T ⋆]

E
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] 1
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(B.6)

Using (B.3)-(B.4)-(B.5)-(B.6), we obtain, for some constant C ≥ 0,

sup
t−s=h

∣∣∣∣E
[

1

2
√
h
X l

t

∣∣∣alt − als

∣∣∣− 1

h
√
2π

∫ t

s
X l

u|∂x(∂lq⋆)σ|(u,Xu)doe

]∣∣∣∣ ≤ Chα,

which proves (B.1) and therefore the theorem.
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C Neural Nets Regression and Quantile Regressions for
the Pathwise HVAf , EC, and KVA of Section 3.4

The setup and notation are the ones of Section 3.4.

HVAf Computations The function H̃VA
f
in (3.11) is such that H̃VA

f
(T, ·) = 0,

H̃VA
f
(t, 0) = 0 for all t and, for u < t and S ∈ (0,∞),

H̃VA
f
(u, S) = E

[
(ft − fu) + H̃VA

f
(t, St)

∣∣∣∣Su = S

]

= E
[
(ft − fu) + H̃VA

f
(t, St)1{St>0}

∣∣∣∣Su = S

]
,

(C.1)

for f as per (2.11). Accordingly, we approximate on (0,∞) the functions H̃VA
f
(ti, ·)

for ti := i T10 , as follows. Set ĤVA
f
(t10, ·) = 0 and assume that we have already trained

neural networks ĤVA
f
(tk, ·), i+ 1 ≤ k < 10. Based on sampled data

(X,Y ) =

(
S̃m
ti , (fti+1 − fti)

m + ĤVA
f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0}

)

1≤m≤M

,

where each Sm
ti+1

is a obtained from (1.6) with initial condition Sm
ti = S̃m

ti > 0 simulated
from (A.1), in view of (C.1) and of the least-squares characterization of conditional

expectation (in square integrable cases), we seek for ĤVA
f
(ti, ·) in

argminu∈NN

M∑

m=1

(
ĤVA

f
(ti+1, S

m
ti+1

)1{Sm
ti+1

>0} +
(
fti+1 − fti

)m − u(S̃m
ti )

)2

, (C.2)

where NN denotes the set of feedforward neural networks with three hidden layers of
10 neurons each and ReLU activation functions.

We then obtain ĤVA
f
(0, S0)= 0.04613 from ft1 + ĤVA

f
(t1, St1) as a sample mean.

The corresponding standard deviation, 95% confidence interval and relative error at
95% are σ̂f ≃ 6×10−3, [0.04601, 0.04624] and 1.96σ̂f

ĤVA
f

0

√
M

≃ 0.25%, where σ̂f denotes the

empirical standard deviation of f1 + ĤVA
f
(t1, St1).

EC Computations Next we approximate ẼC(t, ·) on (0,∞) by the two-stage scheme
of Barrera et al. (2022, Section 4.3), for each t = ti, 1 ≤ i < 10. Recall t′ = (t+ 1)∧ T .

We first train a neural network V̂aR(t, ·) approximating ṼaR(t, ·) based on sampled

data (X,Y ) =
(
S̃m
t , (Lt′ − Lt)

m
)
1≤m≤M

and on the pinball-type loss (y − u(x))+ +

(1− α)u(x), i.e. we seek for V̂aR(t, ·) in

argminu∈NN
1

M

M∑

m=1

(
(Lt′ − Lt)

m − u(S̃m
t )

)+
+ (1− α)u(S̃m

t ).
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Note from (3.1) that, for t = ti, sampling Lt′ − Lt uses the already trained neural

network ĤVA
f
(ti+1, ·). For t = 1yr (where the approximation should be the worst

due to error accumulated on H̃VAf from dynamic programming), the Monte Carlo
estimate of Barrera et al. (2022, (4.10)) for the distance in p-values between the estimate

V̂aR(t, St) and the targeted (unknown) VaRt (Lt′ − Lt) is less than 3.6×10−3 ≤ 1−α =
10−2 with 95% probability.

We then train neural networks ÊC(t, ·) approximating ẼC(t, ·) on (0,∞) at times

t = ti based on sampled data (X,Y ) =
(
S̃m
t , (Lt′ − Lt)

m
)
1≤m≤M

and on the loss

(
(1− α)−1(y − V̂aR(t, x))+ + V̂aR(t, x)− u(x)

)2
,

i.e. we seek for ÊC(t, ·) in

argminu∈NN
1

M

M∑

m=1

(
(1− α)−1

(
(Lt′ − Lt)

m − V̂aR(Sm
t )

)+
+ V̂aR(Sm

t )− u(x)

)2

.

For t = 1yr, the Monte Carlo estimate of Barrera et al. (2022, (4.8)) for the L2-norm

of the difference between the estimate ÊC(t, S̃t) and the targeted (unknown) ẼC(t, S̃t)
is smaller than 0.067 (itself significantly less then the orders of magnitude of EC visible
on the left panels of Figure 3.2) with probability 95%.

We also compute V̂aR(0, S0) = 0.0120 (which is needed for ÊC(0, S0) below) as
an empirical (unconditional) value-at-risk. The corresponding 95% confidence interval

and relative error at 95% are [0.0117, 0.0123] and 1.96

V̂aR(0,S0)d̂(V̂aR(0,S0))

√
α(1−α)

M ≃ 2.3%,

where d̂ denotes the empirical density of Lt1 − Lt0 . Finally we compute ÊC(0, S0) =
0.493 using the recursive algorithm of Costa and Gadat (2021, Eqn (4)). Using the
central limit theorem for expected shortfalls derived in Costa and Gadat (2021, The-
orem 1.3), a 95% confidence interval is [0.451, 0.534] and the relative error at 95%

is
√

bM
2

1.96σ̂s

(1−α)ÊC(0,S0)
≃ 0.08, where σ̂s denotes the empirical standard deviation of

(L1 − L0)1{(L1−L0)>V̂aR(0,S0)} and bM is defined in Costa and Gadat (2021, Assump-

tion Han,bn).

KVA Computations Last, we approximate K̃VA(t, ·) at times t = ti on (0,∞), for i

decreasing from 10 to 1, by neural networks K̂VA(ti, ·), based on the following dynamic
programming equation, for 0 ≤ i < 10:

KVAti = Eti

[
KVAti+1 + h

∫ ti+1

ti

(ECu −KVAu)
+ du

]

≈ Eti

[
KVAti+1 + h(ti+1 − ti)

(
ECti+1 −KVAti+1

)+]
.
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Starting from K̂VA(tn, ·) = 0 and having already trained the K̂VA(tj , ·), j > i > 0, we

train K̂VA(ti, ·) based on sampled data

(X,Y ) =

(
S̃m
ti , h(ti+1 − ti)

(
ÊC(ti+1, S

m
ti+1

)− K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}

)+

+K̂VA(ti+1, S
m
ti+1

)1{Sm
ti+1

>0}

)
1≤m≤M

and on the quadratic loss (y − u(x))2. We then compute K̂VA(0, S0) = 0.407 from

r(t1 − t0)(ÊC(t1, St1) − K̂VA(t1, St1)1{St1>0}) + K̂VA(t1, St1) as a sample mean. The
corresponding standard deviation, 95% confidence interval and relative error at 95% are
σ̂kva ≃ 6×10−2, [0.4056, 0.4082] and 1.96σ̂kva

K̂VA0

√
M

≃ 0.0028, where σ̂kva denotes the empir-

ical standard deviation of r(t1− t0)(ÊC(t1, St1)− K̂VA(t1, St1)1{St1>0})+K̂VA(t1, St1).
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Crépey, S. (2013). Financial Modeling: A Backward Stochastic Differential Equations
Perspective. Springer Finance Textbooks.
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