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Stability in data-driven MPC: an inherent robustness perspective

Julian Berberich1, Johannes Köhler2, Matthias A. Müller3, Frank Allgöwer1

Abstract—Data-driven model predictive control (DD-MPC)
based on Willems’ Fundamental Lemma has received much
attention in recent years, allowing to control systems directly
based on an implicit data-dependent system description. The
literature contains many successful practical applications as well
as theoretical results on closed-loop stability and robustness.
In this paper, we provide a tutorial introduction to DD-MPC
for unknown linear time-invariant (LTI) systems with focus on
(robust) closed-loop stability. We first address the scenario of
noise-free data, for which we present a DD-MPC scheme with
terminal equality constraints and derive closed-loop properties.
In case of noisy data, we introduce a simple yet powerful
approach to analyze robust stability of DD-MPC by combining
continuity of DD-MPC w.r.t. noise with inherent robustness of
model-based MPC, i.e., robustness of nominal MPC w.r.t. small
disturbances. Moreover, we discuss how the presented proof
technique allows to show closed-loop stability of a variety of
DD-MPC schemes with noisy data, as long as the corresponding
model-based MPC is inherently robust.

I. INTRODUCTION

Willems’ Fundamental Lemma [1] is a foundational result

from behavioral systems theory that allows to parametrize all

trajectories of a linear time-invariant (LTI) system based on

one data trajectory with persistently exciting input component.

This parametrization lends itself naturally to designing con-

trollers based directly on data, see [2] for an extensive survey.

One prominent application is the design of model predictive

control (MPC) schemes [3], which can handle general per-

formance criteria and input, state, or output constraints. Here,

the state-space model, which is commonly used to optimize

over predicted trajectories, is replaced by the implicit data-

driven system representation [4], [5]. This direct data-driven

control procedure has potential advantages if compared to

the more established, indirect procedure of first identifying

a model and then applying model-based MPC. In particular,

data-driven MPC (DD-MPC) is simple to implement in the

sense that no intermediate model identification is required

and it yields good empirical results in complex nonlinear
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Fig. 1. Main idea of the robust stability proof of DD-MPC.

control applications [6]–[8]. Furthermore, DD-MPC admits

strong theoretical guarantees in open [9]–[12] and closed [13]–

[20] loop, even for noisy data or nonlinear systems, both

scenarios in which the theoretical analysis of identification-

based approaches is challenging.

In this paper, we provide a tutorial introduction to DD-MPC

based on the Fundamental Lemma [1] with a focus on closed-

loop stability guarantees for both noise-free and noisy data.

We present a generic framework for the theoretical analysis

of robust DD-MPC schemes with noisy data which relies on

inherent robustness. A (model-based) nominal MPC scheme

is referred to as inherently robust if it is robust w.r.t. small

disturbances, without resorting to explicit robustifications as in

robust MPC [3, Section 3.5]. Various works have studied inher-

ent robustness of nominal MPC with terminal constraints [21]

and without terminal constraints [22, Theorem 7.26], see [23]–

[25] for more general results.

Our theoretical analysis involves a two-step procedure, see

Figure 1: First, we prove continuity of DD-MPC in the

sense that output measurement noise can be translated into an

additive input disturbance for the corresponding model-based

MPC scheme. Then, we employ inherent robustness properties

of the latter to prove practical stability of the original DD-MPC

scheme. Notably, the robust stability proof relies on the same

Lyapunov function used to prove stability of the model-based

MPC. The main advantage of our theoretical analysis is that

it directly generalizes to a wide range of DD-MPC schemes,

as long as the corresponding model-based MPC scheme is

inherently robust. The proof strategy in this paper originates

from and extends [16], which shows stability guarantees of a

data-driven tracking MPC scheme for nonlinear systems.
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The paper is structured as follows. After introducing some

preliminaries in Section II, we analyze DD-MPC with noise-

free and noisy data in Sections III and IV, respectively.

Section V concludes the paper.

Notation: We define I≥0 as the set of nonnegative integers

and I[a,b] as the set of integers in the interval [a, b]. We

write A = A⊤ ≻ 0 if A is positive definite. For a set

of symmetric matrices {Ai}ni=1, λmin(A1, . . . , An) denotes

the smallest of all eigenvalues of the Ai’s (and similarly for

λmax). For a vector x ∈ R
n and a matrix P ≻ 0, we define

‖x‖P =
√
x⊤Px and ‖x‖2 =

√
x⊤x. We write K∞ for the

set of continuous functions β : R≥0 → R≥0 which are strictly

increasing, unbounded, and satisfy β(0) = 0. For a sequence

{uk}N−1
k=0 , we define the Hankel matrix

HL(u) :=











u0 u1 . . . uN−L

u1 u2 . . . uN−L+1

...
...

. . .
...

uL−1 uL . . . uN−1











as well as a window u[a,b] :=
[

u⊤
a . . . u⊤

b

]⊤
. Further, we

write u = u[0,N−1] for the stacked vector containing all entries

of the sequence.

II. PRELIMINARIES

We consider an LTI system

xk+1 = Axk +Buk, (1)

yk = Cxk +Duk

with state xk ∈ R
n, input uk ∈ R

m, and output yk ∈ R
p, all at

time k ∈ I≥0. We make the standing assumption that (A,B) is

controllable and (A,C) is observable. Throughout the paper,

the matrices A, B, C, D, are unknown, but one input-output

data trajectory {ud
k, y

d
k}N−1

k=0 of (1) is available, which is noise-

free (Section III) or noisy (Section IV). The corresponding

input component will be assumed to be persistently exciting

in the following (standard) sense [1].

Definition II.1. We say that {ud
k}N−1

k=0 is persistently exciting

of order L if rank(HL(u
d)) = mL.

We now introduce the Fundamental Lemma by [1].

Theorem II.1. [1] Suppose {ud
k}N−1

k=0 is persistently exciting

of order L + n. Then, {uk, yk}L−1
k=0 is a trajectory of (1) if

and only if there exists α ∈ R
N−L+1 such that

[

HL(u
d)

HL(y
d)

]

α =

[

u

y

]

. (2)

Theorem II.1 parametrizes all trajectories of the LTI sys-

tem (1), using only measured data and no explicit model

knowledge. The result is at the core of numerous recent data-

driven control approaches, see [2] for an overview, and will be

used to set up DD-MPC schemes in the present paper. Since

we only have access to input-output data, we (implicitly) work

with the extended, non-minimal state

ξt :=
[

u⊤
[t−n,t−1] y⊤[t−n,t−1]

]⊤

∈ R
(m+p)n. (3)

While Theorem II.1 as well as the definition of ξt require

knowledge of the system order n, the value n can be replaced

by an arbitrary upper bound.

III. DATA-DRIVEN MPC WITH NOISE-FREE DATA

Our control goal is stabilization of the origin1 of (1) while

satisfying pointwise-in-time constraints on the input and the

output, i.e., ut ∈ U, yt ∈ Y for all t ∈ I≥0 with closed sets

U ⊆ R
m, Y ⊆ R

p. To this end, we design a DD-MPC scheme

based on Theorem II.1. At time t ∈ I≥0 and for given initial

conditions {uk, yk}t−1
k=t−n, we consider the following optimal

control problem

min
α(t),ū(t),ȳ(t)

L−1
∑

k=0

‖ūk(t)‖2R + ‖ȳk(t)‖2Q (4a)

s.t.

[

ū(t)
ȳ(t)

]

=

[

HL+n(u
d)

HL+n(y
d)

]

α(t), (4b)

[

ū[−n,−1](t)
ȳ[−n,−1](t)

]

=

[

u[t−n,t−1]

y[t−n,t−1]

]

, (4c)

ūk(t) ∈ U, ȳk(t) ∈ Y, k ∈ I[0,L], (4d)

ūk(t) = 0, ȳk(t) = 0, k ∈ I[L−n,L−1]. (4e)

As in standard (model-based) MPC [3], Problem (4) minimizes

the deviation from the setpoint (u, y) = (0, 0) over the horizon

L ≥ n, weighted by Q,R ≻ 0. The constraint (4b) ensures

that the input-output trajectory (ū(t), ȳ(t)) predicted at time

t is indeed a trajectory of (1), compare Theorem II.1. This

trajectory is of length L+n, since the first n components are

required to implicitly fix the initial conditions via the past

n input-output measurements in (4c). Finally, Problem (4)

contains input-output constraints (4d) as well as terminal

equality constraints (4e) for the extended state ξt in order to

ensure stability.

We write J∗
L(ξt) for the optimal cost of Problem (4),

where ξt is the extended state corresponding to {uk, yk}t−1
k=t−n,

see (3). Further, the optimal solution of Problem (4) at time t

is denoted by ū∗(t), ȳ∗(t), α∗(t). On the other hand, closed-

loop variables at time t are written as ut, yt, ξt. Problem (4) is

used to implement an MPC scheme in a standard fashion [3]:

At time t, we measure {uk, yk}t−1
k=t−n, solve Problem (4), and

apply the first component of the optimal input, i.e., ut = ū∗
0(t).

Let us state the main theoretical assumptions to derive

closed-loop stability guarantees.

Assumption III.1. The input {ud
k}N−1

k=0 generating the data is

persistently exciting of order L+ 2n.

We assume persistence of excitation of order L + 2n,

although Theorem II.1 only requires L+n, since the trajectory

length in Problem (4) is L+n due to the initial conditions (4c).

Assumption III.2. There exists cu > 0 such that J∗
L(ξ) ≤

cu‖ξ‖22 for any ξ such that Problem (4) is feasible.

Assuming a quadratic upper bound for J∗
L(ξ) is not re-

strictive and holds, e.g., for polytopic constraints [26]. By

1Non-zero setpoints can be considered with straightforward modifications
and are omitted for brevity.
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detectability of the state-space realization corresponding to ξ,

there exists an input-output-to-state stability (IOSS) Lyapunov

function W (ξ) = ‖ξ‖2P for some P ≻ 0 satisfying

W (ξt+1)−W (ξt) ≤ −‖ξt‖22 + cIOSS(‖ut‖2R + ‖yt‖2Q) (5)

for any feasible trajectory and a suitable cIOSS > 0 [27]. In

the following theoretical analysis, we employ the Lyapunov

function candidate

V (ξ) = J∗
L(ξ) +

1

cIOSS
W (ξ). (6)

Theorem III.1. Suppose Assumptions III.1 and III.2 hold. If

Problem (4) is feasible at time t = 0, then (i) it is feasible at

any t ∈ I≥0, (ii) the closed loop satisfies the constraints, i.e.,

ut ∈ U, yt ∈ Y for all t ∈ I≥0, and (iii) the origin ξ = 0 is

exponentially stable for the resulting closed loop.

Proof. We only provide a sketch of the proof and refer to [13]

for further details. Statements (i) and (ii) can be shown using

standard MPC arguments, i.e., shifting the previously optimal

solution to construct a candidate solution at the next time

step [3]. Using this candidate, it is easy to show that

J∗
L(ξt+1)− J∗

L(ξt) ≤ −‖ut‖2R − ‖yt‖2Q. (7)

From (5) and (7), we infer

V (ξt+1)− V (ξt) ≤ − 1

cIOSS
‖ξt‖22. (8)

Together with the trivial lower bound V (ξ) ≥ λmin(P )
cIOSS

‖ξ‖22
and the upper bound V (ξ) ≤

(

cu +
λmax(P )
cIOSS

)

‖ξ‖22 (As-

sumption III.2), this implies exponential stability via standard

Lyapunov methods.

Theorem III.1 shows that the DD-MPC scheme defined via

Problem (4) exponentially stabilizes the closed loop while

satisfying the input-output constraints. Since the Fundamental

Lemma (Theorem II.1) provides an exact parametrization

of input-output trajectories, the presented MPC scheme is

equivalent to a model-based one, allowing for analogous steps

in the stability proof [3]. The main technical challenge is that

the cost (4a) only involves the predicted input and output and

is, therefore, only positive semi-definite in the internal state

x. This necessitates the use of detectability properties via an

IOSS Lyapunov function, similar to model-based MPC with

positive semidefinite stage cost [28].

IV. DATA-DRIVEN MPC WITH NOISY DATA

In this section, we extend the results of Section III to

the noisy case. To be precise, we assume that the data are

affected by output measurement noise, i.e., we have access

to {ud
k, ỹ

d
k}N−1

k=0 , where ỹdk = ydk + εdk with ‖εdk‖2 ≤ ε̄,

k ∈ I[0,N−1], for some ε̄ > 0. Similarly, the online output

measurements used to specify initial conditions (compare (4c))

are noisy, i.e., we measure ỹk = yk + εk with ‖εk‖2 ≤ ε̄,

k ∈ I≥0.

In Section IV-A, we derive the main technical result trans-

lating noise in DD-MPC into an input disturbance for model-

based MPC. In Section IV-B, we then combine this result with

inherent robustness of model-based MPC to prove closed-loop

(practical) stability.

A. Continuity of data-driven optimal control

In comparison to the noise-free setting (Section III), we

include the following additional assumption.

Assumption IV.1. The set U is a convex, compact polytope

and Y = R
p.

Output constraints require a constraint tightening, com-

pare [14], [19], and are omitted for simplicity. At time t and

for a given set of (noisy) initial conditions {uk, ỹk}t−1
k=t−n, we

consider the optimization problem

min
α̂(t),σ̂(t)
û(t),ŷ(t)

L−1
∑

k=0

‖ûk(t)‖2R + ‖ŷk(t)‖2Q + λαε̄
βα‖α̂(t)‖22 (9a)

+
λσ

ε̄βσ
‖σ̂(t)‖22

s.t.

[

û(t)
ŷ(t) + σ̂(t)

]

=

[

HL+n(u
d)

HL+n(ỹ
d)

]

α̂(t), (9b)

[

û[−n,−1](t)
ŷ[−n,−1](t)

]

=

[

u[t−n,t−1]

ỹ[t−n,t−1]

]

, (9c)

ûk(t) = 0, ŷk(t) = 0, k ∈ I[L−n,L−1], (9d)

ûk(t) ∈ U, k ∈ I[0,L]. (9e)

In Problem (9), the noise-free data yd and initial conditions

y[t−n,t−1] appearing in Problem (4) have been replaced by

their noisy counterparts. To robustify against the noise, Prob-

lem (9) includes a slack variable σ̂(t) which relaxes the

constraint (9b) due to the noisy output measurements. The

slack variable is regularized with parameters λσ , βσ > 0 to

avoid a large prediction error. Additionally, α̂(t) is regularized

with parameters λα, βα > 0 in order to reduce the influence

of the noise on the prediction in (4b). We note that similar

modifications of DD-MPC to cope with noise were suggested

by [5], [9], [10], [13], [17]. In case of noise-free data, i.e.,

for ε̄ → 0, Problem (9) reduces to the nominal one (4).

Throughout this section, the optimization variables associated

to Problem (9) are written as α̂(t), σ̂(t), û(t), ŷ(t), whereas we

denote the optimization variables corresponding to Problem (4)

by α(t), ū(t), ȳ(t). In particular, we write α̂∗(t), σ̂∗(t), û∗(t),
ŷ∗(t) for the optimal solution of Problem (9) at time t. Further,

we denote the corresponding optimal cost by Ĵ∗
L(ξ̃t), where

ξ̃t :=
[

u⊤
[t−n,t−1] ỹ⊤[t−n,t−1]

]⊤

is the noisy extended state,

compare (3).

Assumption IV.2. Problem (4) satisfies a linear independence

constraint qualification (LICQ), i.e., the row entries of the

equality and active inequality constraints are linearly inde-

pendent. Moreover, βα + βσ < 2.

Assuming an LICQ is common in linear-quadratic

MPC [26], and relaxing this assumption is an interesting

direction for future research. The condition βα + βσ < 2 is

required for a technical argument in the proof and can be

satisfied by design. The following result shows that the output

measurement noise in Problem (9) translates into an input

disturbance for the nominal problem (4). The statement as

well as the subsequent stability analysis rely on the Lyapunov

function V (ξ) defined in (6), which is used to prove stability
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in the nominal (equivalently, model-based) case, compare

Theorem III.1.

Theorem IV.1. Suppose Assumptions III.1, IV.1, and IV.2 hold.

Then, for any V > 0, there exists βu ∈ K∞ such that, if

V (ξt) ≤ V then

‖û∗(t)− ū∗(t)‖2 ≤ βu(ε̄). (10)

The proof can be found in the appendix and relies on

three steps: i) Bounding the optimal cost Ĵ∗
L(ξ̃t) of the

robust problem (9) in terms of the optimal cost J∗
L(ξt) of

the nominal problem (4); ii) relating the minimizer of the

robust problem (9) to the minimizer of a perturbed version of

the nominal problem (4), where the perturbation vanishes for

ε̄ → 0; and iii) relating the minimizer of the latter perturbed

problem to the unperturbed nominal problem (4) via sensitivity

analysis of quadratic programs.

Theorem IV.1 shows that the difference between the op-

timal inputs ū∗(t) and û∗(t) generated by Problem (4) and

Problem (9), respectively, is bounded by the noise level. The

result extends [16, Proposition 1] with the technical difference

that the considered nominal MPC problem (4) contains no

regularization of α in the cost and is, hence, equivalent to

a standard model-based MPC. According to Theorem IV.1,

measurement noise in DD-MPC is equivalent to an input

disturbance for model-based MPC. Thus, if we can show that

Problem (4) is inherently robust w.r.t. input disturbances, then

we can conclude robustness of Problem (9) w.r.t. noisy data.

Following this idea, we prove (practical) stability of robust

DD-MPC in the next section.

B. Closed-loop stability and robustness

Due to the terminal equality constraint (4e), a nominal MPC

scheme based on Problem (4) is in general not inherently

robust (or only locally). Therefore, we consider Problem (9)

in a multi-step implementation, compare [29], [30]: At time

t = ni, i ∈ I≥0, we measure ξ̃t, solve Problem (9), and apply

u[t,t+n−1] = û∗
[0,n−1](t) over the next n time steps.

We begin by showing that the nominal data-driven (equiva-

lently, model-based) MPC with terminal equality constraints is

inherently robust when applied in a multi-step (n-step) fashion.

To this end, we require the following (mild) assumption.

Assumption IV.3. We have 0 ∈ int(U) and L ≥ 2n.

Proposition IV.1. Suppose Assumptions III.1, III.2, IV.1,

and IV.3 hold. Consider System (1) controlled by an n-step

MPC scheme based on Problem (4), where the input applied

to (1) is perturbed as

u[t,t+n−1] = ū∗
[0,n−1](t) + d[t,t+n−1] (11)

for t = ni, i ∈ I≥0.

Then, there exists d̄ > 0 such that, for any disturbance

{dt}∞t=0 satisfying supt∈I≥0
‖dt‖2 ≤ d̄, if Problem (4) is

feasible at initial time t = 0, then it is feasible at any time

t = ni, i ∈ I≥0.

Furthermore, for any V > 0, there exist d̄max, c̄l, c̄u > 0,

0 < cV < 1, and βd ∈ K∞ such that for all initial conditions

with V (ξ0) ≤ V , all d̄ ≤ d̄max, and all times t = ni, i ∈ I≥0,

the closed loop satisfies

c̄l‖ξt‖22 ≤ V (ξt) ≤ c̄u‖ξt‖22, (12)

V (ξt+n) ≤ cVV (ξt) + βd(d̄). (13)

Proof. (i). Recursive feasibility: We prove recursive feasibil-

ity via a candidate solution that results from shifting the previ-

ously optimal solution and appending a deadbeat controller to

account for the input disturbance. At time t+n, we define the

input candidate as ū′
k(t + n) = ū∗

k+n(t) for k ∈ I[0,L−2n−1].

The initial conditions (4c) imply ū′
k(t + n) = ut+n+k,

ȳ′k(t + n) = yt+n+k for I[−n,−1]. Thus, it only remains to

define ū′
k(t + n) for k ∈ I[L−2n,L−1] as well as the output

candidate.

We write {y̌k(t + n)}L−n−1
k=0 for the output trajectory that

results from applying the input {ū∗
k+n(t)}L−n−1

k=0 to System (1)

with initial state xt+n. For time steps k ∈ I[0,L−2n−1], we

choose the output candidate as ȳ′k(t + n) = y̌k(t + n).
The only difference between y̌k(t + n) and ȳ∗k+n(t) is due

to the disturbance and thus, by the linear (hence, Lipschitz

continuous) system dynamics (1), there exists cd,1 > 0 such

that

‖y̌k(t+ n)− ȳ∗k+n(t)‖2 ≤ cd,1d̄ (14)

for k ∈ I[0,L−n−1]. The terminal equality constraints (4e)

imply ȳ∗k+n(t) = 0 for k ∈ I[L−2n,L−n−1] and, therefore,

using (14), we obtain

‖y̌k(t+ n)‖2 ≤ cd,1d̄ for k ∈ I[L−2n,L−n−1].

Using additionally ū∗
k+n(t) = 0 for k ∈ I[L−2n,L−n−1] as well

as the linear system dynamics (1), the norm of the internal state

corresponding to the trajectory (ū′(t + n), y̌(t + n)) at time

L−2n is bounded by cd,2d̄ for some cd,2 > 0. We now define

the input and output candidate over time steps k ∈ I[L−2n,L−1]

using a deadbeat control argument: By controllability, there

exists an input-output trajectory {ū′
k(t+n), ȳ′k(t+n)}L−n−1

k=L−2n

steering the system to (ū′
k(t + n), ȳ′k(t + n)) = (0, 0) for

k = L− n, . . . , L− 1 while satisfying

L−n−1
∑

k=L−2n

‖ū′
k(t+ n)‖22 + ‖ȳ′k(t+ n)‖22 ≤ cd,3d̄

for some cd,3 > 0. If d̄ > 0 is sufficiently small, the input sat-

isfies the constraints ū′
k(t+n) ∈ U for k ∈ I[L−2n,L−n−1] due

to 0 ∈ int(U). Moreover, the constructed candidate satisfies

the terminal equality constraints (4e). Finally, a corresponding

candidate for α′(t+n) satisfying (4b) exists by Theorem II.1.

(ii). Practical stability: The lower and upper bounds in (12)

are analogous to Theorem III.1. Using the above candidate

solution, it is straightforward to show that

J∗
L(ξt+n)− J∗

L(ξt) ≤ −
n−1
∑

k=0

(

‖ut+k‖2R + ‖yt+k‖2Q
)

+ βd(d̄)

for a linear function βd ∈ K∞. Applying the IOSS property (5)

as well as the upper bound in (12), we arrive at the decay

bound (13). Using V (ξt) ≤ V , this implies

V (ξt+n) ≤ cVV + βd(d̄) ≤ V , (15)
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where the last inequality holds if d̄max is sufficiently small.

Hence, Inequality (13) holds recursively for all t = ni, i ∈
I≥0, which concludes the proof.

Proposition IV.1 shows that model-based multi-step MPC

with terminal equality constraints is robust w.r.t. (sufficiently

small) input disturbances. Specifically, the Lyapunov function

V used in the nominal stability proof (Theorem III.1) is a prac-

tical Lyapunov function [31] in the presence of disturbances.

We now consider the robust DD-MPC scheme based on

Problem (9) which is applied in a multi-step fashion as

described above. The following result combines Theorem IV.1

and Proposition IV.1 to prove practical stability of the resulting

closed loop in the presence of noisy output measurements.

Corollary IV.1. Suppose Assumptions III.1, III.2, and IV.1–

IV.3 hold. Consider System (1) controlled by an n-step MPC

scheme based on Problem (9).

Then, for any V > 0, there exist ε̄max, cV > 0, and βV ∈
K∞ such that, for all initial conditions with V (ξ0) ≤ V , all

ε̄ ≤ ε̄max, and all times t = ni, i ∈ I≥0, the closed loop

satisfies

V (ξt+n) ≤ cVV (ξt) + βV(ε̄). (16)

Proof. Given V > 0, consider βd and d̄max from Propo-

sition IV.1. Choose ε̄max > 0 sufficiently small such that

βu(ε̄max) ≤ d̄max with βu as in Theorem IV.1. Combining (10)

and (13), we obtain (16) with βV := βd ◦ βu. As in the proof

of Proposition IV.1, we infer V (ξt+n) ≤ V such that this

argument can be applied recursively and (16) holds for all

t = ni, i ∈ I≥0.

Corollary IV.1 proves closed-loop practical exponential sta-

bility under the data-driven multi-step MPC scheme based on

Problem (9). To be precise, (12) together with (16) implies

‖ξt‖22 ≤
c̄u

c̄l
ciV‖ξ0‖22 +

1

c̄l

i−1
∑

j=0

c
j
VβV(ε̄) (17)

for any t = ni, i ∈ I≥0. Using cV < 1, this implies that ξt
converges exponentially to the neighborhood

Ξε̄ :=
{

ξ | ‖ξ‖22 ≤ 1

c̄l(1 − cV)
βV(ε̄)

}

of the origin, the size of which increases with the noise

level. Similarly, the size of the region of attraction V depends

on the noise level ε̄, i.e., for larger values of V a smaller

value for ε̄ needs to be selected in Corollary IV.1, compare

the proof of Proposition IV.1. It is also possible to prove

that the neighborhood Ξε̄ shrinks and V can be chosen

larger if the minimum singular value of the input data matrix

HL+n(u
d) increases, compare [13]. Hence, the closed-loop

guarantees on practical stability of DD-MPC that are proven in

Corollary IV.1 depend directly on the data quality. Analogous

to classical inherent robustness results [21]–[25], our results

only yield qualitative guarantees. In particular, the constants

in Corollary IV.1 and the set Ξε̄ cannot be easily computed

without detailed model knowledge. Inferring these quantities

from data only is an interesting issue for future research.

Note that Corollary IV.1 employs the Lyapunov function V

corresponding to the nominal data-driven (i.e., model-based)

MPC scheme from Section III in order to analyze the closed

loop of the robust DD-MPC scheme.

The presented theoretical analysis provides a generic proof

strategy which can be directly transferred to derive robust-

ness guarantees of various DD-MPC schemes, the main re-

quirement being that the corresponding model-based MPC

scheme is inherently robust. More precisely, the continuity

property stated in Theorem IV.1 implies that noisy data can

be viewed as an input disturbance for model-based MPC.

The result remains true for different DD-MPC formulations

as long as the underlying optimization problem satisfies an

LICQ (Assumption IV.2), is strongly convex in the input, and

the constraints are polytopic. Furthermore, Proposition IV.1

shows that model-based multi-step MPC with terminal equality

constraints is inherently robust w.r.t. input disturbances. Anal-

ogous results hold for multi-step tracking MPC with terminal

equality constraints and an artifical setpoint [16, Appendix

D] as well as for standard (one-step) implementations of

MPC without terminal constraints [22, Theorem 7.26], MPC

with general terminal constraints and terminal cost [21], and

under more general assumptions [23]–[25]. Thus, our two-

step analysis implies practical stability of any robust DD-MPC

scheme for which Theorem IV.1 and Proposition IV.1 apply.

Stability and robustness of DD-MPC has also been shown

recently in [13] and [17] for MPC schemes with terminal

equality constraints and without any terminal constraints,

respectively. Deriving guarantees in the absence of terminal

constraints is particularly relevant since most existing appli-

cations of DD-MPC [6], [7] as well as many implementa-

tions of model-based MPC [32] omit terminal constraints.

The theoretical analysis in the present paper has significant

advantages over the ones from [13] and [17]: The frame-

work allows for seamless extensions into multiple directions,

whereas the analysis in [13] and [17] is tailored to the

specific problem setup and DD-MPC formulation. Moreover,

the overall analysis is substantially shorter. On the other hand,

the tailored approaches from [13], [17] yield more insightful

and interpretable bounds related to system properties (e.g.,

controllability and observability), which can even be used to

construct a constraint tightening guaranteeing robust output

constraint satisfaction [14], [19].

To summarize, the presented inherent robustness perspective

provides a unifying framework for the robust stability analysis

of DD-MPC in the presence of noisy data.

V. CONCLUSION

We provided a tutorial introduction to stability and robust-

ness of DD-MPC using an implicit prediction model based

on the Fundamental Lemma. In case of noise-free data, we

presented a stability proof based on a detectability condition to

address the positive semidefinite cost function. In the presence

of output measurement noise, we then proved that a modified

robust DD-MPC scheme is practically stable w.r.t. the noise

level. Our analysis consists of two steps: 1) translating noisy

data in DD-MPC into an input disturbance for model-based

MPC and 2) proving inherent robustness of the latter. The
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presented exposition directly applies to a wide class of DD-

MPC schemes and, therefore, simplifies the transfer of model-

based MPC results to the recent field of DD-MPC.
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APPENDIX: PROOF OF THEOREM IV.1

Proof. Parts of the following proof are adapted from the

proof of [16, Proposition 1]. Parts (i), (ii).a, and (ii).b are

similar to [16, Proposition 1]. On the other hand, Part (ii).c

addresses the issue that, in contrast to [16, Proposition 1], the

nominal / model-based MPC problem (4) does not contain a

regularization of α(t) in the cost.

(i). Proof of cost bound

Since J∗
L(ξt) ≤ V (ξt) ≤ V , Problem (4) is feasible. In the

following, we use the optimal solution of Problem (4) to define

a candidate solution for Problem (9). To this end, let

û(t) = ū∗(t), ŷ(t) =

[

ỹ[t−n,t−1]

ȳ∗[0,L−1](t)

]

. (18)

Further, define

Hux :=

[

HL+n(u
d)

H1(x
d
[0,N−L])

]

, (19)

where {xd
k}N−1

k=0 is the state trajectory corresponding to

(ud, yd). Using Assumption III.1 and [1, Corollary 2], Hux

has full row rank. We now choose

α̂(t) = H†
ux

[

û(t)
xt−n

]

, (20)

where H†
ux is the Moore-Penrose inverse of Hux. Finally, the

slack variable is chosen as

σ̂(t) =HL+n(ỹ
d)α̂(t)− ŷ(t) (21)

(18)−(20)
= HL+n(ε

d)α̂(t)−
[

ε[t−n,t−1]

0

]

.

This implies

‖σ̂(t)‖22 ≤ C1ε̄
2‖α̂(t)‖22 + C2ε̄

2 (22)

for some C1, C2 > 0. Exploiting that the above candidate is

feasible for Problem (9), we infer

Ĵ∗
L(ξ̃t)− J∗

L(ξt) ≤ λαε̄
βα‖α̂(t)‖22 +

λσ

ε̄βσ
‖σ̂(t)‖22

(20),(22)

≤ (λαε̄
βα + λσC1ε̄

2−βσ)‖H†
xu‖22(‖û(t)‖22 + ‖xt−n‖22)

+ λσC2ε̄
2−βσ . (23)

To bound the first term on the right-hand side, we use that,

by [13, Equation (16)], there exists C3 > 0 satisfying

‖xt−n‖22 ≤ C3‖ξt‖22. (24)

Further, by ‖û(t)‖22 = ‖ū∗(t)‖22 ≤ 1
λmin(R)V (ξt) and V (ξ) ≥

λmin(P )
cIOSS

‖ξ‖22, we infer

‖û(t)‖22 + ‖ξt‖22 ≤ C4V (ξt) (25)

for some C4 > 0. Combining (23)–(25), we obtain

Ĵ∗
L(ξ̃t) ≤J∗

L(ξt) + (C5ε̄
βα + C6ε̄

2−βσ)V (ξt) + C7ε̄
2−βσ

≤J∗
L(ξt) + β1(ε̄) (26)

for some Ci > 0, i ∈ I[5,7], where β1 ∈ K∞ due to V (ξt) ≤ V

and 2− βσ > 0 due to Assumption IV.2.

(ii). Proof of (10)

(ii).a Bound on ‖û∗(t)− ũ(t)‖2
Consider now the (auxiliary) optimization problem

min
α(t),ū(t),ȳ(t)

L−1
∑

k=0

‖ūk(t)‖2R + ‖ȳk(t)‖2Q + λαε̄
βα‖α(t)‖22

(27a)

s.t.

[

ū(t)
ȳ(t) + σ̃1

]

=

[

HL+n(u
d)

HL+n(y
d)

]

α(t), (27b)

[

ū[−n,−1](t)
ȳ[−n,−1](t)

]

=

[

u[t−n,t−1]

y[t−n,t−1] + σ̃2

]

, (27c)

ūk(t) ∈ U, k ∈ I[0,L], (27d)

ūk(t) = 0, ȳk(t) = 0, k ∈ I[L−n,L−1], (27e)

where

σ̃ =

[

σ̃1

σ̃2

]

:=

[

σ̂∗(t)−HL+n(ε
d)α̂∗(t)

ε[t−n,t−1]

]

. (28)

We denote the optimal solution of Problem (27) by α̃(t), ũ(t),
ỹ(t), and the optimal cost by J̃L. Since J∗

L(ξt) ≤ V (ξt) ≤ V ,

Problem (4) is feasible and thus, by Part (i) of the proof,

Problem (9) is feasible as well. The optimal solution of

Problem (9) is feasible for Problem (27), i.e.,

J̃L ≤ Ĵ∗
L(ξ̃t)−

λσ

ε̄βσ
‖σ̂∗(t)‖22, (29)

where the term involving σ̂∗(t) is due to the fact that Prob-

lem (27) does not contain a slack variable in the cost (27a).

On the other hand, a feasible solution for Problem (9) can be

defined via û(t) = ũ(t), ŷ(t) = ỹ(t), α̂(t) = α̃(t), and

σ̂(t) = σ̂∗(t) +HL+n(ε
d)(α̂(t)− α̂∗(t)), (30)

where we denote the corresponding cost by Ĵ ′
L. By optimality,

we have Ĵ∗
L(ξ̃t) ≤ Ĵ ′

L. Moreover, by definition, it holds that

Ĵ ′
L − J̃L =

λσ

ε̄βσ
‖σ̂(t)‖22. (31)

From optimality, it follows that

‖α̂∗(t)‖22 ≤ Ĵ∗
L(ξ̃t)

λαε̄βα
, (32)

‖σ̂∗(t)‖22 ≤ε̄βσ
Ĵ∗
L(ξ̃t)

λσ

. (33)

Further, we have

‖α̂(t)‖22 = ‖α̃(t)‖22 ≤ J̃L

λαε̄βα

(29)

≤ Ĵ∗
L(ξ̃t)

λαε̄βα
. (34)

Problem (9) is strongly convex in û, i.e., there exists cu,c > 0
such that

‖û(t)− û∗(t)‖22 ≤ cu,c(Ĵ
′
L − Ĵ∗

L(ξ̃t)), (35)

compare [33, Inequality (11)]. Together with û(t) = ũ(t), we

infer

‖û∗(t)− ũ(t)‖22
(35)

≤ cu,c(Ĵ
′
L − Ĵ∗

L(ξ̃t))
(29)

≤ cu,c

(

Ĵ ′
L − J̃L − λσ

ε̄βσ
‖σ̂∗(t)‖22

)

(31)
= cu,c

λσ

ε̄βσ
(‖σ̂(t)‖22 − ‖σ̂∗(t)‖22).
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Using (30) as well as

‖a‖22 − ‖b‖22 ≤ ‖a− b‖22 + 2‖a− b‖2‖b‖2,
we infer

‖σ̂(t)‖22 − ‖σ̂∗(t)‖22
≤‖HL+n(ε

d)(α̂(t)− α̂∗(t))‖22
+ 2‖HL+n(ε

d)(α̂(t)− α̂∗(t))‖2‖σ̂∗(t)‖2
(32)−(34)

≤ C8ε̄
2−βα Ĵ∗

L(ξ̃t) + C9ε̄
1+ βσ−βα

2 Ĵ∗
L(ξ̃t)

for suitably defined C8, C9 > 0. Thus, using (26) as well as

V (ξt) ≤ V , we have

‖û∗(t)− ũ(t)‖2 ≤ β2(ε̄), (36)

where

β2(ε̄) :=
√

cu,cλσ

(

C8ε̄2−βα−βσ + C9ε̄
1

2
(2−βα−βσ)

)

(V + β1(ε̄)).

Note that β2 ∈ K∞ due to βα + βσ < 2.

(ii).b Bound on ‖ũ(t)− u′(t)‖2
It remains to derive a bound on ‖ũ(t) − ū∗(t)‖2, which,

together with (36), will imply (10). Feasibility of Problem (4)

implies feasibility of (27) with σ̃ = 0. We denote the optimal

input of Problem (27) with σ̃ = 0 by u′(t). Similar to [16,

Proposition 1], we can use standard arguments from multi-

parametric quadratic programming [26] to infer

‖ũ(t)− u′(t)‖2 ≤ C10‖σ̃‖2 (37)

(28),(32),(33)

≤ C11

(

ε̄+ ε̄
βσ
2 + ε̄1−

βα
2

)

for some C10, C11 > 0, where the last inequality also uses

Ĵ∗
L(ξ̃t)

(26)

≤ J∗
L(ξt) + β1(ε̄) ≤ C12

for some C12 > 0 due to J∗
L(ξt) ≤ V and bounded ε̄.

(ii).c Bound on ‖u′(t)− ū∗(t)‖2
Finally, we derive a bound on ‖u′(t) − ū∗(t)‖2. Recall that

ū∗(t) is the optimal input of Problem (4), whereas u′(t)
is the optimal input of Problem (4) when adding the term

λαε̄
βα‖α(t)‖22 to the cost. Since, by assumption, U is a

polytope and Y = R
p, Problem (4) (including the cost term

λαε̄
βα‖α(t)‖22) can be transformed to the following generic

quadratic program

min
z,α

‖z‖22 + ε̄βα‖α‖22 (38a)

s.t. Hα = z, (38b)

Aeqz = beq, Aineqz ≤ bineq. (38c)

We write z∗(ε̄) for the optimal value z of Problem (38) de-

pending on ε̄. In the following, we show that ‖z∗(ε̄)−z∗(0)‖2
can be bounded in terms of the noise level, which directly

implies an analogous bound on ‖u′(t)− ū∗(t)‖2. Consider the

following quadratic program

min
z,α,w

‖z‖22 + ε̄βα‖α‖22 (39a)

s.t. α = H†z + (I −H†H)w, (39b)

Aeqz = beq, Aineqz ≤ bineq, (39c)

where H† denotes the Moore-Penrose inverse of H . Prob-

lem (39) is equivalent to Problem (38) since (39b) parametrizes

the solution space of (38b). We can eliminate this constraint

to arrive at

min
z,w

‖z‖22 + ε̄βα‖H†z + (I −H†H)w‖22 (40a)

s.t. Aeqz = beq, Aineqz ≤ bineq. (40b)

By orthogonality, we infer

‖H†z + (I −H†H)w‖22 = ‖H†z‖22 + ‖(I −H†H)w‖22.

Thus, the optimal solution of Problem (40) satisfies (I −
H†H)w = 0 and, therefore, Problem (40) is equivalent to

min
z

z⊤
(

I + ε̄βα(H†)⊤H†
)

z (41a)

s.t. Aeqz = beq, Aineqz ≤ bineq. (41b)

Denoting the optimal cost of Problem (41) for a given ε̄ > 0
by S(ε̄), it is not hard to see that

S(ε̄) ≤ (1 + C13ε̄
βα)S(0), (42)

S(0) ≤ S(ε̄) (43)

for some C13 > 0 and any ε̄ > 0. Using strong convexity of

Problem (41), there exists C14 > 0 such that

‖z∗(ε̄)− z∗(0)‖22 ≤C14(S(ε̄)− S(0))
(42)

≤C14C13ε̄
βαS(0),

compare [33, Inequality (11)]. Applied to Problem (4) with

S(0) = J∗
L(ξt) ≤ V (ξt) ≤ V , there exists C15 > 0 such that

‖u′(t)− ū∗(t)‖2 ≤ C15ε̄
βα
2 . (44)

Combining (36), (37), and (44), there exists βu ∈ K∞

satisfying (10) which concludes the proof.
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